JP5639025B2 - Copper alloy tube - Google Patents

Copper alloy tube Download PDF

Info

Publication number
JP5639025B2
JP5639025B2 JP2011216075A JP2011216075A JP5639025B2 JP 5639025 B2 JP5639025 B2 JP 5639025B2 JP 2011216075 A JP2011216075 A JP 2011216075A JP 2011216075 A JP2011216075 A JP 2011216075A JP 5639025 B2 JP5639025 B2 JP 5639025B2
Authority
JP
Japan
Prior art keywords
mass
tube
copper alloy
copper
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011216075A
Other languages
Japanese (ja)
Other versions
JP2013076123A (en
Inventor
雅人 渡辺
雅人 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco and Materials Copper Tube Ltd
Original Assignee
Kobelco and Materials Copper Tube Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco and Materials Copper Tube Ltd filed Critical Kobelco and Materials Copper Tube Ltd
Priority to JP2011216075A priority Critical patent/JP5639025B2/en
Publication of JP2013076123A publication Critical patent/JP2013076123A/en
Application granted granted Critical
Publication of JP5639025B2 publication Critical patent/JP5639025B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Extraction Processes (AREA)

Description

本発明は、配管用銅合金管及び熱交換器用銅合金管のろう付け時の加熱による溶け割れを防止した銅合金管に関する。   The present invention relates to a copper alloy tube that prevents melting cracks due to heating during brazing of a copper alloy tube for piping and a copper alloy tube for heat exchanger.

りん脱酸銅管(JISH3300C1220T)は、ルームエアコン、パッケージエアコン、二酸化炭素冷媒ヒートポンプ式給湯器、冷蔵庫、ショーケース、及び自動販売機等の熱交換器、又はコンプレッサ周辺の機内配管及び部品等に広く使われている。   Phosphorus deoxidized copper pipe (JISH3300C1220T) is widely used in room air conditioners, packaged air conditioners, carbon dioxide refrigerant heat pump water heaters, refrigerators, showcases, heat exchangers such as vending machines, and in-machine piping and parts around compressors. It is used.

例えば、ルームエアコンの熱交換器は、ヘアピン状に曲げ加工したU字形銅管(以下、銅合金管も含めて銅管という)を、アルミニウムフィンの貫通孔に通し、前記銅管を治具により拡管することによって、銅管とアルミニウムフィンとを密着させ、更に銅管の開放端を拡管し、この拡管部にU字形に曲げ加工した銅製リターンベンド管を挿入し、りん銅ろう等のろう材により拡管部とリターンベンド管とを接合して、ヘアピン状の銅管とリターンベンド管を連結することにより、熱交換器が製造されている。   For example, a heat exchanger of a room air conditioner uses a U-shaped copper tube bent into a hairpin shape (hereinafter referred to as a copper tube including a copper alloy tube) through a through-hole of an aluminum fin, and the copper tube is used with a jig. By expanding the pipe, the copper pipe and the aluminum fin are brought into close contact with each other, the open end of the copper pipe is further expanded, and a copper return bend pipe bent into a U-shape is inserted into the expanded section, and a brazing material such as phosphor copper braze The heat exchanger is manufactured by joining the expanded pipe part and the return bend pipe by connecting the hairpin-shaped copper pipe and the return bend pipe.

また、コンプレッサと熱交換器をつなぐ機内配管では、銅管を任意に曲げ加工した材料を作製して、必要であれば管端を拡管又は縮管加工を行い、コンプレッサと熱交換器を上述のりん銅ろう等のろう材によって、機内配管により連結して、ルームエアコンを組み立てている。   In addition, in the in-machine piping connecting the compressor and the heat exchanger, a material obtained by arbitrarily bending a copper pipe is prepared, and if necessary, the pipe end is expanded or contracted, and the compressor and the heat exchanger are The room air conditioner is assembled by connecting with in-machine piping with brazing material such as phosphor copper brazing.

一方、ルームエアコンなどに使用される冷媒には、HCFC(ハイドロクロロフルオロカーボン)系のフロンが広く使用されてきたが、HCFCはオゾン破壊係数が高いことから、環境保護の観点によりその値が小さいHFC(ハイドロフルオロカーボン)系フロンが使用されるようになってきた。更に、ヒートポンプ式給湯器及び自動販売機には、HFCよりも更に環境にやさしい自然冷媒である二酸化炭素が使用されるようになってきている。例えば、高圧ガス保安法冷凍保安規則関係例示基準等に規定される冷媒ガスの設計圧力は、高圧部の基準凝縮温度が43℃のとき、HCFCのR22では1.6MPaであるのに対して、HFCのR410Aが2.6MPa、二酸化炭素が8.3MPaと増大している。   On the other hand, HCFC (hydrochlorofluorocarbon) -based fluorocarbons have been widely used as refrigerants for room air conditioners and the like, but HCFC has a high ozone depletion coefficient, so HFC has a small value from the viewpoint of environmental protection. (Hydrofluorocarbon) fluorocarbons have been used. Furthermore, carbon dioxide, which is a natural refrigerant that is more environmentally friendly than HFC, has been used in heat pump water heaters and vending machines. For example, the design pressure of the refrigerant gas specified in the high pressure gas safety law refrigeration safety rule related example standard is 1.6 MPa in the HCFC R22 when the standard condensation temperature of the high pressure part is 43 ° C. HFC R410A increases to 2.6 MPa and carbon dioxide increases to 8.3 MPa.

設計圧力が高くなれば、熱交換器又は機内配管の銅管の肉厚を厚くして強度に耐えられるようにする必要がある。しかし、資源の有効活用の観点から、またコスト上の観点から、銅管の肉厚を上げて銅の使用量が多くなることについては問題がある。この課題を解決するために、従来のりん脱酸銅管に変えて、Sn及びCo等の添加により強度を高めた高強度銅管が開発され、市場に供されるようになった。この高強度銅管は、従来の銅管よりも強度が高く、その分、肉厚を薄くすることができ、銅の使用量を削減して、省資源及び製品の低コスト化を図ることができる。また、この高強度銅管は、日本工業規格JISH3300にも追加登録(2009年7月20日)されて、従来のりん脱酸銅管に変わる新しい材料として期待されている。   If the design pressure increases, it is necessary to increase the thickness of the copper tube of the heat exchanger or in-machine piping so that it can withstand the strength. However, from the viewpoint of effective use of resources and from the viewpoint of cost, there is a problem with increasing the thickness of the copper tube and increasing the amount of copper used. In order to solve this problem, a high-strength copper tube whose strength is increased by adding Sn, Co, etc., instead of the conventional phosphorous-deoxidized copper tube, has been developed and put on the market. This high-strength copper pipe has higher strength than conventional copper pipes, and accordingly, the thickness can be reduced, and the amount of copper used can be reduced, saving resources and reducing product costs. it can. In addition, this high-strength copper pipe is additionally registered in the Japanese Industrial Standard JISH3300 (July 20, 2009), and is expected as a new material to replace the conventional phosphorous deoxidized copper pipe.

例えば、本願出願人は、特許文献1にて、Sn:0.1乃至1.0質量%、P:0.005乃至0.1質量%、O:0.005質量%以下及びH:0.0002質量%以下を含有し、残部がCu及び不可避不純物からなる組成を有し、平均結晶粒径が30μm以下である熱交換器用銅管を提案した。また、本願出願人は、特許文献2にて、Sn:0.1乃至2.0質量%、P:0.005乃至0.1質量%、S:0.005質量%以下、O:0.005質量%以下及びH:0.0002質量%以下を含有し、残部がCu及び不可避不純物からなる組成を有し、引張り強さ255N/mm以上であり、管軸直交断面において、管の肉厚方向と垂直な方向に測定した平均結晶粒径が30μm以下である銅合金管であって、前記銅合金管の引張り強さをαa、破壊圧力をPFa、前記銅合金管と同一外径及び肉厚のりん脱酸銅管の引張り強さをαd、破壊圧力をPFdとしたとき、(PFa)/(σa)>(PFd)/(σd)である熱交換器用銅合金管を提案した。 For example, the applicant of the present application described in Patent Document 1 includes Sn: 0.1 to 1.0 mass%, P: 0.005 to 0.1 mass%, O: 0.005 mass% or less, and H: 0.00. A copper tube for a heat exchanger was proposed, which contains 0002 mass% or less, the balance being Cu and inevitable impurities, and an average crystal grain size of 30 μm or less. Further, the applicant of the present application described in Patent Document 2 is Sn: 0.1 to 2.0 mass%, P: 0.005 to 0.1 mass%, S: 0.005 mass% or less, O: 0.0. 005% by mass or less and H: 0.0002% by mass or less, with the balance being composed of Cu and unavoidable impurities, with a tensile strength of 255 N / mm 2 or more, A copper alloy tube having an average crystal grain size measured in the direction perpendicular to the thickness direction of 30 μm or less, wherein the tensile strength of the copper alloy tube is αa, the breaking pressure is PFa, the same outer diameter as the copper alloy tube, and A copper alloy tube for a heat exchanger was proposed, where (PFa) / (σa)> (PFd) / (σd) where αd is the tensile strength of the thick phosphorous deoxidized copper tube and PFd is the breaking pressure.

特開2003−268467号公報JP 2003-268467 A 特開2008−174785号公報JP 2008-174785 A

しかしながら、特許文献1及び特許文献2に開示された銅合金は、その所期の目的を達成し、Snの固溶強化によって強度が向上しているものの、配管等をりん銅ろうによりろう付けする際に(800〜950℃)、引張応力が印加されていると、極めてまれに、割れが発生することがある。   However, although the copper alloys disclosed in Patent Document 1 and Patent Document 2 achieve their intended purpose and the strength is improved by solid solution strengthening of Sn, the pipes and the like are brazed with phosphor copper brazing. On the other hand (800 to 950 ° C.), if a tensile stress is applied, a crack may occur very rarely.

ろう付け時の銅合金管の脆化割れとして、高温での銅合金管の延性(伸び、絞り)の低下による脆化割れと、高温での銅合金管の粒界の溶融による溶け割れとがある。脆化割れは以下の機構により発生すると推定される。つまり、Cu−Sn系の高強度銅管は、800℃以上の温度において、りん脱酸銅に比して、その延性が低く、そのため、引張応力が印加された状態では、十分に変形することができず、割れに至ると考えられる。そして、本願出願人は、この脆化割れについて、それを防止した銅合金管を出願した(特願2010−080825号)。   There are two types of embrittlement cracking in copper alloy pipes during brazing: brittle cracking due to a decrease in ductility (elongation, squeezing) of copper alloy pipes at high temperatures and melting cracking due to melting of grain boundaries in copper alloy pipes at high temperatures is there. It is estimated that embrittlement cracking occurs by the following mechanism. In other words, Cu-Sn-based high-strength copper tubes have a lower ductility than phosphorous-deoxidized copper at temperatures of 800 ° C. or higher, and therefore can be sufficiently deformed when a tensile stress is applied. It is thought that it is not possible to lead to a crack. The applicant of the present application has applied for a copper alloy tube that prevents this embrittlement crack (Japanese Patent Application No. 2010-080825).

一方、ろう付け時に、950℃を超えるような高温になると、この950℃から融点直下までの温度域において、銅合金管には溶け割れが発生する虞がある。Cu−Sn系銅合金管は、950℃を超える温度に加熱されると、りん脱酸銅よりも低い温度で粒界が溶融して、溶け割れに至りやすい。   On the other hand, if the temperature is higher than 950 ° C. during brazing, there is a risk that melt cracking may occur in the copper alloy tube in the temperature range from 950 ° C. to just below the melting point. When the Cu—Sn based copper alloy tube is heated to a temperature exceeding 950 ° C., the grain boundary is melted at a temperature lower than that of the phosphorous deoxidized copper, and is likely to be melted.

なお、このような特殊な状況下において、引張応力が印加されないように製造工程を変更したり、ろう付け時の火力を配管形状ごとに調整するというような対策は、生産性の点から現実的ではない。   Under such special circumstances, measures such as changing the manufacturing process so that tensile stress is not applied or adjusting the heating power during brazing for each pipe shape are realistic from the viewpoint of productivity. is not.

本発明はかかる問題点に鑑みてなされたものであって、ろう付け時等の加熱時に、950℃を超えるような温度に過剰に加熱された場合にも、溶け割れの発生の可能性を低減した銅合金管を提供することを目的とする。   The present invention has been made in view of such problems, and reduces the possibility of melting cracks even when heated excessively to a temperature exceeding 950 ° C. during heating such as brazing. An object of the present invention is to provide a copper alloy tube.

本発明に係る銅合金管は、Sn:0.1乃至1.0質量%、P:0.001乃至0.100質量%、Zr:0.01乃至0.30質量%、S:0.0003乃至0.0020質量%及びAl:0.0001乃至0.0050質量%を含有し、O:0.0050質量%以下、H:0.0002質量%以下に規制し、残部がCu及び不可避的不純物からなる組成を有する銅合金の管材であって、管軸を含む断面において、肉厚方向の平均結晶粒径が30μm以下であり、1000℃での絞り値が20%以上であることを特徴とする。

The copper alloy tube according to the present invention has Sn: 0.1 to 1.0% by mass, P: 0.001 to 0.100% by mass, Zr: 0.01 to 0.30% by mass , S: 0.0003. To 0.0020% by mass and Al: 0.0001 to 0.0050 % by mass , O : 0.0050% by mass or less, H: 0.0002% by mass or less, the remainder being Cu and inevitable impurities A copper alloy tube material having a composition comprising: a cross-section including a tube axis, wherein an average crystal grain size in a thickness direction is 30 μm or less, and a drawing value at 1000 ° C. is 20% or more. To do.

更に、上述の各銅合金管は、熱交換器に使用することができる。   Furthermore, each above-mentioned copper alloy tube can be used for a heat exchanger.

なお、平均結晶粒径は、銅合金の管軸を含む断面において、JISH0501に定められた切断法により肉厚方向の平均結晶粒径を測定し、この肉厚方向の平均結晶粒径を管軸方向に100mm間隔の10箇所で測定し、その平均値としたものである。   The average crystal grain size is determined by measuring the average crystal grain size in the thickness direction by a cutting method defined in JISH0501 in the cross section including the pipe axis of the copper alloy. It is measured at 10 points at 100 mm intervals in the direction, and the average value is obtained.

本発明によれば、りん銅ろうによるろう付け時等に950℃を超える高温に過剰に加熱された場合にも、溶け割れの発生の可能性を著しく低減することができる。   According to the present invention, the possibility of melting cracks can be remarkably reduced even when excessively heated to a high temperature exceeding 950 ° C. during brazing with phosphor copper brazing.

割れ試験の方法を示す模式図である。It is a schematic diagram which shows the method of a crack test.

以下、本発明について詳細に説明する。本発明者等が、高温での延性・靭性(絞り値、伸び)を向上させると共に、溶け割れを防止できる熱交換器用銅合金管を開発すべく種々実験研究した結果、銅合金管のSn含有量、P含有量、Zr含有量、Al含有量及びその他の合金元素の含有量、及び平均結晶粒径を適切に規定することによって、過剰な高温に加熱されたときの溶け割れが防止された銅合金管を得ることができることを見出した。   Hereinafter, the present invention will be described in detail. As a result of various experiments conducted by the present inventors to develop copper alloy tubes for heat exchangers that can improve ductility and toughness (drawing value, elongation) at high temperatures and prevent melting cracks, the Sn content of copper alloy tubes By appropriately defining the amount, P content, Zr content, Al content and other alloy element content, and the average crystal grain size, melting cracks when heated to an excessively high temperature were prevented. It has been found that a copper alloy tube can be obtained.

以下、本発明の銅合金管の成分添加理由及び組成の数値限定理由について説明する。   Hereinafter, the reason for adding components and the reason for limiting the numerical values of the composition of the copper alloy tube of the present invention will be described.

「Sn:0.1乃至1.0質量%」
Snは固溶硬化によって、引張強さを向上させると共に、りん銅ろうなどのろう付けによる熱影響に対して結晶粒の粗大化を抑制して、銅合金管の耐熱性を向上させる。しかし、高温加熱されたとき、Sn含有合金では、Sn含有量の増加に伴って高温での延性低下が認められることを見出した。Snが高温延性を低下させる機構は明確ではないが、高温での粒界若しくは粒界近傍の強度又は延性を低下させることにより、割れが発生したと思われる。Snの含有量が1.0質量%を超えると、高温における延性低下が大きくなると共に、鋳塊における凝固偏析が激しくなり、通常の熱間押出及び/又は加工熱処理により、偏析が完全に解消しないことがあり、銅合金管の組織、機械的性質、曲げ加工性、ろう付け後の組織及び機械的性質の不均一、耐食性の低下等をもたらす。また、Sn含有量が1.0質量%を超えると、必要な押出圧力が高くなり、Sn含有量が1.0質量%以下の銅合金と同一の押出圧力で押出成形しようとすると、押出温度を上げることが必要になり、それにより押出材の表面酸化が増加し、生産性が低下し、銅合金管の表面欠陥が増加する。また、本発明の銅合金へのSnの含有量が0.1質量%未満であると、焼鈍後及びろう付け加熱後に十分な引張強さ及び細かい結晶粒径を得ることができなくなり、更にりん銅ろう等によるろう付け加熱時の強度低下抑制効果及び結晶粒粗大化防止効果が、不十分なものとなってしまう。従って、Snの含有量を0.1乃至1.0質量%とすることが必要である。
“Sn: 0.1 to 1.0 mass%”
Sn improves the tensile strength by solid solution hardening and suppresses the coarsening of crystal grains against the thermal effects of brazing such as phosphor copper brazing, thereby improving the heat resistance of the copper alloy tube. However, it has been found that when heated at high temperatures, the Sn-containing alloy shows a decrease in ductility at high temperatures as the Sn content increases. The mechanism by which Sn lowers the high temperature ductility is not clear, but it seems that cracking has occurred by reducing the strength or ductility of the grain boundaries at or near the grain boundaries at high temperatures. When the Sn content exceeds 1.0% by mass, the ductility drop at high temperatures becomes large, and solidification segregation in the ingot becomes severe, and segregation is not completely eliminated by normal hot extrusion and / or processing heat treatment. In some cases, the structure, mechanical properties, bending workability of the copper alloy tube, unevenness of the structure and mechanical properties after brazing, deterioration of corrosion resistance, and the like are caused. Moreover, when Sn content exceeds 1.0 mass%, a required extrusion pressure will become high, and when it is going to extrude with the same extrusion pressure as a copper alloy whose Sn content is 1.0 mass% or less, extrusion temperature , Thereby increasing the surface oxidation of the extruded material, reducing the productivity and increasing the surface defects of the copper alloy tube. Further, when the Sn content in the copper alloy of the present invention is less than 0.1% by mass, it becomes impossible to obtain sufficient tensile strength and fine crystal grain size after annealing and brazing heating. The effect of suppressing strength reduction during brazing heating with copper brazing and the like and the effect of preventing grain coarsening will be insufficient. Therefore, it is necessary that the Sn content be 0.1 to 1.0 mass%.

「P:0.001乃至0.100質量%」
Pは、Snと同様に、銅合金管の高温延性を低下させ、Snによる高温延性の低下を助長する。P含有量が0.100質量%を超えると、本発明の銅合金の特に高温における延性低下が大きくなり、また導電率が低下したり、熱間加工性及び冷間加工性が阻害されてしまう。一方、P含有量が0.001質量%未満であると、所定の強度を得ることができず、また脱酸が不十分となり、酸化物が鋳塊に巻き込まれ、鋳塊の健全性が低下すると共に、製造された管の曲げ加工性が低下しやすくなる。従って、Pの含有量を0.001乃至0.100質量%にすることが必要である。
“P: 0.001 to 0.100 mass%”
P, like Sn, reduces the hot ductility of the copper alloy tube, and promotes the reduction of hot ductility due to Sn. When the P content exceeds 0.100% by mass, the ductility drop of the copper alloy of the present invention becomes particularly high, the electrical conductivity is lowered, and hot workability and cold workability are hindered. . On the other hand, when the P content is less than 0.001% by mass, the predetermined strength cannot be obtained, and deoxidation becomes insufficient, and the oxide is caught in the ingot, and the soundness of the ingot is lowered. At the same time, the bending workability of the manufactured pipe tends to decrease. Therefore, it is necessary to make the P content 0.001 to 0.100 mass%.

「Zr:0.01乃至0.30質量%」
配管等をりん銅ろうによりろう付けする際に、そのろう付け温度は、通常800〜950℃であるが、この配管等が不用意に950℃を超えるような高温に加熱された場合、材質がCu−Sn系銅合金管の場合は、その結晶粒界のSnの濃度が結晶粒内より高いことから、この粒界の融点が粒内よりも低下し、その結果粒界が先に溶融して応力を支えきれなくなる。これが溶け割れの現象である。
“Zr: 0.01 to 0.30 mass%”
When brazing pipes or the like with phosphor copper brazing, the brazing temperature is usually 800 to 950 ° C. If this pipe or the like is carelessly heated to a temperature exceeding 950 ° C., the material In the case of a Cu—Sn-based copper alloy tube, the Sn concentration in the crystal grain boundary is higher than in the crystal grain, so the melting point of the grain boundary is lower than in the grain, and as a result, the grain boundary melts first. Can not support the stress. This is the phenomenon of melting and cracking.

この溶け割れは、Cu−Sn系銅合金管にZrを添加することにより、著しく低減することが可能になる。溶け割れ発生が低減される機構は明確でないが、応力が負荷された状態でろう付け加熱により温度が上昇すると、到達温度が950℃を超えない状態でも、Zrを含有しないCu−Sn系銅合金管では粒界に作用する応力が粒界の強度を超え、破壊が起こる。一方、Zrを含有させることにより、粒界の強度が向上するか、又は粒界近傍で応力集中が緩和される等の現象が発現すると推定される。これにより、粒界での割れの起点が減少し、950℃未満の温度で割れが抑制されると共に、加熱温度が950℃を超えても、粒界近傍での応力が減少していることから、溶け割れの発生が大幅に低減される。このように、Zrの含有量を適切に設定することにより、950℃未満に加熱したときの割れだけでなく、950℃を超える過剰の加熱による溶け割れをも防止することができる。このためには、Zrを0.01乃至0.30質量%添加することが必要である。Zrが0.01質量%未満では、800乃至950℃での延性の回復効果があり、950℃未満の割れ防止に効果はあるものの、前述の950℃を超えた場合の溶け割れの十分な対策とはならない。従って、安定して溶け割れを防止するためには、Zrを0.01質量%以上添加することが必要である。一方、Zr含有量が0.30質量%を超えると、Zrの粗大な晶出物が発生し、管の曲げ加工性を低下させる。よって、Zr含有量は0.01乃至0.30質量%とする。   This melting crack can be remarkably reduced by adding Zr to the Cu—Sn based copper alloy tube. The mechanism by which the occurrence of melting cracks is reduced is not clear, but when the temperature rises due to brazing heating in a state where stress is applied, even if the ultimate temperature does not exceed 950 ° C., a Cu—Sn based copper alloy that does not contain Zr In the tube, the stress acting on the grain boundary exceeds the strength of the grain boundary, and fracture occurs. On the other hand, it is presumed that the inclusion of Zr improves the grain boundary strength or develops a phenomenon such as relaxation of stress concentration near the grain boundary. As a result, the starting point of cracks at the grain boundaries is reduced, cracks are suppressed at temperatures below 950 ° C., and stress near the grain boundaries is reduced even when the heating temperature exceeds 950 ° C. The occurrence of melting cracks is greatly reduced. Thus, by appropriately setting the content of Zr, not only cracking when heated to less than 950 ° C. but also melting cracking due to excessive heating exceeding 950 ° C. can be prevented. For this purpose, it is necessary to add 0.01 to 0.30 mass% of Zr. When Zr is less than 0.01% by mass, there is an effect of recovering ductility at 800 to 950 ° C., and there is an effect for preventing cracking at less than 950 ° C., but sufficient countermeasures for melt cracking when the temperature exceeds 950 ° C. It will not be. Therefore, in order to stably prevent melting and cracking, it is necessary to add 0.01% by mass or more of Zr. On the other hand, when the Zr content exceeds 0.30% by mass, a coarse crystallized product of Zr is generated, and the bending workability of the tube is lowered. Therefore, the Zr content is set to 0.01 to 0.30 mass%.

「Al:0.0001乃至0.0050質量%」
不可避的不純物であるSは低融点であり、微量でも粒界に濃縮して粒界の強度を下げ、銅合金管の高温での脆化を助長する。Alは、Sを、溶解鋳造工程において、溶解中に安定したAl硫化物(Al等)として分離し、除去するという作用を有する。また、Alは、その後の加工熱処理工程において、粒界になお存在するSを、安定したAl硫化物(Al等)として無害化する作用を有する。Al含有量が0.0001質量%未満では、Sを分離し、除去する効果が十分でなく、Sが鋳塊中に残留してしまい、高温での材料の脆化を助長すると共に、熱間加工時に割れなどの原因となる。一方、Al含有量が0.0050質量%を超えると、導電率の低下が大きくなり、またAlの酸化物の巻き込みにより、合金管に表面疵が発生し、曲げ加工性の低下等、材料の特性を低下させる。よって、Al含有量は、0.0001乃至0.0050質量%とする。
“Al: 0.0001 to 0.0050 mass%”
S, which is an inevitable impurity, has a low melting point, and even a trace amount is concentrated at the grain boundary to lower the strength of the grain boundary and promote embrittlement of the copper alloy tube at a high temperature. Al has an action of separating and removing S as a stable Al sulfide (Al 2 S 3 or the like) during melting in the melting and casting process. In addition, Al has the effect of detoxifying S that still exists at the grain boundary as a stable Al sulfide (Al 2 S 3 or the like) in the subsequent heat treatment step. If the Al content is less than 0.0001% by mass, the effect of separating and removing S is not sufficient, S remains in the ingot, promotes embrittlement of the material at high temperature, Cause cracking during processing. On the other hand, if the Al content exceeds 0.0050% by mass, the decrease in conductivity increases, and the inclusion of Al oxide causes surface flaws in the alloy tube, resulting in a decrease in bending workability. Degrading properties. Therefore, the Al content is 0.0001 to 0.0050 mass%.

「S:0.0020質量%以下」
Sは、固溶せずに、粒界に濃縮しやすく、融点が低いために、粒界の強度を著しく低下させ、本発明の銅合金の高温での延性を低下させる。Sは本発明の銅合金中において、Cuと化合物を形成して母相中に存在する。Sの含有量が増えると、鋳造時の鋳塊割れ及び熱間押出工程における熱間押出割れが増加する。また、熱間押出割れが発生しないまでも、押出材を冷間圧延し、抽伸加工すると、材料内部のCu−S化合物は管の軸方向に伸張し、Cu−S化合物の界面で割れが発生しやすく、製品加工中及び加工後の製品において、表面疵及び割れ等が発生し、製品の歩留りを低下させる。また、Cu−S化合物界面で割れが発生しない場合でも、本発明の銅合金管に曲げ加工を行う際、割れ発生の起点となり、曲げ部で割れが発生する頻度が高くなる。このような問題を改善するために、本発明の銅合金におけるSの含有量は0.0020質量%以下、望ましくは0.0010質量%以下に規制する必要がある。
“S: 0.0020 mass% or less”
Since S does not dissolve, it is easy to concentrate at the grain boundary and has a low melting point, so that the strength of the grain boundary is remarkably lowered and the ductility of the copper alloy of the present invention at high temperature is lowered. S is present in the matrix by forming a compound with Cu in the copper alloy of the present invention. When the S content increases, ingot cracking during casting and hot extrusion cracking in the hot extrusion process increase. Also, even if hot extrusion cracking does not occur, when the extruded material is cold-rolled and drawn, the Cu-S compound inside the material expands in the axial direction of the tube and cracks occur at the interface of the Cu-S compound. In the product during and after the product processing, surface flaws, cracks, etc. occur and the product yield is reduced. Moreover, even when a crack does not generate | occur | produce at a Cu-S compound interface, when bending the copper alloy pipe | tube of this invention, it becomes a starting point of a crack generation and the frequency that a crack generate | occur | produces in a bending part becomes high. In order to improve such a problem, it is necessary to regulate the S content in the copper alloy of the present invention to 0.0020% by mass or less, desirably 0.0010% by mass or less.

Sは、銅地金、及びスクラップ等の原料、スクラップに付着する油、溶解鋳造雰囲気(溶湯を被覆する木炭/フラックス、溶湯と接触する雰囲気中のSOxガス、炉材等)から、比較的簡単に溶湯中に取り込まれるため、S含有量を0.0020質量%以下とするには、低品位のCu地金及びスクラップの使用量を低減し、溶解雰囲気のSOxガスを低減し、適正な炉材を選定し、Mg及びCa等のように、Sと親和性が強い元素を溶湯に微量添加すること等の対策が有効である。   S is relatively easy from copper bullion and raw materials such as scrap, oil adhering to scrap, melting casting atmosphere (charcoal / flux covering molten metal, SOx gas in furnace atmosphere, furnace material, etc.) In order to make the S content 0.0020% by mass or less because it is taken into the molten metal, the amount of low-grade Cu ingot and scrap is reduced, the SOx gas in the melting atmosphere is reduced, and an appropriate furnace It is effective to select a material and add a trace amount of an element having strong affinity for S, such as Mg and Ca, to the molten metal.

「O:0.0050質量%以下(50ppm以下)」
本発明の銅合金管においては、溶け割れを抑制する元素として、Zrを添加するが、そのZrが酸化されてしまうと、Zrの添加効果が消失する。このため、Oは0.0050質量%以下とする。また、Oの含有量が0.0050質量%を超えると、Cu及びSnの酸化物が鋳塊に巻き込まれ、鋳塊の健全性が低下すると共に、製造された管の曲げ加工性が低下しやすくなる。また、Oの含有量が0.0050質量%を超えると、水素脆化を起こす危険性が増大する。このため、Oの含有量を0.0050量%以下とする必要がある。曲げ加工性をより改善するには、Oの含有量を0.003質量%以下とすることが望ましく、0.0015%以下とすることが更に望ましい。
“O: 0.0050 mass% or less (50 ppm or less)”
In the copper alloy tube of the present invention, Zr is added as an element that suppresses melting cracking. However, if the Zr is oxidized, the effect of adding Zr disappears. For this reason, O is made into 0.0050 mass% or less. On the other hand, if the O content exceeds 0.0050% by mass, oxides of Cu and Sn are entrained in the ingot, reducing the soundness of the ingot, and reducing the bending workability of the manufactured pipe. It becomes easy. Moreover, when content of O exceeds 0.0050 mass%, the danger of causing hydrogen embrittlement will increase. For this reason, it is necessary to make content of O into 0.0050 mass% or less. In order to further improve the bending workability, the O content is desirably 0.003% by mass or less, and more desirably 0.0015% or less.

「H:0.0002質量%以下(2ppm以下)」
溶解鋳造時に溶湯に取り込まれる水素が多くなると、その水素が粒界に集まって、高温での延性低下を促進しやすくなる。また、溶湯に取り込まれる水素が多くなると、ピンホールが発生しやすくなり、水素が粒界に濃化した状態で鋳塊中に存在すると、熱間押出時の割れを発生させやすくなる。また、水素が過剰であると、押出後においても、焼鈍時に、粒界に水素に起因する膨れが発生しやすくなり、製品歩留が低下する。このため、本発明の銅合金管においては、Hの含有量を0.0002質量%以下とすることが必要である。製品歩留りをより向上させるにはHの含有量を0.0001質量%以下とすることが望ましい。
“H: 0.0002 mass% or less (2 ppm or less)”
When more hydrogen is taken into the molten metal at the time of melting and casting, the hydrogen collects at the grain boundary, and it becomes easy to promote a decrease in ductility at high temperatures. Further, when the amount of hydrogen taken into the molten metal increases, pinholes are likely to be generated, and when hydrogen is concentrated in the grain boundary and present in the ingot, cracks during hot extrusion are likely to occur. If hydrogen is excessive, blistering due to hydrogen tends to occur at the grain boundaries during annealing even after extrusion, resulting in a decrease in product yield. For this reason, in the copper alloy pipe | tube of this invention, it is necessary to make content of H 0.0002 mass% or less. In order to further improve the product yield, the H content is desirably 0.0001% by mass or less.

なお、Hの含有量を0.0002質量%以下とするためには、溶解鋳造時の原料を乾燥状態にすること、溶湯被覆木炭を赤熱すること、溶湯と接触する雰囲気の露点を低く保持すること、及びりん添加前の溶湯を酸化気味にすること等の対策が有効である。   In addition, in order to make the H content 0.0002% by mass or less, the raw material at the time of melting and casting is dried, the molten metal is heated red, and the dew point of the atmosphere in contact with the molten metal is kept low. It is effective to take measures such as making the molten metal before adding phosphorus and oxidizing.

「結晶粒度:平均結晶粒径が30μm以下」
結晶粒度は、素材の強度と曲げ等の加工性に重要な役割を果たしている。一般に、結晶粒度が小さければ強度は高く、曲げ加工性が向上する。結晶粒度が大きいと強度が低くなる。結晶粒度が30μmを超えると、強度が低下して、エアコン等の熱交換器に組み込んだときの耐圧が不十分となり、またろう付け後の強度を十分に維持できない。従って、平均結晶粒径は、30μm以下、更には15μm以下が好ましい。
“Crystal grain size: average crystal grain size is 30 μm or less”
The grain size plays an important role in the strength of the material and workability such as bending. Generally, if the crystal grain size is small, the strength is high and the bending workability is improved. When the crystal grain size is large, the strength is lowered. When the crystal grain size exceeds 30 μm, the strength decreases, the pressure resistance when incorporated in a heat exchanger such as an air conditioner becomes insufficient, and the strength after brazing cannot be sufficiently maintained. Therefore, the average crystal grain size is preferably 30 μm or less, more preferably 15 μm or less.

なお、高温で引張応力が印加された状態では、結晶粒径が小さい方が高温延性の低下を抑制するのに有利である。本発明合金では、800℃、10分間加熱された後の結晶粒径が70μm以下であることが望ましい。   In a state where tensile stress is applied at a high temperature, a smaller crystal grain size is advantageous for suppressing a decrease in hot ductility. In the alloy of the present invention, the crystal grain size after heating at 800 ° C. for 10 minutes is desirably 70 μm or less.

「1000℃での絞り値が20%以上」
う付け温度に相当する1000℃での絞り値が、20%未満であると、ろう付け時に引張応力が印加された場合に、割れが生じる危険性があることがわかった。このため、1000℃における絞り値が20%以上であることが必要である。なお、900℃での絞り値が25%以上、また、950℃での絞り値が20%以上であることが更に望ましい。本発明の銅合金管は、熱交換器の配管等に使用され、引張応力が印加された状態でろう付けされる態様で使用される場合でも、1000℃における絞り値が20%以上であるので、高温における延性が極めて優れたものであり、850℃を超える高温に加熱されても、割れを防止することができる。なお、絞りとは、管の引張試験後の破断部の断面積を試験前の断面積で除した比率のことで、この値が高い程、延性が高い。
“Aperture value at 1000 ° C is 20% or more”
Aperture at 1000 ° C., which corresponds to the filtrate cormorants with temperature is less than 20%, when the tensile stress at the time of brazing is applied, it was found that there is a risk of cracking may occur. For this reason, the aperture value at 1000 ° C. needs to be 20% or more. It is more desirable that the aperture value at 900 ° C. is 25% or more and the aperture value at 950 ° C. is 20% or more. Even when the copper alloy pipe of the present invention is used for piping of a heat exchanger or the like and brazed in a state where tensile stress is applied, the drawing value at 1000 ° C. is 20% or more. The ductility at a high temperature is extremely excellent, and cracking can be prevented even when heated to a high temperature exceeding 850 ° C. The term “drawing” refers to a ratio obtained by dividing the cross-sectional area of the fractured portion after the tensile test of the pipe by the cross-sectional area before the test. The higher this value, the higher the ductility.

以下、本発明の銅合金管の製造方法の一例について説明する。以下に示す製造方法は平滑管の場合についてのものであるが、内面溝付管の場合は、周知の内面溝付工程が付加される。   Hereinafter, an example of the manufacturing method of the copper alloy pipe of the present invention will be described. The manufacturing method shown below is for a smooth tube, but in the case of an internally grooved tube, a well-known internal grooved process is added.

先ず、原料の電気銅を木炭被覆のもとで溶解し、銅が溶解した後、Sn及び必要な添加元素を所定量添加し、更に、脱酸を兼ねてCu−15質量%P中間合金によりPを添加する。このとき、Zr等の酸化しやすい添加元素については、所定量を均一にかつ適正に添加するために、中間合金で添加することが望ましい。成分調整が終了した後、半連続鋳造により所定の寸法のビレットを作製する。得られたビレットを加熱炉で加熱し、均質化処理を行なう。熱間押出前に、ビレットを750〜950℃に1分〜2時間程度保持して均質化による偏析の改善処理を行う。その後、ビレットにピアシングによる穿孔加工を行い、750〜950℃で熱間押出を行う。   First, the raw electrolytic copper is dissolved under the charcoal coating. After the copper is dissolved, a predetermined amount of Sn and necessary additional elements are added. Add P. At this time, it is desirable that an additive element such as Zr that is easily oxidized be added as an intermediate alloy in order to add a predetermined amount uniformly and appropriately. After the component adjustment is completed, a billet having a predetermined size is produced by semi-continuous casting. The obtained billet is heated in a heating furnace and homogenized. Prior to hot extrusion, the billet is held at 750 to 950 ° C. for about 1 minute to 2 hours to improve segregation by homogenization. Thereafter, the billet is perforated by piercing and hot extruded at 750-950 ° C.

本発明の銅合金管を製造するには、Snの偏析解消又は押出後にZrを固溶させることによりその後のSnの偏析を抑制することが必須要件である。このため、熱間押出による断面減少率が88%以上、望ましくは93%以上となるようにし、更に熱間押出後の素管を水冷等の方法により、表面温度が300℃になるまでの冷却速度が10℃/秒以上、望ましくは15℃/秒以上、更に望ましくは20℃/秒以上となるように冷却することが好ましい。但し、断面減少率は、[穿孔されたビレットのドーナツ状の面積−熱間押出後の素管の断面積]/[穿孔されたビレットのドーナツ状の面積]×100%として求まる。   In order to manufacture the copper alloy tube of the present invention, it is an essential requirement to suppress subsequent segregation of Sn by eliminating Sn segregation or by dissolving Zr after extrusion. For this reason, the cross-sectional reduction rate by hot extrusion is 88% or more, preferably 93% or more, and the raw tube after hot extrusion is cooled to a surface temperature of 300 ° C. by a method such as water cooling. It is preferable to cool so that the speed is 10 ° C./second or more, desirably 15 ° C./second or more, and more desirably 20 ° C./second or more. However, the cross-sectional reduction rate is determined as [drilled billet donut area-cross-sectional area of raw tube after hot extrusion] / [drilled billet donut area] × 100%.

その後、押出素管に圧延加工を行なう。このときの加工率を断面減少率で92%以下とすることにより、圧延時の製品不良を低減することができる。次いで、圧延素管に抽伸加工を行なって所定の寸法の素管を製造する。通常、抽伸加工は複数台の抽伸機を用いて行うが、各抽伸機による加工率(断面減少率)を35%以下にすることにより、素管における表面欠陥及び内部割れを低減することができる。   Thereafter, the extruded element tube is rolled. By setting the processing rate at this time to 92% or less in terms of the cross-section reduction rate, product defects during rolling can be reduced. Subsequently, the rolling raw tube is subjected to a drawing process to manufacture a raw tube having a predetermined size. Usually, drawing is performed using a plurality of drawing machines, but surface defects and internal cracks in the raw pipe can be reduced by reducing the processing rate (cross-sectional reduction rate) by each drawing machine to 35% or less. .

必要に応じて、抽伸管に焼鈍を行う。本発明の銅合金管を製造するには、ローラーハース炉による連続焼鈍により、抽伸管の実体温度が400〜700℃となるように加熱し、その温度で10分〜1時間程度保持するようにして焼鈍することが望ましい。また、室温から所定温度までの平均昇温速度が5℃/分以上、望ましくは10℃/分以上となるように加熱することが望ましい。なお、上記のローラーハース炉による連続焼鈍に変えて、高周波誘導加熱炉を用い、高速昇温、高速冷却、及び短時間加熱の焼鈍を行ってもよい。   If necessary, the drawing tube is annealed. In order to manufacture the copper alloy tube of the present invention, the body temperature of the drawing tube is heated to 400 to 700 ° C. by continuous annealing with a roller hearth furnace, and the temperature is maintained for about 10 minutes to 1 hour. It is desirable to anneal. Moreover, it is desirable to heat so that the average rate of temperature increase from room temperature to a predetermined temperature is 5 ° C./min or more, preferably 10 ° C./min or more. In place of the continuous annealing by the roller hearth furnace, a high-frequency induction heating furnace may be used to perform rapid heating, rapid cooling, and short-time heating annealing.

次に、本発明の銅合金の実施例の効果について、本発明の範囲から外れる比較例と比較して説明する。   Next, the effect of the Example of the copper alloy of this invention is demonstrated compared with the comparative example which remove | deviates from the scope of the present invention.

下記表1乃至6に示す組成の実施例1乃至14及び比較例1乃至9並びに従来例1の各組成の銅合金材料を得るために、電気銅を溶解した溶湯に、Sn、及びZrを添加した後、Cu−P母合金を添加し、更にAlを添加することにより、所定組成の溶湯を作製し、直径300mmのビレットに鋳造した。次に、前記ビレットを850乃至950℃に加熱した後、ビレット中心をピアシング加工し、熱間押出により外径100mm、肉厚10mmの押出素管を作製した。この断面減少率は90%以上であった。押出後の素管は急冷され、押出直後から水冷までの時間及び水冷後の押出素管の表面温度等より、300℃までの平均冷却速度は20℃/秒以上と見積られた。押出素管を圧延及び抽伸して、外径9.52mm、肉厚0.80mmの素管を製作した。なお、圧延における断面減少率は90%以下、抽伸における1パスあたりの加工率は40%以下とした。還元性ガス雰囲気にしたローラーハース炉で、前記抽伸管を550乃至650℃(実体温度)に加熱し(平均昇温速度10乃至25℃/分)、その温度で30乃至80分保持した後、室温まで冷却して供試材とした。   In order to obtain copper alloy materials having the compositions shown in Tables 1 to 6 in Examples 1 to 14 and Comparative Examples 1 to 9 and Conventional Example 1, Sn and Zr were added to the molten metal in which electrolytic copper was dissolved. After that, a Cu—P master alloy was added, and further Al was added to prepare a molten metal having a predetermined composition, which was cast into a billet having a diameter of 300 mm. Next, after the billet was heated to 850 to 950 ° C., the billet center was pierced, and an extruded element tube having an outer diameter of 100 mm and a wall thickness of 10 mm was produced by hot extrusion. This cross-sectional reduction rate was 90% or more. The raw tube after extrusion was rapidly cooled, and the average cooling rate up to 300 ° C. was estimated to be 20 ° C./second or more from the time from immediately after extrusion to water cooling and the surface temperature of the extruded raw tube after water cooling. The extruded element tube was rolled and drawn to produce an element tube having an outer diameter of 9.52 mm and a wall thickness of 0.80 mm. The cross-sectional reduction rate in rolling was 90% or less, and the processing rate per pass in drawing was 40% or less. In a roller hearth furnace in a reducing gas atmosphere, the drawing tube was heated to 550 to 650 ° C. (substance temperature) (average heating rate of 10 to 25 ° C./min) and held at that temperature for 30 to 80 minutes. The specimen was cooled to room temperature.

評価試験は、室温から1000℃まで15分間で昇温させて、10分間保持した後、その温度で高温引張試験を行い、夫々、引張強さ、伸び及び絞り値を測定した。引張強さ、伸び及び絞り値はJISZ2241に記載された定義に基づいて算出した。なお、高温引張り後の絞りは、{(引張試験前の管の断面積−引張り破断後の破断面の断面積)/(引張り試験前の管の断面積)}×100%であり、引張破断後の断面積は破断面の外径と肉厚を測定することにより算出した。また、引張応力が印加された状態でのろう付けを模擬する割れ試験として、図1に示す固定荷重の割れ試験を行った。即ち、固定台1に外径が11mm、内径が9.8mmのステンレス鋼製の管2をその軸方向を水平にして固定し、この管2に、上述のごとく、外径が9.52mm、肉厚が0.80mm、長さが300mmの供試管3を挿入した。供試管3の挿入長は150mmであり、図1に示すように、管2から出ている150mmの部分の端部から50mmの位置に1kgの錘4を取り付けた。そして、アセチレン酸素バーナー5により、管2近傍の供試管3の部分を約950〜1000℃に加熱した。アセチレン酸素バーナーと管2との間の距離は、5cmとした。アセチレン酸素バーナー炎の当たる位置にK熱電対を点溶接し、加熱中の供試管の温度を測定した。アセチレン酸素バーナーによる加熱は、加熱後、8〜12秒で950℃になるように調整した。錘4により、供試管3の加熱部において、供試管に約20MPaの引張応力が印加されるものである。   In the evaluation test, the temperature was raised from room temperature to 1000 ° C. over 15 minutes and held for 10 minutes, and then a high-temperature tensile test was performed at that temperature to measure tensile strength, elongation, and squeeze value, respectively. The tensile strength, elongation and drawing value were calculated based on the definitions described in JISZ2241. The drawing after high-temperature tension is {(cross-sectional area of the tube before the tensile test−cross-sectional area of the fractured surface after the tensile fracture) / (cross-sectional area of the pipe before the tensile test)} × 100%, The subsequent cross-sectional area was calculated by measuring the outer diameter and thickness of the fracture surface. Further, as a crack test for simulating brazing in a state where a tensile stress was applied, a fixed load crack test shown in FIG. 1 was performed. That is, a stainless steel pipe 2 having an outer diameter of 11 mm and an inner diameter of 9.8 mm is fixed to the fixing base 1 with its axial direction horizontal, and the outer diameter is 9.52 mm as described above. A test tube 3 having a wall thickness of 0.80 mm and a length of 300 mm was inserted. The insertion length of the test tube 3 was 150 mm. As shown in FIG. 1, a 1 kg weight 4 was attached to a position 50 mm from the end of the 150 mm portion protruding from the tube 2. Then, the portion of the test tube 3 near the tube 2 was heated to about 950 to 1000 ° C. by the acetylene oxygen burner 5. The distance between the acetylene oxygen burner and the tube 2 was 5 cm. A K thermocouple was spot welded to the position where the acetylene oxygen burner hits, and the temperature of the test tube during heating was measured. Heating with an acetylene oxygen burner was adjusted to 950 ° C. in 8 to 12 seconds after heating. The weight 4 applies a tensile stress of about 20 MPa to the test tube in the heating portion of the test tube 3.

下記表1及び表2は、本発明の実施例1乃至14、比較例1乃至9及び従来例1の組成を示し、表3は、その結晶粒径及び1000℃における高温引張試験(絞り)の測定値と、溶け割れ試験の試験結果を示す。   Tables 1 and 2 below show the compositions of Examples 1 to 14, Comparative Examples 1 to 9 and Conventional Example 1 of the present invention, and Table 3 shows the crystal grain size and the high-temperature tensile test (drawing) at 1000 ° C. The measured value and the test result of the melt crack test are shown.

Figure 0005639025
Figure 0005639025

Figure 0005639025
Figure 0005639025

Figure 0005639025
Figure 0005639025

この表3に記載されているように、本発明の実施例1乃至14は、割れ試験において、割れが発生しなかった。これに対し、比較例2,5,9は、夫々、Snが多く、Zrが少なく、Sが多いため、溶け割れが発生した。また、従来例1も、Zrを含有しないため、、溶け割れが発生した。   As described in Table 3, in Examples 1 to 14 of the present invention, no crack was generated in the crack test. On the other hand, Comparative Examples 2, 5, and 9 each had a large amount of Sn, a small amount of Zr, and a large amount of S. Further, since Conventional Example 1 does not contain Zr, melt cracking occurred.

比較例1はSnが少ないため、結晶粒径が大きく、高強度銅管としての十分な強度が得られなかった。比較例3はPが少ないため、Oが多くなり、鋳塊に酸化物の巻き込みがあり、管の外面に多数の疵が発生した。比較例4はPが多いため、鋳塊に割れが発生した。比較例6はZrが多いため、鋳塊の肌が悪く、銅合金管の表面の疵が多かった。比較例7はAlが少ないため、Sが多くなり、絞り値が本発明の範囲から外れた。比較例8はAlが多いため、鋳塊に酸化物が巻き込まれ、管の外面に多数の疵が発生した。   Since Comparative Example 1 had a small amount of Sn, the crystal grain size was large, and sufficient strength as a high-strength copper tube could not be obtained. In Comparative Example 3, since there was little P, O increased, oxides were involved in the ingot, and many flaws occurred on the outer surface of the tube. Since Comparative Example 4 had a large amount of P, cracks occurred in the ingot. Since the comparative example 6 had many Zr, the skin of the ingot was bad and there were many wrinkles on the surface of a copper alloy tube. In Comparative Example 7, since the amount of Al was small, S was increased and the aperture value was out of the range of the present invention. In Comparative Example 8, since there was a lot of Al, an oxide was caught in the ingot, and a lot of flaws were generated on the outer surface of the pipe.

1:固定台
2:管
3:供試管
4:錘
5:アセチレン酸素バーナー
1: Fixing base 2: Tube 3: Test tube 4: Weight 5: Acetylene oxygen burner

Claims (2)

Sn:0.1乃至1.0質量%、P:0.001乃至0.100質量%、Zr:0.01乃至0.30質量%、S:0.0003乃至0.0020質量%及びAl:0.0001乃至0.0050質量%を含有し、O:0.0050質量%以下、H:0.0002質量%以下に規制し、残部がCu及び不可避的不純物からなる組成を有する銅合金の管材であって、管軸を含む断面において、肉厚方向の平均結晶粒径が30μm以下であり、1000℃での絞り値が20%以上であることを特徴とする銅合金管。 Sn: 0.1 to 1.0 mass%, P: 0.001 to 0.100 mass%, Zr: 0.01 to 0.30 mass% , S: 0.0003 to 0.0020 mass%, and Al: Copper alloy pipe material containing 0.0001 to 0.0050 mass% , O 2 : 0.0050 mass% or less, H: 0.0002 mass% or less, and the balance being composed of Cu and inevitable impurities A copper alloy tube characterized by having an average crystal grain size in the thickness direction of 30 μm or less and a drawing value at 1000 ° C. of 20% or more in a cross section including the tube axis. 950℃以上のろう付け加熱が行われる配管及び熱交換器に使用されることを特徴とする請求項1に記載の銅合金管。 The copper alloy pipe according to claim 1, wherein the copper alloy pipe is used for a pipe and a heat exchanger in which brazing heating at 950 ° C. or higher is performed .
JP2011216075A 2011-09-30 2011-09-30 Copper alloy tube Active JP5639025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011216075A JP5639025B2 (en) 2011-09-30 2011-09-30 Copper alloy tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011216075A JP5639025B2 (en) 2011-09-30 2011-09-30 Copper alloy tube

Publications (2)

Publication Number Publication Date
JP2013076123A JP2013076123A (en) 2013-04-25
JP5639025B2 true JP5639025B2 (en) 2014-12-10

Family

ID=48479795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011216075A Active JP5639025B2 (en) 2011-09-30 2011-09-30 Copper alloy tube

Country Status (1)

Country Link
JP (1) JP5639025B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9422208B2 (en) 2013-05-07 2016-08-23 Exxonmobil Chemical Patents Inc. Treatment of aromatic hydrocarbon stream

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102214230B1 (en) * 2020-08-07 2021-02-08 엘에스메탈 주식회사 Copper Alloy Tube For Heat Exchanger Excellent in Thermal Conductivity Fracture Strength and Method for Manufacturing the Same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3794971B2 (en) * 2002-03-18 2006-07-12 株式会社コベルコ マテリアル銅管 Copper alloy tube for heat exchanger
JP4817693B2 (en) * 2005-03-28 2011-11-16 株式会社コベルコ マテリアル銅管 Copper alloy tube for heat exchanger and manufacturing method thereof
JP4694527B2 (en) * 2007-03-30 2011-06-08 株式会社コベルコ マテリアル銅管 Copper alloy tube for heat-resistant and high-strength heat exchanger and method for producing the same
JP5534777B2 (en) * 2009-10-28 2014-07-02 株式会社Uacj Copper alloy seamless pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9422208B2 (en) 2013-05-07 2016-08-23 Exxonmobil Chemical Patents Inc. Treatment of aromatic hydrocarbon stream

Also Published As

Publication number Publication date
JP2013076123A (en) 2013-04-25

Similar Documents

Publication Publication Date Title
JP4694527B2 (en) Copper alloy tube for heat-resistant and high-strength heat exchanger and method for producing the same
JP4629080B2 (en) Copper alloy tube for heat exchanger
JP3794971B2 (en) Copper alloy tube for heat exchanger
JP5464659B2 (en) Copper tube for heat exchanger with excellent fracture strength and bending workability
JP5111922B2 (en) Copper alloy tube for heat exchanger
JP6541583B2 (en) Copper alloy material and copper alloy pipe
JP4818179B2 (en) Copper alloy tube
JP5078368B2 (en) Method for producing copper alloy tube for heat exchanger
JP5639025B2 (en) Copper alloy tube
JP5078410B2 (en) Copper alloy tube
JP5638999B2 (en) Copper alloy tube
JP5107841B2 (en) Copper alloy tube for heat exchangers with excellent bending workability
TWI608110B (en) Copper alloy seamless tube for heat exchanger tube
JP6034727B2 (en) High strength copper alloy tube
JP5499300B2 (en) Copper alloy tube for heat exchanger
JP5990496B2 (en) Phosphorus deoxidized copper pipe for heat exchanger
JP5602707B2 (en) High strength copper tube with excellent strength after brazing
JP2011012299A (en) Method for producing inner grooved tube
TW201441389A (en) Cold/hot water supply copper alloy seamless tube
JP2013189664A (en) Copper alloy tube
JP5336296B2 (en) Copper alloy tube for heat exchangers with excellent workability
JP5544591B2 (en) Copper alloy tube
JP2022025817A (en) Copper alloy tube and manufacturing method thereof
JP2016003373A (en) Copper alloy tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141021

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141023

R150 Certificate of patent or registration of utility model

Ref document number: 5639025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250