JP4781008B2 - Modified cross-section copper alloy plate and manufacturing method thereof - Google Patents

Modified cross-section copper alloy plate and manufacturing method thereof Download PDF

Info

Publication number
JP4781008B2
JP4781008B2 JP2005140425A JP2005140425A JP4781008B2 JP 4781008 B2 JP4781008 B2 JP 4781008B2 JP 2005140425 A JP2005140425 A JP 2005140425A JP 2005140425 A JP2005140425 A JP 2005140425A JP 4781008 B2 JP4781008 B2 JP 4781008B2
Authority
JP
Japan
Prior art keywords
copper alloy
section
plate
mass
deformed cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005140425A
Other languages
Japanese (ja)
Other versions
JP2006316320A (en
Inventor
良一 尾▼崎▲
洋一 井上
幸男 杉下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005140425A priority Critical patent/JP4781008B2/en
Publication of JP2006316320A publication Critical patent/JP2006316320A/en
Application granted granted Critical
Publication of JP4781008B2 publication Critical patent/JP4781008B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、リードフレームや端子・コネクタなどの電気・電子部品の製造に使用される、板幅方向に厚さの異なる異形断面銅合金板及びその製造方法に関する。   The present invention relates to a modified cross-section copper alloy plate having a thickness different in the plate width direction and a method for manufacturing the same, which are used for manufacturing electrical / electronic components such as lead frames, terminals and connectors.

異形断面銅合金板は大電流部材に多く使用されることから、熱放散性と通電性に優れることが必要であり、その指標として高導電性が重要視されている。また、半導体部品への組み立て工程等の熱履歴に耐える必要があることから高耐熱性が要求され、さらに実使用上において曲げ加工性が要求されている。
そのため、異形断面銅合金板には、従来よりCu−Fe−P系の銅合金が多く用いられ、例えばC19210合金(Fe:0.05〜0.15質量%、P:0.025〜0.040質量%)は、銅合金の中でも導電性と耐熱性に優れてることから、標準的な合金として多く使用されている。
Since a deformed cross-section copper alloy plate is often used for a large current member, it is necessary to have excellent heat dissipation and electrical conductivity, and high conductivity is regarded as important as an index. In addition, high heat resistance is required because it is necessary to withstand a heat history such as an assembly process for a semiconductor component, and bending workability is required in actual use.
For this reason, Cu-Fe-P-based copper alloys have been conventionally used for deformed cross-section copper alloy plates. For example, C19210 alloy (Fe: 0.05 to 0.15 mass%, P: 0.025 to 0.005). 040% by mass) is frequently used as a standard alloy because it is excellent in conductivity and heat resistance among copper alloys.

異形断面銅合金板は、鋳塊から板幅方向に一定の厚さを有する平板を製造する平板加工工程と、その平板を用いて板幅方向に厚さの異なる異形断面板を製造する異形加工工程により製造される。平板加工工程は、鋳塊の均熱、熱間圧延、冷間圧延、焼鈍、続いて必要に応じて行われる冷間圧延の各工程からなる。異形加工工程は、平板加工工程で製造された平板を必要幅にスリットした後に行われ、冷間加工、焼鈍、仕上げ冷間加工、必要に応じて行われる矯正の各工程からなる。冷間加工の中間で焼鈍を行わず、仕上げ冷間加工後、焼鈍を行うこともある。なお、異形加工工程における冷間加工は、異形ロールによる冷間圧延や異形金型による冷間鍛造等により行われ、異なる加工方法が組み合わされることもある。   The modified cross-section copper alloy plate is a flat plate processing step for manufacturing a flat plate having a constant thickness in the plate width direction from the ingot, and a modified processing for manufacturing a different cross-section plate having a different thickness in the plate width direction using the flat plate. Manufactured by a process. The flat plate processing step includes each step of soaking soaking, hot rolling, cold rolling, annealing, and cold rolling performed as necessary. The deforming process is performed after slitting the flat plate manufactured in the flat plate processing process to a necessary width, and includes cold processing, annealing, finishing cold processing, and correction processes performed as necessary. In some cases, annealing is not performed in the middle of cold working, and annealing is performed after finishing cold working. Note that the cold working in the deforming process is performed by cold rolling using a deformed roll, cold forging using a deformed die, or the like, and different processing methods may be combined.

異形断面銅合金板には、耐熱性が要求されることから、上記のように、異形加工工程の中間又は最終で焼鈍が施されることが通常であり、これにより異形加工工程で導入された転位を開放して耐熱性を確保することができる。しかし、この焼鈍工程を入れることで、製造コストが大幅アップとなっていた。
このような状況から、特許文献1に記載されたように、焼鈍工程を含まない異形加工工程が提案されている。この特許文献1には、半導体素子製造プロセスで加熱されても再結晶化による軟化が生じにくいと記載されているが、その点は実証されてない。
Since the cross-section copper alloy sheet is required to have heat resistance, as described above, it is usually annealed in the middle or at the end of the deforming process, which was introduced in the deforming process. Dislocations can be released to ensure heat resistance. However, the production cost has been significantly increased by including this annealing step.
Under such circumstances, as described in Patent Document 1, a deforming process that does not include an annealing process has been proposed. This Patent Document 1 describes that softening due to recrystallization hardly occurs even when heated in a semiconductor element manufacturing process, but this point has not been proved.

特開2003−136203号公報JP 2003-136203 A

一方、本発明者らが、Cu−0.10Fe−0.03Pの組成を有する銅合金を用いて、異形加工工程における焼鈍工程の有無と耐熱性の関係を調べたところ、焼鈍工程を省略することにより耐熱性が大きく劣化することが分かった。
図1は、1つは後述する実施例2に記載した方法(焼鈍抜き)で、もう1つは異形ロールによる冷間圧延途中で焼鈍を行い(焼鈍有り;従来工程)、それぞれ実施例2と同じ断面形状の異形断面条を製造し、各薄肉部から試料を切り出し、実施例1に示す耐熱性試験を行い、その結果をグラフ化したものである。なお、焼鈍抜きのものは薄肉部の冷間加工率が80%、焼鈍有りのものは冷間加工率が25%(焼鈍後の冷間加工率)であった。図1をみると、耐熱温度(ビッカース硬さがHv100になる温度)が、焼鈍有りの異形断面条で500℃であるのに対し、焼鈍抜きの異形断面条は340℃に低下している。
On the other hand, when the present inventors investigated the relationship between the presence / absence of the annealing step in the deforming process and the heat resistance using a copper alloy having a composition of Cu-0.10Fe-0.03P, the annealing step was omitted. It was found that the heat resistance deteriorates greatly.
FIG. 1 shows one method (annealing) described in Example 2 described later, and the other is annealing in the middle of cold rolling with a deformed roll (with annealing; conventional process). An irregular cross-section having the same cross-sectional shape is manufactured, a sample is cut out from each thin portion, the heat resistance test shown in Example 1 is performed, and the result is graphed. In the case of the material without annealing, the cold work rate of the thin-walled portion was 80%, and for the material with annealing, the cold work rate was 25% (cold work rate after annealing). Referring to FIG. 1, the heat resistant temperature (the temperature at which the Vickers hardness becomes Hv100) is 500 ° C. in the deformed section strip with annealing, whereas the deformed section strip without annealing is lowered to 340 ° C.

本発明は、異形加工工程の中間又は最終で一度も焼鈍を行わずに異形断面銅合金板を製造するに当たり、高耐熱性を有し、併せて高導電性及び優れた曲げ加工性を有する異形断面銅合金板を得ることを目的とする。   The present invention has a high heat resistance, a high conductivity and an excellent bending workability in producing a deformed cross-section copper alloy sheet without annealing even once in the intermediate process or the final process. It aims at obtaining a cross-sectional copper alloy plate.

本発明に係る異形断面銅合金板は、Fe:0.03〜0.3質量%、P:0.01〜0.1質量%を含有し、FeとPとの質量比であるFe/Pが2.0〜4.0であり、かつSn:0.005〜0.5質量%を含有し、残部銅及び不可避不純物からなることを特徴とし、その製造方法は、銅合金鋳塊から板幅方向に一定の厚さを有する銅合金平板を製造する平板加工工程と、その銅合金平板を冷間加工して板幅方向に厚さの異なる異形断面銅合金板を製造する異形加工工程からなり、前記異形加工工程において一度も焼鈍することなく異形断面銅合金板を得ることを特徴とする。前記銅合金は、さらにZn:0.005〜0.5%を含有することができる。また、異形加工工程において薄肉部の冷間加工率を30〜90%とすることが望ましい。
なお、本発明でいう銅合金板とはコイル形状のもの(いわゆる条)を含む。
The deformed cross-section copper alloy sheet according to the present invention contains Fe: 0.03-0.3 mass%, P: 0.01-0.1 mass%, and Fe / P which is a mass ratio of Fe and P. Is 2.0 to 4.0 and contains Sn: 0.005 to 0.5% by mass, and is composed of the remaining copper and inevitable impurities. From a flat plate processing step of manufacturing a copper alloy flat plate having a certain thickness in the width direction, and a deforming step of cold processing the copper alloy flat plate to manufacture a deformed cross-section copper alloy plate having a different thickness in the plate width direction. Thus, it is characterized in that a deformed cross-section copper alloy sheet is obtained without annealing even once in the deformed processing step. The copper alloy may further contain Zn: 0.005 to 0.5%. Moreover, it is desirable that the cold working rate of the thin-walled portion is 30 to 90% in the deforming step.
In addition, the copper alloy plate as referred to in the present invention includes a coil-shaped plate (so-called strip).

本発明によれば、異形加工工程の中間又は最終で一度も焼鈍を行わずに、高耐熱性と、高導電性及び曲げ加工性を併せもつ異形断面銅合金板を安価に製造することができる。   According to the present invention, a deformed cross-section copper alloy sheet having both high heat resistance, high conductivity, and bending workability can be manufactured at low cost without performing annealing once in the middle or at the end of the deforming process. .

以下、本発明に係る異形断面銅合金板及びその製造方法について、具体的に説明する。
まず、本発明に係る銅合金の組成を上記のように限定した理由を説明する。
(Fe:0.03〜0.3質量%)
Feは、銅合金中に微細なFe−P析出物粒子として析出して、耐熱性を向上させるのに必要な元素である。0.03%未満の含有では微細な析出物粒子が不足するため、耐熱性向上効果を有効に発揮させるには、0.03%以上の含有が必要である。但し、0.3%を超えて過剰に含有させると、高導電率化が達成できない。従って、Feの含有量は0.03〜0.3質量%の範囲とする。なお、さらに高導電率を追求するためには、Feの含有量は0.2質量%以下とすることがより好ましい。
Hereinafter, the modified cross-section copper alloy plate and the manufacturing method thereof according to the present invention will be specifically described.
First, the reason why the composition of the copper alloy according to the present invention is limited as described above will be described.
(Fe: 0.03-0.3 mass%)
Fe is an element necessary for improving heat resistance by precipitating as fine Fe—P precipitate particles in a copper alloy. If the content is less than 0.03%, fine precipitate particles are insufficient. Therefore, in order to effectively exhibit the effect of improving heat resistance, the content needs to be 0.03% or more. However, if the content exceeds 0.3%, an increase in conductivity cannot be achieved. Therefore, the Fe content is in the range of 0.03 to 0.3 mass%. In order to further increase the electrical conductivity, the Fe content is more preferably 0.2% by mass or less.

(P:0.01〜0.1質量%)
Pは、脱酸作用を有する他、上記Feと析出物を形成して、銅合金の耐熱性を向上させるのに必要な元素である。0.01%未満の含有では微細な析出物粒子が不足するため、耐熱性向上効果を有効に発揮させるには、0.01%以上の含有が必要である。但し、0.1%を超えて過剰に含有させると、導電率が低下し、高導電率化が達成できない。また、熱間加工性も低下する。従って、Pの含有量は0.01〜0.1質量%の範囲とする。なお、さらに高導電率を追求するためには、Pの含有量は0.07質量%以下とすることがより好ましい。
(P: 0.01 to 0.1% by mass)
P is an element necessary for improving the heat resistance of the copper alloy by forming a precipitate with the Fe in addition to having a deoxidizing action. If the content is less than 0.01%, fine precipitate particles are insufficient. Therefore, the content needs to be 0.01% or more in order to effectively exhibit the heat resistance improvement effect. However, if it exceeds 0.1% and is contained excessively, the electrical conductivity is lowered and the increase in electrical conductivity cannot be achieved. Moreover, hot workability also falls. Therefore, the P content is in the range of 0.01 to 0.1% by mass. In order to further increase the electrical conductivity, the P content is more preferably 0.07% by mass or less.

(Fe/P:2.0〜4.0)
微細な析出物粒子を有効に析出させ、高導電率化と高耐熱性を実現するためには、FeとPの個々の含有範囲だけではなく、FeとPとの質量比であるFe/Pも併せて規定する必要がある。Fe/Pが2.0未満では、Pが過剰となって、銅マトリックスの中に固溶して、導電率が低下し、高導電率化が達成できない。一方、Fe/Pが4.0を超えた場合、逆にFeが過剰となって、単体のFe粒子として粗大に生成するため、耐熱性が低下する。従って、Fe/Pは2.0〜4.0の範囲とする。なお、さらに高導電率を追求するためには、Fe/Pは2.5〜3.5の範囲とすることがより好ましい。なお、Fe/Pを上記に規定することは、電子部品の接合に用いられるはんだや、電気接点の信頼性確保に用いられるSnめっきの耐熱密着性を改善し、熱剥離を抑制することにも有効である。
(Fe / P: 2.0 to 4.0)
In order to effectively precipitate fine precipitate particles and achieve high conductivity and high heat resistance, not only the individual content ranges of Fe and P but also Fe / P which is the mass ratio of Fe and P Must also be specified. When Fe / P is less than 2.0, P becomes excessive and is dissolved in the copper matrix, resulting in a decrease in conductivity and a high conductivity cannot be achieved. On the other hand, when Fe / P exceeds 4.0, on the contrary, Fe becomes excessive and coarsely generated as single Fe particles, resulting in a decrease in heat resistance. Therefore, Fe / P is set to a range of 2.0 to 4.0. In order to further increase the electrical conductivity, Fe / P is more preferably in the range of 2.5 to 3.5. In addition, prescribing Fe / P above also improves the heat-resistant adhesion of solder used for joining electronic components and Sn plating used to ensure the reliability of electrical contacts, and also suppresses thermal delamination. It is valid.

(Sn:0.005〜0.5質量%)
Snは、銅合金の耐熱性を向上させるのに必要な元素であるが、特にFe、Pとの共存において、極微量で大きく耐熱性を向上する効果を有する。この効果を有効に発揮させるには、0.005%以上含有することが好ましい。しかし、0.5%を超えて過剰に含有すると、導電率が大きく低下し、高導電率化が達成できない。従って、Snの含有量は0.005〜0.5質量%の範囲とする。なお、さらに高導電率を追求するためには、Snの含有量は0.2質量%以下とすることがより好ましい。
(Sn: 0.005 to 0.5 mass%)
Sn is an element necessary for improving the heat resistance of a copper alloy, but has an effect of greatly improving heat resistance in a very small amount, particularly in the coexistence with Fe and P. In order to exhibit this effect effectively, it is preferable to contain 0.005% or more. However, if it exceeds 0.5% and is contained excessively, the electrical conductivity is greatly reduced, and it is not possible to achieve high electrical conductivity. Therefore, the Sn content is in the range of 0.005 to 0.5 mass%. In order to further increase the electrical conductivity, the Sn content is more preferably 0.2% by mass or less.

(Zn:0.005〜0.5%)
Znは電子部品の接合に用いられるはんだや、電気接点の信頼性確保に用いられるSnめっきの耐熱密着性を改善し、熱剥離を抑制するのに有効な元素である。この様な効果を有効に発揮させるには、0.005%以上含有することが好ましい。しかし、0.5%を超えて過剰に含有すると、却ってはんだや溶融Snの濡れ広がり性を劣化させるだけでなく、導電率を低下させる。従って、Znは0.005〜0.5質量%の範囲で、選択的に含有させる。なお、さらに高導電率を追求するためには、Znの含有量は0.2質量%以下とすることがより好ましい。
(Zn: 0.005 to 0.5%)
Zn is an element effective in improving the heat-resistant adhesion of solder used for joining electronic components and Sn plating used for ensuring the reliability of electrical contacts and suppressing thermal delamination. In order to exhibit such an effect effectively, it is preferable to contain 0.005% or more. However, if it exceeds 0.5% and is contained excessively, it not only deteriorates the wetting and spreading properties of solder and molten Sn, but also decreases the conductivity. Therefore, Zn is selectively contained in the range of 0.005 to 0.5 mass%. In order to further increase the electrical conductivity, the Zn content is more preferably 0.2% by mass or less.

その他の、例えばNi,Co,Mnなどの元素は不純物元素であり、粗大な晶・析出物が生成し易くなる他、導電率の低下も引き起こし易くなる。従って、総量で0.5質量%以下の極力少ない含有量にすることが好ましい。この他、銅合金中に微量に含まれているB、C、Na、S、Ca、As、Se、Cd、In、Sb、Pb、Bi、MM(ミッシュメタル)等の元素も、導電率の低下を引き起こし易くなるので、これらの総量で0.1質量%以下の極力少ない含有量に抑えることが好ましい。特に、As、Cd、Pbは環境面において有害な元素であることから、それぞれ単独で0.005%以下とすることが好ましく、さらには0.001%以下とすることがより好ましい。   Other elements such as Ni, Co, and Mn are impurity elements, which easily generate coarse crystals / precipitates, and easily cause a decrease in conductivity. Therefore, it is preferable to make the total content as small as possible 0.5% by mass or less. In addition, elements such as B, C, Na, S, Ca, As, Se, Cd, In, Sb, Pb, Bi, and MM (Misch metal) contained in a small amount in the copper alloy also have conductivity. Since it tends to cause a decrease, it is preferable to suppress the total content to 0.1% by mass or less as much as possible. In particular, As, Cd, and Pb are elements harmful to the environment, and each is preferably 0.005% or less, and more preferably 0.001% or less.

次に、本発明に係る異形断面銅合金板の製造方法について説明する。この製造方法は、鋳塊から板幅方向に一定の厚さを有する平板を製造する平板加工工程と、その平板を用いて板幅方向に厚さの異なる異形断面板を製造する異形加工工程からなる。
平板加工工程では、前記組成を有する銅合金鋳塊を加熱又は均質化熱処理した後に熱間圧延し、熱延後の板を水冷する。その後、冷間圧延を行い、板幅方向に一定の厚さを有する銅合金平板を製作し、焼鈍を行う。この焼鈍は、再結晶を伴うものと伴わないもののいずれでもよい。
Next, the manufacturing method of the irregular cross-section copper alloy plate which concerns on this invention is demonstrated. This manufacturing method includes a flat plate processing step of manufacturing a flat plate having a certain thickness in the plate width direction from the ingot, and a deforming step of manufacturing a modified cross-section plate having a different thickness in the plate width direction using the flat plate. Become.
In the flat plate processing step, the copper alloy ingot having the above composition is heated or homogenized and then hot-rolled, and the hot-rolled plate is water-cooled. Thereafter, cold rolling is performed to produce a copper alloy flat plate having a certain thickness in the plate width direction, and annealing is performed. This annealing may be performed with or without recrystallization.

なお、この段階で焼鈍を行う理由は2点ある。1点目は、固溶状態にあるFeとPを微細なFe-P析出物として析出させ、高導電性と高耐熱性を達成させるためである。2点目は、異形加工工程の前に焼鈍することにより、異形断面板となった後の耐熱性を確保すると同時に曲げ加工性を確保するためである。耐熱性と曲げ加工性は材料に加えられた冷間加工率が高くなるほど低下することから、この時点で焼鈍を行わない場合は耐熱性と曲げ加工性が大きく低下することとなる。焼鈍後の時点で、結晶粒の大きさ(板幅方向に測定した平均結晶粒径)は50μm以下であることが好ましく、さらには20μm以下であることがより好ましい。結晶粒の大きさが50μmを越えると異形断面板となった後の曲げ加工性が低下するとともに、耐熱性の低下要因にもなる。   There are two reasons for annealing at this stage. The first point is to precipitate Fe and P in a solid solution state as fine Fe-P precipitates, thereby achieving high conductivity and high heat resistance. The second point is to ensure the bending workability at the same time as securing the heat resistance after forming the deformed cross-section plate by annealing before the deforming process. Since heat resistance and bending workability decrease as the cold working rate applied to the material increases, the heat resistance and bending workability are greatly reduced if annealing is not performed at this point. At the time after annealing, the size of the crystal grains (average crystal grain size measured in the plate width direction) is preferably 50 μm or less, and more preferably 20 μm or less. If the size of the crystal grains exceeds 50 μm, the bending workability after forming a deformed cross-section plate is lowered, and the heat resistance is also reduced.

異形断面加工工程では、焼鈍後の平板を冷間加工することにより、板幅方向に厚さの異なる異形断面銅合金板を成形する。この冷間加工は、異形ロールによる冷間圧延や異形金型による冷間鍛造等、種々の加工方法で行うことができ、異なる加工方法を組み合わせて行うこともできる。異形断面加工においては、薄肉部の冷間加工率を90%以下とするのが望ましく、さらに85%以下とすることがより望ましい。これは、焼鈍後の冷間加工率が高くなるほど、耐熱性と曲げ加工性がしだいに低下するためである。また、薄肉部の冷間加工率は30%以上、望ましくは50%以上である。これは、30%未満ではSn無添加でも耐熱性に不足はなく、50%以上でSn添加による耐熱性改善効果が大きくなるからである。なお、電気・電子部品用の異形断面銅合金板の薄肉部と厚肉部の厚さ比は、ほぼ1:1.5〜6程度が一般的である。   In the modified cross-section processing step, a deformed cross-section copper alloy plate having a different thickness in the plate width direction is formed by cold-working the annealed flat plate. This cold working can be performed by various processing methods such as cold rolling using a deformed roll or cold forging using a deformed die, and can also be performed by combining different processing methods. In the modified cross-section processing, it is desirable that the cold working rate of the thin portion is 90% or less, and more desirably 85% or less. This is because heat resistance and bending workability gradually decrease as the cold work rate after annealing increases. Further, the cold working rate of the thin wall portion is 30% or more, preferably 50% or more. This is because if it is less than 30%, there is no shortage of heat resistance even if Sn is not added, and if it is 50% or more, the effect of improving heat resistance by adding Sn is increased. In general, the thickness ratio of the thin-walled portion to the thick-walled portion of the odd-shaped cross-section copper alloy plate for electric / electronic parts is about 1: 1.5-6.

以下、本発明の実施例を説明する。この実施例では、Cu−0.10Fe−0.03P−0.03Snの組成を有する銅合金を用いて板幅方向に一定の厚さを有する銅合金平条を製作し、この平条に対し種々の冷間加工率で異形断面加工を行い、得られた各異形断面銅合金条の耐熱性試験を行った。
具体的には、溶解炉にて上記組成の銅合金鋳塊を製作し、900℃で熱間圧延し厚さが15mmで水冷した。その後、この圧延板表面を面削して酸化スケールを除去した後、厚さ2mmまで冷間圧延して板幅方向に一定の厚さを有する銅合金平条を製作し、再結晶焼鈍を行った後、異形ロールによる冷間圧延により、種々の冷間加工率(薄肉部の冷間加工率15〜90%)で異形断面銅合金条を製造した。
Examples of the present invention will be described below. In this embodiment, a copper alloy flat strip having a certain thickness in the plate width direction is manufactured using a copper alloy having a composition of Cu-0.10Fe-0.03P-0.03Sn. Various cross-sections were processed at various cold working rates, and heat resistance tests were performed on the obtained cross-section copper alloy strips.
Specifically, a copper alloy ingot having the above composition was produced in a melting furnace, hot-rolled at 900 ° C., and water-cooled to a thickness of 15 mm. Then, after chamfering the surface of the rolled plate to remove the oxide scale, it is cold-rolled to a thickness of 2 mm to produce a copper alloy flat strip having a certain thickness in the plate width direction, and recrystallization annealing is performed. After that, deformed cross-section copper alloy strips were manufactured at various cold work rates (cold work rate of 15 to 90% for thin-walled portions) by cold rolling with a deformed roll.

耐熱性試験は、各異形断面銅合金条の薄肉部から試料を切り出し、種々の異なる温度で5分間の加熱を行い、その後ビッカース硬さHvを測定した。ビッカース硬さの測定は、マイクロビッカース硬度計にて、4.9N(0.5kg)の荷重を加えて行なった。
図2は、耐熱性試験の結果をグラフ化したものである。図2から分かるように、冷間加工率が高くなるにつれて耐熱温度(ビッカース硬さがHv100になる温度)が低下している。しかし、図2のグラフから求めた耐熱温度は、冷間加工率80%のものでは440℃であり、Snを含まない従来の銅合金条(図1参照)の340℃と比べ、100℃アップしている。
In the heat resistance test, a sample was cut out from the thin-walled portion of each irregular cross-section copper alloy strip, heated at various different temperatures for 5 minutes, and then measured for Vickers hardness Hv. The measurement of Vickers hardness was performed by applying a load of 4.9 N (0.5 kg) with a micro Vickers hardness tester.
FIG. 2 is a graph showing the results of the heat resistance test. As can be seen from FIG. 2, the heat resistant temperature (the temperature at which the Vickers hardness becomes Hv100) decreases as the cold working rate increases. However, the heat-resistant temperature obtained from the graph of FIG. 2 is 440 ° C. when the cold work rate is 80%, which is 100 ° C. higher than the 340 ° C. of the conventional copper alloy strip not containing Sn (see FIG. 1). is doing.

この実施例では、表1に示す各組成の銅合金を用いて板幅方向に一定の厚さを有する銅合金平条を製作し、その後異形断面加工を行って異形断面銅合金条を製造し、各特性を評価した。
具体的には、実施例1と同じプロセスで、厚さ2mmの銅合金平条を製作し、再結晶焼鈍を行った後、異形ロールによる冷間圧延により、下記寸法の異形断面銅合金条を製造した。なお、冷間加工率は薄肉部が80%、厚肉部が25%である。
・薄肉部の厚さ:0.40mm
・厚肉部の厚さ:1.50mm
・薄肉部の幅:30mm
・厚肉部の幅:25mm
In this example, a copper alloy flat strip having a certain thickness in the sheet width direction is manufactured using the copper alloys having the respective compositions shown in Table 1, and then a modified cross-section copper alloy strip is manufactured by performing a modified cross-section processing. Each characteristic was evaluated.
Specifically, a copper alloy strip having a thickness of 2 mm is manufactured by the same process as in Example 1, and after recrystallization annealing, a deformed section copper alloy strip having the following dimensions is formed by cold rolling with a deformed roll. Manufactured. The cold working rate is 80% for the thin portion and 25% for the thick portion.
・ Thin part thickness: 0.40mm
-Thick part thickness: 1.50 mm
・ Width of thin part: 30mm
-Thick part width: 25mm

このようにして得た異形断面銅合金条の薄肉部から試料を切り出し、実施例1と同じ要領で耐熱性試験を行い、その結果をグラフ化して耐熱温度(ビッカース硬さがHv100になる温度)を求め、下記要領で導電率の測定、及び曲げ加工性、はんだ耐熱密着性の試験を行った。これらの結果を表1に示す。
導電率は、ミーリングにより、幅10mm×長さ300mmの短冊状の試験片を加工し、ダブルブリッジ式抵抗測定装置により電気抵抗を測定して平均断面積法により算出した。
A sample was cut out from the thin-walled portion of the deformed cross-section copper alloy strip obtained in this way, a heat resistance test was performed in the same manner as in Example 1, the result was graphed, and the heat resistance temperature (temperature at which the Vickers hardness becomes Hv100). The electrical conductivity was measured and the bending workability and the solder heat-resistant adhesion test were performed in the following manner. These results are shown in Table 1.
The electrical conductivity was calculated by an average cross-sectional area method by processing a strip-shaped test piece having a width of 10 mm and a length of 300 mm by milling, measuring the electrical resistance with a double bridge resistance measuring device.

曲げ加工性は、伸銅協会標準JBMA−T307に規定されるW曲げ試験[R(曲げ半径)/t(板厚)=2,曲げ軸が圧延方向に平行]を行い、曲げ部の表面観察により、5段階(A:しわなし,B:しわ小,C:しわ大,D:割れ小,E:割れ大)で評価した。A〜Cが合格レベルで、D〜Eは不合格レベルである。
はんだ耐熱密着性は、試料をSn−40%Pbはんだに245℃×5秒間浸漬して試料表面にはんだを接合し、本試料を150℃×500hr加熱後した後、180°曲げ戻し(曲げR=2mm)を行い、曲げの内側のはんだの密着性を3段階(○:剥離なし,△:微小剥離,×:全面剥離)で評価した。
The bending workability is determined by conducting a W bending test [R (bending radius) / t (sheet thickness) = 2, bending axis parallel to rolling direction) defined in JBMA-T307 standard of copper elongation association, and observing the surface of the bending portion. Thus, it was evaluated in five stages (A: no wrinkle, B: small wrinkle, C: large wrinkle, D: small crack, E: large crack). A to C are acceptable levels, and D to E are unacceptable levels.
The solder heat-resistant adhesion is determined by immersing the sample in Sn-40% Pb solder at 245 ° C. for 5 seconds to join the solder to the sample surface, heating the sample at 150 ° C. for 500 hours, and then bending back 180 ° (bending R = 2 mm), and the adhesion of the solder inside the bend was evaluated in three stages (◯: no peeling, Δ: minute peeling, ×: whole surface peeling).

Figure 0004781008
Figure 0004781008

表1に示すように、本発明例を含むNo.1〜10は、Sn含有量の不足するNo.11〜13、及びFe,P含有量の不足するNo.15,17,19に比べて耐熱性が優れ、Sn含有量が過剰なNo.14、及びFe,P含有量が過剰なNo.16,18,20に比べて高い導電率を有し、さらに、Fe/P比が2〜4の範囲内にないNo.21,22に比べて導電率が優れ、はんだ耐熱密着性も優れている。また、Fe,P含有量が過剰なNo.16,18,20に比べて曲げ加工性が優れている。 As shown in Table 1, No. including invention sample Nos. 1-10 are Nos. With insufficient Sn content. 11-13 and No. with insufficient Fe and P contents. No. 15, 17 and 19 are superior in heat resistance and have an excessive Sn content. 14 and No. 14 with excessive Fe and P contents. No. 16, which has a higher electrical conductivity than those of Nos. 16, 18, and 20 and whose Fe / P ratio is not within the range of 2 to 4. Compared to 21 and 22, the conductivity is excellent, and the solder heat-resistant adhesion is also excellent. In addition, when the Fe and P contents are excessive, Bending workability is superior to 16,18,20.

従来組成の異形断面銅合金条を用いた耐熱性試験の結果を示すグラフである。It is a graph which shows the result of the heat resistance test using the irregular cross-section copper alloy strip of the conventional composition. 本発明の組成の異形断面銅合金条を用いた耐熱性試験の結果を示すグラフである。It is a graph which shows the result of the heat resistance test using the irregular cross-section copper alloy strip of the composition of the present invention.

Claims (5)

Fe:0.03〜0.3質量%、P:0.01〜0.1質量%を含有し、FeとPとの質量比であるFe/Pが2.0〜4.0であり、かつSn:0.005〜0.5質量%及びZn:0.005〜0.5%を含有し、残部銅及び不可避不純物からなり、Fe−Pの析出焼鈍後、冷間加工により板幅方向に厚さの異なる異形断面加工が施され、かつ異形断面加工工程の中間又は最終で一度も焼鈍が行われていないことを特徴とする異形断面銅合金板。 Fe: 0.03-0.3 mass%, P: 0.01-0.1 mass%, Fe / P which is a mass ratio of Fe and P is 2.0-4.0, And Sn: 0.005-0.5% by mass and Zn: 0.005-0.5% , consisting of the balance copper and inevitable impurities, after the precipitation annealing of Fe-P, by cold working, the plate width direction A deformed cross-section copper alloy sheet , which is subjected to deformed cross-section processing having a different thickness and has not been annealed once in the middle or at the end of the deformed cross-section processing step . 薄肉部の冷間加工率が30〜90%であることを特徴とする請求項1に記載された異形断面銅合金板。 The deformed cross-section copper alloy sheet according to claim 1 , wherein the cold working rate of the thin wall portion is 30 to 90%. 銅合金鋳塊から板幅方向に一定の厚さを有する銅合金平板を製造する平板加工工程と、その銅合金平板を冷間加工して板幅方向に厚さの異なる異形断面銅合金板を製造する異形加工工程からなり、前記銅合金の組成が、Fe:0.03〜0.3質量%、P:0.01〜0.1質量%を含有し、FeとPとの質量比であるFe/Pが2.0〜4.0であり、かつSn:0.005〜0.5質量%及びZn:0.005〜0.5%を含有し、残部銅及び不可避不純物からなり、前記平板加工工程でFe−Pの析出焼鈍後、前記異形加工工程において一度も焼鈍することなく異形断面銅合金板を得ることを特徴とする異形断面銅合金板の製造方法。 A flat plate processing step of manufacturing a copper alloy flat plate having a certain thickness in the plate width direction from the copper alloy ingot, and a deformed cross-section copper alloy plate having a different thickness in the plate width direction by cold working the copper alloy flat plate It consists of a deforming process to be manufactured, and the composition of the copper alloy contains Fe: 0.03-0.3 mass%, P: 0.01-0.1 mass%, and the mass ratio of Fe and P A certain Fe / P is 2.0 to 4.0 and contains Sn: 0.005 to 0.5% by mass and Zn: 0.005 to 0.5% , and consists of the balance copper and inevitable impurities, A method for producing a deformed cross-section copper alloy plate , wherein after the precipitation annealing of Fe-P in the flat plate processing step, a deformed cross-section copper alloy plate is obtained without being annealed even once in the deformed processing step. 前記異形加工工程において、異形断面銅合金板の薄肉部の冷間加工率を30〜90%とすることを特徴とする請求項3に記載された異形断面銅合金板の製造方法。 4. The method for producing a deformed cross-section copper alloy plate according to claim 3 , wherein in the deforming step, the cold work rate of the thin portion of the deformed cross-section copper alloy plate is set to 30 to 90%. 請求項3又は4に記載された方法により製造されたことを特徴とする異形断面銅合金板。 A deformed cross-section copper alloy sheet manufactured by the method according to claim 3 or 4 .
JP2005140425A 2005-05-12 2005-05-12 Modified cross-section copper alloy plate and manufacturing method thereof Expired - Fee Related JP4781008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005140425A JP4781008B2 (en) 2005-05-12 2005-05-12 Modified cross-section copper alloy plate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005140425A JP4781008B2 (en) 2005-05-12 2005-05-12 Modified cross-section copper alloy plate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006316320A JP2006316320A (en) 2006-11-24
JP4781008B2 true JP4781008B2 (en) 2011-09-28

Family

ID=37537248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005140425A Expired - Fee Related JP4781008B2 (en) 2005-05-12 2005-05-12 Modified cross-section copper alloy plate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4781008B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5623309B2 (en) * 2011-02-24 2014-11-12 三菱伸銅株式会社 Modified cross-section copper alloy sheet excellent in press workability and manufacturing method thereof
JP6230087B2 (en) * 2011-12-09 2017-11-15 株式会社神戸製鋼所 Copper alloy for lead frames with excellent bare bondability
CN105886828B (en) * 2016-04-20 2017-11-07 湖北精益高精铜板带有限公司 A kind of microalloy copper foil and its processing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58130549A (en) * 1982-01-29 1983-08-04 Furukawa Electric Co Ltd:The Copper alloy for lead material of semiconductor equipment
JPS62267456A (en) * 1986-05-13 1987-11-20 Kobe Steel Ltd Manufacture of high strength copper alloy for lead frame having high electric conductivity
JPH03285053A (en) * 1990-03-30 1991-12-16 Furukawa Electric Co Ltd:The Production of copper alloy for electronic equipment
JPH04354A (en) * 1990-04-16 1992-01-06 Furukawa Electric Co Ltd:The Production of high-conductivity copper alloy rolled material
JP4056175B2 (en) * 1999-05-13 2008-03-05 株式会社神戸製鋼所 Copper alloy plate for lead frames, terminals, connectors, switches or relays with excellent press punchability
JP4392104B2 (en) * 2000-03-31 2009-12-24 株式会社神戸製鋼所 Copper alloy for electronic / electrical parts and its strip material, deformed section strip material, and lead frame formed from the strip material or deformed section strip material
JP3798299B2 (en) * 2001-11-02 2006-07-19 三菱伸銅株式会社 Method for manufacturing deformed strip and method for manufacturing lead frame

Also Published As

Publication number Publication date
JP2006316320A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
JP4439447B2 (en) Manufacturing method of irregular cross-section copper alloy sheet
JP4566020B2 (en) Copper alloy sheet for electrical and electronic parts with low anisotropy
JP4357536B2 (en) Copper alloy sheet for electrical and electronic parts with excellent strength and formability
JP3953357B2 (en) Copper alloy for electrical and electronic parts
JP4441467B2 (en) Copper alloy with bending workability and stress relaxation resistance
JP4294196B2 (en) Copper alloy for connector and manufacturing method thereof
TWI465591B (en) Cu-Ni-Si alloy and its manufacturing method
JP3962751B2 (en) Copper alloy sheet for electric and electronic parts with bending workability
JP4503696B2 (en) Electronic parts made of copper alloy sheets with excellent bending workability
JP4157899B2 (en) High strength copper alloy sheet with excellent bending workability
JP3797882B2 (en) Copper alloy sheet with excellent bending workability
JP5036623B2 (en) Copper alloy for connector and manufacturing method thereof
JP3717321B2 (en) Copper alloy for semiconductor lead frames
JP6611222B2 (en) Copper alloy plate for electric and electronic parts having high strength, high conductivity and excellent stress relaxation characteristics, and method for producing the same
KR20190077011A (en) Copper alloy sheet and manufacturing method thereof
WO2009099198A1 (en) Copper alloy material for electric and electronic components
JP5557761B2 (en) Cu-Ni-Si based copper alloy with excellent bending workability and stress relaxation resistance
JP4781008B2 (en) Modified cross-section copper alloy plate and manufacturing method thereof
JP2006200042A (en) Electronic component composed of copper alloy sheet having excellent bending workability
JP5098096B2 (en) Copper alloy, terminal or bus bar, and method for producing copper alloy
TWI450986B (en) Cu-Co-Si alloy and a method for producing the same
JP2002294369A (en) High strength copper alloy and production method therefor
JP3470889B2 (en) Copper alloy for electric and electronic parts
JP2005281714A (en) Copper alloy and its manufacturing method
JP4392104B2 (en) Copper alloy for electronic / electrical parts and its strip material, deformed section strip material, and lead frame formed from the strip material or deformed section strip material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4781008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees