JP6541583B2 - Copper alloy material and copper alloy pipe - Google Patents
Copper alloy material and copper alloy pipe Download PDFInfo
- Publication number
- JP6541583B2 JP6541583B2 JP2015562836A JP2015562836A JP6541583B2 JP 6541583 B2 JP6541583 B2 JP 6541583B2 JP 2015562836 A JP2015562836 A JP 2015562836A JP 2015562836 A JP2015562836 A JP 2015562836A JP 6541583 B2 JP6541583 B2 JP 6541583B2
- Authority
- JP
- Japan
- Prior art keywords
- copper alloy
- heat treatment
- pipe
- mass
- alloy material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims description 221
- 239000000956 alloy Substances 0.000 title claims description 91
- 238000010438 heat treatment Methods 0.000 claims description 125
- 239000010949 copper Substances 0.000 claims description 30
- 239000012535 impurity Substances 0.000 claims description 18
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 238000005219 brazing Methods 0.000 claims description 7
- 238000005482 strain hardening Methods 0.000 description 27
- 239000000463 material Substances 0.000 description 25
- 238000012545 processing Methods 0.000 description 24
- 238000011282 treatment Methods 0.000 description 20
- 238000000034 method Methods 0.000 description 15
- 238000005266 casting Methods 0.000 description 13
- 229910052802 copper Inorganic materials 0.000 description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 11
- 238000005097 cold rolling Methods 0.000 description 10
- 238000001192 hot extrusion Methods 0.000 description 10
- 229910018104 Ni-P Inorganic materials 0.000 description 9
- 229910018536 Ni—P Inorganic materials 0.000 description 9
- 238000001816 cooling Methods 0.000 description 9
- 238000005452 bending Methods 0.000 description 7
- 239000003507 refrigerant Substances 0.000 description 7
- 238000012546 transfer Methods 0.000 description 7
- 229910052759 nickel Inorganic materials 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 238000010791 quenching Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 4
- 238000010622 cold drawing Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 238000005098 hot rolling Methods 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 238000000137 annealing Methods 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000032683 aging Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/06—Alloys based on copper with nickel or cobalt as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metal Extraction Processes (AREA)
Description
本発明は、高強度であり、加工性及び耐熱性に優れた銅合金管等の銅合金材料に関する。 The present invention relates to a copper alloy material such as a copper alloy tube which has high strength and is excellent in workability and heat resistance.
従来より、銅材の高強度化を目的として、微量の元素を添加した銅合金が提案されている。そのうちの1つとして、Cu−Ni−P系の銅合金がある(例えば、特許文献1:特開平4−218631号公報)。 Conventionally, a copper alloy to which a trace amount of element is added has been proposed for the purpose of increasing the strength of a copper material. As one of them, there is a Cu-Ni-P based copper alloy (e.g., Patent Document 1: Japanese Patent Application Laid-Open No. 4-218631).
このCu−Ni−P系の銅合金は、Ni−P系析出物により析出強化される銅合金であり、溶体化処理後、適正な温度での熱処理(時効処理)を行うことによって、高強度化される。 The Cu-Ni-P based copper alloy is a copper alloy which is precipitation strengthened by Ni-P based precipitates, and after solution treatment, high strength is achieved by heat treatment (aging treatment) at an appropriate temperature. Be
Cu−Ni−P系の銅合金により、板材、管材等の種々の形態の同材料が製造されているが、その用途や使用条件によっては、強度の加工が行われる場合があるため、Cu−Ni−P系の銅合金材料には、高強度であることのみならず、加工性が良好であることが必要であり、伸びの良好な銅材料が求められている。 The same materials of various forms such as plate material and pipe material are manufactured by Cu-Ni-P based copper alloy, but depending on the application and use conditions, the processing of strength may be performed. Not only high strength but also good processability is required for the Ni-P based copper alloy material, and a copper material having good elongation is required.
管材の場合、例えば、ルームエアコン、パッケージエアコン等の空調機用熱交換器、冷凍機等の伝熱管又は冷媒配管に使用される銅管においては、近年の薄肉化の要求に伴い、材料の高強度化が求められている。そのためには、適正な合金成分であることの他、その合金成分に応じた適正な熱処理条件等の製造条件を規定することが重要である。 In the case of pipe materials, for example, heat exchangers for air conditioners such as room air conditioners and package air conditioners, heat transfer tubes such as refrigerators, and copper tubes used for refrigerant piping, the materials have been increased with the recent demand for thinning. Strength is required. For this purpose, it is important to define manufacturing conditions such as appropriate heat treatment conditions according to the alloy components in addition to being appropriate alloy components.
しかし、特許文献1に記載のCu−Ni−P系の銅合金材料は、強度(引張強さ)は300MPaを超えており、高強度化されているものの、伸びが低く、強加工を行うには適さない。 However, although the strength (tensile strength) of the Cu-Ni-P-based copper alloy material described in Patent Document 1 exceeds 300 MPa and the strength is increased, the elongation is low and the strong processing is performed. Is not suitable.
従って、本発明の目的は、強度が高く且つ加工性に優れたCu−Ni−P系の板材、棒材、銅合金管等の銅合金材料を提供することにある。 Therefore, an object of the present invention is to provide a copper alloy material such as a Cu-Ni-P-based plate material, a bar material, and a copper alloy tube, which has high strength and excellent workability.
本発明の課題は、以下の本発明によって解決される。
すなわち、本発明(1)は、0.40〜3.5質量%のNiと、0.10〜0.50質量%のPと、を含有し、残部Cu及び不可避不純物からなる銅合金からなり、引張強さが270〜370MPaである銅合金材料(B)であり、
該銅合金材料(B)を850℃±100℃で加熱する第二熱処理を行い得られる銅合金材料(C)の引張強さ(σ2)が300MPa以上であり、伸び(δ)が30%以上であり、
該第二熱処理後の引張強さ(σ2)と該第二熱処理前の引張強さ(σ1)の差(σ2−σ1)が、20MPa以上であること、
を特徴とする銅合金材料(B)を提供するものである。
The object of the present invention is solved by the present invention described below.
That is, the present invention (1) is 0.4 0 to 3.5 mass% of Ni, Cu consisting of 0.1 from 0 to 0.5 and 0% by weight of P, containing the balance Cu and incidental impurities Ri Do alloy, a copper alloy material tensile strength is 270~370MPa (B),
The tensile strength (σ2) of the copper alloy material (C) obtained by performing the second heat treatment of heating the copper alloy material (B) at 850 ° C. ± 100 ° C. is 300 MPa or more, and the elongation (δ) is 30% or more And
The difference (σ2−σ1) between the tensile strength (σ2) after the second heat treatment and the tensile strength (σ1) before the second heat treatment is 20 MPa or more
It provides the copper alloy material (B) characterized by the above.
また、本発明(2)は、0.40〜3.5質量%のNiと、0.10〜0.50質量%のPと、を含有し、残部Cu及び不可避不純物からなる銅合金からなり、引張強さが270〜370MPaであり、伸び(δ)が30%以上である銅合金管(B)であり、
該銅合金管(B)を850℃±100℃で加熱する第二熱処理を行い得られる銅合金管(C)の引張強さ(σ2)が300MPa以上であり且つ伸び(δ)が30%以上であり、
該第二熱処理後の引張強さ(σ2)と該第二熱処理前の引張強さ(σ1)の差(σ2−σ1)が、20MPa以上であること、
を特徴とする銅合金管(B)を提供するものである。
Further, the present invention (2) comprises a copper alloy containing 0.40 to 3.5% by mass of Ni and 0.10 to 0.50% by mass of P, and the balance Cu and an unavoidable impurity. A copper alloy pipe (B) having a tensile strength of 270 to 370 MPa and an elongation (δ) of 30% or more,
The copper alloy pipe (C) obtained by performing the second heat treatment of heating the copper alloy pipe (B) at 850 ° C. ± 100 ° C. has a tensile strength (σ2) of 300 MPa or more and an elongation (δ) of 30% or more And
The difference (σ2−σ1) between the tensile strength (σ2) after the second heat treatment and the tensile strength (σ1) before the second heat treatment is 20 MPa or more
A copper alloy pipe (B) characterized by
また、本発明(3)は、(2)の銅合金管(B)を850℃±100℃で加熱する第二熱処理を行うことにより、引張強さ(σ2)が300MPa以上であり、伸び(δ)が30%以上である銅合金管(C)を得ることを特徴とする銅合金管(C)の製造方法を提供するものである。 In the present invention (3) , the tensile strength (σ2) is 300 MPa or more by performing the second heat treatment of heating the copper alloy pipe (B) of (2) at 850 ° C. ± 100 ° C. The present invention provides a method for producing a copper alloy pipe (C) characterized by obtaining a copper alloy pipe (C) having a δ of 30% or more .
