JP7432315B2 - Method for manufacturing copper alloy seamless pipe and method for manufacturing heat exchanger - Google Patents

Method for manufacturing copper alloy seamless pipe and method for manufacturing heat exchanger Download PDF

Info

Publication number
JP7432315B2
JP7432315B2 JP2019139977A JP2019139977A JP7432315B2 JP 7432315 B2 JP7432315 B2 JP 7432315B2 JP 2019139977 A JP2019139977 A JP 2019139977A JP 2019139977 A JP2019139977 A JP 2019139977A JP 7432315 B2 JP7432315 B2 JP 7432315B2
Authority
JP
Japan
Prior art keywords
copper alloy
treatment
heat treatment
heating
alloy material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019139977A
Other languages
Japanese (ja)
Other versions
JP2021021127A (en
Inventor
努 諸井
正 箕田
哲也 安藤
達 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION MURORAN INSTITUTE OF TECHNOLOGY
NJT COPPER TUBE CORPORATION
Original Assignee
NATIONAL UNIVERSITY CORPORATION MURORAN INSTITUTE OF TECHNOLOGY
NJT COPPER TUBE CORPORATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION MURORAN INSTITUTE OF TECHNOLOGY, NJT COPPER TUBE CORPORATION filed Critical NATIONAL UNIVERSITY CORPORATION MURORAN INSTITUTE OF TECHNOLOGY
Priority to JP2019139977A priority Critical patent/JP7432315B2/en
Publication of JP2021021127A publication Critical patent/JP2021021127A/en
Application granted granted Critical
Publication of JP7432315B2 publication Critical patent/JP7432315B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、製造コストが低く、高強度であり、且つ、加工性に優れた銅合金材料に関する。 The present invention relates to a copper alloy material that has low manufacturing cost, high strength, and excellent workability.

従来より、銅材の高強度化を目的として、微量の元素を添加した銅合金が提案されている。そのうちの1つとして、Cu-Ni-P系の銅合金がある(例えば、特許文献1:特開平4-218631号公報)。 Conventionally, copper alloys to which trace amounts of elements are added have been proposed for the purpose of increasing the strength of copper materials. One of them is a Cu--Ni--P based copper alloy (for example, Patent Document 1: Japanese Unexamined Patent Publication No. 4-218631).

このCu-Ni-P系の銅合金は、Ni-P系析出物により析出強化される銅合金であり、溶体化処理後、適正な温度での熱処理(時効処理)を行うことによって、高強度化される。 This Cu-Ni-P-based copper alloy is a copper alloy that is precipitation-strengthened by Ni-P-based precipitates, and can be strengthened by heat treatment (aging treatment) at an appropriate temperature after solution treatment. be converted into

そして、Cu-Ni-P系の銅合金により、板材、管材等の種々の形態の同材料が製造されているが、その用途や使用条件によっては、強度の加工が行われる場合があるため、Cu-Ni-P系の銅合金材料には、高強度であることのみならず、加工性が良好であることが必要であり、伸びの良好な銅材料が求められている。 Various forms of the same material, such as plates and pipes, are manufactured using Cu-Ni-P copper alloys, but depending on the application and conditions of use, they may be processed to increase their strength. Cu-Ni-P-based copper alloy materials must not only have high strength but also good workability, and copper materials with good elongation are required.

管材の場合、例えば、ルームエアコン、パッケージエアコン等の空調機用熱交換器、冷凍機等の伝熱管又は冷媒配管に使用される銅管においては、近年の薄肉化の要求に伴い、材料の高強度化が求められている。そのためには、適正な合金成分であることの他、その合金成分に応じた適正な熱処理条件等の製造条件を規定することが重要である。 In the case of pipe materials, for example, copper pipes used for heat exchangers for air conditioners such as room air conditioners and package air conditioners, heat transfer tubes for refrigerators, and refrigerant piping, due to the recent demand for thinner walls, the materials are becoming more expensive. Strengthening is required. For this purpose, it is important not only to use appropriate alloy components but also to specify manufacturing conditions such as appropriate heat treatment conditions according to the alloy components.

しかし、特許文献1に記載のCu-Ni-P系の銅合金材料は、強度(引張強さ)は300MPaを超えており、高強度化されているものの、伸びが低く、強加工を行うには適さない。 However, the Cu-Ni-P-based copper alloy material described in Patent Document 1 has a strength (tensile strength) of over 300 MPa, and although it has high strength, it has low elongation and is difficult to perform heavy processing. is not suitable.

そこで、高強度であり且つ加工性に優れるCu-Ni-P系の銅合金材料としては、例えば、特許文献2には、0.40~1.50質量%のNiと、0.10~0.50質量%のPと、を含有し、残部Cu及び不可避不純物からなる銅合金を溶体化処理した後、冷間加工及び中間焼鈍を行い、銅合金に650℃±100℃で加熱する第一熱処理と、その後に850℃±100℃で加熱する第二熱処理と、を施すことにより、高強度且つ伸びが高い銅合金材料が得られることが開示されている。 Therefore, as a Cu-Ni-P based copper alloy material that has high strength and excellent workability, for example, Patent Document 2 describes 0.40 to 1.50% by mass of Ni and 0.10 to 0.0% by mass of Ni. After solution treatment of a copper alloy containing 50% by mass of P and the remainder Cu and unavoidable impurities, cold working and intermediate annealing are performed, and the copper alloy is heated at 650°C ± 100°C. It is disclosed that a copper alloy material with high strength and elongation can be obtained by performing heat treatment and then a second heat treatment of heating at 850° C.±100° C.

特開平4-218631号公報Japanese Patent Application Publication No. 4-218631 国際公開第2015/122423号International Publication No. 2015/122423

銅合金材料は、汎用性が高く、種々の用途に用いられるため、高性能なものであることは勿論、低コストであることも求められる。 Copper alloy materials are highly versatile and are used for a variety of purposes, so they are required not only to have high performance but also to be low cost.

ここで、銅合金材料の製造における低コスト化の方策の一つとして、熱処理の処理温度を低くすることが考えられる。 Here, one possible measure for reducing costs in the production of copper alloy materials is to lower the processing temperature of heat treatment.

特許文献2の方法では、高強度でありながら、伸びが高いという優れた性能を有する銅合金材料が得られるものの、650℃±100℃で加熱する第一熱処理と、850℃±100℃で加熱する第二熱処理が必須である。 In the method of Patent Document 2, a copper alloy material having excellent performance of high strength and high elongation can be obtained, but the first heat treatment of heating at 650°C ± 100°C and the heating at 850°C ± 100°C A second heat treatment is essential.

特許文献2において、850℃±100℃で加熱する第二熱処理は、ろう付け加熱に対応するものなので、銅合金材料がろう付けにより製品に適用される場合には、避けられない熱処理であり、この熱処理温度を低くすることは困難である。一方、引用文献2において、650℃±100℃で加熱する第一熱処理は、ろう付け加熱前の熱処理なので、改善の余地がある。 In Patent Document 2, the second heat treatment heated at 850 ° C ± 100 ° C corresponds to brazing heating, so when the copper alloy material is applied to a product by brazing, it is an unavoidable heat treatment, It is difficult to lower this heat treatment temperature. On the other hand, in Cited Document 2, the first heat treatment of heating at 650° C.±100° C. is a heat treatment before brazing heating, so there is room for improvement.

ところが、引用文献2において、第一熱処理の温度の範囲が、550~750℃と規定されているのは、この温度範囲で熱処理を行ったときにはじめて、引用文献2の効果、すなわち、高強度でありながら、伸びが高い銅合金材料が得られるという効果を奏するためである。 However, in Cited Document 2, the temperature range of the first heat treatment is specified as 550 to 750°C, which is why the effect of Cited Document 2, that is, high strength, can only be achieved when heat treatment is performed in this temperature range. This is because a copper alloy material with high elongation can be obtained.

そのため、単に、製造コストの低減のために、第一熱処理の処理温度を低くしたのでは、高強度且つ伸びが高い銅合金材料が得られないということは、技術常識から容易に推測される。 Therefore, it is easily inferred from common technical knowledge that a copper alloy material with high strength and elongation cannot be obtained simply by lowering the processing temperature of the first heat treatment to reduce manufacturing costs.

従って、本発明の目的は、低コストであり、強度が高く且つ加工性に優れたCu-Ni-P系の銅合金材料を提供することにある。 Therefore, an object of the present invention is to provide a Cu--Ni--P based copper alloy material that is low in cost, has high strength, and has excellent workability.

上記技術背景の基、本発明者らは、鋭意検討を重ねた結果、銅合金のNi及びPの含有量を特定の範囲にした上で、該銅合金を、時効処理を行う温度としては低温である225±100℃で熱処理することにより、500~750℃での時効処理により析出する析出物とは異なる析出物であるNi12が析出することを見出し、且つ、このNi12が、銅合金を、高強度であり且つ伸びが高いものとすることに寄与することを見出し、本発明を完成させるに至った。 Based on the above technical background, as a result of extensive studies, the present inventors set the content of Ni and P in the copper alloy within a specific range, and then aged the copper alloy at a low temperature. It was discovered that by heat treatment at 225 ± 100 ° C., Ni 12 P 5 , which is a precipitate different from that precipitated by aging treatment at 500 to 750 ° C., precipitates . It was discovered that this contributes to making a copper alloy high in strength and elongation, and the present invention was completed.

すなわち、本発明(1)は、0.40~1.50質量%のNiと、0.10~0.50質量%のPと、を含有し、残部Cu及び不可避不純物からなる銅合金の鋳塊を得る鋳造工程を行い、次いで、該銅合金の鋳塊を加熱して均質化処理を行った後、均質化処理した銅合金を熱間加工し、次いで、熱間加工を行った銅合金を冷間加工する銅合金継目無管の製造方法であり、
該熱間加工から該冷間加工までの途中又は冷間加工後において、溶体化処理を行い、且つ、該溶体化処理後に225℃±100℃で加熱する熱処理(A1)を行い、
該熱処理(A1)において、該熱処理(A1)後の引張強さ(σ2)と該熱処理(A1)前の引張強さ(σ1)の差(σ2-σ1)を20MPa以上とし、且つ、該熱処理(A1)前の伸び(δ1)と該熱処理(A1)後の伸び(δ2)の差(δ1-δ2)を0~10%とすること、
を特徴とする銅合金継目無管の製造方法を提供するものである。
That is, the present invention (1) is a casting of a copper alloy containing 0.40 to 1.50% by mass of Ni and 0.10 to 0.50% by mass of P, with the remainder being Cu and unavoidable impurities. A casting process is performed to obtain an ingot, then the ingot of the copper alloy is heated and homogenized, the homogenized copper alloy is hot worked, and then the hot worked copper alloy is produced. This is a method for manufacturing copper alloy seamless pipes by cold working.
During the period from the hot working to the cold working or after the cold working, a solution treatment is performed, and after the solution treatment, a heat treatment (A1) of heating at 225 ° C ± 100 ° C is performed,
In the heat treatment (A1), the difference (σ2-σ1) between the tensile strength (σ2) after the heat treatment (A1) and the tensile strength (σ1) before the heat treatment (A1) is 20 MPa or more, and the heat treatment (A1) The difference (δ1-δ2) between the elongation before (δ1) and the elongation (δ2) after the heat treatment (A1) is 0 to 10% ;
The present invention provides a method for manufacturing a copper alloy seamless pipe characterized by the following.

また、本発明(2)は、0.40~1.50質量%のNiと、0.10~0.50質量%のPと、を含有し、残部Cu及び不可避不純物からなる銅合金の鋳塊を得る鋳造工程を行い、次いで、該銅合金の鋳塊を加熱して均質化処理を行った後、均質化処理した銅合金を熱間加工し、次いで、熱間加工を行った銅合金を冷間加工する銅合金継目無管の製造方法であり、
該熱間加工から該冷間加工までの途中又は冷間加工後において、溶体化処理を行い、且つ、該溶体化処理後に、850±100℃で加熱後、加熱温度から300℃まで、50℃/秒以下の平均冷却速度で冷却する処理(B)を行い、且つ、該処理(B)後に、225℃±100℃で加熱する熱処理(A2)を行い、
該処理(B)及び該熱処理(A2)において、該熱処理(A2)後の引張強さ(σ2)と該処理(B)前の引張強さ(σ1)の差(σ2-σ1)を30MPa以上とし、且つ、該処理(B)前の伸び(δ1)と該熱処理(A2)後の伸び(δ2)の差(δ1-δ2)を0~10%とすること、
を特徴とする銅合金継目無管の製造方法を提供するものである。
In addition, the present invention (2) is a casting of a copper alloy containing 0.40 to 1.50% by mass of Ni and 0.10 to 0.50% by mass of P, with the balance being Cu and unavoidable impurities. A casting process is performed to obtain an ingot, then the ingot of the copper alloy is heated and homogenized, the homogenized copper alloy is hot worked, and then the hot worked copper alloy is produced. This is a method for manufacturing copper alloy seamless pipes by cold working.
Solution treatment is performed during or after the cold working from the hot working to the cold working, and after the solution treatment, heating at 850 ± 100°C, and then heating at 50°C from the heating temperature to 300°C. A process (B) of cooling at an average cooling rate of /second or less is performed, and after the process (B), a heat treatment (A2) of heating at 225 ° C ± 100 ° C is performed,
In the treatment (B) and the heat treatment (A2), the difference (σ2-σ1) between the tensile strength (σ2) after the heat treatment (A2) and the tensile strength (σ1) before the treatment (B) is 30 MPa or more. and the difference (δ1-δ2) between the elongation (δ1) before the treatment (B) and the elongation (δ2) after the heat treatment (A2) is 0 to 10% ;
The present invention provides a method for manufacturing a copper alloy seamless pipe characterized by the following.

また、本発明(3)は、前記銅合金は析出物を含有し、該析出物の全部又は一部がNi12であることを特徴とする(1)又は(2)の銅合金継目無管の製造方法を提供するものである。 In addition, the present invention (3) provides the copper alloy joint of (1) or (2), wherein the copper alloy contains precipitates, and all or part of the precipitates are Ni 12 P 5 . The present invention provides a method for manufacturing a tubeless product .

また、本発明()は、(1)~()いずれかの銅合金継目無管の製造方法を行い得られる銅合金継目無管を用いて熱交換器を得ることを特徴とする熱交換器の製造方法を提供するものである。 In addition, the present invention ( 4 ) provides a heat exchanger characterized in that a heat exchanger is obtained using a copper alloy seamless pipe obtained by carrying out the method for producing a copper alloy seamless pipe according to any one of ( 1 ) to (3). A method for manufacturing an exchanger is provided.

本発明によれば、低コストであり、強度が高く且つ加工性に優れたCu-Ni-P系の銅合金材料を提供することができる。 According to the present invention, it is possible to provide a Cu--Ni--P based copper alloy material that is low in cost, has high strength, and has excellent workability.

本発明の第一の形態の銅合金材料は、0.40~1.50質量%のNiと、0.10~0.50質量%のPと、を含有し、残部Cu及び不可避不純物からなる銅合金からなり、
該銅合金は、銅合金を溶体化する溶体化処理と、該溶体化処理後に、225℃±100℃で加熱する熱処理(A1)と、が施された銅合金であり、
該熱処理(A1)後の引張強さ(σ2)と該熱処理(A1)前の引張強さ(σ1)の差(σ2-σ1)が20MPa以上であり、且つ、該熱処理(A1)前の伸び(δ1)と該熱処理(A1)後の伸び(δ2)の差(δ1-δ2)が0~10%であること、
を特徴とする銅合金材料である。
The copper alloy material of the first embodiment of the present invention contains 0.40 to 1.50% by mass of Ni and 0.10 to 0.50% by mass of P, with the balance consisting of Cu and inevitable impurities. Made of copper alloy,
The copper alloy is a copper alloy that has been subjected to a solution treatment to make the copper alloy a solution, and a heat treatment (A1) in which the copper alloy is heated at 225 ° C ± 100 ° C after the solution treatment,
The difference (σ2-σ1) between the tensile strength (σ2) after the heat treatment (A1) and the tensile strength (σ1) before the heat treatment (A1) is 20 MPa or more, and the elongation before the heat treatment (A1) is (δ1) and the elongation (δ2) after the heat treatment (A1) (δ1-δ2) is 0 to 10%;
It is a copper alloy material characterized by:

銅合金材料は、先ず、所定の化学組成の銅合金鋳塊を鋳造し、その後、種々の加工や処理を行うことにより、製造されるが、本発明者らは、銅合金の種々の加工や処理を行う中で、特定の化学組成の銅合金、すなわち、0.40~1.50質量%のNi、好ましくは0.70~1.20質量%のNiと、0.10~0.50質量%のP、好ましくは0.20~0.40質量%のPと、を含有する銅合金を、溶体化処理し、その後に行う熱処理として、225℃±100℃で加熱する熱処理(A1)を行うことにより、銅合金中に、Ni12の組成を有する析出物を析出させることができ、析出強化により銅合金材料の強度を向上させることができることを見出した。 Copper alloy materials are manufactured by first casting a copper alloy ingot with a predetermined chemical composition and then subjecting it to various processing and treatments. During the treatment, a copper alloy of a specific chemical composition is used, namely 0.40-1.50% by weight of Ni, preferably 0.70-1.20% by weight of Ni and 0.10-0.50% by weight of Ni. Solution treatment of a copper alloy containing mass% of P, preferably 0.20 to 0.40 mass% of P, followed by heat treatment at 225°C ± 100°C (A1) It has been found that by carrying out this process, precipitates having a composition of Ni 12 P 5 can be precipitated in the copper alloy, and the strength of the copper alloy material can be improved by precipitation strengthening.

本発明の第一の形態の銅合金材料は、0.40~1.50質量%のNiと、0.10~0.50質量%のPと、を含有し、残部Cu及び不可避不純物からなる銅合金により形成されている。なお、本発明において、上記Ni及びPの含有量とは、熱処理(A1)を施した後の銅合金材料中のNi及びPの含有量を指す。 The copper alloy material of the first embodiment of the present invention contains 0.40 to 1.50% by mass of Ni and 0.10 to 0.50% by mass of P, with the balance consisting of Cu and inevitable impurities. It is made of copper alloy. In addition, in the present invention, the content of Ni and P refers to the content of Ni and P in the copper alloy material after heat treatment (A1).

本発明の第一の形態の銅合金材料のNi含有量は、0.40~1.50質量%である。Niは、銅合金が225℃±100℃で加熱された場合に、銅合金中でPとの化合物によりNi12の組成を有する析出物を形成し、引張強さを向上させる成分である。Ni含有量が上記範囲にあることにより、銅合金材料の引張強さが高くなる。一方、Ni含有量が上記範囲を超えると、伸びが低くなってしまい、加工性、例えば、板材の場合の強度の曲げ加工や、管材の場合のヘアピン曲げ加工及び拡管性が低くなり、また、Ni含有量が上記範囲未満だと、銅合金材料の強度が低くなってしまう。特に、本発明の第一の形態の銅合金材料が管材である場合、管材の強度が高く且つ加工性に優れる点で、本発明の第一の形態の銅合金材料のNi含有量は、0.70~1.20質量%であることが好ましい。 The Ni content of the copper alloy material of the first embodiment of the present invention is 0.40 to 1.50% by mass. Ni is a component that forms a precipitate with a composition of Ni 12 P 5 due to a compound with P in the copper alloy when the copper alloy is heated at 225 ° C ± 100 ° C, improving the tensile strength. . When the Ni content is within the above range, the tensile strength of the copper alloy material becomes high. On the other hand, if the Ni content exceeds the above range, the elongation will be low, and the workability, for example, the strength of bending in the case of plate materials, the hairpin bending work and expandability in the case of pipe materials, will be reduced. If the Ni content is less than the above range, the strength of the copper alloy material will be low. In particular, when the copper alloy material of the first form of the present invention is a pipe material, the Ni content of the copper alloy material of the first form of the present invention is 0, since the pipe material has high strength and excellent workability. It is preferably .70 to 1.20% by mass.

本発明の第一の形態の銅合金材料のP含有量は、0.10~0.50質量%である。Pは、銅合金が225℃±100℃で加熱された場合に、銅合金中でNiとの化合物によりNi12の組成を有する析出物を形成し、引張強さを向上させる成分である。P含有量が上記範囲にあることにより、銅合金材料の引張強さが高くなる。一方、P含有量が上記範囲を超えると、加工性が低くなり、熱間加工や冷間加工において割れが生じるおそれがあり、また、P含有量が上記範囲未満だと、析出物の析出量が少なくなるため、銅合金材料の強度が低くなってしまう。特に、本発明の第一の形態の銅合金材料が管材である場合、管材の強度が高く且つ加工性に優れる点で、本発明の第一の形態の銅合金材料のP含有量は、0.20~0.40質量%であることが好ましい。 The P content of the copper alloy material of the first embodiment of the present invention is 0.10 to 0.50% by mass. P is a component that forms a precipitate with a composition of Ni 12 P 5 by a compound with Ni in the copper alloy when the copper alloy is heated at 225 ° C ± 100 ° C, improving the tensile strength. . When the P content is within the above range, the tensile strength of the copper alloy material becomes high. On the other hand, if the P content exceeds the above range, workability may decrease and cracks may occur during hot working or cold working, and if the P content is below the above range, the amount of precipitates As a result, the strength of the copper alloy material decreases. In particular, when the copper alloy material of the first form of the present invention is a pipe material, the P content of the copper alloy material of the first form of the present invention is 0, since the pipe material has high strength and excellent workability. It is preferably .20 to 0.40% by mass.

本発明の第一の形態の銅合金材料は、0.40~1.50質量%のNi、好ましくは0.70~1.20質量%のNiと、0.10~0.50質量%のP、好ましくは0.20~0.40質量%のPと、を含有し、残部Cu及び不可避不純物からなる銅合金を、溶体化処理し、溶体化処理後に、225℃±100℃で加熱する熱処理(A1)を行い得られた銅合金からなる。つまり、本発明の第一の形態の銅合金材料は、0.40~1.50質量%のNi、好ましくは0.70~1.20質量%のNiと、0.10~0.50質量%のP、好ましくは0.20~0.40質量%のPと、を含有し、残部Cu及び不可避不純物からなる銅合金を鋳造した後、種々の加工(例えば、熱間圧延、熱間押出等の熱間加工や、冷間圧延、冷間引抜等の冷間加工)及び種々の熱処理を行い銅合金材料を得る過程で、銅合金を、700~900℃、好ましくは800~900℃で加熱し、急冷する溶体化処理を行い、その後に行う熱処理として、225℃±100℃で加熱する熱処理(A1)を行うことにより得られる。熱処理(A1)での熱処理温度が上記範囲にあることにより、Ni12の組成を有する析出物を少なくとも一部に含むCu-Ni-P系の析出物が析出する。一方、熱処理(A1)での熱処理温度が、上記範囲未満だと、Ni12の組成を有する析出物が析出し難く、また、上記範囲を超えても、Ni12の組成を有する析出物が析出し難い。 The copper alloy material of the first embodiment of the present invention contains 0.40 to 1.50 mass% Ni, preferably 0.70 to 1.20 mass% Ni, and 0.10 to 0.50 mass% Ni. A copper alloy containing P, preferably 0.20 to 0.40% by mass of P, and the remainder consisting of Cu and unavoidable impurities, is solution treated, and after the solution treatment, heated at 225 ° C ± 100 ° C. It is made of a copper alloy obtained by heat treatment (A1). That is, the copper alloy material of the first embodiment of the present invention contains 0.40 to 1.50 mass% of Ni, preferably 0.70 to 1.20 mass% of Ni, and 0.10 to 0.50 mass% of Ni. % of P, preferably 0.20 to 0.40 mass % of P, and the remainder is Cu and unavoidable impurities. In the process of obtaining a copper alloy material by performing hot working such as cold working, cold working such as cold rolling, cold drawing, etc., and various heat treatments, the copper alloy is heated at 700 to 900°C, preferably 800 to 900°C. It is obtained by performing a solution treatment of heating and quenching, followed by a heat treatment (A1) of heating at 225° C.±100° C. By setting the heat treatment temperature in the heat treatment (A1) within the above range, Cu-Ni-P-based precipitates containing at least a portion of precipitates having a composition of Ni 12 P 5 are precipitated. On the other hand, if the heat treatment temperature in heat treatment (A1) is lower than the above range, precipitates having a composition of Ni 12 P 5 are difficult to precipitate, and even if the temperature exceeds the above range, precipitates having a composition of Ni 12 P 5 are difficult to precipitate. Precipitates are difficult to separate.

熱処理(A1)での熱処理時間は、好ましくは10~1000分間、特に好ましくは30~600分間である。熱処理(A1)での熱処理時間が上記範囲にあることにより、本発明の第一の銅合金材料の強度向上効果を得ることができる程度に十分な量のNi12の組成を有する析出物を析出させることができる。一方、熱処理(A1)での熱処理時間が、上記範囲未満だと、Ni12の組成を有する析出物の析出量が少なくなり易く、銅合金材料の強度向上効果が得られ難くなり、また、上記範囲を超えると、析出物が大きくなり、銅合金材料の強度が低下し易くなる。 The heat treatment time in heat treatment (A1) is preferably 10 to 1000 minutes, particularly preferably 30 to 600 minutes. When the heat treatment time in heat treatment (A1) is within the above range, a precipitate having a composition of Ni 12 P 5 in a sufficient amount to be able to obtain the effect of improving the strength of the first copper alloy material of the present invention. can be precipitated. On the other hand, if the heat treatment time in heat treatment (A1) is less than the above range, the amount of precipitates having a composition of Ni 12 P 5 tends to decrease, making it difficult to obtain the effect of improving the strength of the copper alloy material, and If the content exceeds the above range, the precipitates will become large and the strength of the copper alloy material will tend to decrease.

なお、本発明において、「溶体化処理と、溶体化処理後に熱処理(A1)と、が施された」とは、銅合金に、溶体化処理が施された直後に、熱処理(A1)が施されることのみを指すのではなく、溶体化処理と熱処理(A1)の間に、「加熱を伴わない処理又は工程」及び/又は「325℃を超える温度で加熱される処理又は工程」が施されてもよい。つまり、銅合金に、溶体化処理が施された直後に、熱処理(A1)が施されてもよいし、あるいは、溶体化処理が施された後に、「加熱を伴わない処理又は工程」及び/又は「325℃を超える温度で加熱される処理又は工程」が施されてから、熱処理(A1)が施されてもよい。また、溶体化処理が施された後、熱処理(A1)が施されるまでの間に、本発明の効果に影響しない程度の短時間であれば、125~325℃の範囲の温度に銅合金が晒されることがあってもよい。例えば、溶体化処理が施された後、熱処理(A1)が施されるまでの間に、325℃を超える温度で加熱される処理又は工程を施す場合においては、所定の温度までの昇温のために125~325℃の温度範囲を通過することになるが、125~325℃の温度範囲を通過する時間が、本発明の効果に影響しない程度の短時間であれば、許容される。また、溶体化処理と熱処理(A1)の間に、125℃未満の温度での処理又は加工が施されてもよい。 In the present invention, "the solution treatment and the heat treatment (A1) were performed after the solution treatment" means that the copper alloy is subjected to the heat treatment (A1) immediately after the solution treatment. It does not only mean that the treatment or process is carried out between the solution treatment and the heat treatment (A1), but also that a "treatment or process that does not involve heating" and/or "a treatment or process that involves heating at a temperature exceeding 325°C" is performed. may be done. That is, the copper alloy may be subjected to heat treatment (A1) immediately after being subjected to solution treatment, or after being subjected to solution treatment, a "treatment or process that does not involve heating" and/or Alternatively, the heat treatment (A1) may be performed after a "treatment or step of heating at a temperature exceeding 325°C" is performed. In addition, after the solution treatment is performed and before the heat treatment (A1) is performed, the copper alloy may be heated to a temperature in the range of 125 to 325°C for a short period of time that does not affect the effects of the present invention. may be exposed. For example, if a treatment or process that involves heating at a temperature exceeding 325°C is performed after solution treatment and before heat treatment (A1) is performed, the temperature must be raised to a predetermined temperature. Therefore, it passes through a temperature range of 125 to 325°C, but it is acceptable as long as the time for passing through the temperature range of 125 to 325°C is short enough not to affect the effects of the present invention. Moreover, treatment or processing at a temperature of less than 125° C. may be performed between the solution treatment and the heat treatment (A1).

本発明の第一の形態の銅合金材料は、熱処理(A1)後の引張強さ(σ2)と熱処理(A1)前の引張強さ(σ1)の差(σ2-σ1)が、20MPa以上、好ましくは30MPa以上、特に好ましくは40MPa以上である銅合金で形成されている。 The copper alloy material of the first embodiment of the present invention has a difference (σ2-σ1) between the tensile strength (σ2) after heat treatment (A1) and the tensile strength (σ1) before heat treatment (A1) of 20 MPa or more, It is preferably made of a copper alloy having a pressure of 30 MPa or more, particularly preferably 40 MPa or more.

本発明の第一の形態の銅合金材料の引張強さ(σ)は、好ましくは200~280MPa、特に好ましくは240~280MPaである。なお、本発明の第一の形態の銅合金材料の引張強さ(σ)とは、熱処理(A1)を行った後の銅合金材料の引張強さを指す。 The tensile strength (σ) of the copper alloy material of the first embodiment of the present invention is preferably 200 to 280 MPa, particularly preferably 240 to 280 MPa. Note that the tensile strength (σ) of the copper alloy material of the first embodiment of the present invention refers to the tensile strength of the copper alloy material after heat treatment (A1).

本発明の第一の形態の銅合金材料は、熱処理(A1)前の伸び(δ1)と熱処理(A1)後の伸び(δ2)の差(δ1-δ2)が、0~10%、好ましくは0~5%である銅合金で形成されている。 The copper alloy material of the first embodiment of the present invention has a difference (δ1-δ2) between elongation (δ1) before heat treatment (A1) and elongation (δ2) after heat treatment (A1) of 0 to 10%, preferably It is made of 0-5% copper alloy.

本発明の第一の形態の銅合金材料の伸び(δ)は、好ましくは20%以上、特に好ましくは30%以上である。なお、本発明の第一の形態の銅合金材料の伸び(δ)とは、熱処理(A1)を行った後の銅合金材料の伸びを指す。 The elongation (δ) of the copper alloy material of the first embodiment of the present invention is preferably 20% or more, particularly preferably 30% or more. Note that the elongation (δ) of the copper alloy material in the first embodiment of the present invention refers to the elongation of the copper alloy material after heat treatment (A1).

本発明の第一の形態の銅合金材料において、銅合金を溶体化する溶体化処理と、溶体化処理後に225℃±100℃で加熱する熱処理(A1)と、が施された銅合金は、Cu-Ni-Pの析出物を含有し、その析出物の全部又は一部がNi12の組成を有する析出物である銅合金である。 In the copper alloy material of the first embodiment of the present invention, the copper alloy has been subjected to solution treatment for making the copper alloy into a solution and heat treatment (A1) for heating at 225°C ± 100°C after the solution treatment, It is a copper alloy containing Cu-Ni-P precipitates, in which all or part of the precipitates have a composition of Ni 12 P 5 .

また、本発明の第一の形態の銅合金材料において、銅合金を溶体化する溶体化処理が施された後に、225℃±100℃で加熱する熱処理(A1)が施されることにより、銅合金中に、Ni12の組成を有する析出物を析出させることができるので、熱処理(A1)前の伸び(δ1)と熱処理(A1)後の伸び(δ2)の差(δ1-δ2)が、0~10%、好ましくは0~5%と伸びが維持されたまま、熱処理(A1)後の引張強さ(σ2)と熱処理(A1)前の引張強さ(σ1)の差(σ2-σ1)が、20MPa以上、好ましくは30MPa以上、特に好ましくは40MPa以上となる。 In addition, in the copper alloy material of the first embodiment of the present invention, after the solution treatment for making the copper alloy into a solution is performed, the heat treatment (A1) of heating at 225°C ± 100°C is performed to improve the copper alloy material. Since precipitates having a composition of Ni 12 P 5 can be precipitated in the alloy, the difference between the elongation (δ1) before heat treatment (A1) and the elongation (δ2) after heat treatment (A1) (δ1-δ2) However, the difference (σ2) between the tensile strength (σ2) after heat treatment (A1) and the tensile strength (σ1) before heat treatment (A1) is maintained while elongation is maintained at 0 to 10%, preferably 0 to 5%. -σ1) is 20 MPa or more, preferably 30 MPa or more, particularly preferably 40 MPa or more.

本発明の第一の形態の銅合金材料の製造例について、以下に述べる。なお、以下に述べる本発明の第一の形態の銅合金材料の製造例は、本発明の第一の形態の銅合金材料を製造するための一例であって、本発明の第一の形態の銅合金材料は、以下に示す方法によって製造されたものに限定されるものではない。 An example of manufacturing the copper alloy material of the first embodiment of the present invention will be described below. The manufacturing example of the copper alloy material according to the first embodiment of the present invention described below is an example for manufacturing the copper alloy material according to the first embodiment of the present invention. Copper alloy materials are not limited to those manufactured by the method shown below.

先ず、常法に従って、溶解及び鋳造を行い、0.40~1.50質量%のNi、好ましくは0.70~1.20質量%のNiと、0.10~0.50質量%のP、好ましくは0.20~0.40質量%のPと、を含有し、残部Cu及び不可避不純物からなる銅合金の鋳塊を得る鋳造工程を行い、次いで、鋳造工程を行い得られる銅合金鋳塊を加熱して均質化処理を行った後、均質化処理した銅合金を熱間加工し、次いで、熱間加工を行った銅合金を冷間加工し、所望の銅合金材料の形状に加工する。熱間加工としては、板材の場合は熱間圧延が挙げられ、また、管材の場合は熱間押出が挙げられる。また、冷間加工としては、板材の場合は冷間圧延が挙げられ、また、管材の場合は冷間圧延、冷間引抜、内面溝を形成させる転造加工が挙げられる。 First, melting and casting are performed according to a conventional method, and 0.40 to 1.50 mass% of Ni, preferably 0.70 to 1.20 mass% of Ni, and 0.10 to 0.50 mass% of P are melted and cast. , preferably 0.20 to 0.40% by mass of P, and the balance is Cu and unavoidable impurities. After the lump is heated and homogenized, the homogenized copper alloy is hot-worked, and then the hot-worked copper alloy is cold-worked into the desired shape of the copper alloy material. do. Examples of hot working include hot rolling in the case of plate materials, and hot extrusion in the case of tube materials. Examples of cold working include cold rolling in the case of plate materials, and cold rolling, cold drawing, and rolling for forming inner grooves in the case of pipe materials.

そして、本発明の第一の形態の銅合金材料の製造例では、これらの熱間加工から冷間加工までの途中又は冷間加工後に、溶体化処理及び熱処理(A1)を行う。 In the manufacturing example of the copper alloy material according to the first embodiment of the present invention, solution treatment and heat treatment (A1) are performed during or after the hot working and cold working.

溶体化処理であるが、熱間加工後且つ冷間加工の前又は冷間加工の後に、銅合金を700~900℃、好ましくは800~900℃に加熱した後、急冷する溶体化処理を行う。急冷は、例えば、加熱した銅合金を水冷することにより行われる。また、冷間加工を複数回行う場合は、熱間加工後且つ全ての冷間加工の前、冷間加工と冷間加工の間、又は全ての冷間加工の後に、銅合金を700~900℃、好ましくは800~900℃に加熱した後、急冷する溶体化処理を行う。また、熱間加工後に、熱間加工された銅合金を急冷することによって、溶体化処理を行うこともできる。 Regarding solution treatment, after hot working and before or after cold working, a solution treatment is performed in which the copper alloy is heated to 700 to 900°C, preferably 800 to 900°C, and then rapidly cooled. . The rapid cooling is performed, for example, by cooling the heated copper alloy with water. In addition, when cold working is performed multiple times, after hot working and before all cold working, between cold workings, or after all cold working, the copper alloy is heated to 700 to 900 After heating to a temperature of 800 to 900°C, preferably 800 to 900°C, solution treatment is performed by rapidly cooling. Further, after hot working, solution treatment can also be performed by rapidly cooling the hot worked copper alloy.

熱処理(A1)であるが、溶体化処理を行った後に、銅合金を225℃±100℃で加熱する熱処理(A1)を行う。熱処理(A1)での加熱時間は、好ましくは10~1000分間、特に好ましくは30~600分間である。本発明では、溶体化処理を行った後、熱処理(A1)を行うまでに、「加熱を伴わない処理又は工程」及び/又は「325℃を超える温度で加熱される処理又は工程」が施されてもよい。つまり、本発明において、溶体化処理を行った後に、熱処理(A1)を行うとは、溶体化処理を行った直後に、熱処理(A1)を行うということのみを指すのではなく、溶体化処理と熱処理(A1)の間に、「加熱を伴わない処理又は工程」及び/又は「325℃を超える温度で加熱される処理又は工程」が施されてもよい。よって、溶体化処理を行った直後に、熱処理(A1)を行ってもよいし、あるいは、溶体化処理を行った後に、「加熱を伴わない処理又は工程」及び/又は「325℃を超える温度で加熱される処理又は工程」を行ってから、熱処理(A1)を行ってもよい。また、溶体化処理が施された後、熱処理(A1)が施されるまでの間に、本発明の効果に影響しない程度の短時間であれば、125~325℃の範囲の温度に銅合金が晒されることがあってもよい。例えば、溶体化処理が施された後、熱処理(A1)が施されるまでの間に、325℃を超える温度で加熱される処理又は工程を施す場合においては、所定の温度までの昇温のために125~325℃の温度範囲を通過することになるが、125~325℃の温度範囲を通過する時間が、本発明の効果に影響しない程度の短時間であれば、許容される。また、溶体化処理と熱処理(A1)の間に、125℃未満の温度での処理又は加工が施されてもよい。 As for heat treatment (A1), after performing solution treatment, heat treatment (A1) of heating the copper alloy at 225° C.±100° C. is performed. The heating time in the heat treatment (A1) is preferably 10 to 1000 minutes, particularly preferably 30 to 600 minutes. In the present invention, after the solution treatment and before the heat treatment (A1), a "treatment or process that does not involve heating" and/or "a treatment or process that involves heating at a temperature exceeding 325°C" is performed. You can. In other words, in the present invention, performing heat treatment (A1) after solution treatment does not mean only that heat treatment (A1) is performed immediately after solution treatment; and heat treatment (A1), "a treatment or step that does not involve heating" and/or "a treatment or step that involves heating at a temperature exceeding 325° C." may be performed. Therefore, heat treatment (A1) may be performed immediately after solution treatment, or after solution treatment, "treatment or process that does not involve heating" and/or "temperature exceeding 325 ° C. The heat treatment (A1) may be performed after performing the "treatment or step of heating". In addition, after the solution treatment is performed and before the heat treatment (A1) is performed, the copper alloy may be heated to a temperature in the range of 125 to 325°C for a short period of time that does not affect the effects of the present invention. may be exposed. For example, if a treatment or process that involves heating at a temperature exceeding 325°C is performed after solution treatment and before heat treatment (A1) is performed, the temperature must be raised to a predetermined temperature. Therefore, it passes through a temperature range of 125 to 325°C, but it is acceptable as long as the time for passing through the temperature range of 125 to 325°C is short enough not to affect the effects of the present invention. Moreover, treatment or processing at a temperature of less than 125° C. may be performed between the solution treatment and the heat treatment (A1).

本発明の第二の形態の銅合金材料は、0.40~1.50質量%のNiと、0.10~0.50質量%のPと、を含有し、残部Cu及び不可避不純物からなる銅合金からなり、
該銅合金は、銅合金を溶体化する溶体化処理と、溶体化処理後に、850±100℃で加熱後、加熱温度から300℃まで、50℃/秒以下の平均冷却速度で冷却する処理(B)と、処理(B)後に、225℃±100℃で加熱する熱処理(A2)と、が施された銅合金であり、
該熱処理(A2)後の引張強さ(σ2)と該熱処理(A2)前の引張強さ(σ1)の差(σ2-σ1)が30MPa以上であり、且つ、該熱処理(A)前の伸び(δ1)と該熱処理(A)後の伸び(δ2)の差(δ1-δ2)が0~10%であること、
を特徴とする銅合金材料である。
The copper alloy material according to the second embodiment of the present invention contains 0.40 to 1.50% by mass of Ni and 0.10 to 0.50% by mass of P, with the balance consisting of Cu and inevitable impurities. Made of copper alloy,
The copper alloy is subjected to a solution treatment in which the copper alloy is made into a solution, and after the solution treatment, a treatment in which the copper alloy is heated at 850±100°C and then cooled from the heating temperature to 300°C at an average cooling rate of 50°C/second or less ( B) and a heat treatment (A2) of heating at 225°C ± 100°C after the treatment (B),
The difference (σ2-σ1) between the tensile strength (σ2) after the heat treatment (A2) and the tensile strength (σ1) before the heat treatment (A2) is 30 MPa or more, and the elongation before the heat treatment (A) (δ1) and the elongation (δ2) after the heat treatment (A) (δ1-δ2) is 0 to 10%;
It is a copper alloy material characterized by:

本発明者らは、銅合金の種々の加工や処理を行う中で、特定の化学組成の銅合金、すなわち、0.40~1.50質量%のNi、好ましくは0.70~1.20質量%のNiと、0.10~0.50質量%のP、好ましくは0.20~0.40質量%のPと、を含有する銅合金を、溶体化処理し、その後に行う熱処理として、850±100℃で加熱後、加熱温度から300℃まで、50℃/秒以下の平均冷却速度で冷却する処理(B)と、処理(B)の後に225℃±100℃で加熱する熱処理(A2)とを行うことにより、Ni12の組成を有する析出物を析出させることができ、析出強化により銅合金材料の強度を向上させることができることを見出した。 While carrying out various processing and treatments of copper alloys, the present inventors discovered that copper alloys with a specific chemical composition, that is, 0.40 to 1.50% by mass of Ni, preferably 0.70 to 1.20% by mass, A copper alloy containing % by mass of Ni and 0.10 to 0.50% by mass of P, preferably 0.20 to 0.40% by mass of P is subjected to solution treatment, followed by heat treatment. , treatment (B) of heating at 850±100°C and then cooling from the heating temperature to 300°C at an average cooling rate of 50°C/sec or less, and heat treatment (B) of heating at 225°C ± 100°C after treatment (B). It has been found that by performing A2), precipitates having a composition of Ni 12 P 5 can be precipitated, and the strength of the copper alloy material can be improved by precipitation strengthening.

本発明の第二の形態の銅合金材料は、0.40~1.50質量%のNiと、0.10~0.50質量%のPと、を含有し、残部Cu及び不可避不純物からなる銅合金により形成されている。なお、本発明において、上記Ni及びPの含有量とは、熱処理(A2)を施した後の銅合金材料中のNi及びPの含有量を指す。 The copper alloy material according to the second embodiment of the present invention contains 0.40 to 1.50% by mass of Ni and 0.10 to 0.50% by mass of P, with the balance consisting of Cu and inevitable impurities. It is made of copper alloy. In the present invention, the content of Ni and P refers to the content of Ni and P in the copper alloy material after heat treatment (A2).

本発明の第二の形態の銅合金材料のNi含有量は、0.40~1.50質量%である。Niは、銅合金が、850±100℃で加熱後、加熱温度から300℃まで、50℃/秒以下の平均冷却速度で冷却された後、更に225℃±100℃で加熱された場合に、銅合金中でPとの化合物によりNi12の組成を有する析出物を形成し、引張強さを向上させる成分である。Ni含有量が上記範囲にあることにより、銅合金材料の引張強さが高くなる。一方、Ni含有量が上記範囲を超えると、伸びが低くなってしまい、加工性、例えば、板材の場合の強度の曲げ加工や、管材の場合のヘアピン曲げ加工及び拡管性が低くなり、また、Ni含有量が上記範囲未満だと、銅合金材料の強度が低くなってしまう。特に、本発明の第二の形態の銅合金材料が管材である場合、管材の強度が高く且つ加工性に優れる点で、本発明の第二の形態の銅合金材料のNi含有量は、0.70~1.20質量%であることが好ましい。 The Ni content of the copper alloy material of the second embodiment of the present invention is 0.40 to 1.50% by mass. When the copper alloy is heated at 850±100°C, cooled from the heating temperature to 300°C at an average cooling rate of 50°C/sec or less, and then further heated at 225°C±100°C, It is a component that forms a precipitate having a composition of Ni 12 P 5 by a compound with P in a copper alloy and improves the tensile strength. When the Ni content is within the above range, the tensile strength of the copper alloy material becomes high. On the other hand, if the Ni content exceeds the above range, the elongation will be low, and the workability, for example, the strength of bending in the case of plate materials, the hairpin bending work and expandability in the case of pipe materials, will be reduced. If the Ni content is less than the above range, the strength of the copper alloy material will be low. In particular, when the copper alloy material of the second form of the present invention is a pipe material, the Ni content of the copper alloy material of the second form of the present invention is 0, since the pipe material has high strength and excellent workability. It is preferably .70 to 1.20% by mass.

本発明の第二の形態の銅合金材料のP含有量は、0.10~0.50質量%である。Pは、銅合金が、850±100℃で加熱後、加熱温度から300℃まで、50℃/秒以下の平均冷却速度で冷却された後、更に225℃±100℃で加熱された場合に、銅合金中でNiとの化合物によりNi12の組成を有する析出物を形成し、引張強さを向上させる成分である。P含有量が上記範囲にあることにより、銅合金材料の引張強さが高くなる。一方、P含有量が上記範囲を超えると、加工性が低くなり、熱間加工や冷間加工において割れが生じるおそれがあり、また、P含有量が上記範囲未満だと、析出物の析出量が少なくなるため、銅合金材料の強度が低くなってしまう。特に、本発明の第二の形態の銅合金材料が管材である場合、管材の強度が高く且つ加工性に優れる点で、本発明の第二の形態の銅合金材料のP含有量は、0.20~0.40質量%であることが好ましい。 The P content of the copper alloy material of the second embodiment of the present invention is 0.10 to 0.50% by mass. P is when the copper alloy is heated at 850±100°C, cooled from the heating temperature to 300°C at an average cooling rate of 50°C/sec or less, and then further heated at 225°C±100°C. It is a component that forms a precipitate having a composition of Ni 12 P 5 by a compound with Ni in a copper alloy and improves the tensile strength. When the P content is within the above range, the tensile strength of the copper alloy material becomes high. On the other hand, if the P content exceeds the above range, workability may decrease and cracks may occur during hot working or cold working, and if the P content is below the above range, the amount of precipitates As a result, the strength of the copper alloy material decreases. In particular, when the copper alloy material of the second form of the present invention is a pipe material, the P content of the copper alloy material of the second form of the present invention is 0, since the pipe material has high strength and excellent workability. It is preferably .20 to 0.40% by mass.

本発明の第二の形態の銅合金材料は、0.40~1.50質量%のNi、好ましくは0.70~1.20質量%のNiと、0.10~0.50質量%のP、好ましくは0.20~0.40質量%のPと、を含有し、残部Cu及び不可避不純物からなる銅合金を、溶体化処理し、溶体化処理後に、850±100℃で加熱後、加熱温度から300℃まで、50℃/秒以下の平均冷却速度で冷却する処理(B)を行い、更にその後225℃±100℃で加熱する熱処理(A2)を行い得られた銅合金からなる。つまり、本発明の第二の形態の銅合金材料は、0.40~1.50質量%のNi、好ましくは0.70~1.20質量%のNiと、0.10~0.50質量%のP、好ましくは0.20~0.40質量%のPと、を含有し、残部Cu及び不可避不純物からなる銅合金を鋳造した後、種々の加工(例えば、熱間圧延、熱間押出等の熱間加工や、冷間圧延、冷間引抜等の冷間加工)及び種々の熱処理を行い銅合金材料を得る過程で、銅合金を、700~900℃、好ましくは800~900℃で加熱し、急冷する溶体化処理を行い、その後に行う熱処理として、850±100℃で加熱後、加熱温度から300℃まで、50℃/秒以下の平均冷却速度で冷却する処理(B)と、更にその後225℃±100℃で加熱する熱処理(A2)を行うことにより得られる。処理(B)の加熱温度及び冷却速度と、熱処理(A2)での熱処理温度が上記範囲にあることにより、Ni12の組成を有する析出物を少なくとも一部に含むCu-Ni-P系の析出物が得られる。一方、熱処理(A2)での熱処理温度が、上記範囲未満だと、Ni12の組成を有する析出物が析出し難く、また、上記範囲を超えても、Ni12の組成を有する析出物が析出し難い。また、処理(B)での加熱温度が、上記範囲未満だと、300℃までの冷却過程で析出に十分な時間が確保できず、また、上記範囲を超えると、結晶粒が粗大化し過ぎた結晶組織となる。また、処理(B)での加熱後の加熱温度から300℃までの平均冷却速度が上記範囲を超えると、熱処理による強度向上効果、つまり、「σ2-σ1」の値が小さくなる。なお、本発明の第二の形態の銅合金材料が、ろう付けにより、他の部材とろう付けされる場合、ろう付けの際のろう付け加熱及びその後の冷却により、処理(B)を行ってもよい。 The copper alloy material of the second form of the invention contains 0.40-1.50% by weight of Ni, preferably 0.70-1.20% by weight and 0.10-0.50% by weight of Ni. A copper alloy containing P, preferably 0.20 to 0.40% by mass of P, and the remainder consisting of Cu and unavoidable impurities, is solution treated, and after the solution treatment, heated at 850 ± 100 ° C., It is made of a copper alloy obtained by performing a treatment (B) of cooling from the heating temperature to 300°C at an average cooling rate of 50°C/second or less, and then a heat treatment (A2) of heating at 225°C ± 100°C. That is, the copper alloy material of the second embodiment of the present invention contains 0.40 to 1.50 mass% Ni, preferably 0.70 to 1.20 mass% Ni, and 0.10 to 0.50 mass% Ni. % of P, preferably 0.20 to 0.40 mass % of P, and the remainder is Cu and unavoidable impurities. In the process of obtaining a copper alloy material by performing hot working such as cold working, cold working such as cold rolling, cold drawing, etc., and various heat treatments, the copper alloy is heated at 700 to 900°C, preferably 800 to 900°C. A solution treatment of heating and rapid cooling is performed, and as a subsequent heat treatment, a treatment (B) of heating at 850 ± 100 ° C. and cooling from the heating temperature to 300 ° C. at an average cooling rate of 50 ° C. / second or less, Furthermore, it can be obtained by performing a heat treatment (A2) of heating at 225° C.±100° C. By setting the heating temperature and cooling rate of treatment (B) and the heat treatment temperature of heat treatment (A2) within the above ranges, the Cu-Ni-P system containing at least a part of precipitates having a composition of Ni 12 P 5 is formed. A precipitate of is obtained. On the other hand, if the heat treatment temperature in heat treatment (A2) is lower than the above range, precipitates having a composition of Ni 12 P 5 are difficult to precipitate, and even if the temperature exceeds the above range, precipitates having a composition of Ni 12 P 5 are difficult to precipitate. Precipitates are difficult to separate. Furthermore, if the heating temperature in treatment (B) was below the above range, sufficient time could not be secured for precipitation during the cooling process to 300°C, and if it exceeded the above range, the crystal grains would become too coarse. Becomes a crystalline structure. Furthermore, if the average cooling rate from the heating temperature after heating in treatment (B) to 300° C. exceeds the above range, the strength improvement effect of the heat treatment, that is, the value of “σ2−σ1” becomes small. In addition, when the copper alloy material of the second embodiment of the present invention is brazed with other members by brazing, the treatment (B) is performed by brazing heating during brazing and subsequent cooling. Good too.

処理(B)での加熱時間は、好ましくは10~1800秒間、特に好ましくは10~180秒間である。処理(B)での加熱時間が上記範囲にあることにより、強度向上効果が大きくなる。一方、処理(B)での加熱時間が、上記範囲未満だと、材料への加熱が不十分で温度が不均一となり、機械的性質がばらつく要因となり、また、上記範囲を超えると、銅合金材料が軟化し易くなる。 The heating time in treatment (B) is preferably 10 to 1800 seconds, particularly preferably 10 to 180 seconds. When the heating time in treatment (B) is within the above range, the strength improvement effect becomes greater. On the other hand, if the heating time in treatment (B) is less than the above range, the material will not be heated sufficiently and the temperature will become uneven, causing variations in mechanical properties. The material tends to soften.

処理(B)では、850±100℃での加熱後、加熱温度から300℃まで、50℃/秒以下の平均冷却速度で冷却する。冷却速度が、上記範囲にあることにより、強度向上効果が大きくなる。冷却方式としては、例えば、加熱温度から300℃までの平均冷却速度が25~50℃/秒の場合は、強制空冷等の冷却方式が挙げられ、また、加熱温度から300℃までの平均冷却速度が20℃/秒以下の場合は、自然空冷等の冷却方式が挙げられる。 In treatment (B), after heating at 850±100°C, cooling is performed from the heating temperature to 300°C at an average cooling rate of 50°C/second or less. When the cooling rate is within the above range, the strength improving effect becomes greater. As a cooling method, for example, if the average cooling rate from the heating temperature to 300°C is 25 to 50°C/sec, cooling methods such as forced air cooling may be used, and if the average cooling rate from the heating temperature to 300°C is When the temperature is 20° C./second or less, cooling methods such as natural air cooling may be used.

熱処理(A2)での熱処理時間は、好ましくは10~2000分間、特に好ましくは30~1000分間である。熱処理(A2)での熱処理時間が上記範囲にあることにより、本発明の銅合金材料の強度向上効果を得ることができる程度に十分な量のNi12の組成を有する析出物を析出させることができる。一方、熱処理(A2)での熱処理時間が、上記範囲未満だと、Ni12の組成を有する析出物の析出量が少なくなり易く、銅合金材料の強度向上効果が得られ難くなり、また、上記範囲を超えると、析出物が大きくなり、銅合金材料の強度が低下し易くなる。 The heat treatment time in heat treatment (A2) is preferably 10 to 2000 minutes, particularly preferably 30 to 1000 minutes. By setting the heat treatment time in heat treatment (A2) within the above range, a sufficient amount of precipitates having a composition of Ni 12 P 5 is precipitated to the extent that the strength improvement effect of the copper alloy material of the present invention can be obtained. be able to. On the other hand, if the heat treatment time in heat treatment (A2) is less than the above range, the amount of precipitates having the composition of Ni 12 P 5 tends to decrease, making it difficult to obtain the effect of improving the strength of the copper alloy material, and If the content exceeds the above range, the precipitates will become large and the strength of the copper alloy material will tend to decrease.

なお、本発明において、「溶体化処理と、溶体化処理後に処理(B)と、処理(B)後に熱処理(A2)と、が施された」とは、銅合金に、溶体化処理が施された直後に、処理(B)が施され、処理(B)の直後に、熱処理(A2)が施されることのみを指すのではなく、溶体化処理と処理(B)との間又は処理(B)と熱処理(A2)の間に、「加熱を伴わない処理又は工程」及び/又は「325℃を超える温度で加熱される処理又は工程」が施されてもよい。つまり、銅合金に、溶体化処理が施された直後に、処理(B)が施され、処理(B)の直後に、熱処理(A2)が施されてもよいし、あるいは、溶体化処理が施された後に、「加熱を伴わない処理又は工程」及び/又は「325℃を超える温度で加熱される処理又は工程」が施されてから、処理(B)が施されてもよいし、処理(B)が施された後、「加熱を伴わない処理又は工程」及び/又は「325℃を超える温度で加熱される処理又は工程」が施されてから、熱処理(A2)が施されてもよい。また、溶体化処理が施された後、処理(B)が施されるまでの間に、あるいは、処理(B)が施された後、熱処理(A2)が施されるまでの間に、本発明の効果に影響しない程度の短時間であれば、125~325℃の範囲の温度に銅合金が晒されることがあってもよい。例えば、処理(B)が施された後、熱処理(A2)が施されるまでの間に、325℃を超える温度で加熱される処理又は工程を施す場合においては、所定の温度までの昇温のために125~325℃の温度範囲を通過することになるが、125~325℃の温度範囲を通過する時間が、本発明の効果に影響しない程度の短時間であれば、許容される。また、溶体化処理と処理(B)の間又は処理(B)と熱処理(A2)の間に、125℃未満の温度での処理又は加工が施されてもよい。 In the present invention, "solution treatment, treatment (B) after solution treatment, and heat treatment (A2) after treatment (B)" means that the copper alloy is subjected to solution treatment. It does not only mean that treatment (B) is applied immediately after treatment (B) and that heat treatment (A2) is applied immediately after treatment (B), but also that treatment (A2) is performed between solution treatment and treatment (B) or treatment. Between (B) and heat treatment (A2), "a treatment or step that does not involve heating" and/or "a treatment or step that involves heating at a temperature exceeding 325° C." may be performed. In other words, treatment (B) may be applied to the copper alloy immediately after solution treatment, and heat treatment (A2) may be applied immediately after treatment (B), or solution treatment may be applied to the copper alloy. After the treatment, a "treatment or step that does not involve heating" and/or a "treatment or step that involves heating at a temperature exceeding 325°C" may be performed, and then treatment (B) may be performed, or the treatment (B) may be performed. Even if heat treatment (A2) is performed after (B) is applied, a "treatment or process that does not involve heating" and/or "a treatment or process that involves heating at a temperature exceeding 325°C" is performed. good. In addition, after the solution treatment is applied and before the treatment (B) is applied, or after the treatment (B) is applied and before the heat treatment (A2) is applied, the main The copper alloy may be exposed to temperatures in the range of 125 to 325° C. for a short period of time without affecting the effects of the invention. For example, if a treatment or process that involves heating at a temperature exceeding 325°C is performed after the treatment (B) is performed and before the heat treatment (A2) is performed, the temperature must be raised to a predetermined temperature. Therefore, the temperature range of 125 to 325° C. is passed through, but it is acceptable as long as the time for passing through the temperature range of 125 to 325° C. is short enough not to affect the effects of the present invention. Further, treatment or processing at a temperature of less than 125° C. may be performed between the solution treatment and treatment (B) or between treatment (B) and heat treatment (A2).

本発明の第二の形態の銅合金材料は、熱処理(A2)後の引張強さ(σ2)と処理(B)前の引張強さ(σ1)の差(σ2-σ1)が、30MPa以上、好ましくは40MPa以上、特に好ましくは50MPa以上である銅合金で形成されている。 The copper alloy material of the second embodiment of the present invention has a difference (σ2-σ1) between the tensile strength (σ2) after heat treatment (A2) and the tensile strength (σ1) before treatment (B) of 30 MPa or more, It is preferably made of a copper alloy having a pressure of 40 MPa or more, particularly preferably 50 MPa or more.

本発明の第二の形態の銅合金材料の引張強さ(σ)は、好ましくは200~280MPa、特に好ましくは240~280MPaである。なお、本発明の第二の形態の銅合金材料の引張強さ(σ)とは、熱処理(A2)を行った後の銅合金材料の引張強さを指す。 The tensile strength (σ) of the copper alloy material according to the second embodiment of the present invention is preferably 200 to 280 MPa, particularly preferably 240 to 280 MPa. Note that the tensile strength (σ) of the copper alloy material according to the second embodiment of the present invention refers to the tensile strength of the copper alloy material after heat treatment (A2).

本発明の第二の形態の銅合金材料は、処理(B)前の伸び(δ1)と熱処理(A2)後の伸び(δ2)の差(δ1-δ2)が、0~10%、好ましくは0~5%である銅合金で形成されている。 The copper alloy material of the second embodiment of the present invention has a difference (δ1-δ2) between elongation (δ1) before treatment (B) and elongation (δ2) after heat treatment (A2) of 0 to 10%, preferably It is made of 0-5% copper alloy.

本発明の第二の形態の銅合金材料の伸び(δ)は、好ましくは20%以上、特に好ましくは30%以上である。なお、本発明の第二の形態の銅合金材料の伸び(δ)とは、熱処理(A2)を行った後の銅合金材料の伸びを指す。 The elongation (δ) of the copper alloy material according to the second embodiment of the present invention is preferably 20% or more, particularly preferably 30% or more. Note that the elongation (δ) of the copper alloy material in the second embodiment of the present invention refers to the elongation of the copper alloy material after heat treatment (A2).

本発明の第二の形態の銅合金材料において、銅合金を溶体化する溶体化処理と、溶体化処理後に850±100℃での加熱後、加熱温度から300℃まで、50℃/秒以下の平均冷却速度で冷却する処理(B)と、処理(B)後に225℃±100℃で加熱する熱処理(A2)と、が施された銅合金は、Cu-Ni-Pの析出物を含有し、その析出物の全部又は一部がNi12の組成を有する析出物である銅合金である。 In the copper alloy material of the second embodiment of the present invention, the copper alloy is subjected to solution treatment, and after heating at 850 ± 100 °C after the solution treatment, from the heating temperature to 300 °C, 50 °C / seconds or less The copper alloy subjected to treatment (B) of cooling at an average cooling rate and heat treatment (A2) of heating at 225 ° C ± 100 ° C after treatment (B) contains Cu-Ni-P precipitates. , is a copper alloy in which all or part of the precipitates are precipitates having a composition of Ni 12 P 5 .

また、本発明の第二の形態の銅合金材料において、銅合金を溶体化する溶体化処理が施された後に、850±100℃での加熱後、加熱温度から300℃まで、50℃/秒以下の平均冷却速度で冷却する処理(B)と、処理(B)後に225℃±100℃で加熱する熱処理(A2)が施されることにより、銅合金中に、Ni12の組成を有する析出物を析出させることができるので、処理(B)前の伸び(δ1)と熱処理(A2)後の伸び(δ2)の差(δ1-δ2)が、0~10%、好ましくは0~5%と伸びが維持されたまま、熱処理(A2)後の引張強さ(σ2)と処理(B)前の引張強さ(σ1)の差(σ2-σ1)が、30MPa以上、好ましくは40MPa以上、特に好ましくは50MPa以上となる。 In addition, in the copper alloy material of the second embodiment of the present invention, after the copper alloy is subjected to solution treatment, after being heated at 850±100°C, from the heating temperature to 300°C at 50°C/sec. The composition of Ni 12 P 5 is added to the copper alloy by performing cooling treatment (B) at the following average cooling rate and heat treatment (A2) of heating at 225°C ± 100°C after treatment (B). Therefore, the difference (δ1-δ2) between the elongation (δ1) before treatment (B) and the elongation (δ2) after heat treatment (A2) is 0 to 10%, preferably 0 to 10%. The difference (σ2-σ1) between the tensile strength (σ2) after heat treatment (A2) and the tensile strength (σ1) before treatment (B) is 30 MPa or more, preferably 40 MPa, while maintaining the elongation at 5%. Above, it is especially preferably 50 MPa or more.

本発明の第二の形態の銅合金材料の製造例について、以下に述べる。なお、以下に述べる本発明の第二の形態の銅合金材料の製造例は、本発明の第二の形態の銅合金材料を製造するための一例であって、本発明の第二の形態の銅合金材料は、以下に示す方法によって製造されたものに限定されるものではない。 An example of manufacturing the copper alloy material according to the second embodiment of the present invention will be described below. The manufacturing example of the copper alloy material according to the second embodiment of the present invention described below is an example for manufacturing the copper alloy material according to the second embodiment of the present invention. Copper alloy materials are not limited to those manufactured by the method shown below.

先ず、常法に従って、溶解及び鋳造を行い、0.40~1.50質量%のNi、好ましくは0.70~1.20質量%のNiと、0.10~0.50質量%のP、好ましくは0.20~0.40質量%のPと、を含有し、残部Cu及び不可避不純物からなる銅合金の鋳塊を得る鋳造工程を行い、次いで、鋳造工程を行い得られる銅合金鋳塊を加熱して均質化処理を行った後、均質化処理した銅合金を熱間加工し、次いで、熱間加工を行った銅合金を冷間加工し、所望の銅合金材料の形状に加工する。熱間加工としては、板材の場合は熱間圧延が挙げられ、また、管材の場合は熱間押出が挙げられる。また、冷間加工としては、板材の場合は冷間圧延が挙げられ、また、管材の場合は冷間圧延、冷間引抜、内面溝を形成させる転造加工が挙げられる。 First, melting and casting are performed according to a conventional method, and 0.40 to 1.50 mass% of Ni, preferably 0.70 to 1.20 mass% of Ni, and 0.10 to 0.50 mass% of P are melted and cast. , preferably 0.20 to 0.40% by mass of P, and the balance is Cu and unavoidable impurities. After the lump is heated and homogenized, the homogenized copper alloy is hot-worked, and then the hot-worked copper alloy is cold-worked into the desired shape of the copper alloy material. do. Examples of hot working include hot rolling in the case of plate materials, and hot extrusion in the case of tube materials. Examples of cold working include cold rolling in the case of plate materials, and cold rolling, cold drawing, and rolling for forming inner grooves in the case of pipe materials.

そして、本発明の第二の形態の銅合金材料の製造例では、これらの熱間加工から冷間加工までの途中又は冷間加工後に、溶体化処理、処理(B)及び熱処理(A2)を行う。 In the manufacturing example of the copper alloy material according to the second embodiment of the present invention, solution treatment, treatment (B), and heat treatment (A2) are carried out during or after the hot working and cold working. conduct.

溶体化処理であるが、熱間加工後且つ冷間加工の前又は冷間加工の後に、銅合金を700~900℃、好ましくは800~900℃に加熱した後、急冷する溶体化処理を行う。急冷は、例えば、銅合金を水冷することにより行われる。また、冷間加工を複数回行う場合は、熱間加工後且つ全ての冷間加工の前、冷間加工と冷間加工の間、又は全ての冷間加工の後に、銅合金を700~900℃、好ましくは800~900℃に加熱した後、急冷する溶体化処理を行う。また、熱間加工後に、熱間加工された銅合金を急冷することによって、溶体化処理を行うこともできる。 Regarding solution treatment, after hot working and before or after cold working, a solution treatment is performed in which the copper alloy is heated to 700 to 900°C, preferably 800 to 900°C, and then rapidly cooled. . The rapid cooling is performed, for example, by cooling the copper alloy with water. In addition, when cold working is performed multiple times, after hot working and before all cold working, between cold workings, or after all cold working, the copper alloy is heated to 700 to 900 After heating to 800-900°C, preferably 800 to 900°C, solution treatment is performed by rapidly cooling. Further, after hot working, solution treatment can also be performed by rapidly cooling the hot worked copper alloy.

処理(B)であるが、溶体化処理を行った後に、銅合金を850±100℃で加熱後、加熱温度から300℃まで、50℃/秒以下の平均冷却速度で冷却する処理(B)を行う。処理(B)での加熱時間は、好ましくは10~1800秒間、特に好ましくは10~180秒間である。処理(B)では、850±100℃での加熱後、加熱温度から300℃までの冷却速度は、50℃/秒以下である。冷却方式としては、例えば、加熱温度から300℃までの平均冷却速度が25~50℃/秒の場合は、強制空冷等の冷却方式が挙げられ、また、加熱温度から300℃までの平均冷却速度が20℃/秒以下の場合は、自然空冷等の冷却方式が挙げられる。本発明の第二の形態の銅合金材料が管材の場合、特に、ルームエアコン、パッケージエアコン等の空調機用熱交換器又は冷凍機等の伝熱管又は冷媒配管の場合、空調機用熱交換器又は冷凍機等は、管材を他の部材と共に組み付けた後、ろう付け加熱することにより、管材と他の部材をろう付けして製造されるが、このろう付け加熱を、本発明の第二の形態の銅合金材料に係る処理(B)としてもよい。つまり、0.40~1.50質量%のNi、好ましくは0.70~1.20質量%のNiと、0.10~0.50質量%のP、好ましくは0.20~0.40質量%のPと、を含有し、残部Cu及び不可避不純物からなる銅合金である鋳塊を用いて熱間加工及び冷間加工を行い管材の形状に加工し、且つ、溶体化処理を行った管材を、空調機用熱交換器又は冷凍機を構成する他の部材と共に組み付け、次いで、850℃±100℃で加熱した後、加熱温度から300℃まで、50℃/秒以下の平均冷却速度で冷却して、管材と他の部材をろう付けすることにより、処理(B)を行い、熱処理(A2)前の銅合金材料を得ることもできる。本発明では、溶体化処理を行った後、処理(B)を行うまでに、「加熱を伴わない処理又は工程」及び/又は「325℃を超える温度で加熱される処理又は工程」を行ってもよい。つまり、本発明において、溶体化処理を行った後に、処理(B)を行うとは、溶体化処理を行った直後に、処理(B)を行うということのみを指すのではなく、溶体化処理と処理(B)の間に、「加熱を伴わない処理又は工程」及び/又は「325℃を超える温度で加熱される処理又は工程」を行ってもよい。よって、溶体化処理を行った直後に、処理(B)を行ってもよいし、あるいは、溶体化処理を行った後に、「加熱を伴わない処理又は工程」及び/又は「325℃を超える温度で加熱される処理又は工程」を行ってから、処理(B)を行ってもよい。また、溶体化処理が施された後、処理(B)が施されるまでの間に、本発明の効果に影響しない程度の短時間であれば、125~325℃の範囲の温度に銅合金が晒されることがあってもよい。例えば、溶体化処理が施された後、処理(B)が施されるまでの間に、325℃を超える温度で加熱される処理又は工程を施す場合においては、所定の温度までの昇温のために125~325℃の温度範囲を通過することになるが、125~325℃の温度範囲を通過する時間が、本発明の効果に影響しない程度の短時間であれば、許容される。また、溶体化処理と処理(B)の間に、125℃未満の温度での処理又は加工が施されてもよい。 Process (B) is a process in which after solution treatment, the copper alloy is heated at 850 ± 100 °C and then cooled from the heating temperature to 300 °C at an average cooling rate of 50 °C / second or less. I do. The heating time in treatment (B) is preferably 10 to 1800 seconds, particularly preferably 10 to 180 seconds. In treatment (B), after heating at 850±100°C, the cooling rate from the heating temperature to 300°C is 50°C/sec or less. As a cooling method, for example, if the average cooling rate from the heating temperature to 300°C is 25 to 50°C/sec, cooling methods such as forced air cooling may be used, and if the average cooling rate from the heating temperature to 300°C is When the temperature is 20° C./second or less, cooling methods such as natural air cooling may be used. When the copper alloy material of the second embodiment of the present invention is a pipe material, particularly when it is a heat exchanger for an air conditioner such as a room air conditioner or a package air conditioner, or a heat exchanger tube or refrigerant piping for a refrigerator etc., it is a heat exchanger for an air conditioner. Alternatively, refrigerators and the like are manufactured by assembling the tube material with other members and then brazing the tube material and other members, but this brazing heating is performed in accordance with the second aspect of the present invention. It is good also as processing (B) concerning a copper alloy material of the form. That is, 0.40 to 1.50% by weight of Ni, preferably 0.70 to 1.20% by weight Ni, and 0.10 to 0.50% by weight of P, preferably 0.20 to 0.40% by weight. An ingot, which is a copper alloy containing % by mass of P and the remainder consisting of Cu and inevitable impurities, was hot worked and cold worked into the shape of a pipe material, and solution treatment was performed. The pipe material is assembled with other members constituting an air conditioner heat exchanger or refrigerator, and then heated at 850°C ± 100°C, and then heated from the heating temperature to 300°C at an average cooling rate of 50°C/second or less. It is also possible to perform the treatment (B) by cooling and brazing the tube material and other members to obtain a copper alloy material before heat treatment (A2). In the present invention, after performing the solution treatment and before performing the treatment (B), a "treatment or process that does not involve heating" and/or "a treatment or process that involves heating at a temperature exceeding 325°C" is performed. Good too. In other words, in the present invention, performing treatment (B) after solution treatment does not mean only that treatment (B) is performed immediately after solution treatment; and treatment (B), a "treatment or step that does not involve heating" and/or "a treatment or step that is heated at a temperature exceeding 325° C." may be performed. Therefore, treatment (B) may be performed immediately after solution treatment, or after solution treatment, "treatment or process that does not involve heating" and/or "temperature exceeding 325 ° C. The treatment (B) may be performed after performing the "treatment or step of heating". In addition, after the solution treatment is performed and before the treatment (B) is performed, the copper alloy may be heated to a temperature in the range of 125 to 325°C for a short period of time that does not affect the effects of the present invention. may be exposed. For example, if a treatment or process that involves heating at a temperature higher than 325°C is performed after solution treatment and before treatment (B) is applied, the temperature should not be increased to a predetermined temperature. Therefore, it passes through a temperature range of 125 to 325°C, but it is acceptable as long as the time for passing through the temperature range of 125 to 325°C is short enough not to affect the effects of the present invention. Moreover, treatment or processing at a temperature of less than 125° C. may be performed between the solution treatment and treatment (B).

熱処理(A2)であるが、処理(B)を行った後に、銅合金を225℃±100℃で加熱する熱処理(A2)を行う。熱処理(A2)での加熱時間は、好ましくは10~2000分間、特に好ましくは30~1000分間である。なお、処理(B)を行った後、熱処理(A2)を行うまでに、「加熱を伴わない処理又は工程」及び/又は「325℃を超える温度で加熱される処理又は工程」を行ってもよい。つまり、本発明において、処理(B)を行った後に、熱処理(A2)を行うとは、処理(B)を行った直後に、熱処理(A2)を行うということのみを指すのではなく、処理(B)と熱処理(A2)の間に、「加熱を伴わない処理又は工程」及び/又は「325℃を超える温度で加熱される処理又は工程」を行ってもよい。よって、処理(B)を行った直後に、熱処理(A2)を行ってもよいし、あるいは、処理(B)を行った後に、「加熱を伴わない処理又は工程」及び/又は「325℃を超える温度で加熱される処理又は工程」を行ってから、熱処理(A2)を行ってもよい。処理(B)が、ろう付け加熱により行われた場合は、銅合金の管材と他の部材とがろう付けされたろう付け体を、225℃±100℃で加熱することにより、熱処理(A2)を行う。また、処理(B)が施された後、熱処理(A2)が施されるまでの間に、本発明の効果に影響しない程度の短時間であれば、125~325℃の範囲の温度に銅合金が晒されることがあってもよい。例えば、処理(B)が施された後、熱処理(A2)が施されるまでの間に、325℃を超える温度で加熱される処理又は工程を施す場合においては、所定の温度までの昇温のために125~325℃の温度範囲を通過することになるが、125~325℃の温度範囲を通過する時間が、本発明の効果に影響しない程度の短時間であれば、許容される。また、処理(B)と熱処理(A2)の間に、125℃未満の温度での処理又は加工が施されてもよい。 Regarding the heat treatment (A2), after the treatment (B) is performed, a heat treatment (A2) is performed in which the copper alloy is heated at 225° C.±100° C. The heating time in the heat treatment (A2) is preferably 10 to 2000 minutes, particularly preferably 30 to 1000 minutes. In addition, even if "a treatment or process that does not involve heating" and/or "a treatment or process that involves heating at a temperature exceeding 325°C" is performed after performing treatment (B) and before performing heat treatment (A2), good. In other words, in the present invention, performing the heat treatment (A2) after the treatment (B) does not mean only that the heat treatment (A2) is performed immediately after the treatment (B); Between (B) and heat treatment (A2), "a treatment or step that does not involve heating" and/or "a treatment or step that involves heating at a temperature exceeding 325° C." may be performed. Therefore, heat treatment (A2) may be performed immediately after treatment (B), or after treatment (B), "treatment or process that does not involve heating" and/or "325 ° C. The heat treatment (A2) may be performed after performing "a treatment or step of heating at a temperature exceeding 100%." When treatment (B) is performed by brazing heating, heat treatment (A2) is performed by heating the brazed body in which the copper alloy tube material and other members are brazed at 225 ° C ± 100 ° C. conduct. In addition, after the treatment (B) is performed and before the heat treatment (A2) is performed, the copper may be heated to a temperature in the range of 125 to 325°C for a short period of time that does not affect the effects of the present invention. The alloy may be exposed. For example, if a treatment or process that involves heating at a temperature exceeding 325°C is performed after the treatment (B) is performed and before the heat treatment (A2) is performed, the temperature must be raised to a predetermined temperature. Therefore, the temperature range of 125 to 325° C. is passed through, but it is acceptable as long as the time for passing through the temperature range of 125 to 325° C. is short enough not to affect the effects of the present invention. Moreover, treatment or processing at a temperature of less than 125° C. may be performed between the treatment (B) and the heat treatment (A2).

本発明の第一の形態の銅合金材料に係る溶体化処理及び熱処理(A1)を行い得られる銅合金材料及び本発明の第二の形態の銅合金材料に係る溶体化処理、処理(B)及び熱処理(A2)を行い得られる銅合金材料は、0.40~1.50質量%のNiと、0.10~0.50質量%のPと、を含有し、残部Cu及び不可避不純物からなる銅合金からなり、且つ、銅合金材料を形成する銅合金が、析出物として、Ni12を含有する。 Copper alloy material obtained by performing solution treatment and heat treatment (A1) on the copper alloy material according to the first embodiment of the present invention, and solution treatment and treatment (B) on the copper alloy material according to the second embodiment of the present invention The copper alloy material obtained by heat treatment (A2) contains 0.40 to 1.50% by mass of Ni and 0.10 to 0.50% by mass of P, with the balance being Cu and unavoidable impurities. The copper alloy forming the copper alloy material contains Ni 12 P 5 as a precipitate.

すなわち、本発明の第三の形態の銅合金材料は、0.40~1.50質量%のNiと、0.10~0.50質量%のPと、を含有し、残部Cu及び不可避不純物からなる銅合金からなり、
該銅合金は析出物を含有し、該析出物の全部又は一部がNi12であること、を特徴とする銅合金材料である。
That is, the copper alloy material of the third embodiment of the present invention contains 0.40 to 1.50% by mass of Ni and 0.10 to 0.50% by mass of P, with the remainder being Cu and unavoidable impurities. It is made of a copper alloy consisting of
The copper alloy is a copper alloy material characterized in that it contains precipitates, and all or part of the precipitates are Ni 12 P 5 .

本発明の第三の形態の銅合金材料のNi含有量は、0.40~1.50質量%、好ましくは0.70~1.20質量%である。Ni含有量が上記範囲にあることにより、銅合金材料の引張強さが高くなる。一方、Ni含有量が上記範囲を超えると、伸びが低くなってしまい、加工性、例えば、板材の場合の強度の曲げ加工や、管材の場合のヘアピン曲げ加工及び拡管性が低くなり、また、Ni含有量が上記範囲未満だと、銅合金材料の強度が低くなってしまう。 The Ni content of the copper alloy material according to the third embodiment of the present invention is 0.40 to 1.50% by mass, preferably 0.70 to 1.20% by mass. When the Ni content is within the above range, the tensile strength of the copper alloy material becomes high. On the other hand, if the Ni content exceeds the above range, the elongation will be low, and the workability, for example, the strength of bending in the case of plate materials, the hairpin bending work and expandability in the case of pipe materials, will be reduced. If the Ni content is less than the above range, the strength of the copper alloy material will be low.

本発明の第三の形態の銅合金材料のP含有量は、0.10~0.50質量%、好ましくは0.20~0.40質量%である。P含有量が上記範囲にあることにより、銅合金材料の引張強さが高くなる。一方、P含有量が上記範囲を超えると、加工性が低くなり、熱間加工や冷間加工において割れが生じるおそれがあり、また、P含有量が上記範囲未満だと、析出物の析出量が少なくなるため、銅合金材料の強度が低くなってしまう。 The P content of the copper alloy material of the third embodiment of the present invention is 0.10 to 0.50% by mass, preferably 0.20 to 0.40% by mass. When the P content is within the above range, the tensile strength of the copper alloy material becomes high. On the other hand, if the P content exceeds the above range, workability may decrease and cracks may occur during hot working or cold working, and if the P content is below the above range, the amount of precipitates As a result, the strength of the copper alloy material decreases.

本発明の第三の形態の銅合金材料を形成する銅合金は析出物を含有している。そして、本発明の第三の形態の銅合金材料を形成する銅合金中の析出物の全部又は一部がNi12である。なお、本発明において、銅合金がNi12で表される組成の析出物を含有することは、銅合金を以下の分析方法により分析することで確認される。銅合金材料をファインカッタとマイクロカッタで厚さ約0.5mmに切り出し、さらに回転研磨機・耐水研磨紙400~1200番で厚さ0.2mmまで機械研磨する。この薄膜試料を直径3mmの円形に成形した後、以下の条件で電解研磨する。電解研磨液として硝酸濃度が30重量%となるようにメチルアルコールで希薄した溶液を用い、液温約-30℃で試料をジェット研磨する。ジェット電解研磨装置には、STRUERS社製テヌポールIIIを使用する。試料を、電解研磨後、直ちにTEM観察する。TEM観察には、日本電子製のJEOL-2100F(加速電圧200kV)を用いる。観察の際、結晶方位を100あるいは110晶帯からの入射になるように2軸試料傾斜機構を用いて調整する。観察は、対物絞りを透過波に入れた明視野像、回折波を対物絞りに入れた暗視野像、および制限視野回折像である。露光時間は明視野像の場合約0.5秒前後、暗視野像および制限視野回折像の場合約5秒前後である。 The copper alloy forming the copper alloy material of the third embodiment of the present invention contains precipitates. All or part of the precipitates in the copper alloy forming the copper alloy material of the third embodiment of the present invention are Ni 12 P 5 . In the present invention, it is confirmed that the copper alloy contains precipitates having a composition represented by Ni 12 P 5 by analyzing the copper alloy using the following analysis method. Copper alloy material is cut to a thickness of about 0.5 mm using a fine cutter and a micro cutter, and then mechanically polished to a thickness of 0.2 mm using a rotary polisher and water-resistant abrasive paper No. 400 to 1200. This thin film sample was formed into a circle with a diameter of 3 mm, and then electrolytically polished under the following conditions. Using a solution diluted with methyl alcohol so that the nitric acid concentration is 30% by weight as an electrolytic polishing solution, the sample is jet-polished at a solution temperature of about -30°C. Tenupol III manufactured by STRUERS is used as the jet electropolishing device. Immediately after electrolytic polishing, the sample is observed under TEM. For TEM observation, JEOL-2100F (acceleration voltage 200 kV) manufactured by JEOL is used. During observation, the crystal orientation is adjusted using a two-axis sample tilting mechanism so that the incidence is from the 100 or 110 crystal band. Observations include a bright-field image with transmitted waves entering the objective aperture, a dark-field image with diffracted waves entering the objective aperture, and a selected-area diffraction image. The exposure time is about 0.5 seconds for bright field images, and about 5 seconds for dark field images and selected area diffraction images.

本発明の第三の形態の銅合金材料は、銅合金を溶体化する溶体化処理と、溶体化処理後に、225℃±100℃で加熱する熱処理(A1)と、が施された銅合金、又は銅合金を溶体化する溶体化処理と、溶体化処理後に、850±100℃で加熱後、加熱温度から300℃まで、50℃/秒以下の平均冷却速度で冷却する処理(B)と、処理(B)後に、225℃±100℃で加熱する熱処理(A2)と、が施された銅合金である。 The copper alloy material of the third embodiment of the present invention is a copper alloy that has been subjected to a solution treatment to make the copper alloy a solution, and a heat treatment (A1) in which the copper alloy is heated at 225°C ± 100°C after the solution treatment, or solution treatment of solutionizing the copper alloy, and after the solution treatment, heating at 850 ± 100 ° C. and cooling from the heating temperature to 300 ° C. at an average cooling rate of 50 ° C. / second or less (B); This is a copper alloy that has been subjected to heat treatment (A2) of heating at 225° C.±100° C. after treatment (B).

本発明の第三の形態の銅合金材料の引張強さ(σ)は、好ましくは200~280MPa、特に好ましくは240~280MPaである。また、本発明の第三の形態の銅合金材料の伸び(δ)は、好ましくは20%以上、特に好ましくは30%以上である。 The tensile strength (σ) of the copper alloy material according to the third embodiment of the present invention is preferably 200 to 280 MPa, particularly preferably 240 to 280 MPa. Further, the elongation (δ) of the copper alloy material according to the third embodiment of the present invention is preferably 20% or more, particularly preferably 30% or more.

本発明の銅合金材料、すなわち、本発明の第一の形態の銅合金材料、本発明の第二の形態の銅合金材料及び本発明の第三の形態の銅合金材料は、225℃±100℃と低温で熱処理を行い得られる銅合金材料なので、製造コストを低減することができる。 The copper alloy material of the present invention, that is, the copper alloy material of the first embodiment of the present invention, the copper alloy material of the second embodiment of the present invention, and the copper alloy material of the third embodiment of the present invention, can be heated at 225°C ± 100°C. Since it is a copper alloy material that can be obtained through heat treatment at low temperatures of ℃, manufacturing costs can be reduced.

本発明の銅合金材料、すなわち、本発明の第一の形態の銅合金材料、本発明の第二の形態の銅合金材料及び本発明の第三の形態の銅合金材料としては、板材、棒材、管材、特に継目無管等が挙げられる。本発明の銅合金材料が管材の場合、本発明の銅合金材料は、ルームエアコン、パッケージエアコン等の空調機用熱交換器又は冷凍機等の伝熱管又は冷媒配管として、好適に用いられる。また、本発明の銅合金材料である管材には、内面に溝のないベアー管と、内面に溝を有する内面溝付管がある。また、本発明の銅合金材料が板材の場合、本発明の銅合金材料は、強い加工が必要な種々の用途に、すなわち、強加工用の銅合金板材として、好適に用いられる。 The copper alloy material of the present invention, that is, the copper alloy material of the first embodiment of the present invention, the copper alloy material of the second embodiment of the present invention, and the copper alloy material of the third embodiment of the present invention, include plate materials, rods, etc. materials, pipe materials, especially seamless pipes, etc. When the copper alloy material of the present invention is a pipe material, the copper alloy material of the present invention is suitably used as a heat exchanger for an air conditioner such as a room air conditioner or a package air conditioner, or a heat transfer tube or refrigerant pipe for a refrigerator. Further, the tube material made of the copper alloy material of the present invention includes a bare tube without a groove on the inner surface and an inner grooved tube having a groove on the inner surface. Further, when the copper alloy material of the present invention is a plate material, the copper alloy material of the present invention is suitably used for various uses that require strong processing, that is, as a copper alloy plate material for strong processing.

(実施例及び比較例)
(1)表1に示す銅合金鋳塊を溶解及び鋳造し、熱間押出用のビレットを作製した。
(2)上記ビレットを加熱し、850℃にて熱間押出を行い、押出素管を得た。次いで、熱間押出した押出素管を、水中に押出して急冷した。
・押出前に熱間で内径約75mm穿孔した。
・押出素管の外径は102mm、内径は75mmであった。
(3)上記押出素管を、ビルガーミル圧延機によって冷間圧延し、圧延素管を得た。
・圧延素管の外径は46mm、内径は39.8mmであった。
・冷間圧延での加工度(断面減少率)は、88.9%であった。
断面減少率(%)=((加工前の断面積-加工後の断面積)/加工前の断面積)×100
(4)上記の圧延素管を、冷間にて抽伸を複数回行い、抽伸素管を得た。
・抽伸素管の外径は38mm、内径は33mmであった。
・冷間抽伸全体での加工度は、断面減少率で96.6%であった。
・冷間圧延及び冷間抽伸の総加工度、すなわち、冷間加工の総加工度は、断面減少率で99.8%であった。
(5)上記の抽伸素管を中間焼鈍し、転造工程に供するための原管を得た。
・中間焼鈍は保持温度550℃で実施した。
(6)上記の原管を、ボール転造加工して、内面溝付銅合金管aを得た。
<内面溝付銅合金管aの寸法諸元>
・外径:7.0mm
・底肉厚:0.30mm
・フィン高さ:0.22mm
・フィン頂角:13°
・溝条数:44条
・リード角θ:24°
(7)上記の内面溝付管に対し、表1に示す処理を表に示す順で行い、内面溝付銅合金管bを得た。
(8)表1に示す処理後の銅合金管の引張強さ(σ)と伸び(δ)を測定した。その結果を表1に示す。また、得られた内面溝付銅合金管bを形成する銅合金の析出物を分析した。その結果を表1に示す。
<処理>
・処理p:850℃で1800秒間加熱後、水冷を行う。
・処理q:225℃で10000秒間加熱後、空冷を行う。
・処理r:850℃で30秒加熱後、空冷を行う。
・処理s:500℃で1000秒加熱後、空冷を行う。
なお、上記空冷において、加熱温度から300℃までの平均冷却速度は、2~20℃/秒である。
<引張強さ(σ)、伸び(δ)>
銅合金の引張強さ(σ)、伸び(δ)は、JIS Z2241に準拠して測定した。
<析出物の分析>
銅合金材料をファインカッタとマイクロカッタで厚さ約0.5mmに切り出し、さらに回転研磨機・耐水研磨紙400~1200番で厚さ0.2mmまで機械研磨した。この薄膜試料を直径3mmの円形に成形した後、以下の条件で電解研磨した。電解研磨液として硝酸濃度が30重量%となるようにメチルアルコールで希薄した溶液を用い、液温約-30℃で試料をジェット研磨した。ジェット電解研磨装置には、STRUERS社製テヌポールIIIを使用した。試料を、電解研磨後、直ちにTEM観察した。TEM観察には、日本電子製のJEOL-2100F(加速電圧200kV)を用いた。観察の際、結晶方位を100あるいは110晶帯からの入射になるように2軸試料傾斜機構を用いて調整した。観察は、対物絞りを透過波に入れた明視野像、回折波を対物絞りに入れた暗視野像、および制限視野回折像である。露光時間は明視野像の場合約0.5秒前後、暗視野像および制限視野回折像の場合約5秒前後である。
(Example and comparative example)
(1) The copper alloy ingots shown in Table 1 were melted and cast to produce billets for hot extrusion.
(2) The above billet was heated and hot extruded at 850°C to obtain an extruded blank tube. Next, the hot extruded raw tube was extruded into water and rapidly cooled.
・Before extrusion, a hole with an inner diameter of approximately 75 mm was made while hot.
- The outer diameter of the extruded raw tube was 102 mm, and the inner diameter was 75 mm.
(3) The extruded mother pipe was cold rolled using a Birger mill to obtain a rolled mother pipe.
- The outer diameter of the rolled blank pipe was 46 mm, and the inner diameter was 39.8 mm.
- The degree of working (reduction in area) in cold rolling was 88.9%.
Section reduction rate (%) = ((cross-sectional area before processing - cross-sectional area after processing) / cross-sectional area before processing) x 100
(4) The above-mentioned rolled blank pipe was cold drawn several times to obtain a drawn blank pipe.
- The outer diameter of the drawn blank tube was 38 mm, and the inner diameter was 33 mm.
- The degree of working in the entire cold drawing was 96.6% in terms of area reduction rate.
- The total degree of work of cold rolling and cold drawing, that is, the total degree of work of cold working, was 99.8% in area reduction rate.
(5) The drawn raw pipe described above was subjected to intermediate annealing to obtain a raw pipe to be subjected to a rolling process.
- Intermediate annealing was carried out at a holding temperature of 550°C.
(6) The above raw tube was subjected to ball rolling processing to obtain an internally grooved copper alloy tube a.
<Dimensions of internally grooved copper alloy tube a>
・Outer diameter: 7.0mm
・Bottom thickness: 0.30mm
・Fin height: 0.22mm
・Fin vertex angle: 13°
・Number of grooves: 44 ・Lead angle θ: 24°
(7) The above internally grooved tube was subjected to the treatments shown in Table 1 in the order shown in the table to obtain an internally grooved copper alloy tube b.
(8) The tensile strength (σ) and elongation (δ) of the copper alloy tubes after the treatment shown in Table 1 were measured. The results are shown in Table 1. Further, the copper alloy precipitates forming the obtained internally grooved copper alloy tube b were analyzed. The results are shown in Table 1.
<Processing>
- Processing p: After heating at 850°C for 1800 seconds, water cooling is performed.
- Processing q: After heating at 225°C for 10,000 seconds, air cooling is performed.
- Process r: After heating at 850°C for 30 seconds, air cooling is performed.
- Processing s: After heating at 500°C for 1000 seconds, air cooling is performed.
In the above air cooling, the average cooling rate from the heating temperature to 300°C is 2 to 20°C/sec.
<Tensile strength (σ), elongation (δ)>
The tensile strength (σ) and elongation (δ) of the copper alloy were measured in accordance with JIS Z2241.
<Analysis of precipitates>
The copper alloy material was cut to a thickness of about 0.5 mm using a fine cutter and a micro cutter, and then mechanically polished to a thickness of 0.2 mm using a rotary polisher and water-resistant abrasive paper No. 400 to 1200. This thin film sample was formed into a circular shape with a diameter of 3 mm, and then electrolytically polished under the following conditions. Using a solution diluted with methyl alcohol so that the nitric acid concentration was 30% by weight as an electrolytic polishing solution, the sample was jet polished at a solution temperature of about -30°C. Tenupol III manufactured by STRUERS was used as a jet electropolishing device. Immediately after electrolytic polishing, the sample was observed under TEM. For TEM observation, JEOL-2100F (acceleration voltage 200 kV) manufactured by JEOL was used. During observation, the crystal orientation was adjusted using a two-axis sample tilting mechanism so that the incidence was from the 100 or 110 crystal band. Observations include a bright-field image with transmitted waves entering the objective aperture, a dark-field image with diffracted waves entering the objective aperture, and a selected-area diffraction image. The exposure time is about 0.5 seconds for bright field images, and about 5 seconds for dark field images and selected area diffraction images.

Figure 0007432315000001
Figure 0007432315000001

Claims (4)

0.40~1.50質量%のNiと、0.10~0.50質量%のPと、を含有し、残部Cu及び不可避不純物からなる銅合金の鋳塊を得る鋳造工程を行い、次いで、該銅合金の鋳塊を加熱して均質化処理を行った後、均質化処理した銅合金を熱間加工し、次いで、熱間加工を行った銅合金を冷間加工する銅合金継目無管の製造方法であり、
該熱間加工から該冷間加工までの途中又は冷間加工後において、溶体化処理を行い、且つ、該溶体化処理後に225℃±100℃で加熱する熱処理(A1)を行い、
該熱処理(A1)において、該熱処理(A1)後の引張強さ(σ2)と該熱処理(A1)前の引張強さ(σ1)の差(σ2-σ1)を20MPa以上とし、且つ、該熱処理(A1)前の伸び(δ1)と該熱処理(A1)後の伸び(δ2)の差(δ1-δ2)を0~10%とすること、
を特徴とする銅合金継目無管の製造方法
A casting process is carried out to obtain a copper alloy ingot containing 0.40 to 1.50 mass% of Ni and 0.10 to 0.50 mass% of P, with the balance consisting of Cu and unavoidable impurities. , after heating and homogenizing the copper alloy ingot, hot working the homogenized copper alloy, and then cold working the hot worked copper alloy seamless copper alloy. A method of manufacturing tubes,
During the period from the hot working to the cold working or after the cold working, a solution treatment is performed, and after the solution treatment, a heat treatment (A1) of heating at 225 ° C ± 100 ° C is performed,
In the heat treatment (A1), the difference (σ2-σ1) between the tensile strength (σ2) after the heat treatment (A1) and the tensile strength (σ1) before the heat treatment (A1) is 20 MPa or more, and the heat treatment (A1) The difference (δ1-δ2) between the elongation before (δ1) and the elongation (δ2) after the heat treatment (A1) is 0 to 10% ;
A method for manufacturing a copper alloy seamless pipe characterized by:
0.40~1.50質量%のNiと、0.10~0.50質量%のPと、を含有し、残部Cu及び不可避不純物からなる銅合金の鋳塊を得る鋳造工程を行い、次いで、該銅合金の鋳塊を加熱して均質化処理を行った後、均質化処理した銅合金を熱間加工し、次いで、熱間加工を行った銅合金を冷間加工する銅合金継目無管の製造方法であり、
該熱間加工から該冷間加工までの途中又は冷間加工後において、溶体化処理を行い、且つ、該溶体化処理後に、850±100℃で加熱後、加熱温度から300℃まで、50℃/秒以下の平均冷却速度で冷却する処理(B)を行い、且つ、該処理(B)後に、225℃±100℃で加熱する熱処理(A2)を行い、
該処理(B)及び該熱処理(A2)において、該熱処理(A2)後の引張強さ(σ2)と該処理(B)前の引張強さ(σ1)の差(σ2-σ1)を30MPa以上とし、且つ、該処理(B)前の伸び(δ1)と該熱処理(A2)後の伸び(δ2)の差(δ1-δ2)を0~10%とすること、
を特徴とする銅合金継目無管の製造方法
A casting process is carried out to obtain a copper alloy ingot containing 0.40 to 1.50 mass% of Ni and 0.10 to 0.50 mass% of P, with the balance consisting of Cu and unavoidable impurities. , after heating and homogenizing the copper alloy ingot, hot working the homogenized copper alloy, and then cold working the hot worked copper alloy seamless copper alloy. A method of manufacturing tubes,
Solution treatment is performed during or after the cold working from the hot working to the cold working, and after the solution treatment, heating at 850 ± 100°C, and then heating at 50°C from the heating temperature to 300°C. A process (B) of cooling at an average cooling rate of /second or less is performed, and after the process (B), a heat treatment (A2) of heating at 225 ° C ± 100 ° C is performed,
In the treatment (B) and the heat treatment (A2), the difference (σ2-σ1) between the tensile strength (σ2) after the heat treatment (A2) and the tensile strength (σ1) before the treatment (B) is 30 MPa or more. and the difference (δ1-δ2) between the elongation (δ1) before the treatment (B) and the elongation (δ2) after the heat treatment (A2) is 0 to 10% ;
A method for manufacturing a copper alloy seamless pipe characterized by:
前記銅合金は析出物を含有し、該析出物の全部又は一部がNi12であることを特徴とする請求項1又は2記載の銅合金継目無管の製造方法 3. The method for manufacturing a seamless copper alloy pipe according to claim 1, wherein the copper alloy contains precipitates, and all or part of the precipitates are Ni12P5 . 請求項1~いずれか1項記載の銅合金継目無管の製造方法を行い得られる銅合金継目無管を用いて熱交換器を得ることを特徴とする熱交換器の製造方法 A method for producing a heat exchanger, the method comprising obtaining a heat exchanger using a copper alloy seamless tube obtained by carrying out the method for producing a copper alloy seamless tube according to any one of claims 1 to 3 .
JP2019139977A 2019-07-30 2019-07-30 Method for manufacturing copper alloy seamless pipe and method for manufacturing heat exchanger Active JP7432315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019139977A JP7432315B2 (en) 2019-07-30 2019-07-30 Method for manufacturing copper alloy seamless pipe and method for manufacturing heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019139977A JP7432315B2 (en) 2019-07-30 2019-07-30 Method for manufacturing copper alloy seamless pipe and method for manufacturing heat exchanger

Publications (2)

Publication Number Publication Date
JP2021021127A JP2021021127A (en) 2021-02-18
JP7432315B2 true JP7432315B2 (en) 2024-02-16

Family

ID=74574943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019139977A Active JP7432315B2 (en) 2019-07-30 2019-07-30 Method for manufacturing copper alloy seamless pipe and method for manufacturing heat exchanger

Country Status (1)

Country Link
JP (1) JP7432315B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015122423A1 (en) 2014-02-12 2015-08-20 株式会社Uacj Copper alloy material and copper alloy pipe
JP2017082301A (en) 2015-10-29 2017-05-18 株式会社Uacj Manufacturing method of copper alloy tube and heat exchanger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015122423A1 (en) 2014-02-12 2015-08-20 株式会社Uacj Copper alloy material and copper alloy pipe
JP2017082301A (en) 2015-10-29 2017-05-18 株式会社Uacj Manufacturing method of copper alloy tube and heat exchanger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
玉川 博一,他2名,Cu-Ni-P合金の時効析出挙動と機械的性質,UACJ Technical Reports,Vol.3,日本,2016年,p.25-30

Also Published As

Publication number Publication date
JP2021021127A (en) 2021-02-18

Similar Documents

Publication Publication Date Title
JP5083816B2 (en) Al-Zn-Mg-Cu alloy extruded material excellent in warm workability, production method thereof, and warm worked material using the extruded material
JP5060632B2 (en) Aluminum alloy fin material for heat exchanger and manufacturing method thereof
JP2003268467A (en) Copper alloy tube for heat exchanger
JP5534777B2 (en) Copper alloy seamless pipe
JP5693333B2 (en) Aluminum alloy fin material for heat exchanger for combination press
JP5828657B2 (en) Aluminum alloy fin material for heat exchanger
JP4856368B2 (en) Aluminum alloy fin material with excellent formability
JP7432315B2 (en) Method for manufacturing copper alloy seamless pipe and method for manufacturing heat exchanger
JP2016089217A (en) Tube with internal groove for heat exchanger and manufacturing method therefor
JP5846684B2 (en) Method for producing aluminum alloy material excellent in bending workability
JP5830451B2 (en) Aluminum alloy fin material for heat exchanger for combination press
JP5960672B2 (en) High strength copper alloy tube
JP5968816B2 (en) High strength copper alloy tube and manufacturing method thereof
JP5792696B2 (en) High strength copper alloy tube
JP5843462B2 (en) Aluminum alloy fin material for heat exchanger for drawless press
JP5451217B2 (en) Manufacturing method of internally grooved tube
CN105143479A (en) Copper alloy seamless tube for heat transfer tube
JP2010065270A (en) Copper alloy tube for heat exchanger excellent in bendability
JP6541583B2 (en) Copper alloy material and copper alloy pipe
JP2001342532A (en) Aluminum alloy piping material and its production
JP2011137233A5 (en)
WO2012132784A1 (en) Drawless press aluminium alloy fin material for heat exchanger, and manufacturing method for same
WO2012132785A1 (en) Combination press aluminium alloy fin material for heat exchanger, and manufacturing method for same
JP5807079B2 (en) Aluminum alloy fin material for heat exchanger
JPH04371541A (en) Aluminum alloy for heat exchanger piping

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220715

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20221114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20221114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240205

R150 Certificate of patent or registration of utility model

Ref document number: 7432315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150