JP4056175B2 - Copper alloy plate for lead frames, terminals, connectors, switches or relays with excellent press punchability - Google Patents

Copper alloy plate for lead frames, terminals, connectors, switches or relays with excellent press punchability Download PDF

Info

Publication number
JP4056175B2
JP4056175B2 JP13338999A JP13338999A JP4056175B2 JP 4056175 B2 JP4056175 B2 JP 4056175B2 JP 13338999 A JP13338999 A JP 13338999A JP 13338999 A JP13338999 A JP 13338999A JP 4056175 B2 JP4056175 B2 JP 4056175B2
Authority
JP
Japan
Prior art keywords
mass
copper alloy
plane
ray diffraction
diffraction intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13338999A
Other languages
Japanese (ja)
Other versions
JP2000328158A (en
Inventor
哲造 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP13338999A priority Critical patent/JP4056175B2/en
Publication of JP2000328158A publication Critical patent/JP2000328158A/en
Application granted granted Critical
Publication of JP4056175B2 publication Critical patent/JP4056175B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Conductive Materials (AREA)
  • Contacts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は銅合金板、特にリードフレーム、端子、コネクタ、スイッチ、リレーなどの電子部品に用いるに好適なプレス打ち抜き性が優れた銅合金板に関するものである。
【0002】
【従来の技術】
各種電子部品に、各種銅及び銅合金が用いられている。近年、電子部品の軽薄短小化の流れが急速に進展している。それに伴い、リードフレーム、端子、コネクタ、スイッチ、リレーなどに用いられる銅合金板は、高強度、高導電率はもちろんのこと、微細な形状にスタンピング加工されるため優れたプレス打抜き性が要求されることが多くなってきている。
なかでもCu−Fe−P系合金は、高強度、高耐熱性及び高導電率を兼備する合金としてこれらの用途に広く用いられている。しかし、これらの特性とプレス打抜き性との両立は難しいのが現状であった。
【0003】
【発明が解決しようとする課題】
従来、プレス打抜き性向上の方法として、Pb、Caなどの微量成分添加、あるいは破断の起点となる化合物を分散させるなど、化学成分に着目することが常套手段であった。しかしこのような方法は、微量成分の制御が困難であったり、他の特性を劣化させたり、コストアップにつながるなどの問題を有していた。
本発明は従来技術の上記問題点に鑑みてなされたもので、Cu−Fe−P系合金の優れた強度、導電率等を保持しながら、優れたプレス打抜き性を持つ銅合金板を得ることを目的とする。
【0004】
【課題を解決するための手段】
本発明者は、前記課題を解決するためにCu−Fe−P系合金板について鋭意研究した結果、結晶方位の集積度を制御することによりプレス打抜き性を向上できることを見い出し、本発明をなすに至った。
すなわち、本発明に係るリードフレーム、端子、コネクタ、スイッチ又はリレー用銅合金板は、Fe:0.2〜0.4質量%、P:0.005〜0.2質量%を含み、残部Cuと不可避不純物からなり、さらに板表面における{200}面からのX線回折強度をI{200}、{311}面からのX線回折強度をI{311}、{220}面からのX線回折強度をI{220}としたとき、下記式を満たすことを特徴とする。
[I{200}+I{311}]/I{220}<0.4
【0005】