また、本発明(4)は、前記第二熱処理が、ろう付け加熱であることを特徴とする(3)の銅合金管(C)の製造方法を提供するものである。 Further, the present invention (4) provides the method for producing a copper alloy pipe (C) according to (3), characterized in that the second heat treatment is brazing heating .
本発明によれば、強度が高く且つ加工性に優れたCu−Ni−P系の板材、棒材、銅合金管等の銅合金材料を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, copper alloy materials, such as board | plate material of a Cu-Ni-P type | system | group which is high in strength and excellent in workability, a rod material, a copper alloy pipe, etc. can be provided.
本発明の銅合金材料(A)は、0.4〜3.5質量%のNiと、0.1〜0.5質量%のPと、を含有し、残部Cu及び不可避不純物からなる銅合金材料である。 The copper alloy material (A) of the present invention contains 0.4 to 3.5% by mass of Ni and 0.1 to 0.5% by mass of P, and a copper alloy consisting of the balance Cu and unavoidable impurities It is a material.
また、本発明の銅合金材料(B)は、本発明の銅合金材料(A)を650℃±100℃で加熱する第一熱処理を行い得られる銅合金材料である。 The copper alloy material (B) of the present invention is a copper alloy material obtained by performing the first heat treatment of heating the copper alloy material (A) of the present invention at 650 ° C. ± 100 ° C.
また、本発明の銅合金材料(C)は、本発明の銅合金材料(B)を850℃±100℃で加熱する第二熱処理を行い得られる銅合金材料である。つまり、本発明の銅合金材料(C)は、本発明の銅合金材料(A)を650℃±100℃で加熱する第一熱処理と、第一加熱処理後に850℃±100℃で加熱する第二熱処理と、を行い得られる銅合金材料である。 The copper alloy material (C) of the present invention is a copper alloy material obtained by performing the second heat treatment of heating the copper alloy material (B) of the present invention at 850 ° C. ± 100 ° C. That is, the copper alloy material (C) of the present invention comprises the first heat treatment for heating the copper alloy material (A) of the present invention at 650 ° C. ± 100 ° C. and the first heat treatment for heating at 850 ° C. ± 100 ° C. And (2) heat treatment.
本発明者らは、銅合金の種々の加工や処理を行う中で、特定の化学組成の銅合金、すなわち、0.4〜3.5質量%のNi、好ましくは0.7〜1.5質量%のNiと、0.1〜0.5質量%のP、好ましくは0.2〜0.4質量%のPと、を含有する銅合金を、溶体化処理し、その後に行う熱処理として、650℃±100℃で加熱する第一熱処理を行うことにより、銅合金中にCu−Ni−P系の析出物を析出させることで、析出強化により銅合金材料の強度を向上させ、更に、第一熱処理の後に、850℃±100℃で加熱する第二熱処理を行うことにより、銅合金材料の強度が更に向上することを見出した。 Among the various processing and processing of copper alloys, the present inventors are copper alloys of a specific chemical composition, that is, 0.4 to 3.5% by mass of Ni, preferably 0.7 to 1.5. As a heat treatment to be subjected to solution treatment of a copper alloy containing mass% of Ni and 0.1 to 0.5 mass% of P, preferably 0.2 to 0.4 mass% of P By performing a first heat treatment heating at 650 ° C. ± 100 ° C., precipitation of Cu—Ni—P system precipitates in the copper alloy improves the strength of the copper alloy material by precipitation strengthening, and further It has been found that the strength of the copper alloy material is further improved by performing a second heat treatment heating at 850 ° C. ± 100 ° C. after the first heat treatment.
銅合金材料(A)、銅合金材料(B)及び銅合金材料(C)は、0.4〜3.5質量%のNiと、0.1〜0.5質量%のPと、を含有し、残部Cu及び不可避不純物からなる。 The copper alloy material (A), the copper alloy material (B) and the copper alloy material (C) contain 0.4 to 3.5% by mass of Ni and 0.1 to 0.5% by mass of P And the balance Cu and unavoidable impurities.
銅合金材料(A)、銅合金材料(B)及び銅合金材料(C)は、Ni及びPを含有し、銅合金材料(A)、銅合金材料(B)及び銅合金材料(C)中のNi含有量は、0.4〜3.5質量%であり、且つ、P含有量は、0.1〜0.5質量%である。Ni及びPは、銅合金中で、NiとPの化合物により析出物を形成し、引張強さを向上させる成分である。銅合金材料(A)、銅合金材料(B)及び銅合金材料(C)中のNi含有量が上記範囲にあることにより、銅合金材料の引張強さが高くなる。特に、本発明の銅合金材料が管材である場合、管材の強度が高く且つ加工性に優れる点で、銅合金材料(A)のNi含有量は、0.7〜1.5質量%であることが好ましい。また、本発明の銅合金材料が管材である場合、管材の強度が高く且つ加工性に優れる点で、銅合金材料(A)のP含有量は、0.2〜0.4質量%であることが好ましい。一方、Ni含有量が上記範囲を超えると、伸びが低くなってしまい、加工性、例えば、板材の場合の強度の曲げ加工や、管材の場合のヘアピン曲げ加工及び拡管性が低くなり、また、P含有量が上記範囲を超えると、加工性が低くなり、熱間加工や冷間加工において割れが生じるおそれがある。また、Ni含有量又はP含有量が上記範囲未満だと、銅合金材料の強度が低くなってしまう。 The copper alloy material (A), the copper alloy material (B) and the copper alloy material (C) contain Ni and P, and in the copper alloy material (A), the copper alloy material (B) and the copper alloy material (C) The Ni content of is 0.4 to 3.5% by mass, and the P content is 0.1 to 0.5% by mass. Ni and P are components which form a precipitate with the compound of Ni and P in a copper alloy, and improve tensile strength. When the Ni content in the copper alloy material (A), the copper alloy material (B) and the copper alloy material (C) is in the above range, the tensile strength of the copper alloy material is increased. In particular, when the copper alloy material of the present invention is a pipe material, the Ni content of the copper alloy material (A) is 0.7 to 1.5 mass% in that the strength of the pipe material is high and the processability is excellent. Is preferred. In addition, when the copper alloy material of the present invention is a tube, the P content of the copper alloy material (A) is 0.2 to 0.4 mass% in that the tube is high in strength and excellent in workability. Is preferred. On the other hand, when the Ni content exceeds the above range, the elongation becomes low, and the processability, for example, the bending process of the strength in the case of a plate material, the hairpin bending process in the case of a pipe material and the pipe expansion become low, If the P content exceeds the above range, the workability is lowered and there is a possibility that a crack may occur in hot working or cold working. In addition, when the Ni content or P content is less than the above range, the strength of the copper alloy material is lowered.
