JP2662209B2 - Copper alloy for electronic equipment with excellent plating adhesion and solder bondability and its manufacturing method - Google Patents
Copper alloy for electronic equipment with excellent plating adhesion and solder bondability and its manufacturing methodInfo
- Publication number
- JP2662209B2 JP2662209B2 JP28459095A JP28459095A JP2662209B2 JP 2662209 B2 JP2662209 B2 JP 2662209B2 JP 28459095 A JP28459095 A JP 28459095A JP 28459095 A JP28459095 A JP 28459095A JP 2662209 B2 JP2662209 B2 JP 2662209B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- alloy
- plating adhesion
- copper alloy
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Lead Frames For Integrated Circuits (AREA)
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は強度が高く、導電性
及び耐熱性が優れ、かつ加工性やメッキ密着性が良好
で、ハンダとの界面強度の経時劣化を起さない電子機器
用銅合金とその製造法に関するものである。
【0002】
【従来の技術】一般に半導体機器、例えば半導体素子用
リードフレームには、下記の特性が要求されている。
(1) 強度が高く、耐熱性が良いこと、(2) 放熱性、即ち
熱伝導性・電気伝導性が高いこと、(3) フレーム形成後
の曲げ成型性が良いこと、(4) メッキ密着性及び樹脂と
のモールド性が良いこと、(5) ハンダとの接合部の経時
劣化が無いこと、このようなリードフレームには主とし
て42合金(Fe−42wt%Ni)が用いられている。この
合金は引張強さ63kg/mm2 、耐熱性670 ℃(30分間の加
熱により初期強度の70%の強度になる温度)の優れた特
性を示すが、導電率は3%IACS程度と劣るものであ
る。
【0003】近年半導体素子は集積度の増大及び小型化
と同時に高信頼性が求められるようになり、半導体素子
の形態も従来のDIP型ICからチップキャリヤー型や
PGA型へと変化しつつある。このため半導体素子用の
リードフレームも薄肉、小型化され、同時に42合金を上
回る特性が要求されるようになった。即ち薄肉化による
構成部品の強度低下を防ぐための強度向上と、集積度の
増大による放熱性の向上のために熱伝導性と同一特性で
ある導電率の向上、更に優れた耐熱性と、半導体のフレ
ーム上への固定、及び半導体からリードフレームの足の
部分の配線へのボンディング前処理としてリードフレー
ム表面へのメッキ性とメッキ密着性、封止樹脂とのモー
ルド性の向上、更には信頼性の問題としてフレームと基
板との接合におけるハンダ接合強度の経時劣化が無いこ
とが望まれている。
【0004】
【発明が解決しようとする課題】上記42合金は導電率が
3%IACSと低く、放熱性が劣る欠点があり、これに
代えて銅合金を用いれば導電率を50〜30%IACSと飛
躍的に向上させることができるも、他の特性について42
合金と同等の性能を得ることは極めて困難であった。
【0005】
【課題を解決するための手段】本発明はこれに鑑み種々
検討の結果、42合金よりはるかに優れた導電率を示し、
その他の特性についても、42合金とほぼ同等の特性を示
す半導体機器用銅合金とその製造法を開発したものであ
る。
【0006】即ち本発明合金は、Ni 0.1wt%以上 3.0
wt%未満、Ti 0.1〜 1.0wt%の範囲内でNiとTiを
Ni/Tiが4未満となるように含み、かつSn 0.1〜
6.0wt%とMn,Mg,ミッシュメタル(MM),B,
Sb,Te,Zrの何れか1種又は2種以上を合計 0.0
05〜 3.0wt%(以下wt%を%と略記)を含み、さらにZ
n,Alの何れか1種又は2種を合計 3.0%以下含み、
さらにO2 含有量を20ppm以下、析出物寸法を5μm以
下とし、残部Cuと不可避的不純物からなることを特徴
とするものである。
【0007】また本発明製造法は、Ni 0.1%以上 3.0
%未満、Ti 0.1〜 1.0%の範囲内でNiとTiをNi
/Tiが4未満となるように含み、かつSn 0.1〜 6.0
%とMn,Mg,ミッシュメタル(MM),B,Sb,
Te,Zrの何れか1種又は2種以上を合計 0.005〜
3.0%を含み、さらにZn,Alの何れか1種又は2種
を合計 3.0%以下含み、残部Cuと不可避的不純物から
なる合金鋳塊を、 750〜960℃で 0.5〜15時間均質化処
理した後、 700〜 920℃の温度で熱間圧延を施し、しか
る後直ちに冷却することを特徴とするものである。
【0008】本発明において合金組成を上記の如く限定
したのは次の理由によるものである。
【0009】NiとTiの添加は、その相乗効果により
強度及び導電率を向上させるためであり、その含有量を
Ni 0.1%以上 3.0%未満、Ti 0.1〜 1.0%と限定し
たのは、何れも下限未満では特性の向上が見られず、上
限を越えると鋳造性、加工性及び曲げ成型性を著しく低
下し、合金の製造を困難にするためである。またNiと
TiをNi/Tiが4未満となるように限定したのは、
優れた強度と高い導電率を得るためで、Ni/Tiが4
以上になると強度は向上するも導電率の低下が著しくな
るためであり、望ましくはNi/Tiは2程度とするこ
とが好ましい。
【0010】Snの添加は更に強度を高めると共に曲げ
成型性を向上し、更に熱間圧延条件(開始温度,終了温
度,冷却速度等)による特性のバラツキを抑制するため
で、その含有量を 0.1〜 6.0%と限定したのは、下限未
満では効果が乏しく、上限を越えると導電性の低下が著
しくなるばかりか加工性が低下し、合金の製造を困難に
するためである。
【0011】Mn,Mg,MM,B,Sb,Te,Zr
の何れか1種又は2種以上の添加は、何れも脱酸効果に
より鋳造性を向上させると共に熱間圧延性、特に熱間圧
延前の均質化処理時の再熱割れや圧延時の割れを防止
し、更にハンダとの接合界面の強化によりハンダ接合強
度の経時劣化を抑制するためである。しかしてその合計
含有量を 0.005〜 3.0%と限定したのは、下限未満では
効果が乏しく、上限を越えると鋳造性を悪化させるばか
りか、メッキ密着性や曲げ成型性を悪化させるためであ
る。
【0012】Zn,Alの何れか1種又は2種は、更に
強度を向上せしめると共にハンダ接合強度の経時劣化を
防止するためで、その合計含有量を 3.0%以下と限定し
たのは上限を越えるとメッキ密着性や導電率を低下する
ためである。
【0013】次にO2 含有量を 20ppm以下(望ましくは
10ppm以下)としたのは、鋳造時の溶湯中のO2 量が 2
0ppmを越えると、Tiが酸化物として溶湯よりスラグと
なり、Ti成分のコントロールを難しくすると共に鋳造
性を悪化させるばかりか、合金のメッキ密着性やハンダ
着け性を悪くするためである。また析出物の大きさを5
μm以下としたのは、析出物の大きさはメッキの表面状
態や密着性及びハンダ濡れ性に大きく作用し、析出物が
5μmを越えるとこれ等特性を大きく低下するためであ
る。
【0014】本発明製造法は上記組成範囲の合金を半連
続又は連続鋳造により鋳塊とし、これを 750〜 960℃で
0.5〜15時間均質化処理し、続いて 700〜 920℃から熱
間圧延を施し、しかる後直ちに冷却するもので、本発明
合金に用いられるTiは活性に富んでおり、酸化され易
く、大気中では酸化物となり易く、スラグを発生して成
分不良の原因を作る。しかしながらArやN2 等の非酸
化性雰囲気中で溶解鋳造を行う事により前記欠点をカバ
ーする事が可能となり、生産性の点で大いなる向上が計
れる。更に半連続又は連続鋳造における冷却速度は 100
℃/sec以上が望ましく、それ未満では構成元素による析
出物が生じてしまい、熱間圧延前の均質化処理時に粗大
化を示し、その後の特性や製造法に悪影響を及ぼす。
【0015】また熱間圧延前の均質化処理を 750〜 960
℃で 0.5〜15時間としたのは、それぞれ下限未満では均
質化の効果が見られず、上限を越えると再熱割れや生産
コストを悪化させる。均質化処理としては 830〜 950℃
で1〜8時間が望ましい。均質化処理後の熱間圧延開始
温度を 700〜 920℃としたのは、この範囲外では熱延割
れを生じ易いためである。熱間圧延開始温度としては 8
20〜 900℃とすることが望ましい。尚熱間圧延後の冷却
はSn添加の効果により、どのような冷却速度で行って
もかまわないが、1000℃/min以上とすることが望まし
い。また本発明製造法としては、熱間加工後に冷間加工
と 400〜 800℃で10秒〜 360分間の焼鈍を繰返し、最終
的に 200〜 500℃の調質焼鈍やテンションレベラー等を
組み合わせることによってより優れた特性を得ることが
できる。
【0016】
【実施例】雰囲気溶解炉を用い、Arガス中で表1に示
す組成の銅合金を溶解・鋳造し、厚さ50mm、幅 120mmの
鋳塊を得た。これを面削し、 850℃で3時間均質化処理
した後、 830℃で熱間圧延し、これを水冷して厚さ10mm
の板とした。これ等の板について冷間圧延と中間焼鈍
(表1中No.1〜10は 570℃で1時間、No.11は 700℃
で1時間)を繰返し行ない、最終加工率40%で厚さ0.25
mmの板に仕上げ、 300℃で 0.5時間の調質焼鈍を施した
後、試験片を切り出して引張強さ,曲げ成型性(R/
t),メッキ密着性,モールド性(酸化膜剥離性),ハ
ンダ接合強度を調べた。これ等の結果を表2に示す。
【0017】引張強さはJIS-Z2241 に基づき、導電率は
JIS-H0505 に基づき測定した。曲げ成型性(R/t)は
JIS-Z2248 のブロック法に基づいて試験を行ない試験片
表面に割れを生じさせる最少曲げ半径(R)を試験片の
厚さ(t)で割った値で示した。
【0018】メッキ密着性は30×30mmの試験片につい
て、表面清浄後、Agメッキを行ない、これを大気中で
加熱し、その後のメッキ表面の脹れを観察し、 550℃で
5分間加熱で脹れの見られないものを○印、脹れの見ら
れるものを×印で示した。
【0019】また酸化膜剥離性は10×50mmの試験片につ
いて、表面清浄化処理後、大気中420℃で1分間加熱し
た後、セロテープによる剥離試験を行ない、ほとんど剥
離が見られないものを○印、全面に剥離が認められるも
のを×印で示した。
【0020】ハンダ接合強度については5×50mmの試験
片について、同形状の無酸素板と60/40共晶ハンダによ
り接合し、 150℃に500 時間の加熱加速試験を施した
後、引張試験を行ない、その強度が加速試験前の80%以
上のものを○印、50〜80%のものを△印、それ以下を×
印で表わした。
【0021】
【表1】
【0022】
【表2】
【0023】表1及び表2から明らかなように、本発明
合金No.1〜3は何れも従来合金である42合金(No.1
1)と比較し、同等の強度と、はるかに優れた導電性を
有することが判る。これに対しTi含有量が少ない比較
合金No.4では強度及び導電性の向上が劣り、Ti含有
量の多い比較合金No.5では熱間加工が困難であった。
またNi含有量の多い比較合金No.6では導電性の改善
が認められないばかりか、メッキ密着性やモールド性が
劣る。またSn含有量の多い比較合金No.7では、比較
合金No.5と同様熱間圧延が困難であった。更にその他
の元素含有量が多い比較合金No.8では導電性が劣るば
かりか、メッキ密着性や曲げ成型性が劣る。またO2量
の多い比較合金No.9及び析出粒径の大きい比較合金N
o.10ではメッキ密着性やハンダ接合性が劣る。
【0024】
【発明の効果】このように本発明によれば、導電性,強
度,曲げ成型性,ハンダ接合性に優れた銅合金を提供し
得るもので、リードフレーム等の半導体機器材料として
使用し、その薄肉化,小型化を可能にする等工業上顕著
な効果を奏するものである。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has high strength, excellent electrical conductivity and heat resistance, good workability and good plating adhesion, and a long-term evaluation of interface strength with solder. The present invention relates to a copper alloy for electronic equipment which does not cause deterioration and a method for producing the same. 2. Description of the Related Art Generally, semiconductor devices, for example, lead frames for semiconductor devices are required to have the following characteristics. (1) High strength and good heat resistance, (2) Heat dissipation, that is, high thermal and electrical conductivity, (3) Good bending formability after frame formation, (4) Plating adhesion (5) There is no deterioration with time of the joint with the solder, and a 42 alloy (Fe-42 wt% Ni) is mainly used for such a lead frame. This alloy has excellent properties such as tensile strength of 63 kg / mm 2 and heat resistance of 670 ° C (temperature at which it becomes 70% of the initial strength by heating for 30 minutes), but conductivity is inferior to about 3% IACS. It is. In recent years, semiconductor devices have been required to have high reliability at the same time as the degree of integration and miniaturization, and the form of semiconductor devices has been changing from conventional DIP type ICs to chip carrier type or PGA type. For this reason, lead frames for semiconductor devices have become thinner and smaller, and at the same time, characteristics exceeding 42 alloys have been required. In other words, to improve the strength to prevent a decrease in the strength of the component parts due to thinning, to improve the heat conductivity due to the increase in the degree of integration, to improve the conductivity, which is the same property as the heat conductivity, to further improve the heat resistance, Improve plating and adhesion to lead frame surface, moldability with encapsulation resin, and reliability as a pre-bonding process for fixing semiconductor on the frame and bonding the semiconductor to the wiring of the foot of the lead frame. As a problem, it is desired that the solder bonding strength in the bonding between the frame and the substrate does not deteriorate with time. [0004] The above-mentioned 42 alloy has a low conductivity of 3% IACS, and has a drawback that heat dissipation is inferior. If a copper alloy is used instead, the conductivity becomes 50-30% IACS. It can be dramatically improved, but also about other characteristics