なお、上記の銅合金板は、Zn:0.01〜10質量%、Sn:0.01〜5質量%のいずれか一方又は双方を含有することができる。さらに、上記の銅合金板は、B、C、S、Ca、V、Ga、Ge、Nb、Mo、Hf、Ta、Bi、Pbの各元素0.0001〜0.1質量%(2種以上添加する場合は合計で0.1質量%以下)、Be、Mg、Al、Si、Ti、Cr、Mn、Ni、Co、Zr、Ag、Cd、In、Sb、Te、Auの各元素0.001〜1質量%のうちから選ばれた、1種又は2種以上の元素を合計で1質量%以下含有することができる。
【0006】
【発明の実施の形態】
次に、本発明に係る銅合金の成分及び結晶方位等の限定理由について説明する。
(Fe及びP)
これらの成分は、共存した状態でFeとPの金属間化合物を形成することにより、導電率を大幅に低下させることなく強度を向上させる効果がある。Feが0.005質量%未満又は/及びPが0.005質量%未満ではその効果がなく、Feが0.5質量%を超え又は/及びPが0.2質量%を超えると熱間加工性が著しく低下する。従って、両成分はFe:0.005〜0.5質量%、P:0.005〜0.2質量%とする。なお、Fe、Pは結晶方位指数([I{200}+I{311}]/I{220})を下げ、プレス打ち抜き性を向上させる作用がある。
【0007】
(Zn)
Znは、はんだ耐熱剥離性及び耐マイグレーション性を向上させる作用があるが、0.01質量%未満ではその効果が十分ではない。10質量%を超えると導電率が低下するだけでなく、はんだ付け性が低下するとともに、耐応力腐食割れ感受性が高くなり好ましくない。従って、Znは0.01〜10質量%とする。なお、Znは結晶方位指数を下げ、プレス打ち抜き性を向上させる作用をもつ。
(Sn)
Snは、固溶強化により強度を向上させる成分である。0.01質量%未満ではその効果が十分ではなく、5質量%を超えるとその効果が飽和するとともに、熱間及び冷間加工性が劣化する。従って、Snは0.01〜5質量%とする。なお、Snは結晶方位指数を下げ、プレス打ち抜き性を向上させる作用をもつ。
【0008】
(副成分)
B、C、S、Ca、V、Ga、Ge、Nb、Mo、Hf、Ta、Bi、Pbの各元素はプレス打抜き性を一層向上させる役割を有する。これらの元素は、0.0001質量%未満ではその効果がなく、0.1質量%を超えると熱間加工性が劣化する。また、Be、Mg、Al、Si、Ti、Cr、Mn、Ni、Co、Zr、Ag、Cd、In、Sb、Te、Auの各元素はプレス打抜き性を向上させる役割を有し、加えてFe−P化合物との共存により強度を一層向上させる。これらの元素は、0.001質量%未満ではその効果がなく、1質量%を超えると熱間及び冷間加工性が劣化するとともに導電率も低下する。従って、上記B〜Pbについては各元素0.0001〜0.1質量%(2種以上添加する場合は合計で0.1質量%以下)、上記Be〜Auについては各元素0.001〜1質量%とし、両方合計で1質量%以下とする。
【0009】
(結晶方位)
FeとPを含有する銅合金板は、再結晶しその粒径が大きくなるに従って板表面への{200}、{311}面の集積割合が増し、圧延すると{220}面の集積割合が増してくる。本発明に係る銅合金板は、例えば熱間圧延、冷間圧延、析出焼鈍、仕上げ冷間圧延及び歪み取り焼鈍という工程で製造されるが、この製造工程において、例えば析出焼鈍(焼鈍温度、時間)とその後の冷間圧延工程(加工率)を調整することで、この集積割合を制御することができる。具体的には焼鈍温度は475℃以下、析出焼鈍後の累計加工率は55%以上が好ましい条件である。なお、この集積割合はその後の再結晶を伴わない歪み取り焼鈍によっては大きく変化しない。また、FeとPの含有量、さらにはそれ以外の元素の含有量も集積割合に影響する。
本発明では、これらの集積割合がプレス打抜き性と強い相関を持ち、板表面へのこれらの集積割合を制御することによりプレス打抜き性を向上できるとの知見をもとに、前記式に示すとおり、適正な結晶方位指数の範囲を求めたものである。なお、結晶方位指数の値は板の曲げ加工性にも関係し、この値が余り小さくなると板の曲げ加工性が悪下することから、この値は0.1以上が望ましい。
【0010】
【実施例】
次に、本発明の実施例について、比較例とともに以下に説明する。
表1に示す化学組成の銅合金を、クリプトル炉にて木炭被覆下で大気溶解し、ブックモールドに鋳造し、50×80×200mmの鋳塊を作製した。この鋳塊を930℃に加熱し熱間圧延後、直ちに水中急冷し厚さ15mmの熱延材とした。この熱延材の表面の酸化スケールを除去するため、表面をグラインダで切削した。これを冷間圧延した後、425℃で2時間の析出焼鈍を施し、さらに60%の冷間加工率の仕上げ冷間圧延により板厚0.25mmに調整した。この材料に350℃で20秒の歪み取り焼鈍を施した後、試験に供した。
【0011】
【表1】

Figure 0004056175
【0012】
また、上記工程以外に、種々の結晶方位集積割合の銅合金板を得るため、No.3の組成の合金については、析出焼鈍温度を425℃の他に450℃(No.3-2)、500℃(No.3-5)の条件にて製作した。また析出焼鈍後の冷間加工率も60%の他に30%(No.3-6)、40%(No.3-7)、50%(No.3-3)及び70%(No.3-4)の条件にて製作した。いずれの条件によっても、最終板厚は0.25mmに調整した。
【0013】
これらの供試材について、引張強さ、耐力、導電率、ばり高さ及び結晶方位を下記要領にて調査した。その結果を表2及び表3に示す。また、耐応力腐食割れ性についても下記要領で評価した。
<引張強さ、耐力>
JIS Z 2241に記載の方法に準じた。なお、耐力はオフセット法で永久伸び0.2%を採用した。試験片は、JIS Z 2201の5号試験片を用いた。
<導電率>
JIS H 0505に記載の方法に準じた。電気抵抗の測定はダブルブリッジを用いた。
<ばり高さ>
金型クリアランスを10%とし、250spmの打抜き速度で、長さ30mm、幅0.5mmのリードを打抜き、ばり高さをSEM観察にて測定した。
<結晶方位>
最終製品状態(0.25mm厚さ)の銅合金板表面にX線を入射させ、各回折面からの強度を測定した。表面からの測定深さは入射角によって変化するが、最大で約20〜30μmの深さまでの結晶方位データが得られる。その中から曲げ加工性と相関が強い{200}、{311}及び{220}面の回折強度の割合を比較し、結晶方位指数を求めた。なお、X線照射の条件は、X線の種類:Cu K−α1、管電圧:40kV、管電流:200mAであり、試料を平面内で回転させながら測定した。
<耐応力腐食割れ性>
トンプソン氏の方法(D.H.Thompson:Materials Research & Standards 1(1961),108)に準じて試験を行った。試験片寸法を0.25mmt×12.7mmw×150mmlとし、図1(a)に示すようにループ状に結んだ後、14質量%のアンモニア水飽和蒸気中に暴露した。結びを解いたときの試験片両端の距離を測定し、下記式にて応力緩和率を測定した。20時間以内に応力緩和率が50%以上になったものを耐応力腐食割れ性が劣ると評価した。
応力緩和率(%)=[(l−l)/l×100
:アンモニア暴露前の試験片両端の距離
:アンモニア暴露後の試験片両端の距離
【0014】
【表2】
Figure 0004056175
【0015】
【表3】
Figure 0004056175
【0016】
表2に示すNo.1〜18はいずれの特性も良好である。このうち、No.1とNo.2はFeとPが低めであり、強度がやや低く、結晶方位指数が高めで、ばりがやや大きい。逆に、No.4と5はFeとPが高めであるため、強度がやや高く、結晶方位指数が低めで、ばりが小さい。またNo.3-2、3-3は結晶方位指数が高めであり、ばりがやや大きくなっている。
一方、表3に示す比較例のNo.19はFeとPが低いため、強度が低く、結晶方位指数が高いため、ばりが大きい。比較例No.20はFeとPが高いため、熱間圧延で割れが発生した。比較例No.21はZnが多いため、耐応力腐食割れ性が低く、導電率も低くなっている。比較例No.22、No.23はSn又はPb含有量が高く、熱間圧延で割れが発生した。No.24はFe含有量が高く、熱間圧延で微小割れが発生するとともに、導電率も低くなっている。No.3-5、3-6、3-7は結晶方位指数が高く、ばりが大きい。
【0017】
【発明の効果】
本発明によれば、優れた強度及び導電率等を保持しながら、優れたプレス打抜き性を持つリードフレーム、端子、コネクタ、スイッチ、リレーなどの電子部品用の銅合金板を得ることができる。
【図面の簡単な説明】
【図1】 耐応力腐食割れ性試験の方法を説明する図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a copper alloy plate, particularly a copper alloy plate excellent in press punching suitable for use in electronic parts such as lead frames, terminals, connectors, switches and relays.
[0002]
[Prior art]
Various copper and copper alloys are used for various electronic components. In recent years, the trend of making electronic parts lighter, thinner, and smaller is rapidly progressing. Along with that, copper alloy plates used for lead frames, terminals, connectors, switches, relays, etc. are stamped into fine shapes as well as high strength and high conductivity, so excellent press punchability is required. There is a lot to be done.
Among these, Cu—Fe—P alloys are widely used in these applications as alloys having high strength, high heat resistance, and high electrical conductivity. However, at present, it is difficult to achieve both these characteristics and press punchability.
[0003]
[Problems to be solved by the invention]
Conventionally, as a method for improving the press punchability, it has been a conventional means to pay attention to chemical components such as addition of trace components such as Pb and Ca, or dispersion of a compound serving as a starting point of fracture. However, such a method has problems that it is difficult to control trace components, deteriorate other characteristics, and lead to an increase in cost.
The present invention has been made in view of the above-mentioned problems of the prior art, and obtains a copper alloy plate having excellent press punchability while maintaining the excellent strength, conductivity and the like of a Cu-Fe-P alloy. With the goal.
[0004]
[Means for Solving the Problems]
As a result of diligent research on the Cu—Fe—P alloy plate in order to solve the above problems, the present inventor has found that press punchability can be improved by controlling the degree of accumulation of crystal orientations, and the present invention is made. It came.
That is, the copper alloy plate for a lead frame, terminal, connector, switch or relay according to the present invention contains Fe: 0.2-0.4 mass %, P: 0.005-0.2 mass %, and the balance Cu In addition, the X-ray diffraction intensity from the {200} plane on the plate surface is I {200}, the X-ray diffraction intensity from the {311} plane is I {311}, and the X-ray from the {220} plane. When the diffraction intensity is I {220}, the following formula is satisfied.
[I {200} + I {311}] / I {220} <0.4
[0005]
In addition, said copper alloy plate can contain any one or both of Zn: 0.01-10 mass % and Sn: 0.01-5 mass %. Furthermore, said copper alloy board is 0.0001-0.1 mass % (two or more types) of each element of B, C, S, Ca, V, Ga, Ge, Nb, Mo, Hf, Ta, Bi, and Pb. In the case of adding 0.1 mass % or less in total, Be, Mg, Al, Si, Ti, Cr, Mn, Ni, Co, Zr, Ag, Cd, In, Sb, Te, and Au elements 0. selected from among 001-1 mass%, it can contain more than 1 wt% of one or more elements in total.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Next, the reasons for limiting the components and crystal orientation of the copper alloy according to the present invention will be described.
(Fe and P)
These components have the effect of improving the strength without significantly reducing the conductivity by forming an intermetallic compound of Fe and P in the coexisting state. If Fe is less than 0.005% by mass or / and P is less than 0.005% by mass , the effect is not obtained. If Fe exceeds 0.5% by mass or / and P exceeds 0.2% by mass , hot working is performed. Remarkably deteriorates. Therefore, both components shall be Fe: 0.005-0.5 mass %, P: 0.005-0.2 mass %. Fe and P have the effect of lowering the crystal orientation index ([I {200} + I {311}] / I {220}) and improving the press punchability.
[0007]
(Zn)
Zn has the effect of improving the heat resistance peelability and migration resistance of solder, but the effect is not sufficient if it is less than 0.01% by mass. If it exceeds 10% by mass, not only the electrical conductivity is lowered, but also solderability is lowered, and the stress corrosion cracking susceptibility is increased, which is not preferable. Therefore, Zn is 0.01-10 mass %. Zn has the effect of lowering the crystal orientation index and improving press punchability.
(Sn)
Sn is a component that improves the strength by solid solution strengthening. If the amount is less than 0.01% by mass , the effect is not sufficient. If the amount exceeds 5% by mass , the effect is saturated, and hot workability and cold workability deteriorate. Therefore, Sn is set to 0.01 to 5% by mass . Sn has a function of lowering the crystal orientation index and improving press punchability.
[0008]
(Subcomponent)
Each element of B, C, S, Ca, V, Ga, Ge, Nb, Mo, Hf, Ta, Bi, and Pb has a role of further improving press punchability. These elements, no effect thereof is less than 0.0001 mass%, degrades hot workability exceeds 0.1 mass%. In addition, each element of Be, Mg, Al, Si, Ti, Cr, Mn, Ni, Co, Zr, Ag, Cd, In, Sb, Te, and Au has a role of improving press punchability. The strength is further improved by coexistence with the Fe-P compound. If these elements are less than 0.001% by mass , the effect is not obtained. If they exceed 1% by mass , the hot and cold workability deteriorates and the conductivity also decreases. Therefore, 0.0001 to 0.1% by mass of each element for B to Pb (a total of 0.1% by mass or less when two or more elements are added), and 0.001 to 1 for each element of Be to Au. The total mass is 1% by mass or less.
[0009]
(Crystal orientation)
The copper alloy sheet containing Fe and P recrystallizes, and as the grain size increases, the accumulation ratio of {200} and {311} faces on the sheet surface increases, and rolling increases the accumulation ratio of {220} faces. Come. The copper alloy sheet according to the present invention is manufactured by, for example, processes such as hot rolling, cold rolling, precipitation annealing, finish cold rolling, and strain relief annealing. In this manufacturing process, for example, precipitation annealing (annealing temperature, time) ) And the subsequent cold rolling process (processing rate), the accumulation ratio can be controlled. Specifically, the annealing temperature is preferably 475 ° C. or less, and the cumulative processing rate after precipitation annealing is preferably 55% or more. Note that this accumulation ratio does not change greatly depending on the subsequent strain relief annealing without recrystallization. Further, the contents of Fe and P, and further the contents of other elements influence the accumulation ratio.
In the present invention, these accumulation ratios have a strong correlation with press punchability, and the press punchability can be improved by controlling these accumulation ratios on the plate surface, as shown in the above formula. The range of the proper crystal orientation index was obtained. Note that the value of the crystal orientation index is also related to the bending workability of the plate. If this value is too small, the bending workability of the plate is degraded.
[0010]
【Example】
Next, examples of the present invention will be described below together with comparative examples.
A copper alloy having the chemical composition shown in Table 1 was melted in the atmosphere under a charcoal coating in a kryptor furnace, and cast into a book mold to produce a 50 × 80 × 200 mm ingot. The ingot was heated to 930 ° C., hot-rolled, and immediately quenched in water to obtain a hot-rolled material having a thickness of 15 mm. In order to remove the oxide scale on the surface of the hot rolled material, the surface was cut with a grinder. This was cold-rolled and then subjected to precipitation annealing at 425 ° C. for 2 hours and further adjusted to a plate thickness of 0.25 mm by finish cold rolling at a cold working rate of 60%. This material was subjected to strain relief annealing at 350 ° C. for 20 seconds and then subjected to a test.
[0011]
[Table 1]
Figure 0004056175
[0012]
In addition to the above steps, in order to obtain copper alloy sheets having various crystal orientation accumulation ratios, The alloy having the composition 3 was manufactured under the conditions of the precipitation annealing temperature of 450 ° C. (No. 3-2) and 500 ° C. (No. 3-5) in addition to 425 ° C. Also, the cold working rate after precipitation annealing is 30% (No. 3-6), 40% (No. 3-7), 50% (No. 3-3) and 70% (No. 3) in addition to 60%. Produced under the conditions of 3-4). Regardless of the conditions, the final plate thickness was adjusted to 0.25 mm.
[0013]
About these test materials, tensile strength, yield strength, electrical conductivity, flash height, and crystal orientation were investigated in the following manner. The results are shown in Tables 2 and 3. Moreover, the stress corrosion cracking resistance was also evaluated in the following manner.
<Tensile strength, yield strength>
The method described in JIS Z 2241 was followed. In addition, the proof stress employ | adopted permanent elongation 0.2% by the offset method. As the test piece, a JIS Z 2201 No. 5 test piece was used.
<Conductivity>
The method described in JIS H 0505 was followed. A double bridge was used to measure the electrical resistance.
<Burr height>
The die clearance was 10%, a lead having a length of 30 mm and a width of 0.5 mm was punched at a punching speed of 250 spm, and the flash height was measured by SEM observation.
<Crystal orientation>
X-rays were incident on the copper alloy plate surface in the final product state (0.25 mm thickness), and the intensity from each diffraction surface was measured. The measurement depth from the surface varies depending on the incident angle, but crystal orientation data up to a depth of about 20 to 30 μm can be obtained. Among them, the ratio of the diffraction intensities of {200}, {311} and {220} planes having a strong correlation with bending workability was compared, and the crystal orientation index was obtained. The X-ray irradiation conditions were X-ray type: Cu K-α1, tube voltage: 40 kV, tube current: 200 mA, and measurement was performed while rotating the sample in a plane.
<Stress corrosion cracking resistance>
The test was performed according to the method of Thompson (DHThompson: Materials Research & Standards 1 (1961), 108). The test piece size was set to 0.25 mmt × 12.7 mmw × 150 mm, and the test piece was looped as shown in FIG. 1A, and then exposed to 14% by mass of ammonia water saturated steam. The distance between both ends of the test piece when the knot was broken was measured, and the stress relaxation rate was measured by the following formula. Those having a stress relaxation rate of 50% or more within 20 hours were evaluated as having poor stress corrosion cracking resistance.
Stress relaxation rate (%) = [(l 1 −l 2 ) / l 1 × 100
l 1 : Distance between both ends of test piece before exposure to ammonia l 2 : Distance between both ends of test piece after exposure to ammonia
[Table 2]
Figure 0004056175
[0015]
[Table 3]
Figure 0004056175
[0016]
No. 2 shown in Table 2. Nos. 1 to 18 have good characteristics. Of these, No. 1 and No. No. 2 has lower Fe and P, slightly lower strength, higher crystal orientation index, and slightly larger flash. Conversely, no. Since Fe and P are high in 4 and 5, the strength is slightly high, the crystal orientation index is low, and the flash is small. No. In 3-2 and 3-3, the crystal orientation index is higher and the beam is slightly larger.
On the other hand, No. of the comparative example shown in Table 3. No. 19 is low in Fe and P, has low strength, and has a high crystal orientation index. Comparative Example No. Since No. 20 had high Fe and P, cracks occurred during hot rolling. Comparative Example No. Since No. 21 contains a large amount of Zn, the stress corrosion cracking resistance is low, and the conductivity is also low. Comparative Example No. 22, no. No. 23 had a high Sn or Pb content, and cracking occurred during hot rolling. No. No. 24 has a high Fe content, microcracks are generated by hot rolling, and the electrical conductivity is also low. No. 3-5, 3-6, and 3-7 have high crystal orientation indices and large flashes.
[0017]
【The invention's effect】
According to the present invention, it is possible to obtain a copper alloy plate for electronic parts such as lead frames, terminals, connectors, switches, and relays having excellent press punchability while maintaining excellent strength and conductivity.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining a method of a stress corrosion cracking resistance test.

Claims (4)

Fe:0.2〜0.4質量%、P:0.005〜0.2質量%、Zn:0.01〜10質量%を含み、残部Cuと不可避不純物からなり、さらに板表面における{200}面からのX線回折強度をI{200}、{311}面からのX線回折強度をI{311}、{220}面からのX線回折強度をI{220}としたとき、下記式を満たすことを特徴とするプレス打抜き性が優れたリードフレーム、端子、コネクタ、スイッチ又はリレー用銅合金板。
[I{200}+I{311}]/I{220}<0.4
Fe: 0.2 to 0.4 mass%, P: 0.005 to 0.2 mass%, Zn: 0.01 to 10 mass%, consisting of the balance Cu and inevitable impurities, and further {200 on the plate surface } When the X-ray diffraction intensity from the plane is I {200}, the X-ray diffraction intensity from the {311} plane is I {311}, and the X-ray diffraction intensity from the {220} plane is I {220} A lead alloy, terminal, connector, switch or relay copper alloy plate having excellent press punching characteristics characterized by satisfying the formula.
[I {200} + I {311}] / I {220} <0.4
Fe:0.2〜0.4質量%、P:0.005〜0.2質量%、Sn:0.01〜5質量%を含み、残部Cuと不可避不純物からなり、さらに板表面における{200}面からのX線回折強度をI{200}、{311}面からのX線回折強度をI{311}、{220}面からのX線回折強度をI{220}としたとき、下記式を満たすことを特徴とするプレス打抜き性が優れたリードフレーム、端子、コネクタ、スイッチ又はリレー用銅合金板。
[I{200}+I{311}]/I{220}<0.4
Fe: 0.2-0.4% by mass, P: 0.005-0.2% by mass, Sn: 0.01-5% by mass, consisting of the balance Cu and inevitable impurities, and further {200 on the plate surface } When the X-ray diffraction intensity from the plane is I {200}, the X-ray diffraction intensity from the {311} plane is I {311}, and the X-ray diffraction intensity from the {220} plane is I {220} A lead alloy, terminal, connector, switch or relay copper alloy plate having excellent press punching characteristics characterized by satisfying the formula.
[I {200} + I {311}] / I {220} <0.4
Fe:0.2〜0.4質量%、P:0.005〜0.2質量%、Zn:0.01〜10質量%、Sn:0.01〜5質量%を含み、残部Cuと不可避不純物からなり、さらに板表面における{200}面からのX線回折強度をI{200}、{311}面からのX線回折強度をI{311}、{220}面からのX線回折強度をI{220}としたとき、下記式を満たすことを特徴とするプレス打抜き性が優れたリードフレーム、端子、コネクタ、スイッチ又はリレー用銅合金板。
[I{200}+I{311}]/I{220}<0.4
Fe: 0.2 to 0.4 mass%, P: 0.005 to 0.2 mass%, Zn: 0.01 to 10 mass%, Sn: 0.01 to 5 mass%, the remainder being inevitable with Cu X-ray diffraction intensity from {200} plane on the plate surface is I {200}, X-ray diffraction intensity from {311} plane is I {311}, X-ray diffraction intensity from {220} plane A lead alloy, terminal, connector, switch, or relay copper alloy plate excellent in press punching characteristics, characterized by satisfying the following formula when I {220}.
[I {200} + I {311}] / I {220} <0.4
B、C、S、Ca、V、Ga、Ge、Nb、Mo、Hf、Ta、Bi、Pbの各元素0.0001〜0.1質量%(ただし2種以上添加する場合は合計で0.1質量%以下)、Be、Mg、Al、Si、Ti、Cr、Mn、Co、Zr、Ag、Cd、In、Sb、Te、Auの各元素0.001〜1質量%のうちから選ばれた、1種又は2種以上の元素を合計で1質量%以下含有することを特徴とする請求項1〜3のいずれかに記載されたプレス打抜き性が優れたリードフレーム、端子、コネクタ、スイッチ又はリレー用銅合金板。0.0001 to 0.1% by mass of each element of B, C, S, Ca, V, Ga, Ge, Nb, Mo, Hf, Ta, Bi, and Pb (however, when two or more elements are added, the total amount is 0.00. 1% by mass or less), Be, Mg, Al, Si, Ti, Cr, Mn, Co , Zr, Ag, Cd, In, Sb, Te, Au, each element is selected from 0.001 to 1% by mass A lead frame, a terminal, a connector, and a switch excellent in press punchability according to any one of claims 1 to 3 , further comprising one or more elements in total of 1% by mass or less. Or copper alloy plate for relay.
JP13338999A 1999-05-13 1999-05-13 Copper alloy plate for lead frames, terminals, connectors, switches or relays with excellent press punchability Expired - Lifetime JP4056175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13338999A JP4056175B2 (en) 1999-05-13 1999-05-13 Copper alloy plate for lead frames, terminals, connectors, switches or relays with excellent press punchability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13338999A JP4056175B2 (en) 1999-05-13 1999-05-13 Copper alloy plate for lead frames, terminals, connectors, switches or relays with excellent press punchability

Publications (2)

Publication Number Publication Date
JP2000328158A JP2000328158A (en) 2000-11-28
JP4056175B2 true JP4056175B2 (en) 2008-03-05

Family

ID=15103610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13338999A Expired - Lifetime JP4056175B2 (en) 1999-05-13 1999-05-13 Copper alloy plate for lead frames, terminals, connectors, switches or relays with excellent press punchability

Country Status (1)

Country Link
JP (1) JP4056175B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4729680B2 (en) * 2000-12-18 2011-07-20 Dowaメタルテック株式会社 Copper-based alloy with excellent press punchability
CN1327016C (en) * 2002-05-14 2007-07-18 同和矿业株式会社 Copper base alloy with improved punchin and impacting performance and its preparing method
JP4041803B2 (en) * 2004-01-23 2008-02-06 株式会社神戸製鋼所 High strength and high conductivity copper alloy
FR2880358B1 (en) * 2005-01-06 2007-12-28 Trefimetaux COPPER ALLOYS AND CORRESPONDING LAMINATE PRODUCTS FOR ELECTRONIC APPLICATIONS
JP5098096B2 (en) * 2005-03-22 2012-12-12 Dowaメタルテック株式会社 Copper alloy, terminal or bus bar, and method for producing copper alloy
JP4781008B2 (en) * 2005-05-12 2011-09-28 株式会社神戸製鋼所 Modified cross-section copper alloy plate and manufacturing method thereof
EP2339038B8 (en) 2006-07-21 2017-01-11 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet for electric and electronic part
EP2388349B1 (en) 2006-10-02 2013-07-31 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Copper alloy sheet for electric and electronic parts
JP5017719B2 (en) * 2007-03-22 2012-09-05 Dowaメタルテック株式会社 Copper-based alloy plate excellent in press workability and method for producing the same
EP2695958B1 (en) 2007-08-07 2018-12-26 Kabushiki Kaisha Kobe Seiko Sho Copper alloy sheet
JP5260201B2 (en) * 2008-09-10 2013-08-14 三井住友金属鉱山伸銅株式会社 Highly conductive heat-resistant copper alloy and method for producing the same
JP5261691B2 (en) * 2008-10-30 2013-08-14 Dowaメタルテック株式会社 Copper-base alloy with excellent press punchability and method for producing the same
CN102076875B (en) * 2009-03-12 2013-06-26 三井住友金属矿山伸铜株式会社 Copper alloy containing phosphorus and iron and electrical member using the copper alloy
JP5822669B2 (en) 2011-02-18 2015-11-24 Jx日鉱日石金属株式会社 Copper foil for producing graphene and method for producing graphene using the same
JP5623309B2 (en) * 2011-02-24 2014-11-12 三菱伸銅株式会社 Modified cross-section copper alloy sheet excellent in press workability and manufacturing method thereof
KR20130136183A (en) * 2012-06-04 2013-12-12 박효주 Copper alloy element and the method for production same
JP6328380B2 (en) * 2013-05-31 2018-05-23 Jx金属株式会社 Copper alloy sheet with excellent conductivity and bending deflection coefficient
JP6078024B2 (en) * 2014-06-13 2017-02-08 Jx金属株式会社 Rolled copper foil for producing a two-dimensional hexagonal lattice compound and a method for producing a two-dimensional hexagonal lattice compound
CN104152742B (en) * 2014-09-04 2016-04-20 安徽鑫科新材料股份有限公司 A kind of high-performance tin-phosphor bronze line and production method thereof
CN104831114A (en) * 2015-05-12 2015-08-12 苏州列治埃盟新材料技术转移有限公司 Novel multicomponent environment-friendly lead-free alloy new material alloy bar and preparation method thereof
CN105886828B (en) * 2016-04-20 2017-11-07 湖北精益高精铜板带有限公司 A kind of microalloy copper foil and its processing method
CN116555773B (en) * 2023-05-31 2024-07-09 浙江惟精新材料股份有限公司 High-heat-conductivity high-electric-conductivity red copper alloy and preparation method thereof

Also Published As

Publication number Publication date
JP2000328158A (en) 2000-11-28

Similar Documents

Publication Publication Date Title
JP4056175B2 (en) Copper alloy plate for lead frames, terminals, connectors, switches or relays with excellent press punchability
KR101027840B1 (en) Copper alloy plate material for electrical/electronic equipment and process for producing the same
JP4729680B2 (en) Copper-based alloy with excellent press punchability
JP3800279B2 (en) Copper alloy sheet with excellent press punchability
JP3953357B2 (en) Copper alloy for electrical and electronic parts
JP4503696B2 (en) Electronic parts made of copper alloy sheets with excellent bending workability
JP2000080428A (en) Copper alloy sheet excellent in bendability
JP4157899B2 (en) High strength copper alloy sheet with excellent bending workability
JP2000087158A (en) Copper alloy for semiconductor lead frame
JP3797882B2 (en) Copper alloy sheet with excellent bending workability
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
JP2593107B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JP2000328157A (en) Copper alloy sheet excellent in bending workability
JP2000178670A (en) Copper alloy for semiconductor lead frame
KR100403187B1 (en) copper alloy for electronic materials with excellent surface special and manufacturing method therefor
JPH0784631B2 (en) Copper alloy for electronic devices
JP2001032029A (en) Copper alloy excellent in stress relaxation resistance, and its manufacture
JP5261691B2 (en) Copper-base alloy with excellent press punchability and method for producing the same
JP4166147B2 (en) Method for producing copper alloy plate for high-strength electrical and electronic parts
JP3800269B2 (en) High strength copper alloy with excellent stamping workability and silver plating
JP2006200042A (en) Electronic component composed of copper alloy sheet having excellent bending workability
JP4431741B2 (en) Method for producing copper alloy
JP3374037B2 (en) Copper alloy for semiconductor lead frame
JP3980808B2 (en) High-strength copper alloy excellent in bending workability and heat resistance and method for producing the same
JP2008024995A (en) Copper alloy plate for electrical/electronic component having excellent heat resistance

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071211

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

EXPY Cancellation because of completion of term