銅合金材料(A)は、所定の化学組成の銅合金鋳塊を鋳造し、その後、種々の加工や処理を行うことにより、製造される。銅合金材料(A)は、先ず、0.4〜3.5質量%のNi、好ましくは0.7〜1.5質量%のNiと、0.1〜0.5質量%のP、好ましくは0.2〜0.4質量%のPと、を含有し、残部Cu及び不可避不純物からなる銅合金鋳塊を鋳造し、次いで、上記所定の化学組成に調整された銅合金鋳塊に、溶体化処理、種々の加工(例えば、熱間圧延、熱間押出等の熱間加工や、冷間圧延、冷間引抜等の冷間加工)及び種々の熱処理を行うことにより得られる。溶体化処理については、上記種々の加工及び種々の熱処理を行い銅合金材料を得る過程において、適宜適切なときを選択して行う。例えば、熱間加工後且つ冷間加工の前又は冷間加工の後に、銅合金を850〜1000℃に加熱した後、急冷する溶体化処理を行う。また、冷間加工を複数回行う場合は、熱間加工後且つ全ての冷間加工の前、冷間加工と冷間加工の間、又は全ての冷間加工の後に、銅合金を850〜1000℃に加熱した後、急冷する溶体化処理を行う。また、熱間加工後に、熱間加工された銅合金を急冷することによって、溶体化処理を行うこともできる。 The copper alloy material (A) is manufactured by casting a copper alloy ingot of a predetermined chemical composition and then performing various processing and processing. The copper alloy material (A) first comprises 0.4 to 3.5% by mass of Ni, preferably 0.7 to 1.5% by mass of Ni, and 0.1 to 0.5% by mass of P, preferably Casts a copper alloy ingot containing 0.2 to 0.4% by mass of P and the balance Cu and unavoidable impurities, and then, to a copper alloy ingot adjusted to the above-mentioned predetermined chemical composition, It is obtained by performing solution treatment, various processing (for example, hot working such as hot rolling and hot extrusion, and cold working such as cold rolling and cold drawing) and various heat treatments. The solution treatment is performed by appropriately selecting an appropriate time in the process of obtaining the copper alloy material by performing the various processes and the various heat treatments described above. For example, after hot working and before cold working or after cold working, a solution treatment in which the copper alloy is heated to 850 to 1000 ° C. and then quenched is performed. In addition, when cold working is performed a plurality of times, the copper alloy is 850 to 1000 after hot working and before all cold working, between cold working and cold working, or after all cold working After heating to ° C., solution treatment is performed to quench the solution. In addition, solution treatment can also be performed by quenching the hot-worked copper alloy after hot-working.
また、銅合金材料(B)は、上記のようにして得られる銅合金材料(A)を650℃±100℃で加熱する第一熱処理を行うことにより得られる。銅合金材料(A)を650℃±100℃で加熱した後は、冷却を行う。冷却速度は、特に制限されないが、好ましくは2〜10℃/分である。 The copper alloy material (B) is obtained by performing the first heat treatment of heating the copper alloy material (A) obtained as described above at 650 ° C. ± 100 ° C. After heating the copper alloy material (A) at 650 ° C. ± 100 ° C., cooling is performed. The cooling rate is not particularly limited, but preferably 2 to 10 ° C./minute.
また、銅合金材料(C)は、上記のようにして得られる銅合金材料(B)を850℃±100℃で加熱する第二熱処理を行うことにより得られる。銅合金材料(B)を850℃±100℃で加熱した後は、冷却を行う。冷却速度は、特に制限されないが、好ましくは2〜10℃/秒である。 The copper alloy material (C) is obtained by performing a second heat treatment in which the copper alloy material (B) obtained as described above is heated at 850 ° C. ± 100 ° C. After heating the copper alloy material (B) at 850 ° C. ± 100 ° C., cooling is performed. The cooling rate is not particularly limited, but preferably 2 to 10 ° C./second.
つまり、0.4〜3.5質量%のNi、好ましくは0.7〜1.5質量%のNiと、0.1〜0.5質量%のP、好ましくは0.2〜0.4質量%のPと、を含有し、残部Cu及び不可避不純物からなる銅合金を鋳造した後、種々の加工(例えば、熱間圧延、熱間押出等の熱間加工や、冷間圧延、冷間引抜等の冷間加工)及び種々の熱処理を行い銅合金材料を得る過程で、銅合金を850〜1000℃から急冷する溶体化処理を行うことにより銅合金材料(A)を得、その後に行う熱処理として、650℃±100℃で加熱する第一熱処理を行うことにより銅合金材料(B)を得、そして、第一熱処理後に850℃±100℃で加熱する第二熱処理を行うことにより銅合金材料(C)を得る。 That is, 0.4 to 3.5% by mass of Ni, preferably 0.7 to 1.5% by mass of Ni and 0.1 to 0.5% by mass of P, preferably 0.2 to 0.4 After casting a copper alloy containing P by mass and the balance Cu and unavoidable impurities, various processes (for example, hot working such as hot rolling, hot extrusion, cold rolling, cold) A copper alloy material (A) is obtained by performing a solution treatment in which the copper alloy is quenched from 850 to 1000 ° C. in a process of cold working such as drawing and various heat treatments to obtain a copper alloy material, and then performed. As a heat treatment, a copper alloy material (B) is obtained by performing a first heat treatment heating at 650 ° C. ± 100 ° C., and a copper alloy is obtained by performing a second heat treatment heating at 850 ° C. ± 100 ° C. after the first heat treatment. Obtain the material (C).
銅合金材料(B)の引張強さ(σ2)は、270〜370MPaである。また、銅合金材料(C)の引張強さ(σ2)は、300MPa以上であり、且つ、伸び(σ)は、30%以上である。 The tensile strength (σ2) of the copper alloy material (B) is 270 to 370 MPa. The tensile strength (σ2) of the copper alloy material (C) is 300 MPa or more, and the elongation (σ) is 30% or more.
そして、第二熱処理後の引張強さ(σ2)と第二熱処理前の引張強さ(σ1)、つまり、銅合金材料(C)の引張強さ(σ2)と銅合金材料(B)の引張強さ(σ2)の差(σ2−σ1)が、20MPa以上であることが好ましい。 Then, the tensile strength (σ2) after the second heat treatment and the tensile strength (σ1) before the second heat treatment, that is, the tensile strength (σ2) of the copper alloy material (C) and the tensile strength of the copper alloy material (B) It is preferable that the difference (σ2−σ1) of the strength (σ2) is 20 MPa or more.
銅合金材料(C)は、引張強さ(σ2)が300MPa以上と高いので、強度が高いことが要求される用途の銅合金材料として好適に用いられる。つまり、先ず、0.4〜3.5質量%のNi、好ましくは0.7〜1.5質量%のNiと、0.1〜0.5質量%のP、好ましくは0.2〜0.4質量%のPと、を含有し、残部Cu及び不可避不純物からなる銅合金を鋳造する鋳造工程を行う。次いで、鋳造工程を行い得られる銅合金鋳塊を加熱して均質化処理を行った後、均質化処理した銅合金を熱間押出加工し、次いで、熱間押出加工を行った銅合金を冷間加工し、所望の銅合金材料の形状に加工する。熱間加工としては、板材の場合は熱間圧延が挙げられ、また、管材の場合は熱間押出が挙げられる。また、冷間加工としては、板材の場合は冷間圧延が挙げられ、また、管材の場合は冷間圧延、冷間引抜、内面溝を形成させる転造加工が挙げられる。そして、これらの熱間加工から冷間加工までの途中又は冷間加工後に、溶体化処理、第一熱処理及び第二熱処理を行うことにより、強度が高い銅合金材料(C)からなり且つ所定の形状に加工されている銅合金材料を得ることができる。 Since the copper alloy material (C) has a high tensile strength (σ2) of 300 MPa or more, it is suitably used as a copper alloy material for applications requiring high strength. That is, first, 0.4 to 3.5% by mass of Ni, preferably 0.7 to 1.5% by mass of Ni and 0.1 to 0.5% by mass of P, preferably 0.2 to 0 Conducting a casting step of casting a copper alloy containing 4% by mass of P and the balance Cu and unavoidable impurities. Next, the copper alloy ingot obtained by the casting process is heated and homogenized, and then the homogenized copper alloy is hot-extruded, and then the hot-extruded copper alloy is cooled. In-process and processed into the shape of the desired copper alloy material. As hot working, in the case of plate material, hot rolling is mentioned, and in the case of pipe material, hot extrusion is mentioned. In addition, as cold working, cold rolling is mentioned in the case of a plate material, and in the case of a tube, cold rolling, cold drawing, and rolling processing for forming an inner groove are mentioned. Then, by performing a solution treatment, a first heat treatment and a second heat treatment during or after these hot working to cold working, the copper alloy material (C) having high strength is obtained, and the predetermined processing is performed. It is possible to obtain a copper alloy material that has been processed into shape.