It was extremely difficult to obtain the same performance as the alloy. [0005] In view of the foregoing, the present invention has been subjected to various studies, and as a result, has shown a conductivity far superior to that of 42 alloy.
With regard to other properties, a copper alloy for semiconductor devices that exhibits properties substantially equivalent to those of the 42 alloy and a method for producing the same have been developed. That is, the alloy of the present invention has a Ni content of not less than 0.1 wt%
Ni and Ti in a range of less than 4 wt% and less than 0.1 wt% and 1.0 wt% of Ti, and Ni / Ti of less than 4;
6.0 wt% and Mn, Mg, misch metal (MM), B,
Any one or more of Sb, Te, and Zr are added in total 0.0
05 to 3.0 wt% (hereinafter wt% is abbreviated as%).
containing one or two of n and Al in total of 3.0% or less;
Further, it is characterized in that the O 2 content is 20 ppm or less, the precipitate size is 5 μm or less, and the balance is Cu and unavoidable impurities. Further, the production method of the present invention is characterized in that Ni is 0.1% or more and 3.0% or more.
% And Ti within the range of 0.1 to 1.0%.
/ Ti included so as to be less than 4, and Sn 0.1 to 6.0
% And Mn, Mg, misch metal (MM), B, Sb,
One or more of Te and Zr in total 0.005 to
An alloy ingot containing 3.0% and further containing one or two of Zn and Al in a total amount of 3.0% or less and the balance of Cu and inevitable impurities was homogenized at 750 to 960 ° C for 0.5 to 15 hours. Thereafter, hot rolling is performed at a temperature of 700 to 920 ° C., and cooling is performed immediately thereafter. In the present invention, the alloy composition is limited as described above for the following reasons. The addition of Ni and Ti is intended to improve the strength and the electrical conductivity by a synergistic effect, and the content is limited to 0.1% or more to less than 3.0% of Ni and 0.1 to 1.0% of Ti. If the amount is less than the lower limit, no improvement in properties is observed. If the amount exceeds the upper limit, castability, workability, and bendability are remarkably reduced, and it becomes difficult to produce an alloy. Also, the reason why Ni and Ti are limited so that Ni / Ti is less than 4 is as follows.
Ni / Ti is 4 to obtain excellent strength and high conductivity.
Above this is because the strength is improved, but the conductivity is significantly reduced, and it is preferable to set Ni / Ti to about 2. [0010] The addition of Sn further increases the strength and the bending formability, and further suppresses variations in characteristics due to hot rolling conditions (start temperature, end temperature, cooling rate, etc.). The reason why the content is limited to ~ 6.0% is that if the content is less than the lower limit, the effect is poor, and if the content exceeds the upper limit, not only the conductivity is remarkably reduced, but also the workability is reduced, and it becomes difficult to produce an alloy. Mn, Mg, MM, B, Sb, Te, Zr
The addition of any one or two or more of the above all improves the castability by the deoxidizing effect and also reduces the hot rolling property, especially the reheat cracking during homogenization treatment before hot rolling and the cracking during rolling. This is to prevent the deterioration of the solder bonding strength with time by strengthening the bonding interface with the solder. Therefore, the total content is limited to 0.005 to 3.0% because the effect is poor below the lower limit and not only deteriorates castability but also deteriorates plating adhesion and bending moldability above the upper limit. Any one or two of Zn and Al are used to further improve the strength and prevent the deterioration of the solder bonding strength with time, and the total content is limited to 3.0% or less, which exceeds the upper limit. This is for reducing the adhesion to the plating and the electrical conductivity. Next, reduce the O 2 content to 20 ppm or less (preferably,
10 ppm or less) because the O 2 content in the molten metal during casting is 2
If the content exceeds 0 ppm, Ti becomes slag as an oxide from the molten metal, which makes it difficult to control the Ti component and deteriorates castability, as well as deteriorates plating adhesion and solderability of the alloy. When the size of the precipitate is 5
The reason why the thickness is set to be not more than μm is that the size of the precipitate greatly affects the surface condition of the plating, adhesion and solder wettability, and if the precipitate exceeds 5 μm, these properties are greatly reduced. In the production method of the present invention, an alloy having the above composition range is formed into an ingot by semi-continuous or continuous casting, and the ingot is formed at 750 to 960 ° C.
The alloy is homogenized for 0.5 to 15 hours, then hot-rolled from 700 to 920 ° C., and then immediately cooled.Ti used in the alloy of the present invention is rich in activity, easily oxidized, and In this case, the oxide tends to become an oxide, and slag is generated to cause a component failure. However, by performing melting casting in a non-oxidizing atmosphere such as Ar or N 2, the above-mentioned disadvantage can be covered, and a great improvement in productivity can be achieved. Furthermore, the cooling rate in semi-continuous or continuous casting is 100
C./sec or more is desirable, and if it is less than that, precipitates due to the constituent elements are generated, and coarsening occurs during the homogenization treatment before hot rolling, which adversely affects properties and manufacturing methods thereafter. Further, the homogenization treatment before hot rolling is carried out at 750 to 960.
When the temperature is set at 0.5 ° C. for 0.5 to 15 hours, the effect of homogenization is not seen below the lower limit, and the reheat cracking and the production cost are deteriorated above the upper limit. 830 ~ 950 ℃ for homogenization
For 1 to 8 hours. The reason for setting the hot rolling start temperature after the homogenization treatment to 700 to 920 ° C is that a hot rolling crack easily occurs outside this range. Hot rolling start temperature is 8
It is desirable that the temperature be 20 to 900 ° C. The cooling after the hot rolling may be performed at any cooling rate due to the effect of Sn addition, but it is preferable that the cooling rate is 1000 ° C./min or more. Further, as the production method of the present invention, cold working and annealing at 400 to 800 ° C. for 10 seconds to 360 minutes are repeated after hot working, and finally heat treatment annealing at 200 to 500 ° C. and a tension leveler are combined. More excellent characteristics can be obtained. EXAMPLE A copper alloy having the composition shown in Table 1 was melted and cast in an Ar gas using an atmosphere melting furnace to obtain an ingot having a thickness of 50 mm and a width of 120 mm. This was chamfered, homogenized at 850 ° C for 3 hours, hot-rolled at 830 ° C, and water-cooled to a thickness of 10mm.
Plate. Cold rolling and intermediate annealing of these sheets (Nos. 1 to 10 in Table 1 at 570 ° C for 1 hour, No. 11 at 700 ° C
Is repeated for 1 hour) with a final processing rate of 40% and a thickness of 0.25.
mm, heat-anneal at 300 ° C for 0.5 hours, cut out test specimens, tensile strength and bend formability (R /
t), plating adhesion, moldability (oxide film peelability), and solder joint strength were examined. Table 2 shows the results. The tensile strength is based on JIS-Z2241, and the conductivity is
It was measured based on JIS-H0505. The bending formability (R / t)
The test was performed based on the block method of JIS-Z2248, and the value was obtained by dividing the minimum bending radius (R) at which a crack occurred on the surface of the test piece by the thickness (t) of the test piece. The plating adhesion of a test piece of 30 × 30 mm was subjected to Ag plating after the surface was cleaned, and this was heated in the air. Thereafter, the swelling of the plating surface was observed, and the coating was heated at 550 ° C. for 5 minutes. Those with no swelling are indicated by a circle, and those with swelling are indicated by a cross. The oxide film peeling property of a test piece of 10 × 50 mm was subjected to a surface cleaning treatment, heated at 420 ° C. for 1 minute in the air, and then subjected to a peeling test using a cellophane tape. A mark and a mark where peeling was observed on the entire surface were indicated by a cross. Regarding the solder joint strength, a test piece of 5 × 50 mm was joined to an oxygen-free plate of the same shape by a 60/40 eutectic solder, subjected to a heating acceleration test at 150 ° C. for 500 hours, and then subjected to a tensile test. Perform the test. If the strength is 80% or more before the accelerated test, mark ○, if the strength is 50 to 80%, mark △,
Indicated by a mark. [Table 1] [Table 2] As is clear from Tables 1 and 2, the alloys Nos. 1 to 3 of the present invention are all 42 alloys (No. 1) which are conventional alloys.
Compared to 1), it can be seen that it has the same strength and much better conductivity. On the other hand, the comparative alloy No. 4 having a small Ti content was inferior in the improvement in strength and conductivity, and the comparative alloy No. 5 having a large Ti content was difficult to hot work.
In Comparative Alloy No. 6 having a large Ni content, not only no improvement in conductivity was observed, but also poor plating adhesion and moldability. In the case of Comparative Alloy No. 7 having a large Sn content, hot rolling was difficult as in Comparative Alloy No. 5. Further, the comparative alloy No. 8 having a large content of other elements not only has poor conductivity, but also has poor plating adhesion and bendability. The comparative alloy No. 9 having a large O 2 content and the comparative alloy N having a large precipitation grain size
In the case of o.10, the plating adhesion and the solder bonding are inferior. As described above, according to the present invention, it is possible to provide a copper alloy excellent in conductivity, strength, bending formability, and solder bonding property, and is used as a semiconductor device material such as a lead frame. However, the present invention has a remarkable industrial effect, such as making it thinner and smaller.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 志賀 章二 栃木県日光市清滝町500番地 古河電気 工業株式会社 日光電気精銅所内 (56)参考文献 特開 昭60−184655(JP,A) 特開 昭62−278243(JP,A) 実開 昭60−262933(JP,U) ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shoji Shiga 500 Furukawa Electric, Kiyotaki-cho, Nikko-shi, Tochigi Industrial Co., Ltd. Nikko Electric Copper Works (56) References JP-A-60-184655 (JP, A) JP-A-62-278243 (JP, A) Showa 60-262933 (JP, U)
Claims (1)
%の範囲内でNiとTiをNi/Tiが4未満となるよ
うに含み、かつSn 0.1〜 6.0wt%とMn,Mg,ミッ
シュメタル(MM),B,Sb,Te,Zrの何れか1
種又は2種以上を合計 0.005〜 3.0wt%を含み、さらに
Zn,Alの何れか1種又は2種を合計 3.0wt%以下含
み、さらにO2 含有量を 20ppm以下、析出物寸法を5μ
m以下とし、残部Cuと不可避的不純物からなるメッキ
密着性及びハンダ接合性に優れた電子機器用銅合金。 2.Ni 0.1wt%以上 3.0wt%未満、Ti 0.1〜 1.0wt
%の範囲内でNiとTiをNi/Tiが4未満となるよ
うに含み、かつSn 0.1〜 6.0wt%とMn,Mg,ミッ
シュメタル(MM),B,Sb,Te,Zrの何れか1
種又は2種以上を合計 0.005〜 3.0wt%を含み、さらに
Zn,Alの何れか1種又は2種を合計 3.0wt%以下含
み、残部Cuと不可避的不純物からなる合金鋳塊を、75
0 〜 960℃で 0.5〜15時間均質化処理した後、 700〜 9
20℃の温度で熱間圧延を施し、しかる後直ちに冷却する
ことを特徴とするメッキ密着性及びハンダ接合性に優れ
た電子機器用銅合金の製造法。(57) [Claims] Ni 0.1wt% or more and less than 3.0wt%, Ti 0.1 ~ 1.0wt
%, Ni and Ti are contained so that Ni / Ti is less than 4, and 0.1 to 6.0 wt% of Sn and one of Mn, Mg, misch metal (MM), B, Sb, Te, and Zr
Contains at least 0.005 to 3.0 wt% of one or more species, further contains at most 3.0 wt% of one or two of Zn and Al, further has an O 2 content of 20 ppm or less, and a precipitate size of 5 μm.
m or less, and a copper alloy for electronic equipment which is excellent in plating adhesion and solder bonding, comprising a balance of Cu and unavoidable impurities. 2. Ni 0.1wt% or more and less than 3.0wt%, Ti 0.1 ~ 1.0wt
%, Ni and Ti are contained so that Ni / Ti is less than 4, and 0.1 to 6.0 wt% of Sn and one of Mn, Mg, misch metal (MM), B, Sb, Te, and Zr
An alloy ingot containing a total of 0.005 to 3.0% by weight of at least one kind or two or more and a total of at most 3.0% by weight of at least one of Zn and Al and a balance of Cu and unavoidable impurities is 75%.
After homogenizing at 0 to 960 ° C for 0.5 to 15 hours, 700 to 9
A method for producing a copper alloy for electronic equipment having excellent plating adhesion and solder bonding, characterized by hot rolling at a temperature of 20 ° C and cooling immediately thereafter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28459095A JP2662209B2 (en) | 1995-10-05 | 1995-10-05 | Copper alloy for electronic equipment with excellent plating adhesion and solder bondability and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28459095A JP2662209B2 (en) | 1995-10-05 | 1995-10-05 | Copper alloy for electronic equipment with excellent plating adhesion and solder bondability and its manufacturing method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61156095A Division JP2504956B2 (en) | 1986-07-04 | 1986-07-04 | Copper alloy for electronic equipment with excellent plating adhesion and solder bondability and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08209270A JPH08209270A (en) | 1996-08-13 |
JP2662209B2 true JP2662209B2 (en) | 1997-10-08 |
Family
ID=17680430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28459095A Expired - Fee Related JP2662209B2 (en) | 1995-10-05 | 1995-10-05 | Copper alloy for electronic equipment with excellent plating adhesion and solder bondability and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2662209B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI20030508A0 (en) * | 2003-04-03 | 2003-04-03 | Outokumpu Oy | Oxygen-free copper alloy |
FI114809B (en) * | 2003-04-03 | 2004-12-31 | Outokumpu Oy | Surface Materials |
JP4728704B2 (en) * | 2005-06-01 | 2011-07-20 | 古河電気工業株式会社 | Copper alloy for electrical and electronic equipment |
-
1995
- 1995-10-05 JP JP28459095A patent/JP2662209B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH08209270A (en) | 1996-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH09104956A (en) | Production of high strength and high electric conductivity copper alloy | |
JPH0741887A (en) | Copper alloy for electric and electronic part and its preparation | |
JP4567906B2 (en) | Copper alloy plate or strip for electronic and electrical parts and method for producing the same | |
JPS61183426A (en) | High strength, highly conductive heat resisting copper alloy | |
JPH0480102B2 (en) | ||
JP3049137B2 (en) | High strength copper alloy excellent in bending workability and method for producing the same | |
JP4043118B2 (en) | High strength and high conductivity Cu-Fe alloy plate for electric and electronic parts with excellent heat resistance | |
JP3459520B2 (en) | Copper alloy for lead frame | |
JP2732355B2 (en) | Manufacturing method of high strength and high conductivity copper alloy material for electronic equipment | |
JP2504956B2 (en) | Copper alloy for electronic equipment with excellent plating adhesion and solder bondability and its manufacturing method | |
JP2662209B2 (en) | Copper alloy for electronic equipment with excellent plating adhesion and solder bondability and its manufacturing method | |
JPH09157775A (en) | Copper alloy for electronic equipment | |
JPH11343527A (en) | High strength and high conductivity copper alloy excellent in heat treatability at the time of press punching | |
JPH0788549B2 (en) | Copper alloy for semiconductor equipment and its manufacturing method | |
JPS6250426A (en) | Copper alloy for electronic appliance | |
JPH034612B2 (en) | ||
JP2733117B2 (en) | Copper alloy for electronic parts and method for producing the same | |
JPH0788546B2 (en) | Copper alloy for electronic equipment and its manufacturing method | |
JPH0717982B2 (en) | Conductive rolled material for leadframes, connectors or switches | |
JP2673781B2 (en) | Method for producing high strength and high conductivity copper alloy material for electronic equipment | |
JPS6311418B2 (en) | ||
JPS58147140A (en) | Lead wire of semiconductor device | |
JPH0572455B2 (en) | ||
JPS63192835A (en) | Lead material for ceramic package | |
JP2994230B2 (en) | Copper alloy for semiconductor lead frame with excellent Ag plating properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |