JP2012057242A - Method of manufacturing copper-based alloy with high strength, high conductivity and high heat resistance, and copper-based alloy with high strength, high conductivity and high heat resistance - Google Patents

Method of manufacturing copper-based alloy with high strength, high conductivity and high heat resistance, and copper-based alloy with high strength, high conductivity and high heat resistance Download PDF

Info

Publication number
JP2012057242A
JP2012057242A JP2010204503A JP2010204503A JP2012057242A JP 2012057242 A JP2012057242 A JP 2012057242A JP 2010204503 A JP2010204503 A JP 2010204503A JP 2010204503 A JP2010204503 A JP 2010204503A JP 2012057242 A JP2012057242 A JP 2012057242A
Authority
JP
Japan
Prior art keywords
strength
copper
temperature
heat resistance
based alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010204503A
Other languages
Japanese (ja)
Inventor
Noriyuki Nomoto
詞之 野本
Koichi Furutoku
浩一 古徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2010204503A priority Critical patent/JP2012057242A/en
Publication of JP2012057242A publication Critical patent/JP2012057242A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing copper-based alloy with high strength, high conductivity and high heat resistance by improving chemical components and a manufacturing method for the conventional copper alloy for electric/electronic components excellent in plating and stamping properties.SOLUTION: Ingot of the copper-based alloy containing predetermined components is heated to a temperature of 800-1050°C, and hot-rolled with a draft of 50% or more. Then, the ingot is cold-rolled with a draft of 30% or more, held at a temperature of 950-1050°C for a minute or more, cooled down to 300°C within 30 seconds, and cold-rolled with a draft of 30% or more. Then, aging annealing therefor is performed for 1-4 hours at a temperature of 550-625°C, and for another 1-10 hours at a temperature of 400-500°C. After cold-rolling with a draft of 70-90%, distortion removing annealing is performed for 1-5 minutes at a temperature of 300-450°C.

Description

本発明は、多ピンIC用のリードフレームなどに代表される電気・電子部品材料に好適な高強度高導電率高耐熱性銅基合金の製造方法及び高強度高導電率高耐熱性銅基合金に関するものである。   The present invention relates to a method for producing a high-strength, high-conductivity, high-heat-resistant copper-based alloy suitable for electrical and electronic component materials typified by lead frames for multi-pin ICs, etc. It is about.

銅および銅基合金は導電率・熱伝導性が非常に高いことからリードフレームを始めとする電気・電子部品用材料として利用されてきた。近年ではリードフレームの薄肉、狭ピン、狭ピッチ化が益々進み、一部は厚さ100μm以下にまでなっており、非常に高い強度が要求されるようになっている。   Copper and copper-based alloys have been used as materials for electrical and electronic parts such as lead frames because of their very high electrical conductivity and thermal conductivity. In recent years, lead frames have become thinner, narrow pins, and narrow pitches, and some of the lead frames have a thickness of 100 μm or less, and a very high strength is required.

またリードフレームの作製では、銅および銅基合金を所定の厚さに圧延した条材に、スタンピング加工やエッチング処理を施して所定の形状に加工することが行われる。スタンピング加工の際には、スタンピングによる歪みを除去するための歪み除去工程で400℃以上の温度での加熱をするなど、高温加熱処理される場合も多い。さらに、各種めっき処理や、パッケージング加工でのダイ・ボンディングやワイヤ・ボンディング、樹脂モールディングが実施される。   In the production of a lead frame, a strip material obtained by rolling copper and a copper base alloy to a predetermined thickness is subjected to stamping or etching to be processed into a predetermined shape. In the stamping process, high-temperature heat treatment is often performed such as heating at a temperature of 400 ° C. or higher in a strain removing process for removing strain due to stamping. Furthermore, various plating processes, die bonding, wire bonding, and resin molding are performed in the packaging process.

従って、リードフレーム材料には導電率や強度(1次特性)のみならず、スタンピング性、耐熱性(高温に加熱した際の強度低下の度合い)、更にはエッチング性、各種めっき性、半田密着性、酸化膜密着性、樹脂密着性、ワイヤ・ボンディング性など(2次特性)が要求される。   Therefore, the lead frame material has not only conductivity and strength (primary characteristics) but also stamping properties, heat resistance (degree of strength decrease when heated to high temperature), etching property, various plating properties, and solder adhesion. In addition, oxide film adhesion, resin adhesion, wire bonding properties, etc. (secondary characteristics) are required.

これらの特性を全て充分に満足する材料はないが、多ピンICのリードフレーム材料としては、特性、コスト、入手性といった観点から、Cu−2.2mass%Fe−0.03mass%P−0.12mass%Znを標準化学組成とするCDA Alloy 194(例えば、特許文献1参照)、Cu−3.0mass%Ni−0.65mass%Si−0.15mass%Mgを標準化学組成とするCDA Alloy 7025、またCu−0.23mass%Cr−0.25mass%Sn−0.20mass%Znを標準化学組成とするCDA Alloy 18045に集約されつつある(CDA:米国銅開発協会)。   There is no material that sufficiently satisfies all of these characteristics. However, as a lead frame material for a multi-pin IC, Cu-2.2 mass% Fe-0.03 mass% P-0. CDA Alloy 194 having a standard chemical composition of 12 mass% Zn (see, for example, Patent Document 1), CDA Alloy 7025 having a standard chemical composition of Cu-3.0 mass% Ni-0.65 mass% Si-0.15 mass% Mg, In addition, CDA Alloy 18045 having a standard chemical composition of Cu-0.23 mass% Cr-0.25 mass% Sn-0.20 mass% Zn is being consolidated (CDA: American Copper Development Association).

CDA Alloy 194は最高強度の質別であるESHとしても、引張強さ550N/mm2程度、ビッカース硬さ160Hv程度であり、他の2種類の銅基合金よりも強度が低い。また耐熱性も低く、例えば450℃で5分程度加熱すると、元の強さの80%以下に軟化してしまう。一方で2次特性に重大な欠陥が無く、入手性も良いため広く使用されている。 CDA Alloy 194 has a tensile strength of about 550 N / mm 2 and a Vickers hardness of about 160 Hv as ESH, which is the highest strength grade, and is lower in strength than the other two types of copper-based alloys. Moreover, heat resistance is also low, for example, if it heats at 450 degreeC for about 5 minutes, it will soften to 80% or less of the original strength. On the other hand, it is widely used because it has no serious defects in secondary characteristics and is easily available.

銅基合金の強度および耐熱性を向上させる方法としては、Mgなど不純物元素(合金元素)の微量添加によるもの(例えば、特許文献2参照)や、製造方法の改良によるもの(例えば、特許文献3参照)がある。   As a method for improving the strength and heat resistance of a copper-based alloy, a method by adding a trace amount of an impurity element (alloy element) such as Mg (for example, see Patent Document 2) or a method by improving a manufacturing method (for example, Patent Document 3). See).

特公昭45−010623号公報Japanese Patent Publication No. 45-010623 特公昭64−000449号公報Japanese Patent Publication No. 64-000449 特許第3763234号公報Japanese Patent No. 3763234

しかし、例えばMgは0.05mass%程度の添加でも強度や耐熱性が著しく向上するが(特許文献2に開示される方法)、一方でめっき時に異常析出を助長させるなどし、合金元素の過度の添加は、強度および耐熱性以外の特性を劣化させるため望ましくない。また、従来の製造方法の改良(特許文献3に開示される方法)により製造される銅基合金も、その強度および耐熱性はCDA Alloy 18045よりも劣り、さらなる改良が求められている。   However, for example, Mg is significantly improved in strength and heat resistance even when added in an amount of about 0.05 mass% (method disclosed in Patent Document 2), but on the other hand, it promotes abnormal precipitation at the time of plating. Addition is undesirable because it degrades properties other than strength and heat resistance. Moreover, the copper base alloy manufactured by the improvement of the conventional manufacturing method (method disclosed by patent document 3) is inferior to CDA Alloy 18045 in the intensity | strength and heat resistance, and the further improvement is calculated | required.

本発明は上記課題を解決するためになされたものであり、めっき性やスタンピング性に優れる従来の電気・電子部品用銅基合金の化学成分と製造方法を改良し、高強度高導電率高耐熱性銅基合金の製造方法及び高強度高導電率高耐熱性銅基合金を得ることを目的とするものである。   The present invention has been made to solve the above-mentioned problems, and has improved the chemical composition and manufacturing method of conventional copper-based alloys for electric and electronic parts, which are excellent in plating properties and stamping properties, and has high strength, high conductivity and high heat resistance. It aims at obtaining the manufacturing method of a heat resistant copper base alloy, and a high strength high electrical conductivity high heat resistant copper base alloy.

上記目的を達成するために本発明の第1の態様は、Fe:1.8〜2.5mass%、P:0.01〜0.1mass%、Zn:0.01〜1.5mass%、Sn:0.01〜0.2mass%、およびMg,Al,Si,Ti,Cr,Mn,Co,Niからなる元素を総量で0.001〜0.05mass%含有し、残部がCuと不可避不純物からなる銅基合金の鋳塊を、800〜1050℃の温度に加熱して圧下率50%以上の熱間圧延を施した後、圧下率30%以上で冷間圧延し、950〜1050℃の温度に1分以上保持後、300℃まで30秒以下の時間で冷却し、その後圧下率30%以上で冷間圧延した後、550〜625℃の温度で1〜4時間、更に400〜500℃の温度で1〜10時間の時効焼鈍を施し、次いで圧下率70〜90%の冷間圧延後、300〜450℃の温度で1〜5分の歪み除去焼鈍を行う高強度高導電率高耐熱性銅基合金の製造方法である。   In order to achieve the above object, the first aspect of the present invention includes Fe: 1.8 to 2.5 mass%, P: 0.01 to 0.1 mass%, Zn: 0.01 to 1.5 mass%, Sn. : 0.01-0.2 mass%, and elements containing Mg, Al, Si, Ti, Cr, Mn, Co, Ni in a total amount of 0.001-0.05 mass%, with the balance being Cu and inevitable impurities The copper base alloy ingot is heated to a temperature of 800 to 1050 ° C. and hot-rolled with a reduction rate of 50% or more, and then cold-rolled with a reduction rate of 30% or more, and a temperature of 950 to 1050 ° C. For 1 minute or longer, and then cooled to 300 ° C. for 30 seconds or less, then cold-rolled at a reduction rate of 30% or more, then at a temperature of 550 to 625 ° C. for 1 to 4 hours, and further 400 to 500 ° C. Aging at temperature for 1-10 hours, then rolling reduction After rolling 0% to 90% of the cold, a method of producing a high strength and high electrical conductivity high heat resistance copper-based alloy performs distortion removal annealing 1-5 minutes at a temperature of 300 to 450 ° C..

また本発明の第2の態様は、上記の方法により製造される高強度高導電率高耐熱性銅基合金であって、導電率65%IACS以上、引張強さ560N/mm2以上、ビッカース硬さ165Hv以上を有し、500℃で5分間加熱後の強度が、加熱前の90%以上である高強度高導電率高耐熱性銅基合金である。 The second aspect of the present invention is a high-strength, high-conductivity, high-heat-resistant copper-based alloy produced by the above method, having a conductivity of 65% IACS or more, a tensile strength of 560 N / mm 2 or more, and a Vickers hardness. This is a high-strength, high-conductivity, high-heat-resistant copper-based alloy having a thickness of 165 Hv or more and having a strength after heating at 500 ° C. for 5 minutes of 90% or more before heating.

本発明によれば、めっき性やスタンピング性に優れる従来の電気・電子部品用銅基合金の化学成分と製造方法を改良することで、高強度高導電率高耐熱性銅基合金の製造方法及びその銅基合金を提供できる。   According to the present invention, by improving the chemical composition and manufacturing method of a conventional copper-based alloy for electric and electronic parts having excellent plating properties and stamping properties, a method for manufacturing a high-strength, high-conductivity, high-heat-resistant copper-based alloy and The copper base alloy can be provided.

以下に、本発明の好適な実施の形態について説明する。   Hereinafter, a preferred embodiment of the present invention will be described.

まず、本発明に係る高強度高導電率高耐熱性銅基合金の化学組成について説明する。   First, the chemical composition of the high-strength, high-conductivity, high-heat-resistant copper-based alloy according to the present invention will be described.

本発明に係る銅基合金は、Fe,P,Zn,Snを主な合金元素として含有し、さらにMg,Al,Si,Ti,Cr,Mn,Co,Niからなる元素を微量含有し、残部がCuと不可避不純物からなる。   The copper-based alloy according to the present invention contains Fe, P, Zn, and Sn as main alloy elements, and further contains a trace amount of elements composed of Mg, Al, Si, Ti, Cr, Mn, Co, and Ni, and the balance. Consists of Cu and inevitable impurities.

Feは強度や耐熱性の向上に寄与する。添加量が1.8mass%より少ないとFeの析出量が足りず、必要とする強度および耐熱性が得られない。また、熱間圧延加工性が著しく低下する。一方、2.5mass%を超えると鋳造時のFeの粗大晶出物の生成や、溶解時のFeの溶け残りの発生が起こり、これらが最終製品にまで残存することで、変色、エッチング性やめっき性の低下、ボンディング不良、曲げ時の割れ等を引き起こす。また、導電率の低下も大きくなる。従って、Feの添加量は1.8〜2.5mass%、望ましくは2.1〜2.3mass%とする。   Fe contributes to improvement in strength and heat resistance. If the amount added is less than 1.8 mass%, the amount of Fe deposited is insufficient, and the required strength and heat resistance cannot be obtained. Moreover, hot rolling workability falls remarkably. On the other hand, if it exceeds 2.5 mass%, the generation of coarse crystals of Fe during casting and the occurrence of undissolved Fe during dissolution occur, and these remain in the final product, resulting in discoloration, etching properties, It causes a decrease in plating performance, bonding failure, cracking during bending, and the like. Also, the decrease in conductivity is increased. Therefore, the addition amount of Fe is 1.8 to 2.5 mass%, preferably 2.1 to 2.3 mass%.

Pは脱酸剤として寄与するほか、Feとの化合物を形成し、強度の向上にも寄与する。添加量が0.01mass%より少ないと充分な効果が得られない。一方、0.1mass%を超えると鋳造性や熱間加工性を低下させるとともに導電率の低下ももたらす。従って、Pの添加量は0.01〜0.1mass%、望ましくは0.02〜0.04mass%とする。   In addition to contributing as a deoxidizer, P forms a compound with Fe and contributes to improvement in strength. If the amount added is less than 0.01 mass%, a sufficient effect cannot be obtained. On the other hand, if it exceeds 0.1 mass%, the castability and hot workability are lowered and the conductivity is also lowered. Therefore, the addition amount of P is 0.01 to 0.1 mass%, preferably 0.02 to 0.04 mass%.

Znは電気・電子部品に必要な半田密着性や半田耐熱剥離性の向上に寄与するほか、脱酸剤としても寄与する。添加量が0.01mass%より少ないと充分な効果が得られない。一方、1.5mass%を超えると導電率の低下をもたらす。従って、Znの添加量は0.01〜1.5mass%、望ましくは0.1〜0.2mass%とする。   Zn contributes to the improvement of solder adhesion and solder heat-resistant peelability necessary for electric and electronic parts, and also contributes as a deoxidizer. If the amount added is less than 0.01 mass%, a sufficient effect cannot be obtained. On the other hand, if it exceeds 1.5 mass%, the conductivity is lowered. Therefore, the addition amount of Zn is 0.01 to 1.5 mass%, preferably 0.1 to 0.2 mass%.

SnはCu中に固溶して強度と耐熱性の向上に寄与する。添加量が0.01mass%より少ないと充分な効果が得られない。一方、0.2mass%を超えると導電率の低下が顕著になるとともに、鋳造性が著しく低下する。従って、Snの添加量は0.01〜0.2mass%、望ましくは0.05〜0.10mass%とする。   Sn dissolves in Cu and contributes to improvement in strength and heat resistance. If the amount added is less than 0.01 mass%, a sufficient effect cannot be obtained. On the other hand, when it exceeds 0.2 mass%, the decrease in the conductivity becomes remarkable, and the castability deteriorates remarkably. Therefore, the amount of Sn added is 0.01 to 0.2 mass%, preferably 0.05 to 0.10 mass%.

更に、Mg,Al,Si,Ti,Cr,Mn,Co,Niからなる元素を、総量で0.001〜0.05mass%含有していても特性を満足するが、0.05mass%を超えると導電率の不足やめっき性の低下を引き起こす。   Furthermore, even if the total amount of elements composed of Mg, Al, Si, Ti, Cr, Mn, Co, and Ni is contained in an amount of 0.001 to 0.05 mass%, the characteristics are satisfied, but if it exceeds 0.05 mass% Insufficient conductivity and decrease in plating properties.

以上のような化学組成とされることで、めっき性やスタンピング性など2次特性が良好である銅基合金を提供できる。   By setting it as the above chemical compositions, the copper base alloy which has favorable secondary characteristics, such as plating property and stamping property, can be provided.

次に、本発明に係る高強度高導電率高耐熱性銅基合金の製造方法について説明する。   Next, the manufacturing method of the high intensity | strength high electrical conductivity high heat resistant copper base alloy based on this invention is demonstrated.

通常坩堝式溶解炉やチャネル式溶解炉などの電気炉で上記化学組成に調整して溶解後、例えば連続鋳造により厚さ150〜250mm、幅400〜1000mm程度の矩形断面鋳塊を製造する。   Usually, after adjusting and melting | dissolving to the said chemical composition with electric furnaces, such as a crucible type melting furnace and a channel type melting furnace, the rectangular cross-section ingot of thickness 150-250mm and width 400-1000mm is manufactured by continuous casting, for example.

次に、鋳塊を800〜1050℃の温度に加熱して、圧下率50%以上で熱間圧延を施す。   Next, the ingot is heated to a temperature of 800 to 1050 ° C. and hot-rolled at a reduction rate of 50% or more.

加熱により鋳造時の冷却過程で析出したFeやFe−P系化合物をCu中に再固溶させるが、加熱温度が800℃より低いと充分に固溶せず、再結晶が充分に起こらずに熱間加工性が低下して割れが発生する。一方、加熱温度が1050℃より高いと酸化スケールの増大や結晶の粗大化を引き起こす。望ましくは900〜980℃である。   Fe or Fe-P compounds precipitated in the cooling process during casting by heating are re-dissolved in Cu. However, if the heating temperature is lower than 800 ° C., it does not sufficiently dissolve and recrystallization does not occur sufficiently. Hot workability decreases and cracks occur. On the other hand, when the heating temperature is higher than 1050 ° C., the oxide scale increases and the crystal becomes coarse. Desirably, it is 900-980 degreeC.

また、圧下率が50%より低いと均一に再結晶が起こらず、不均一な金属組織が最終製品にまで残存する可能性がある。望ましくは90%以上である。   Further, if the rolling reduction is lower than 50%, recrystallization does not occur uniformly, and a non-uniform metal structure may remain in the final product. Desirably, it is 90% or more.

熱間圧延後の冷却速度は本発明においては特に規定せず、一般的な水冷シャワーなどによって熱間圧延終了後に冷却することができる。   The cooling rate after hot rolling is not particularly defined in the present invention, and can be cooled after completion of hot rolling by a general water-cooled shower or the like.

この後、酸化スケールを除去し冷間圧延するが、望ましくは30%以上の圧下率である。圧下率が30%より低いと、この後に続く溶体化処理の際に均一な再結晶組織が得られない。   Thereafter, the oxide scale is removed and cold rolling is performed, but the reduction ratio is desirably 30% or more. When the rolling reduction is lower than 30%, a uniform recrystallized structure cannot be obtained in the subsequent solution treatment.

続いて950〜1050℃の温度に加熱して1分以上保持後、300℃まで30秒以下の時間で冷却する。以下、この操作を溶体化処理と呼ぶ。   Subsequently, after heating to a temperature of 950 to 1050 ° C. and holding for 1 minute or longer, it is cooled to 300 ° C. in a time of 30 seconds or shorter. Hereinafter, this operation is referred to as a solution treatment.

本発明において溶体化処理の条件は最も重要で、高温から急冷することによりCuの母相中にFe原子を過飽和に固溶させることと、焼き入れクラスターと呼ばれる原子空孔を多く導入させることを特徴とする。焼き入れクラスターはこの後の時効析出挙動に大きな影響を及ぼす。   In the present invention, the conditions of the solution treatment are the most important. By quenching from a high temperature, Fe atoms are solid-solved in a supersaturated state, and many atomic vacancies called quenching clusters are introduced. Features. Quenched clusters have a great influence on the subsequent aging precipitation behavior.

溶体化処理の加熱温度が950℃より低いと目標の強度と耐熱性が得られず、一方1050℃を超えると再結晶粒の粗大化が顕著になる。また加熱の保持時間が1分より短くても目標の強度と耐熱性が得られない。加熱後の冷却速度は冷却中にFeが析出しないようにするためにできる限り速くすることが必要であり、冷却開始からFeの拡散速度が充分に遅くなる300℃までは30秒以下の時間で冷却させなければならない。   If the heating temperature of the solution treatment is lower than 950 ° C., the target strength and heat resistance cannot be obtained, while if it exceeds 1050 ° C., coarsening of recrystallized grains becomes remarkable. Moreover, even if the heating holding time is shorter than 1 minute, the target strength and heat resistance cannot be obtained. The cooling rate after heating must be as fast as possible so that Fe does not precipitate during cooling, and it takes 30 seconds or less from the start of cooling to 300 ° C. at which the diffusion rate of Fe is sufficiently slow. Must be allowed to cool.

次に圧下率30%以上で冷間圧延した後、550〜625℃の温度において1〜4時間(以下、時効1)、更に400〜500℃の温度において1〜10時間(以下、時効2)加熱し、Cuの母相中にFeおよびFe−P系化合物を析出させる。以下、この操作を時効焼鈍と呼ぶ。時効1の温度が550℃より低いと、析出物が強度と耐熱性の向上に寄与するサイズにまで充分成長せず(時効不足)、一方625℃より高いと析出物が粗大化して(過時効)、強度と耐熱性が低下する。望ましくは575〜600℃である。また時効1の時間が1時間より短いと時効不足、4時間より長いと過時効となり強度と耐熱性が低下する。望ましくは2〜3時間である。   Next, after cold rolling at a rolling reduction of 30% or more, the temperature is 550 to 625 ° C. for 1 to 4 hours (hereinafter referred to as aging 1), and further at the temperature of 400 to 500 ° C. for 1 to 10 hours (hereinafter referred to as aging 2). Heat to precipitate Fe and Fe-P compounds in the parent phase of Cu. Hereinafter, this operation is called aging annealing. When the temperature of aging 1 is lower than 550 ° C., the precipitate does not sufficiently grow to a size that contributes to improvement in strength and heat resistance (insufficient aging), while when it is higher than 625 ° C., the precipitate becomes coarse (over-aging). ), Strength and heat resistance are reduced. Desirably, it is 575-600 degreeC. Further, if the time of aging 1 is shorter than 1 hour, aging is insufficient, and if it is longer than 4 hours, it is over-ageed and the strength and heat resistance are lowered. Desirably 2 to 3 hours.

時効2は時効1よりも低い温度で微細な析出物を多く析出させるためのもので、強度や耐熱性よりも導電率を向上させるための熱処理である。時効2の温度が400℃より低いと析出速度が著しく低下して充分に導電率が向上せず、500℃より高いと過時効となり強度や耐熱性を低下させてしまう可能性がある。望ましくは425〜475℃である。また時効2の時間が1時間より短いと充分に導電率が向上せず、10時間より長いと過時効となり強度と耐熱性を低下させてしまう可能性がある。望ましくは4〜6時間である。また、時効2は時効1の冷却中に開始しても、一度室温まで下げてから開始してもよい。更に時効1と時効2の間には圧下率50%以下の冷間圧延を加えてもよい。   Aging 2 is a heat treatment for precipitating a large amount of fine precipitates at a temperature lower than that of aging 1, and is a heat treatment for improving the conductivity rather than the strength and heat resistance. If the temperature of aging 2 is lower than 400 ° C., the deposition rate is remarkably reduced and the conductivity is not sufficiently improved, and if it is higher than 500 ° C., it is over-aged and the strength and heat resistance may be lowered. Desirably, it is 425-475 degreeC. Further, when the time of aging 2 is shorter than 1 hour, the conductivity is not sufficiently improved, and when it is longer than 10 hours, it is over-ageed and the strength and heat resistance may be lowered. Desirably 4 to 6 hours. In addition, aging 2 may be started during the cooling of aging 1 or may be started after being lowered to room temperature. Furthermore, between the aging 1 and the aging 2, cold rolling with a reduction rate of 50% or less may be added.

時効焼鈍の後に圧下率70〜90%の冷間圧延を施す。ここでは加工硬化により強度を向上させる。従って、圧下率が70%より低いと充分な強度が得られず、90%より高いと強度の向上が飽和するとともに耐熱性の低下が顕著になる。望ましくは75〜85%である。   After aging annealing, cold rolling with a rolling reduction of 70 to 90% is performed. Here, the strength is improved by work hardening. Therefore, if the rolling reduction is lower than 70%, sufficient strength cannot be obtained, and if it is higher than 90%, the improvement in strength is saturated and the heat resistance is significantly reduced. Desirably, it is 75 to 85%.

最後に300〜450℃の温度において1〜5分保持することによる歪み除去焼鈍を行う。ここでは伸びを回復させる狙いがある。温度が300℃より低いか、時間が1分より短いと伸びが充分に回復せず、温度が450℃より高いか、時間が5分より長いと強度が低下してしまう。   Finally, strain removal annealing is performed by holding at a temperature of 300 to 450 ° C. for 1 to 5 minutes. The aim here is to recover growth. If the temperature is lower than 300 ° C. or the time is shorter than 1 minute, the elongation is not sufficiently recovered, and if the temperature is higher than 450 ° C. or the time is longer than 5 minutes, the strength is lowered.

以上のようにされることで、本発明に係る製造方法は、Cu母相の金属組織と析出物の時効析出挙動とを制御し、導電率65%IACS以上、引張強さ560N/mm2以上、ビッカース硬さ165Hv以上と優れた特性を有する銅基合金を製造できる。 As described above, the production method according to the present invention controls the metal structure of the Cu matrix and the aging precipitation behavior of the precipitate, and has a conductivity of 65% IACS or more and a tensile strength of 560 N / mm 2 or more. A copper-based alloy having excellent characteristics such as Vickers hardness of 165 Hv or more can be produced.

また、500℃の高温に5分間加熱した後の強度が、加熱前の強度の90%以上であり、優れた耐熱性を有する銅基合金を提供できる。   Moreover, the strength after heating at a high temperature of 500 ° C. for 5 minutes is 90% or more of the strength before heating, and a copper-based alloy having excellent heat resistance can be provided.

なお、本発明に係る高強度高導電率高耐熱性銅基合金の製造方法は上記実施の形態に限られるものではなく、例えば異なる合金元素を主成分として含有する銅基合金(Cu−Fe−Ni−P系合金など)にも適用可能であり、圧下率および溶体化処理温度などを適宜変更することにより、更に強度・導電率・耐熱性をバランス良く高めた銅基合金を提供することができる。   In addition, the manufacturing method of the high intensity | strength high electrical conductivity high heat resistant copper base alloy which concerns on this invention is not restricted to the said embodiment, For example, the copper base alloy (Cu-Fe- containing a different alloy element as a main component) The present invention is also applicable to Ni-P-based alloys, etc., and providing a copper-based alloy having further improved strength, conductivity, and heat resistance in a well-balanced manner by appropriately changing the rolling reduction and solution treatment temperature. it can.

以下に、本発明の実施例を説明する。   Examples of the present invention will be described below.

Fe:2.2mass%,P:0.03mass%,Zn:0.12mass%,Sn:0.05mass%,Si:0.01mass%の化学組成の銅基合金を中周波誘導加熱型坩堝炉で溶解調整後、銅製鋳型で半連続鋳造し、厚さ180mm×幅500mmの断面サイズの矩形断面鋳塊を鋳造した。   A copper base alloy having a chemical composition of Fe: 2.2 mass%, P: 0.03 mass%, Zn: 0.12 mass%, Sn: 0.05 mass%, Si: 0.01 mass% in a medium frequency induction heating type crucible furnace. After dissolution adjustment, semi-continuous casting was performed with a copper mold to cast a rectangular cross-section ingot having a cross-sectional size of 180 mm in thickness and 500 mm in width.

加熱炉で300℃/hの昇温速度で950℃に加熱して30分保持し、その後熱間圧延し、厚さ12mmとした(圧下率:約93%)。最終パス後、約700℃の温度から水冷シャワーで200℃/分の冷却速度で100℃以下まで冷却した。表面の酸化スケールを除去後、厚さ2mmまで冷間圧延した(圧下率:約83%)。   It heated to 950 degreeC with the temperature increase rate of 300 degreeC / h with the heating furnace, and it hold | maintained for 30 minutes, and it hot-rolled after that, and was 12 mm in thickness (rolling rate: about 93%). After the final pass, it was cooled from a temperature of about 700 ° C. to 100 ° C. or less at a cooling rate of 200 ° C./min with a water-cooled shower. After removing the oxide scale on the surface, it was cold-rolled to a thickness of 2 mm (reduction rate: about 83%).

次に、コイルを長手方向に数本に切り分けた。これらのコイルをまず、連続焼鈍炉で種々の条件で溶体化処理を施した後、厚さ0.75mmまで冷間圧延した(圧下率:約62%)。次に、バッチ式焼鈍炉で種々の条件で時効焼鈍を施した後、厚さ0.15mmまで冷間圧延した(圧下率:約80%)。最後に連続焼鈍炉で400℃×2分相当の歪み除去焼鈍を施した。   Next, the coil was cut into several pieces in the longitudinal direction. These coils were first subjected to a solution treatment under various conditions in a continuous annealing furnace, and then cold-rolled to a thickness of 0.75 mm (reduction rate: about 62%). Next, after performing aging annealing under various conditions in a batch type annealing furnace, it was cold-rolled to a thickness of 0.15 mm (reduction rate: about 80%). Finally, distortion removal annealing corresponding to 400 ° C. × 2 minutes was performed in a continuous annealing furnace.

製造した種々の銅基合金に対し、直流4端子法での導電率の測定、断面のビッカース硬さ測定、引張試験(引張強さと破断伸びの測定)を実施した。また、銅基合金の耐熱性を評価するために、銅基合金を500℃に保持したソルトバスに5分浸漬後、水槽に投入して急冷し、その断面のビッカース硬さを測定した。測定した加熱後のビッカース硬さの、加熱前のビッカース硬さに対する比を求め、これを百分率で表示したものを耐熱性とした。   Conductivity measurements, cross-section Vickers hardness measurements, and tensile tests (measurement of tensile strength and breaking elongation) were performed on the various copper-based alloys produced. In addition, in order to evaluate the heat resistance of the copper-based alloy, the copper-based alloy was immersed in a salt bath maintained at 500 ° C. for 5 minutes, then placed in a water bath and rapidly cooled, and the Vickers hardness of the cross section was measured. The ratio of the measured Vickers hardness after heating to the Vickers hardness before heating was determined, and the percentage expressed as a percentage was defined as heat resistance.

銅基合金の製造条件と、それぞれの特性との関係を表1に示す。   Table 1 shows the relationship between the manufacturing conditions of the copper-based alloy and the respective characteristics.

Figure 2012057242
Figure 2012057242

表1に示すように、本発明に係る銅基合金A,Bではいずれも導電率65%IACS以上、引張強さ560N/mm2以上、ビッカース硬さ165Hv以上、耐熱性90%以上と良好な特性を有する。さらにAとBとを比較すると、溶体化処理の加熱温度が高く、時効1の温度も高いAの方がより高い強度と耐熱性を有している。一方、従来方法により製造された銅基合金C,D,Eは本発明(銅基合金A,B)よりも溶体化処理温度が低く、および/あるいは、冷却速度が遅く、強度と耐熱性が本発明に係る銅基合金A,Bよりも低くなった。つまり、銅基合金の強度、導電率、耐熱性を高めるためには、溶体化処理温度を高温として多くの焼き入れクラスターを導入すると共に、溶体化処理時の冷却速度をできるだけ速くして、合金元素が析出しないようにすることが重要であることが分かる。 As shown in Table 1, in the copper base alloys A and B according to the present invention, both the electrical conductivity is 65% IACS or more, the tensile strength is 560 N / mm 2 or more, the Vickers hardness is 165 Hv or more, and the heat resistance is 90% or more. Has characteristics. Further, when A and B are compared, A having a higher heating temperature in the solution treatment and higher Aging 1 temperature has higher strength and heat resistance. On the other hand, the copper base alloys C, D and E manufactured by the conventional method have a lower solution treatment temperature and / or a lower cooling rate than the present invention (copper base alloys A and B), and have a high strength and heat resistance. It became lower than the copper base alloys A and B according to the present invention. In other words, in order to increase the strength, electrical conductivity, and heat resistance of a copper-based alloy, the solution treatment temperature is set to a high temperature, and many quenching clusters are introduced, and the cooling rate during the solution treatment is increased as much as possible. It can be seen that it is important to prevent the elements from precipitating.

更に、比較例の銅基合金Fは溶体化処理されておらず、Gは溶体化温度が900℃未満であり、いずれも強度と耐熱性が本発明の銅基合金A,Bよりも低く、硬さは160Hv未満、耐熱性は75%未満と著しく低下する。   Furthermore, the copper base alloy F of the comparative example is not solution treated, G has a solution temperature of less than 900 ° C., both of which are lower in strength and heat resistance than the copper base alloys A and B of the present invention, The hardness is significantly reduced to less than 160 Hv and the heat resistance is less than 75%.

時効1の条件が本発明とは異なる比較例の銅基合金H,I,J,Kは、時効不足か過時効のため強度と耐熱性が低く、硬さは155Hv以下、引張強さは520N/mm2未満、耐熱性は90%未満である。 Comparative examples of copper-based alloys H, I, J, and K having different aging 1 conditions from the present invention have low strength and heat resistance due to insufficient aging or overaging, and have a hardness of 155 Hv or less and a tensile strength of 520 N. / Mm 2 and heat resistance is less than 90%.

時効2の条件が本発明とは異なる比較例の銅基合金L,M,N,Oでは、L,Nは高い強度と耐熱性を有するが、時効不足のため導電率が60%IACS未満と低い。またM,Oは高い導電率を有するが、過時効のため硬さは160Hv未満、引張強さは540N/mm2未満、耐熱性は90%未満である。 In the copper base alloys L, M, N, and O of comparative examples in which the condition of aging 2 is different from that of the present invention, L and N have high strength and heat resistance, but the conductivity is less than 60% IACS due to insufficient aging. Low. M and O have high conductivity, but due to overaging, the hardness is less than 160 Hv, the tensile strength is less than 540 N / mm 2 , and the heat resistance is less than 90%.

Claims (2)

Fe:1.8〜2.5mass%、P:0.01〜0.1mass%、Zn:0.01〜1.5mass%、Sn:0.01〜0.2mass%、およびMg,Al,Si,Ti,Cr,Mn,Co,Niからなる元素を総量で0.001〜0.05mass%含有し、残部がCuと不可避不純物からなる銅基合金の鋳塊を、800〜1050℃の温度に加熱して圧下率50%以上の熱間圧延を施した後、圧下率30%以上で冷間圧延し、950〜1050℃の温度に1分以上保持後、300℃まで30秒以下の時間で冷却し、その後圧下率30%以上で冷間圧延した後、550〜625℃の温度で1〜4時間、更に400〜500℃の温度で1〜10時間の時効焼鈍を施し、次いで圧下率70〜90%の冷間圧延後、300〜450℃の温度で1〜5分の歪み除去焼鈍を行うことを特徴とする高強度高導電率高耐熱性銅基合金の製造方法。   Fe: 1.8-2.5 mass%, P: 0.01-0.1 mass%, Zn: 0.01-1.5 mass%, Sn: 0.01-0.2 mass%, and Mg, Al, Si , Ti, Cr, Mn, Co, Ni elements in a total amount of 0.001 to 0.05 mass%, the remainder of the copper-based alloy ingot consisting of Cu and unavoidable impurities at a temperature of 800-1050 ℃ After heating and hot rolling at a reduction rate of 50% or more, cold rolling at a reduction rate of 30% or more, holding at a temperature of 950 to 1050 ° C for 1 minute or longer, and then to 300 ° C for 30 seconds or less After cooling and then cold rolling at a reduction rate of 30% or more, aging annealing is performed at a temperature of 550 to 625 ° C. for 1 to 4 hours, and further at a temperature of 400 to 500 ° C. for 1 to 10 hours, and then a reduction rate of 70 After 90% cold rolling, the temperature is 300-450 ° C Method of producing a high strength and high electrical conductivity high heat resistance copper-based alloy and performing distortion removal annealing of 1-5 minutes in. 請求項1に記載される方法により製造される高強度高導電率高耐熱性銅基合金であって、導電率65%IACS以上、引張強さ560N/mm2以上、ビッカース硬さ165Hv以上を有し、500℃で5分間加熱後の強度が、加熱前の90%以上であることを特徴とする高強度高導電率高耐熱性銅基合金。 A high-strength, high-conductivity, high-heat-resistant copper-based alloy manufactured by the method according to claim 1, having an electrical conductivity of 65% IACS or higher, a tensile strength of 560 N / mm 2 or higher, and a Vickers hardness of 165 Hv or higher. The strength after heating at 500 ° C. for 5 minutes is 90% or more before heating, and is a high strength, high conductivity, high heat resistance copper-based alloy.
JP2010204503A 2010-09-13 2010-09-13 Method of manufacturing copper-based alloy with high strength, high conductivity and high heat resistance, and copper-based alloy with high strength, high conductivity and high heat resistance Pending JP2012057242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010204503A JP2012057242A (en) 2010-09-13 2010-09-13 Method of manufacturing copper-based alloy with high strength, high conductivity and high heat resistance, and copper-based alloy with high strength, high conductivity and high heat resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010204503A JP2012057242A (en) 2010-09-13 2010-09-13 Method of manufacturing copper-based alloy with high strength, high conductivity and high heat resistance, and copper-based alloy with high strength, high conductivity and high heat resistance

Publications (1)

Publication Number Publication Date
JP2012057242A true JP2012057242A (en) 2012-03-22

Family

ID=46054685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010204503A Pending JP2012057242A (en) 2010-09-13 2010-09-13 Method of manufacturing copper-based alloy with high strength, high conductivity and high heat resistance, and copper-based alloy with high strength, high conductivity and high heat resistance

Country Status (1)

Country Link
JP (1) JP2012057242A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150086444A (en) 2014-01-18 2015-07-28 가부시키가이샤 고베 세이코쇼 Fe-P BASED COPPER ALLOY SHEET EXCELLENT IN STRENGTH, HEAT RESISTANCE AND BENDING PROCESSIBILITY
KR20150108769A (en) 2014-03-18 2015-09-30 가부시키가이샤 고베 세이코쇼 Fe-P BASED COPPER ALLOY SHEET EXCELLENT IN STRENGTH, HEAT RESISTANCE AND BENDING PROCESSIBILITY
CN108330317A (en) * 2018-05-16 2018-07-27 中国科学院长春应用化学研究所 A kind of high-performance copper ferrophosphor(us) and preparation method thereof
CN111304486A (en) * 2020-03-20 2020-06-19 中色奥博特铜铝业有限公司 Copper-iron-phosphorus-zinc-tin alloy foil and production process thereof
CN111489852A (en) * 2020-05-09 2020-08-04 东莞市营特电子科技有限公司 Copper-clad aluminum wire with good extensibility and manufacturing process thereof
CN114717445A (en) * 2022-05-10 2022-07-08 宁波金田铜业(集团)股份有限公司 Copper alloy and preparation method thereof
CN115198133A (en) * 2022-06-07 2022-10-18 太原理工大学 High-strength heat-resistant conductive copper alloy pipe and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150086444A (en) 2014-01-18 2015-07-28 가부시키가이샤 고베 세이코쇼 Fe-P BASED COPPER ALLOY SHEET EXCELLENT IN STRENGTH, HEAT RESISTANCE AND BENDING PROCESSIBILITY
KR20150108769A (en) 2014-03-18 2015-09-30 가부시키가이샤 고베 세이코쇼 Fe-P BASED COPPER ALLOY SHEET EXCELLENT IN STRENGTH, HEAT RESISTANCE AND BENDING PROCESSIBILITY
CN108330317A (en) * 2018-05-16 2018-07-27 中国科学院长春应用化学研究所 A kind of high-performance copper ferrophosphor(us) and preparation method thereof
CN111304486A (en) * 2020-03-20 2020-06-19 中色奥博特铜铝业有限公司 Copper-iron-phosphorus-zinc-tin alloy foil and production process thereof
CN111304486B (en) * 2020-03-20 2021-01-29 中色奥博特铜铝业有限公司 Copper-iron-phosphorus-zinc-tin alloy foil and production process thereof
CN111489852A (en) * 2020-05-09 2020-08-04 东莞市营特电子科技有限公司 Copper-clad aluminum wire with good extensibility and manufacturing process thereof
CN114717445A (en) * 2022-05-10 2022-07-08 宁波金田铜业(集团)股份有限公司 Copper alloy and preparation method thereof
CN115198133A (en) * 2022-06-07 2022-10-18 太原理工大学 High-strength heat-resistant conductive copper alloy pipe and preparation method thereof
CN115198133B (en) * 2022-06-07 2023-02-24 太原理工大学 High-strength heat-resistant conductive copper alloy pipe and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4934759B2 (en) Copper alloy sheet, connector using the same, and method for producing copper alloy sheet
TWI422692B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
TWI400342B (en) Cu-Ni-Si-Co based copper alloy for electronic materials and its manufacturing method
TWI381397B (en) Cu-Ni-Si-Co based copper alloy for electronic materials and its manufacturing method
TWI465591B (en) Cu-Ni-Si alloy and its manufacturing method
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP5225787B2 (en) Cu-Ni-Si alloy plate or strip for electronic materials
CN107208191B (en) Copper alloy material and method for producing same
JP5657311B2 (en) Copper alloy sheet and manufacturing method thereof
JP5140045B2 (en) Cu-Ni-Si alloy plate or strip for electronic materials
JP2012057242A (en) Method of manufacturing copper-based alloy with high strength, high conductivity and high heat resistance, and copper-based alloy with high strength, high conductivity and high heat resistance
JP5611773B2 (en) Copper alloy, copper-drawn article, electronic component and connector using the same, and method for producing copper alloy
JPWO2011036804A1 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JP5135914B2 (en) Manufacturing method of high-strength copper alloys for electrical and electronic parts
JP5247021B2 (en) Cu-Ni-Si-based alloy plate / strip with reduced wrinkles in the bent portion and method for producing the same
JP5439610B2 (en) High strength, high conductivity copper alloy and method for producing the same
TWI527914B (en) Strength, heat resistance and bending workability of the Fe-P copper alloy plate
JP5555154B2 (en) Copper alloy for electrical and electronic parts and method for producing the same
TWI537401B (en) Strength and heat resistance and flexographic workability of the Fe-P copper alloy plate
JP2011246740A (en) Cu-Co-Si BASED ALLOY SHEET OR STRIP FOR ELECTRONIC MATERIAL
JP2013095976A (en) Cu-Co-Si-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
JP2010285671A (en) High-strength and high-electrical conductivity copper alloy and method of producing the same
JP3763234B2 (en) Method for producing high-strength, high-conductivity, high-heat-resistant copper-based alloy
JP2006089763A (en) Copper alloy and its production method
JP2011190469A (en) Copper alloy material, and method for producing the same