また、銅合金材料(B)は、引張強さ(σ2)が270〜370MPaであり、また、銅合金材料(C)は、引張強さ(σ2)が300MPa以上と高い。そのため、銅合金材料を加工して得られる材料が、強度が高く且つ強度の加工が必要な銅合金製の材料の場合に、銅合金材料(A)に第一加熱処理を行い、加工性が高い銅合金材料(B)を得、次いで、この銅合金材料(B)に、強度の高い加工を行い、次いで、加工後の銅合金材料(B)に第二加熱処理を行うことにより、強度を高めて、強度が高い銅合金材料(C)を得ることができるので、強度が高く且つ強度の加工が必要な銅合金製の材料を作製することができる。つまり、銅合金材料(A)、(B)及び(C)は、強い加工が必要な種々の用途に、すなわち、強加工且つ高強度用の銅合金材料として、好適に用いられる。 The copper alloy material (B) has a tensile strength (σ2) of 270 to 370 MPa, and the copper alloy material (C) has a high tensile strength (σ2) of 300 MPa or more. Therefore, in the case where the material obtained by processing the copper alloy material is a material made of a copper alloy that requires high strength and high strength processing, the copper alloy material (A) is subjected to the first heat treatment, and the processability is improved. A high copper alloy material (B) is obtained, and then the copper alloy material (B) is subjected to high strength processing, and then the second heat treatment is performed on the copper alloy material (B) after processing to obtain strength. As a result, it is possible to obtain a copper alloy material (C) having high strength, and therefore, it is possible to produce a copper alloy material which requires high strength and high strength processing. That is, the copper alloy materials (A), (B) and (C) are suitably used in various applications requiring strong processing, that is, as a copper alloy material for strong processing and high strength.
本発明の銅合金材料(A)、(B)及び(C)の形態としては、板材、棒材、銅合金管、特に継目無銅合金管が挙げられる。 As a form of copper alloy material (A), (B) and (C) of this invention, a board | plate material, a rod material, a copper alloy pipe | tube, especially a seamless copper alloy pipe | tube is mentioned.
本発明の銅合金材料(A)、(B)及び(C)が銅合金管の場合について述べる。以下、銅合金管の形態である銅合金材料(A)を銅合金管(A)と、銅合金管の形態である銅合金材料(B)を銅合金管(B)と、銅合金管の形態である銅合金材料(C)を銅合金管(C)とも記載する。銅合金管(A)、(B)及び(C)は、ルームエアコン、パッケージエアコン等の空調機用熱交換器又は冷凍機等の伝熱管又は冷媒配管として、又はそれらの製造用の銅合金管として、好適に用いられる。そして、空調機用熱交換器又は冷凍機等の伝熱管及び冷媒配管用の銅合金管には、ヘアピン曲げ加工及び拡管加工が行われるので、これらの銅合金管は、強度の加工が行われる材料である。また、銅合金管(A)、(B)及び(C)には、内面に溝のないベアー管と、内面に溝を有する内面溝付管がある。 The case where the copper alloy materials (A), (B) and (C) of the present invention are copper alloy tubes will be described. Hereinafter, copper alloy material (A) in the form of copper alloy tube, copper alloy tube (A), copper alloy material (B) in the form of copper alloy tube, copper alloy tube (B), copper alloy tube The copper alloy material (C) in the form is also described as a copper alloy tube (C). The copper alloy pipes (A), (B) and (C) are heat exchangers for air conditioners such as room air conditioners and package air conditioners, heat transfer tubes such as freezers or refrigerant pipes, or copper alloy tubes for their production. Are preferably used. And since a hairpin bending process and a pipe expansion process are performed to heat exchangers for air conditioners, heat transfer pipes such as a refrigerator, and copper alloy pipes for refrigerant piping, these copper alloy pipes are processed to a high strength. It is a material. Further, in the copper alloy pipes (A), (B) and (C), there are a bare pipe having no groove on the inner surface and an inner grooved pipe having a groove on the inner surface.
つまり、本発明によれば、0.4〜3.5質量%のNi、好ましくは0.7〜1.5質量%のNiと、0.1〜0.5質量%のP、好ましくは0.2〜0.4質量%のPと、を含有し、残部Cu及び不可避不純物からなる銅合金からなる銅合金管(A)に第一加熱処理を行い、加工性が高い銅合金管(B)を得、次いで、この銅合金管(B)に、強度が高いヘアピン曲げ加工及び拡管加工を行い、次いで、加工後の銅合金管(B)に第二加熱処理を行うことにより強度を高めて、強度が高い銅合金管(C)を得ることができるので、強度が高い伝熱管又は冷媒配管を作製することができる。 That is, according to the present invention, 0.4 to 3.5% by mass of Ni, preferably 0.7 to 1.5% by mass of Ni and 0.1 to 0.5% by mass of P, preferably 0 The copper alloy pipe (B) which contains 2 to 0.4% by mass of P and is subjected to the first heat treatment to a copper alloy pipe (A) made of a copper alloy consisting of the balance Cu and unavoidable impurities, and having high workability ), And then perform high-strength hairpin bending and expansion processing on this copper alloy pipe (B), and then increase the strength by performing a second heat treatment on the processed copper alloy pipe (B) Since a copper alloy pipe (C) having high strength can be obtained, a heat transfer pipe or a refrigerant pipe having high strength can be manufactured.
銅合金管(A)、(B)及び(C)及びそれらの製造例について、以下に述べる。なお、以下に述べる本発明の銅合金管(A)、(B)及び(C)の製造例は、本発明の銅合金管を製造するための一例であって、本発明の銅合金管は、以下に示す方法によって製造されたものに限定されるものではない。 The copper alloy tubes (A), (B) and (C) and their production examples are described below. The production examples of the copper alloy tubes (A), (B) and (C) of the present invention described below are an example for producing the copper alloy tube of the present invention, and the copper alloy pipe of the present invention is However, it is not limited to what was manufactured by the method shown below.
銅合金管(A)は、0.4〜3.5質量%のNi、好ましくは0.7〜1.5質量%のNiと、0.1〜0.5質量%のP、好ましくは0.2〜0.4質量%のPと、を含有し、残部Cu及び不可避不純物からなる銅合金からなる銅合金管である。 The copper alloy pipe (A) comprises 0.4 to 3.5% by mass of Ni, preferably 0.7 to 1.5% by mass of Ni and 0.1 to 0.5% by mass of P, preferably 0. A copper alloy pipe containing a copper alloy containing 2 to 0.4% by mass of P and the balance Cu and unavoidable impurities.
銅合金管(A)の製造方法であるが、先ず、常法に従って、溶解及び鋳造を行い、0.4〜3.5質量%のNi、好ましくは0.7〜1.5質量%のNiと、0.1〜0.5質量%のP、好ましくは0.2〜0.4質量%のPと、を含有し、残部Cu及び不可避不純物からなる銅合金の鋳塊を得る鋳造工程を行う。鋳造工程では、常法に従って、溶解及び鋳造して、所定の元素が所定の含有量で配合されているビレットを得る。例えば、銅の地金及び銅合金管(A)の含有元素の地金又は含有元素と銅の合金を、銅合金管(A)中の含有量が、所定の含有量となるように配合して、成分調整を行い、次いで、高周波溶解炉等を用いて、ビレットを鋳造する。次いで、鋳造後、ビレットを冷却する。 In the method for producing a copper alloy tube (A), first, melting and casting are carried out according to a conventional method, 0.4 to 3.5 mass% Ni, preferably 0.7 to 1.5 mass% Ni And a casting process for obtaining a copper alloy ingot containing 0.1 to 0.5% by mass of P, preferably 0.2 to 0.4% by mass of P and the balance Cu and unavoidable impurities Do. In the casting process, the billet is melted and cast in accordance with a conventional method to obtain a billet in which a predetermined element is blended at a predetermined content. For example, a copper base metal and an alloy containing the base metal of the contained element of the copper alloy pipe (A) or the contained element and copper are blended so that the content in the copper alloy pipe (A) becomes a predetermined content. The components are adjusted, and then a billet is cast using a high frequency melting furnace or the like. Then, after casting, the billet is cooled.
次いで、鋳造工程を行い得られるビレットに熱間押出加工を行う。熱間押出加工前の加熱処理では、鋳造により得られたビレットを、850〜950℃の温度で加熱する。この加熱処理は鋳造時の偏析を解消するための均質化処理を兼ねることができる。 Next, the billet obtained by the casting process is hot-extruded. In the heat treatment prior to hot extrusion, the billet obtained by casting is heated at a temperature of 850 to 950 ° C. This heat treatment can also serve as a homogenization treatment to eliminate segregation during casting.
熱間押出工程では、850〜950℃の温度に加熱されたビレットを、熱間押出する。熱間押出は、マンドレル押出によって行われる。すなわち、加熱前に、冷間で予め穿孔したビレット、あるいは、押出前に熱間で穿孔したビレットに、マンドレルを挿入した状態で、熱間押出を行う。そして、熱間押出を行った後、速やかに冷却して、熱間押出素管を得る。 In the hot extrusion process, the billet heated to a temperature of 850 to 950 ° C. is hot extruded. Hot extrusion is performed by mandrel extrusion. That is, prior to heating, hot extrusion is performed with the mandrel inserted in a cold pre-perforated billet or a hot-perforated billet prior to extrusion. And after hot extrusion is performed, it cools rapidly and obtains a hot extrusion tube.
次いで、銅合金管(A)が、内面溝が形成されていない内面平滑管(ベアー管)の場合は、熱間加工により得られた熱間押出素管に冷間加工を行う。冷間加工では、熱間加工により得られた熱間押出素管を、冷間圧延や冷間引き抜き等の冷間での加工を行い、管の外径及び肉厚を減じていき、継目無銅管を得る。銅合金管(A)が、内面溝が形成されていない内面平滑管(ベアー管)の場合は、この冷間加工後の継目無銅管が銅合金管(A)である。 Next, in the case where the copper alloy pipe (A) is an inner surface smooth pipe (bare pipe) in which the inner surface groove is not formed, the hot-extruded shell obtained by the hot processing is cold-worked. In cold working, a hot extruded tube obtained by hot working is subjected to cold working such as cold rolling or cold drawing to reduce the outer diameter and thickness of the pipe, and seamless Get a copper tube. In the case where the copper alloy pipe (A) is an inner surface smooth pipe (bare pipe) in which the inner surface groove is not formed, the seamless copper pipe after this cold working is the copper alloy pipe (A).
また、銅合金管(A)が、内面溝が形成されている内面溝付管の場合、熱間加工により得られた熱間押出素管に冷間加工を行う。冷間加工では、熱間加工により得られた熱間押出素管を、冷間圧延や冷間引き抜き等の冷間での加工を行い、管の外径及び肉厚を減じていき、継目無素管を得る。そして、冷間加工に次いで、冷間加工により得られた継目無素管を、700〜900℃で加熱する中間焼鈍を行い、冷却後、転造加工を行う。転造加工では、継目無素管内に、外面にらせん状の溝加工を施した転造プラグを配置して、高速回転する複数の転造ボールによって、管の外側から押圧して、管の内面に転造プラグの溝を転写して、管の内面に溝を形成させて、継目無銅管を得る。銅合金管(A)が、内面溝が形成されている内面溝付管の場合は、この転造加工後の継目無銅管が銅合金管(A)である。 Moreover, in the case where the copper alloy pipe (A) is an internally grooved pipe in which an inner surface groove is formed, the hot-extruded hollow shell obtained by the hot working is cold-worked. In cold working, a hot extruded tube obtained by hot working is subjected to cold working such as cold rolling or cold drawing to reduce the outer diameter and thickness of the pipe, and seamless Get the raw pipe. And the intermediate | middle annealing which heats the seamless blank tube obtained by cold working at 700-900 degreeC is performed following cold working, and rolling processing is performed after cooling. In rolling, a spiral grooved rolling plug is placed in the outer surface of a seamless hollow tube, and pressed from the outside of the tube by a plurality of rolling balls rotating at high speed, the inner surface of the tube The groove of the rolled plug is transferred to form a groove on the inner surface of the tube to obtain a seamless copper tube. When the copper alloy pipe (A) is an internally grooved pipe in which an inner surface groove is formed, the seamless copper pipe after this rolling process is the copper alloy pipe (A).
そして、銅合金管(A)の製造においては、熱間加工後且つ冷間加工の前又は冷間加工の後に、銅合金を850〜1000℃に加熱した後、急冷する溶体化処理を行う。また、冷間加工を複数回行う場合は、熱間加工後且つ全ての冷間加工の前、冷間加工と冷間加工の間、又は全ての冷間加工の後に、銅合金を850〜1000℃に加熱した後、急冷する溶体化処理を行う。また、熱間加工後に、熱間加工された銅合金を急冷することによって、溶体化処理を行うこともできる。 And in manufacture of a copper alloy pipe (A), after hot working and before cold working or after cold working, the solution treatment which carries out quenching after heating a copper alloy to 850-1000 ° C is performed. In addition, when cold working is performed a plurality of times, the copper alloy is 850 to 1000 after hot working and before all cold working, between cold working and cold working, or after all cold working After heating to ° C., solution treatment is performed to quench the solution. In addition, solution treatment can also be performed by quenching the hot-worked copper alloy after hot-working.
このようにして、銅合金管(A)を得る。そして、この銅合金管(A)には、650℃±100℃で加熱する第一熱処理が行われる。つまり、銅合金管(A)は、第一熱処理が行われる前の銅合金管である。 Thus, a copper alloy pipe (A) is obtained. And the 1st heat processing heated at 650 ° C ± 100 ° C is performed to this copper alloy pipe (A). That is, the copper alloy pipe (A) is a copper alloy pipe before the first heat treatment is performed.
銅合金管(B)は、0.4〜3.5質量%のNi、好ましくは0.7〜1.5質量%のNiと、0.1〜0.5質量%のP、好ましくは0.2〜0.4質量%のPと、を含有し、残部Cu及び不可避不純物からなる銅合金からなる銅合金管であり、引張強さ(σ2)が270〜370MPaであり、伸び(δ)が30%以上の銅合金管である。 The copper alloy tube (B) comprises 0.4 to 3.5% by mass of Ni, preferably 0.7 to 1.5% by mass of Ni and 0.1 to 0.5% by mass of P, preferably 0. A copper alloy pipe containing 2 to 0.4% by mass of P and containing a copper alloy containing the balance Cu and unavoidable impurities, and having a tensile strength (σ 2) of 270 to 370 MPa, and an elongation (δ) Is a 30% or more copper alloy pipe.
銅合金管(B)は、銅合金管(A)を650℃±100℃で加熱する第一熱処理を行い得られる。第一熱処理での加熱時間は、特に制限されないが、通常10分〜5時間である。銅合金管(A)を650℃±100℃で加熱した後は、冷却を行う。冷却速度は、特に制限されないが、好ましくは2〜10℃/分である。なお、溶体化処理を行った後、第一熱処理を行うまでに、他の熱処理を行ってもよい。 The copper alloy pipe (B) is obtained by performing the first heat treatment for heating the copper alloy pipe (A) at 650 ° C. ± 100 ° C. The heating time in the first heat treatment is not particularly limited, but is usually 10 minutes to 5 hours. After heating the copper alloy tube (A) at 650 ° C. ± 100 ° C., cooling is performed. The cooling rate is not particularly limited, but preferably 2 to 10 ° C./minute. Note that another heat treatment may be performed before the first heat treatment after the solution treatment.
そして、銅合金管(B)は、引張強さ(σ2)が270〜370MPaであり、且つ、伸び(σ)が、30%以上であるので、加工性が高く、ヘアピン曲げ加工及び拡管加工という強度の加工において、優れた加工性を有する。 The copper alloy pipe (B) has a tensile strength (σ 2) of 270 to 370 MPa and an elongation (σ) of 30% or more, so the formability is high and it is called hairpin bending and tube expansion processing In the processing of strength, it has excellent processability.
このようにして得られる銅合金管(B)は、ヘアピン曲げ加工及び拡管加工が行われた後、850℃±100℃で加熱する第二熱処理が行われる。あるいは、銅合金管(B)は、ヘアピン曲げ加工及び拡管加工が行われることなく、850℃±100℃で加熱する第二熱処理が行われる。つまり、銅合金管(B)は、第二熱処理が行われる前の銅合金管である。 The copper alloy tube (B) thus obtained is subjected to a hairpin bending process and an expansion process, and then to a second heat treatment in which heating is performed at 850 ° C. ± 100 ° C. Alternatively, the copper alloy tube (B) is subjected to the second heat treatment in which heating is performed at 850 ° C. ± 100 ° C. without performing the hairpin bending process and the tube expansion process. That is, the copper alloy pipe (B) is a copper alloy pipe before the second heat treatment is performed.
銅合金管(C)は、0.4〜3.5質量%のNi、好ましくは0.7〜1.5質量%のNiと、0.1〜0.5質量%のP、好ましくは0.2〜0.4質量%のPと、を含有し、残部Cu及び不可避不純物からなる銅合金からなる銅合金管であり、引張強さ(σ2)が300MPa以上であり、伸び(δ)が30%以上の銅合金管である。 The copper alloy pipe (C) comprises 0.4 to 3.5% by mass of Ni, preferably 0.7 to 1.5% by mass of Ni and 0.1 to 0.5% by mass of P, preferably 0 A copper alloy pipe containing 2 to 0.4% by mass of P and containing a copper alloy consisting of the balance Cu and unavoidable impurities, having a tensile strength (σ 2) of 300 MPa or more, and an elongation (δ) of It is a 30% or more copper alloy pipe.
銅合金管(C)は、銅合金管(B)を850℃±100℃で加熱する第二熱処理を行い得られる。第二熱処理での加熱時間は、特に制限されないが、通常10秒〜1時間である。銅合金材料(B)を850℃±100℃で加熱した後は、冷却を行う。冷却速度は、特に制限されないが、好ましくは2〜20℃/秒である。熱処理に着目すると、銅合金管(C)は、銅合金管(A)を650℃±100℃で加熱する第一熱処理と850℃±100℃で加熱する第二処理とを行って得られる。 The copper alloy pipe (C) is obtained by performing a second heat treatment in which the copper alloy pipe (B) is heated at 850 ° C. ± 100 ° C. The heating time in the second heat treatment is not particularly limited, but is usually 10 seconds to 1 hour. After heating the copper alloy material (B) at 850 ° C. ± 100 ° C., cooling is performed. The cooling rate is not particularly limited, but preferably 2 to 20 ° C./second. Focusing on heat treatment, the copper alloy tube (C) is obtained by performing a first heat treatment for heating the copper alloy tube (A) at 650 ° C. ± 100 ° C. and a second treatment for heating at 850 ° C. ± 100 ° C.
ルームエアコン、パッケージエアコン等の空調機用熱交換器又は冷凍機等の伝熱管又は冷媒配管の場合、空調機用熱交換器又は冷凍機等は、銅合金管を他の部材と共に組み付けた後、ろう付け加熱することにより、銅合金管と他の部材をろう付けして製造されるが、このろう付け加熱を、本発明の銅合金管に係る第二熱処理としてもよい。つまり、0.4〜3.5質量%のNi、好ましくは0.7〜1.5質量%のNiと、0.1〜0.5質量%のP、好ましくは0.2〜0.4質量%のPと、を含有し、残部Cu及び不可避不純物からなる銅合金である鋳塊を用いて熱間加工及び冷間加工を行い銅合金管の形状に加工し、且つ、溶体化処理及び第一熱処理を行った銅合金管を、空調機用熱交換器又は冷凍機を構成する他の部材と共に組み付け、次いで、850℃±100℃で加熱して、銅合金管と他の部材をろう付けすることにより、銅合金管(C)を得ることもできる。 In the case of heat exchangers for air conditioners such as room air conditioners and package air conditioners or heat transfer pipes or refrigerant pipes such as freezers, the air conditioner heat exchangers or freezers etc. are assembled after the copper alloy tube is assembled with other members, Although it manufactures by brazing a copper alloy pipe | tube and another member by brazing heating, this brazing heating may be made into 2nd heat processing which concerns on the copper alloy pipe | tube of this invention. That is, 0.4 to 3.5% by mass of Ni, preferably 0.7 to 1.5% by mass of Ni and 0.1 to 0.5% by mass of P, preferably 0.2 to 0.4 Hot working and cold working using an ingot which is a copper alloy containing P by mass and the balance Cu and inevitable impurities, and processed into a shape of a copper alloy tube, and solution treatment and Assemble the first heat-treated copper alloy tube with the air conditioner heat exchanger or other components that make up the refrigerator, and then heat it at 850 ° C ± 100 ° C to solder the copper alloy tube and other components. By attaching it, a copper alloy tube (C) can also be obtained.
銅合金管の第二熱処理後の引張強さ(σ2)と第二熱処理前の引張強さ(σ1)の差(σ2−σ1)が、20MPa以上であることが好ましい。つまり、第二処理前の銅合金管は、850℃±100℃で加熱することにより、強度が20MPa以上向上する銅合金管であることが好ましい。 The difference (σ2−σ1) between the tensile strength (σ2) of the copper alloy tube after the second heat treatment and the tensile strength (σ1) before the second heat treatment is preferably 20 MPa or more. That is, the copper alloy pipe before the second treatment is preferably a copper alloy pipe whose strength is improved by 20 MPa or more by heating at 850 ° C. ± 100 ° C.
そして、銅合金管(C)は、引張強さ(σ2)が300MPa以上であり、且つ、伸び(σ)が30%以上であるので、強度が高い。そのため、銅合金管(C)は、高い強度が必要な伝熱管又は冷媒配管用の銅合金管として、好適に用いられる。また、銅合金管(A)及び(B)は、高い強度が必要な伝熱管又は冷媒配管用の銅合金管を作製するための銅合金管として、好適に用いられる。 And since the copper alloy pipe (C) has a tensile strength (σ2) of 300 MPa or more and an elongation (σ) of 30% or more, the strength is high. Therefore, the copper alloy pipe (C) is suitably used as a heat transfer pipe requiring high strength or a copper alloy pipe for refrigerant piping. Further, the copper alloy pipes (A) and (B) are suitably used as a copper alloy pipe for producing a heat transfer pipe requiring high strength or a copper alloy pipe for refrigerant piping.
0.4〜3.5質量%のNi、好ましくは0.7〜1.5質量%のNiと、0.1〜0.5質量%のP、好ましくは0.2〜0.4質量%のPと、を含有し、残部Cu及び不可避不純物からなる銅合金を、溶体化処理した後、第一熱処理及び第二熱処理を行うときに、加熱温度が、第一熱処理の温度範囲(650℃±100℃)及び第二熱処理の温度範囲(850℃±100℃)のいずれもを満たすことにより、第二熱処理後の銅合金材料が、引張強さ(σ2)300MPa以上且つ伸び(δ)30%以上との物性を満たすことができる。 0.4 to 3.5% by mass Ni, preferably 0.7 to 1.5% by mass Ni and 0.1 to 0.5% by mass P, preferably 0.2 to 0.4% by mass The copper alloy containing P of and the balance Cu and the unavoidable impurities is subjected to a solution treatment, and then the first heat treatment and the second heat treatment are performed, the heating temperature is within the temperature range of the first heat treatment (650 ° C. By satisfying both of ± 100 ° C. and the temperature range of the second heat treatment (850 ° C. ± 100 ° C.), the copper alloy material after the second heat treatment has a tensile strength (σ2) of 300 MPa or more and an elongation (δ) of 30. It is possible to meet the physical properties with% or more.
一方、0.4〜3.5質量%のNi、好ましくは0.7〜1.5質量%のNiと、0.1〜0.5質量%のP、好ましくは0.2〜0.4質量%のPと、を含有し、残部Cu及び不可避不純物からなる銅合金を、溶体化処理した後、第一熱処理及び第二熱処理を行うときに、加熱温度が、第一熱処理の温度範囲(650℃±100℃)及び第二熱処理の温度範囲(850℃±100℃)のうちのいずれか一方でも外れてしまうと、第二熱処理後の銅合金材料が、引張強さ(σ2)300MPa以上且つ伸び(δ)30%以上との物性を満たさなくなる。 On the other hand, 0.4 to 3.5% by mass of Ni, preferably 0.7 to 1.5% by mass of Ni and 0.1 to 0.5% by mass of P, preferably 0.2 to 0.4 After solution treatment of a copper alloy containing P by mass and the balance Cu and unavoidable impurities, when the first heat treatment and the second heat treatment are performed, the heating temperature is within the temperature range of the first heat treatment ( If any one of 650 ° C. ± 100 ° C. and the temperature range of the second heat treatment (850 ° C. ± 100 ° C.) is deviated, the copper alloy material after the second heat treatment has a tensile strength (σ2) of 300 MPa or more And it does not satisfy the physical properties of elongation (δ) of 30% or more.
通常、析出強化によって強度が高められている銅合金材料は、ろう付け加熱等のように、850℃±100℃程度の温度で加熱されると、強度が低下する。それに対して、0.4〜3.5質量%のNi、好ましくは0.7〜1.5質量%のNiと、0.1〜0.5質量%のP、好ましくは0.2〜0.4質量%のPと、を含有し、残部Cu及び不可避不純物からなる銅合金は、溶体化処理及び第一熱処理が行われた後、ろう付け加熱のときの加熱温度に相当する850℃±100℃程度の温度で加熱されると、強度が低下するのではなく、反対に、強度が向上する。 In general, a copper alloy material whose strength is increased by precipitation strengthening decreases in strength when heated at a temperature of about 850 ° C. ± 100 ° C., as in brazing heating. On the other hand, 0.4 to 3.5% by mass Ni, preferably 0.7 to 1.5% by mass Ni and 0.1 to 0.5% by mass P, preferably 0.2 to 0 .4% by mass of P, and the balance Cu and the unavoidable impurities, the copper alloy comprising solution and the first heat treatment is subjected to 850 ° C ± that corresponds to the heating temperature at the time of brazing heating When heated at a temperature of about 100 ° C., the strength does not decrease but, conversely, the strength improves.
(実施例1〜10及び比較例1〜7)
高周波溶解炉を用いて、表1に示す化学組成で、鋳型寸法:幅50mm×長さ100mm×高さ200mmで鋳込んだ。次いで、鋳塊を、面削りをし、900℃で2時間加熱した後、直ぐに水槽に投入して冷却した。次いで、冷間圧延により厚さ1.0mmまで圧延し、次いで、900℃で10秒間中間焼鈍を行い、次いで、冷間圧延により厚さ0.7mmまで圧延した。次いで、表1に示す条件で、第一回目の熱処理及び第二回目の熱処理を行い、銅合金材料を得た。
(第一回目の熱処理条件)
1A:650℃で1時間
1B:500℃で1時間
1C:770℃で1時間
(第二回目の熱処理条件)
2A:850℃で30秒
2B:700℃で30秒
2C:970℃で30秒(Examples 1 to 10 and Comparative Examples 1 to 7)
Using a high frequency melting furnace, casting was performed with a mold size: 50 mm wide × 100 mm long × 200 mm high with the chemical composition shown in Table 1. Next, the ingot was face-cut and heated at 900 ° C. for 2 hours, and then immediately put into a water tank to be cooled. Then, it was rolled to a thickness of 1.0 mm by cold rolling, then subjected to an intermediate annealing at 900 ° C. for 10 seconds, and then rolled to a thickness of 0.7 mm by cold rolling. Next, under the conditions shown in Table 1, the first heat treatment and the second heat treatment were performed to obtain a copper alloy material.
(First heat treatment conditions)
1A: 1 hour at 650 ° C. 1 B: 1 hour at 500 ° C. 1 C: 1 hour at 770 ° C. (second heat treatment conditions)
2A: 30 seconds at 850 ° C 2B: 30 seconds at 700 ° C 2C: 30 seconds at 970 ° C
(評価)
得られた銅合金材料から、長さ100mm、平行部幅10mmの試験片を作成し、引張強さ及び伸びを測定した。また、第二回目の熱処理前の銅合金材料についても同様にして、引張強さを測定した。
<引張強さ(σ)、伸び(δ)>
銅合金の引張強さ(σ)、伸び(δ)は、JIS Z2241に準拠して測定した。(Evaluation)
From the obtained copper alloy material, a test piece having a length of 100 mm and a parallel part width of 10 mm was produced, and the tensile strength and the elongation were measured. Moreover, the tensile strength was similarly measured about the copper alloy material before the 2nd heat processing.
<Tensile strength (σ), Elongation (δ)>
The tensile strength (σ) and the elongation (δ) of the copper alloy were measured in accordance with JIS Z2241.
(実施例11〜12及び比較例8〜9)
高周波溶解炉にて、表2に示す化学組成で、φ100mmの鋳塊を製造し、次いで、φ90mmに皮剥きしてビレットを得た。次いで、ビレットを900℃に加熱して、熱間押出しを行い、φ20mm×厚み1.5mmの熱間押出素管とした。次いで、900℃の炉内で加熱し、直ちに水槽に投入して冷却した。次いで、冷間でφ10mm×厚さ0.5mmに引抜加工を行った。次いで、650℃で1時間加熱して第一熱処理を行い、次いで、850℃で30秒間加熱して第二熱処理を行い、銅管を得た。(Examples 11 to 12 and Comparative Examples 8 to 9)
In a high frequency melting furnace, an ingot of φ100 mm was produced with the chemical composition shown in Table 2, and then peeled to φ90 mm to obtain a billet. Next, the billet was heated to 900 ° C. and hot extrusion was performed to obtain a hot-extruded hollow tube having a diameter of 20 mm and a thickness of 1.5 mm. Next, it was heated in a furnace at 900 ° C. and immediately put into a water tank to be cooled. Then, it was cold drawn to φ10 mm × 0.5 mm in thickness. Then, the first heat treatment was performed by heating at 650 ° C. for one hour, and then the second heat treatment was performed by heating at 850 ° C. for 30 seconds to obtain a copper tube.
(評価)
銅管の引張強さ(σ)、伸び(δ)は、JIS Z2241に準拠して測定した。(Evaluation)
The tensile strength (σ) and the elongation (δ) of the copper tube were measured in accordance with JIS Z2241.
Claims (4)
該銅合金材料(B)を850℃±100℃で加熱する第二熱処理を行い得られる銅合金材料(C)の引張強さ(σ2)が300MPa以上であり、伸び(δ)が30%以上であり、
該第二熱処理後の引張強さ(σ2)と該第二熱処理前の引張強さ(σ1)の差(σ2−σ1)が、20MPa以上であること、
を特徴とする銅合金材料(B)。 0.4 0 to 3.5 wt% of Ni, and containing a 0.1 0 to 0.5 0 wt% of P, Ri Do a copper alloy consisting of balance Cu and unavoidable impurities, the tensile strength It is a copper alloy material (B) which is 270 to 370 MPa ,
The tensile strength (σ2) of the copper alloy material (C) obtained by performing the second heat treatment of heating the copper alloy material (B) at 850 ° C. ± 100 ° C. is 300 MPa or more, and the elongation (δ) is 30% or more And
The difference (σ2−σ1) between the tensile strength (σ2) after the second heat treatment and the tensile strength (σ1) before the second heat treatment is 20 MPa or more
Copper alloy material characterized by (B).
該銅合金管(B)を850℃±100℃で加熱する第二熱処理を行い得られる銅合金管(C)の引張強さ(σ2)が300MPa以上であり且つ伸び(δ)が30%以上であり、
該第二熱処理後の引張強さ(σ2)と該第二熱処理前の引張強さ(σ1)の差(σ2−σ1)が、20MPa以上であること、
を特徴とする銅合金管(B)。 0.4 0 to 3.5 wt% of Ni, and containing a 0.1 0 to 0.5 0 wt% of P, Ri Do a copper alloy consisting of balance Cu and unavoidable impurities, the tensile strength Copper alloy pipe (B) having 270 to 370 MPa and elongation (δ) of 30% or more ,
The copper alloy pipe (C) obtained by performing the second heat treatment of heating the copper alloy pipe (B) at 850 ° C. ± 100 ° C. has a tensile strength (σ2) of 300 MPa or more and an elongation (δ) of 30% or more And
The difference (σ2−σ1) between the tensile strength (σ2) after the second heat treatment and the tensile strength (σ1) before the second heat treatment is 20 MPa or more
Copper alloy pipe characterized by (B).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014024039 | 2014-02-12 | ||
JP2014024039 | 2014-02-12 | ||
PCT/JP2015/053738 WO2015122423A1 (en) | 2014-02-12 | 2015-02-12 | Copper alloy material and copper alloy pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2015122423A1 JPWO2015122423A1 (en) | 2017-03-30 |
JP6541583B2 true JP6541583B2 (en) | 2019-07-10 |
Family
ID=53800166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015562836A Active JP6541583B2 (en) | 2014-02-12 | 2015-02-12 | Copper alloy material and copper alloy pipe |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6541583B2 (en) |
KR (1) | KR20160120315A (en) |
CN (1) | CN105992832B (en) |
WO (1) | WO2015122423A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017082301A (en) * | 2015-10-29 | 2017-05-18 | 株式会社Uacj | Manufacturing method of copper alloy tube and heat exchanger |
JP2017193396A (en) * | 2016-04-19 | 2017-10-26 | 株式会社Uacj銅管 | Spiral coil laminate and stacked body of spiral coil laminate |
JP7089839B2 (en) * | 2016-04-19 | 2022-06-23 | Njt銅管株式会社 | Manufacturing method of spiral coil laminated body, manufacturing method of stacked body of spiral coil laminated body |
JP2018104767A (en) * | 2016-12-27 | 2018-07-05 | 株式会社Uacj | Ant's nest corrosion resistant copper tube |
JP7432315B2 (en) * | 2019-07-30 | 2024-02-16 | Njt銅管株式会社 | Method for manufacturing copper alloy seamless pipe and method for manufacturing heat exchanger |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5126616A (en) * | 1974-08-30 | 1976-03-05 | Kobe Steel Ltd | Kakoseinosugureta netsukokankyodokigokin |
JPS52156720A (en) * | 1976-06-23 | 1977-12-27 | Furukawa Metals Co | Copper alloy with anti softening property |
JPH0222433A (en) * | 1988-04-26 | 1990-01-25 | Mitsubishi Electric Corp | Copper alloy for electronic equipment |
JPH04218631A (en) * | 1990-12-17 | 1992-08-10 | Nikko Kyodo Co Ltd | Copper alloy for metal mold for plastic molding |
JPH04231444A (en) * | 1990-12-27 | 1992-08-20 | Nikko Kyodo Co Ltd | Production of electrifying material |
JP2965481B2 (en) * | 1995-05-08 | 1999-10-18 | 日鉱金属株式会社 | Method for producing highly conductive copper alloy |
JP4439447B2 (en) * | 2005-08-03 | 2010-03-24 | 株式会社神戸製鋼所 | Manufacturing method of irregular cross-section copper alloy sheet |
WO2009098810A1 (en) * | 2008-02-08 | 2009-08-13 | Mitsui Mining & Smelting Co., Ltd. | Process for producing precipitation-hardened copper alloy strip |
-
2015
- 2015-02-12 WO PCT/JP2015/053738 patent/WO2015122423A1/en active Application Filing
- 2015-02-12 JP JP2015562836A patent/JP6541583B2/en active Active
- 2015-02-12 KR KR1020167024942A patent/KR20160120315A/en not_active Application Discontinuation
- 2015-02-12 CN CN201580008568.0A patent/CN105992832B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN105992832A (en) | 2016-10-05 |
KR20160120315A (en) | 2016-10-17 |
JPWO2015122423A1 (en) | 2017-03-30 |
WO2015122423A1 (en) | 2015-08-20 |
CN105992832B (en) | 2018-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6541583B2 (en) | Copper alloy material and copper alloy pipe | |
JP4629080B2 (en) | Copper alloy tube for heat exchanger | |
JP5464659B2 (en) | Copper tube for heat exchanger with excellent fracture strength and bending workability | |
CN102575319A (en) | Copper alloy seamless pipe | |
JP2017082301A (en) | Manufacturing method of copper alloy tube and heat exchanger | |
JP5078368B2 (en) | Method for producing copper alloy tube for heat exchanger | |
TWI608110B (en) | Copper alloy seamless tube for heat exchanger tube | |
JP5107841B2 (en) | Copper alloy tube for heat exchangers with excellent bending workability | |
JP5451217B2 (en) | Manufacturing method of internally grooved tube | |
JP2013040397A (en) | Copper alloy material for pipe having high strength and high conductivity and method for manufacturing the same | |
JP6244213B2 (en) | Copper tube for heat exchanger | |
JP2017036468A (en) | Copper alloy tube | |
JP2017036467A (en) | Copper alloy tube | |
JP5990496B2 (en) | Phosphorus deoxidized copper pipe for heat exchanger | |
WO2018061277A1 (en) | Highly corrosion-resistant copper pipe | |
JP5639025B2 (en) | Copper alloy tube | |
JP6238274B2 (en) | Copper alloy seamless pipe for hot and cold water supply | |
JP5638999B2 (en) | Copper alloy tube | |
JP6360363B2 (en) | Copper alloy tube | |
JP2022025817A (en) | Copper alloy tube and manufacturing method thereof | |
JP2023042797A (en) | Tube with inner groove and manufacturing method thereof | |
JP2016180169A (en) | Copper alloy tube | |
JP2016180170A (en) | Copper alloy tube | |
JP2021021127A (en) | Copper alloy material and heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20171011 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171120 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171226 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20171226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181113 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20181227 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190308 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20190326 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190521 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190611 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6541583 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |