JP2002294369A - High strength copper alloy and production method therefor - Google Patents

High strength copper alloy and production method therefor

Info

Publication number
JP2002294369A
JP2002294369A JP2001097783A JP2001097783A JP2002294369A JP 2002294369 A JP2002294369 A JP 2002294369A JP 2001097783 A JP2001097783 A JP 2001097783A JP 2001097783 A JP2001097783 A JP 2001097783A JP 2002294369 A JP2002294369 A JP 2002294369A
Authority
JP
Japan
Prior art keywords
copper alloy
annealing
content
strength
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001097783A
Other languages
Japanese (ja)
Inventor
Hiroshi Arai
浩史 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001097783A priority Critical patent/JP2002294369A/en
Publication of JP2002294369A publication Critical patent/JP2002294369A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive copper alloy sheet or bar which has characteristics equal to or above those of Be copper in mechanical properties, spring critical value, bending workability or the like. SOLUTION: The high strength copper alloy sheet or bar has a composition containing, by mass, 8.5 to 10.5% Ni, 1.8 to 2.8% Sn, 0.005 to 0.05% Mn, 0.0001 to 0.005% Mg, 0.01 to 5% Zn, 0.0005 to 0.005% Pb and 0.0003 to 0.003% S, and in which the content of C is controlled to <=0.004%, H to <=0.0002%, and 0 to <=0.004%, and the balance Cu with inevitable impurities. In the rolling face of the sheet or bar, provided that the average crystal grain size (a) measured in the sheet width direction is 5 to 20 μm, and also, the average crystal grain size measured in a direction parallel to the rolling direction is (b), its aspect ratio b/a is controlled to 2.5 to 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、端子、コネクタ、
ワイヤハーネス、ターミナル、リレー、スイッチ、ばね
材料などに用いる高強度銅合金及びその製造方法に関す
る。
TECHNICAL FIELD The present invention relates to a terminal, a connector,
The present invention relates to a high-strength copper alloy used for a wire harness, a terminal, a relay, a switch, a spring material, and the like, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】上記の用途には、従来より、ばね用りん
青銅(C5212:Cu−8.0Sn−0.1P)、C
725(Cu−9.2Ni−2.3Sn)、Be銅合金
(CDA17410:Cu−0.3Be)が用いられて
きた。前記銅合金板又は条における代表的な機械的性質
は略次の通りである。ばね用りん青銅においては、引張
り強さ:706N/mm、0.2%耐力:627N/
mm、ばね限界値:539N/mm、伸び:16%
であり、C725においては、引張り強さ:612N/
mm、0.2%耐力:575N/mm、ばね限界
値:560N/mm 、伸び:17%である。Be銅
(CDA17410)は、引張り強さ:800N/mm
以上、0.2%耐力:700N/mm以上、ばね限
界値:700N/mm以上、伸び:10%以上と、さ
らに高強度であり、曲げ加工性にも優れるため高級ばね
材として利用されている。
2. Description of the Related Art Conventionally, the above-mentioned uses include a spring phosphorus.
Bronze (C5212: Cu-8.0Sn-0.1P), C
725 (Cu-9.2Ni-2.3Sn), Be copper alloy
(CDA17410: Cu-0.3Be) is used
Came. Typical mechanical properties of the copper alloy sheet or strip
Is as follows. For phosphor bronze for springs, tension
Strength: 706 N / mm2, 0.2% proof stress: 627 N /
mm2, Spring limit value: 539 N / mm2, Growth: 16%
In C725, tensile strength: 612 N /
mm2, 0.2% proof stress: 575 N / mm2, Spring limit
Value: 560 N / mm 2, Elongation: 17%. Be copper
(CDA17410) has a tensile strength of 800 N / mm.
2Above, 0.2% proof stress: 700 N / mm2Above, spring limit
Boundary value: 700 N / mm2Elongation: 10% or more
High-grade spring with high strength and excellent bending workability
It is used as a material.

【0003】[0003]

【発明が解決しようとする課題】最近携帯電話やパ−ソ
ナルコンピュ−タの普及により本分野の用途が急激に拡
大しているのに対し、Beの環境問題(Beは酸化しや
すく、生成した酸化物が人体に有害)から、Be銅の溶
解鋳造、熱処理などの製造工程には細心の注意が必要
で、特に溶解鋳造には特別な設備が必要であることから
製造量が限られており、前期の需要増大に伴って供給不
足が問題になってきている。これらのニーズに対応する
ため、Cu−10%Sn、Cu−Ni−Si−Sn
合金等が提案されている。しかしながら、はBe銅に
比較して曲げ加工性に劣り、圧延方向に対して平行方向
及び直角方向で機械的性質の異方性が大きい。特に、曲
げ線が圧延方向に平行になるように曲げたときに割れの
発生しない曲げ半径が大きいため、微細な曲げ加工を要
求される用途には適用が難しい。また、は組成や製造
工程の工夫によってBe銅に匹敵する強度のものが製造
できるが、ばね限界値等でBe銅に及ばないためBe銅
を代替するに至っていない。
Recently, the use of this field has been rapidly expanding due to the spread of mobile phones and personal computers, but the environmental problem of Be (Be is easily oxidized and produced Because oxides are harmful to the human body), the production process of Be copper, such as melting and casting, requires careful attention. In particular, melting and casting requires special equipment, so the production volume is limited. However, the shortage of supply has become a problem with the increase in demand in the previous term. To respond to these needs, Cu-10% Sn, Cu-Ni-Si-Sn
Alloys and the like have been proposed. However, is inferior in bending workability as compared with Be copper, and has large anisotropy of mechanical properties in a direction parallel to and perpendicular to the rolling direction. In particular, since the bending radius at which cracks do not occur when the bending line is bent so as to be parallel to the rolling direction is large, it is difficult to apply to applications that require fine bending. In addition, although a material having a strength comparable to that of Be copper can be manufactured by devising a composition and a manufacturing process, Be copper cannot be replaced because it does not reach Be copper due to a spring limit value or the like.

【0004】本発明の目的は、機械的性質、ばね限界
値、曲げ加工性等の特性においてBe銅と同等の特性を
有し、かつ安価な銅合金及びその製造方法を提供するこ
とである。
An object of the present invention is to provide an inexpensive copper alloy having the same properties as Be copper in properties such as mechanical properties, spring limit values, bending workability and the like, and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】本発明に係る銅合金は、
Ni:8.5〜10.5%、Sn:1.8〜2.8%、
Mn:0.005〜0.05%、Mg:0.0001〜
0.005%、Zn:0.01〜5%、Pb:0.00
05〜0.005%、S:0.0003〜0.003%
を含有し、さらにC:0.004%以下、H:0.00
02%以下、O:0.004%以下に規制され、残部が
Cu及び不可避的不純物からなることを特徴とする。
DISCLOSURE OF THE INVENTION The copper alloy according to the present invention comprises:
Ni: 8.5 to 10.5%, Sn: 1.8 to 2.8%,
Mn: 0.005 to 0.05%, Mg: 0.0001 to
0.005%, Zn: 0.01 to 5%, Pb: 0.00
05-0.005%, S: 0.0003-0.003%
And C: 0.004% or less, H: 0.00
O: 0.004% or less, with the balance being Cu and unavoidable impurities.

【0006】また、本発明に係る銅合金板又は条は、前
記銅合金からなり、板又は条の圧延面において、板幅方
向に測定した平均結晶粒径aが5〜20μmであり、か
つ圧延方向に平行な方向に測定した平均結晶粒径をbと
したときアスペクト比b/aが2.5〜10である、又
は/及び、耐力(σ0.2)/引張強さ(σB)の値が0.
9以上を有することを特徴とする。上記高強度銅合金板
又は条の製造方法としては、冷間圧延の途中に再結晶を
伴う短時間焼鈍を行い、さらに冷間圧延を行った後完全
には再結晶しない短時間焼鈍を行い、さらに冷間圧延を
行った後焼鈍を行ってスピノーダル分解を起こさせるこ
とを特徴とする。この工程に引続いてさらにテンション
レべリングによる歪み矯正を行ってもよい。
A copper alloy sheet or strip according to the present invention is made of the above copper alloy, and has a rolled surface of the sheet or strip having an average crystal grain size a of 5 to 20 μm measured in the sheet width direction, and When the average grain size measured in a direction parallel to the direction is b, the aspect ratio b / a is 2.5 to 10, or / and the value of proof stress (σ0.2) / tensile strength (σB). Is 0.
It is characterized by having 9 or more. As a method of manufacturing the high-strength copper alloy sheet or strip, performing a short annealing with recrystallization during cold rolling, and performing a short annealing that does not completely recrystallize after further cold rolling, Further, it is characterized in that after cold rolling, annealing is performed to cause spinodal decomposition. Subsequent to this step, distortion correction by tension leveling may be further performed.

【0007】[0007]

【発明の実施の形態】以下に本発明に係る端子・コネク
タ用銅合金について詳細に説明する。先ず、各添加元素
の添加理由及び組成限定理由について説明する。 (Ni)Niは、Snと共に含有させることによって強
度、ばね限界値、疲労特性等を向上させる。しかしなが
ら、その含有量が8.5%未満では効果が得られず、ま
た、10.5%を越えて含有させてもそれ以上の効果が
期待できずに熱間加工性の低下を招き、コスト的にも不
利である。従って、Niの添加量は8.5〜10.5%
とした。 (Sn)Snは、Niと共に含有させることによって機
械的性質の向上、特に耐力と伸びのバランスひいては成
形加工性及びばね限界値、疲労特性の向上に効果をもた
らすが、1.8%以下では前記の効果が得られず、反対
に2.8%を越えて含有させると熱間加工性が低下し、
さらに経済的でない。従って、Snの含有量は1.8〜
2.8%とした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The copper alloy for terminals and connectors according to the present invention will be described in detail below. First, the reason for adding each additive element and the reason for limiting the composition will be described. (Ni) When Ni is contained together with Sn, strength, a spring limit value, fatigue characteristics, and the like are improved. However, if the content is less than 8.5%, no effect can be obtained, and if the content exceeds 10.5%, no further effect can be expected, resulting in a reduction in hot workability and cost. Also disadvantageous. Therefore, the amount of Ni added is 8.5 to 10.5%.
And (Sn) When Sn is contained together with Ni, the effect of improving mechanical properties, in particular, the balance between proof stress and elongation, and further improving the formability, spring limit value, and fatigue properties is obtained. Effect is not obtained. Conversely, if the content exceeds 2.8%, the hot workability decreases,
More economical. Therefore, the content of Sn is 1.8 to
2.8%.

【0008】(Mn)溶解鋳造工程で原料、雰囲気など
からSやOが容易に侵入するが、本発明合金において、
MnはSやOを安定した化合物の形で母相中に固定し
て、脱酸、脱硫を行い熱間加工性を向上させる。さら
に、Mnは耐熱性を向上させる効果を有する。Mnの含
有量が0.005%未満であると前記効果が十分でな
い。また、その含有量が0.05%を越える場合、はん
だ耐候性が劣化して信頼性を低下させる。従って、Mn
含有量は0.005%〜0.05%とする。 (Mg)MgはMnと同様にSを安定した化合物の形で
母相中に固定し、熱間加工性を向上させ、また脱酸効果
を有する。さらに、Mgは微量でも強度、ばね限界値及
び耐熱性を向上させる効果を有する。Mgの含有量が
0.0001%未満であると前記効果が十分でない。ま
た、その含有量が0.005%を越えると曲げ加工時に
クラックの基点となり亀裂を伝播させて成形性を劣化さ
せる。従って、Mg含有量は0.0001%〜0.00
5%とする。
[0008] (Mn) In the melting and casting process, S and O easily enter from the raw material, atmosphere, etc.
Mn fixes S and O in the form of a stable compound in the mother phase and performs deoxidation and desulfurization to improve hot workability. Further, Mn has an effect of improving heat resistance. If the content of Mn is less than 0.005%, the above effect is not sufficient. On the other hand, if the content exceeds 0.05%, the weatherability of the solder deteriorates and the reliability decreases. Therefore, Mn
The content is 0.005% to 0.05%. (Mg) Mg, like Mn, fixes S in the form of a stable compound in the mother phase, improves hot workability, and has a deoxidizing effect. Further, Mg has an effect of improving the strength, the spring limit value, and the heat resistance even in a trace amount. If the Mg content is less than 0.0001%, the above effect is not sufficient. On the other hand, if the content exceeds 0.005%, it becomes a base point of a crack at the time of bending, propagates a crack and deteriorates formability. Therefore, the Mg content is 0.0001% to 0.00%.
5%.

【0009】(Zn)本発明合金において、Znは耐マ
イグレーション性とはんだの耐候性向上及びSnめっき
材のウイスカー発生の抑制に効果のある元素である。Z
n含有量が0.01%未満では前記効果が小さく、Zn
含有量が5%を越えると、導電率が低下し、また応力腐
食割れを起こし易くなる。従って、Zn含有量は0.0
1〜5%とする。 (Pb)Pbは打抜き加工性を向上させ(ばりの低減、
せん断加工性向上)、金型摩耗を低減させる効果があ
る。Pbの含有量が0.0005%未満では前記効果が
ない。一方、Pbの含有量が0.005%を越える場合
は、熱間加工時に粒界割れを起こし、鋳塊に割れが発生
してしまう。このため、Pb含有量は0.005%以下
でなければならない。従って、Pbの含有量は0.00
05〜0.005%とする。
(Zn) In the alloy of the present invention, Zn is an element effective for improving the migration resistance and the weather resistance of the solder and for suppressing the occurrence of whiskers in the Sn plating material. Z
If the n content is less than 0.01%, the effect is small, and Zn
If the content exceeds 5%, the electrical conductivity is reduced and stress corrosion cracking is liable to occur. Therefore, the Zn content is 0.0
1 to 5%. (Pb) Pb improves punching workability (reducing burrs,
This has the effect of reducing mold wear. When the content of Pb is less than 0.0005%, the above effect is not obtained. On the other hand, if the content of Pb exceeds 0.005%, grain boundary cracks occur during hot working, and cracks occur in the ingot. For this reason, the Pb content must be 0.005% or less. Therefore, the content of Pb is 0.00
It is set to be from 0.05 to 0.005%.

【0010】(S)本発明合金において、Sは単体又は
低融点の金属間化合物若しくは複合酸化物などの形態で
結晶粒界に存在し、そのため打抜き加工性を向上させ
(ばりの低減、せん断加工性向上)、金型摩耗を低減さ
せる効果がある。Sの含有量が0.0003%未満では
前記効果がない。一方、Sの含有量が0.003%を越
えると、熱間加工時に粒界に存在するS又は前記硫化物
が溶融して粒界割れを起こし、鋳塊に割れが発生し、製
品歩留りが低下する。このため、S含有量は0.003
%以下でなければならない。従って、Sの含有量は0.
0003〜0.003%とする。 (C)本発明合金において、Cは溶湯の脱酸作用、打抜
き加工性、特に剪断加工性を向上させる効果がある。し
かしながら、0.0040%を超えて含有すると熱間加
工性を劣化させる。なお、溶解、鋳造において溶湯表面
を被覆する木炭、C粒子等を溶湯と接触させることによ
り、溶湯にCを含有させることが可能である。この方法
により通常0.0001〜0.001%程度のCを含有
させることができる。
(S) In the alloy of the present invention, S exists in the form of a simple substance or a low-melting intermetallic compound or a complex oxide at a crystal grain boundary, so that the punching workability is improved (burr reduction, shearing work). Performance) and the effect of reducing mold wear. If the S content is less than 0.0003%, the above effect is not obtained. On the other hand, when the content of S exceeds 0.003%, S or the sulfide present at the grain boundaries during hot working is melted to cause grain boundary cracking, cracks are generated in the ingot, and the product yield is reduced. descend. Therefore, the S content is 0.003.
%. Therefore, the content of S is 0.1.
0003 to 0.003%. (C) In the alloy of the present invention, C has an effect of improving the deoxidizing action of the molten metal and the punching workability, particularly the shearing workability. However, when the content exceeds 0.0040%, the hot workability is deteriorated. In addition, C can be contained in the molten metal by bringing the charcoal, C particles, and the like that coat the surface of the molten metal into contact with the molten metal during melting and casting. According to this method, C can usually be contained at about 0.0001 to 0.001%.

【0011】(O、H)本発明合金は、真空炉を用いな
くても、通常のコアレス炉、溝型炉などを用い、溶湯表
面を木炭、C粒子、適当なフラックス等で被覆すること
により、大気中で溶解鋳造することができる。ただし、
大気中での溶解鋳造工程において、原料、溶湯表面の前
記被覆材、炉材等に付着した又は含まれる水分、酸化物
や、雰囲気中に存在する水蒸気、酸素、二酸化炭素、水
素等が溶湯と反応して溶湯にOやHが含有されることが
避けられない。特に、Hはいったん含有されると効果的
に除去することが難しいため、所定量以上含有させない
よう溶解鋳造雰囲気、使用原料、溶湯被覆材の乾燥等に
注意が必要である。本発明の銅合金において、Hの含有
量が0.0002%を越えると、熱間圧延時の割れ、焼
鈍時の膨れ、めっき膨れなどが発生して歩留りを低下さ
せるため0.0002%以下でなければならない。より
望ましいH含有量は0.0001%以下であり、さらに
望ましくは0.00007%以下である。
(O, H) The alloy of the present invention can be obtained by coating the surface of the molten metal with charcoal, C particles, an appropriate flux or the like without using a vacuum furnace, using an ordinary coreless furnace or a grooved furnace. Can be melt cast in the atmosphere. However,
In the melting and casting process in the air, the raw material, the coating material on the surface of the molten metal, moisture or oxide attached to or contained in the furnace material, water vapor, oxygen, carbon dioxide, hydrogen, etc. existing in the atmosphere are mixed with the molten metal. It is inevitable that the molten metal will react and contain O and H. Particularly, once H is contained, it is difficult to effectively remove it. Therefore, it is necessary to pay attention to the melting casting atmosphere, the raw materials used, the drying of the molten metal coating material, and the like so as not to contain more than a predetermined amount. In the copper alloy of the present invention, if the H content exceeds 0.0002%, cracks during hot rolling, swelling during annealing, plating swelling and the like are generated, and the yield is reduced. There must be. A more desirable H content is 0.0001% or less, and still more preferably 0.00007% or less.

【0012】また、本発明の銅合金において、Oの含有
量が0.004%を越えると、溶解鋳造工程、熱間圧
延、及び焼鈍工程において酸化物が形成されやすく、こ
の酸化物によって製品の延性が低下しやすい。また、前
記酸化物及び固溶酸素によりAg、Sn、はんだ等のめ
っき性が低下する。従って、O含有量は0.004%以
下でなければならない。望ましいO含有量は0.003
%以下、さらに望ましくは0.002%以下である。な
お、通常HとOは共に含有されるが、H含有量:app
m、O含有量:bppmとしたとき、a×bの値が40
を越えると、熱間圧延、焼鈍などの加熱工程においてH
とOが反応して水蒸気が形成されやすく、割れ、膨れ等
の原因となるため、H含有量(ppm)×O含有量(p
pm)の値を40以下とすることが望ましい。前記の値
が30以下であることが更に望ましく、20以下である
ことがより望ましい。
In the copper alloy of the present invention, if the O content exceeds 0.004%, an oxide is easily formed in the melting casting step, hot rolling and annealing step, and this oxide causes The ductility tends to decrease. Further, the plating properties of Ag, Sn, solder and the like are reduced by the oxide and the solid solution oxygen. Therefore, the O content must be 0.004% or less. Desirable O content is 0.003
%, More preferably 0.002% or less. Although H and O are usually contained together, the H content: app
When the content of m and O is bppm, the value of a × b is 40.
Exceeds H in a heating step such as hot rolling or annealing.
And O react with each other to form water vapor, which causes cracks, swelling, etc., so that the H content (ppm) × O content (p
pm) is desirably 40 or less. The value is more preferably 30 or less, more preferably 20 or less.

【0013】(その他の選択元素)Ca、Be、Al、
Fe、Si、Ti、V、Cr、Co、Zr、Nb、M
o、In、Hf、Ta、B、Ag、Pはいずれの元素も
耐熱性向上に有効であるため総量で0.1%までは添加
又は不純物として含有されてもよい。これらの元素の1
種又は2種以上が総量で0.1%を越えて含有されてい
ると溶解鋳造時、熱間圧延時あるいは加工熱処理中に粗
大な酸化物を形成したり、粗大な晶出物が発生し、熱間
加工性を低下させ、仮に製品となったとしても、めっき
性や曲げ加工性を低下させてしまう。従って、これら選
択元素の1種又は2種以上の含有量は総量で0.1%以
下とする。ただし、上記元素のうちPは本発明の銅合金
の熱間加工性を低下させやすいため、その含有量は0.
02%以下とすることが望ましい。なお、Bi、As、
Sb、Se等の低融点元素は微量でも本発明の銅合金の
粒界に偏析して熱間加工性を低下させるため、これらの
元素の合計の含有量が0.002%以下に規制すること
が望ましい。
(Other selected elements) Ca, Be, Al,
Fe, Si, Ti, V, Cr, Co, Zr, Nb, M
Since o, In, Hf, Ta, B, Ag, and P are all effective in improving heat resistance, a total amount of up to 0.1% may be added or contained as an impurity. One of these elements
If the seed or two or more kinds are contained in a total amount of more than 0.1%, a coarse oxide is formed at the time of melting casting, hot rolling or working heat treatment, and coarse crystals are generated. In addition, the hot workability is reduced, and even if it is a product, the plating property and the bending workability are reduced. Therefore, the content of one or more of these selected elements is set to 0.1% or less in total. However, since P among the above-mentioned elements tends to lower the hot workability of the copper alloy of the present invention, the content of P is 0.1%.
Desirably, it is not more than 02%. In addition, Bi, As,
Even a small amount of low melting point elements such as Sb and Se segregate at the grain boundaries of the copper alloy of the present invention and reduce hot workability. Therefore, the total content of these elements should be restricted to 0.002% or less. Is desirable.

【0014】(結晶粒径及びアスペクト比)本発明の銅
合金において目的とする強度と曲げ加工性を達成するに
は、板又は条の圧延表面において、JIS−H0501
に規定されている切断法で測定した板幅方向の平均結晶
粒径aが5〜20μmであることが望ましい。平均結晶
粒径aが5μmより小さい場合は曲げ加工性が低下し、
曲げ部に割れが形成されやすくなる。また、平均結晶粒
径aが20μmを越える場合は結晶粒が粗大化しており
強度が不足しやすく、曲げ部の肌荒れが発生しやすい。
なお、同一面上で圧延方向に平行に測定した平均結晶粒
径bが後述のアスペクト比で計算される範囲を外れると
きも、同様に曲げ加工性の低下又は強度不足及び曲げ部
の肌荒れを発生しやすい。また、本発明者はアスペクト
比(b/a)が、強度と曲げ加工性に影響することを知
見した。すなわち、平均結晶粒径aが上述範囲であって
も、アスペクト比(b/a)が2.5未満の場合は再結
晶粒が多く組織中に含有するため強度不足となる。反対
に10を越えた場合は、圧延組織が多く残存しているた
め曲げ加工性が低下する。従って、アスペクト比(b/
a)は2.5〜10であることが望ましい。
(Grain Size and Aspect Ratio) In order to achieve the desired strength and bendability in the copper alloy of the present invention, JIS-H0501 is applied to the rolled surface of the plate or strip.
It is desirable that the average crystal grain size a in the width direction of the sheet measured by the cutting method specified in the above is 5 to 20 μm. If the average crystal grain size a is smaller than 5 μm, the bending workability decreases,
Cracks are easily formed in the bent portion. On the other hand, when the average crystal grain size a exceeds 20 μm, the crystal grains are coarse, the strength is apt to be insufficient, and the surface of the bent portion is apt to be rough.
In addition, when the average crystal grain size b measured on the same plane parallel to the rolling direction is out of the range calculated by the aspect ratio described later, similarly, deterioration in bending workability or insufficient strength and rough surface of the bent portion occur. It's easy to do. Further, the present inventors have found that the aspect ratio (b / a) affects strength and bending workability. That is, even if the average crystal grain size a is within the above range, if the aspect ratio (b / a) is less than 2.5, the recrystallized grains are contained in a large amount in the structure, resulting in insufficient strength. On the other hand, when it exceeds 10, the bending workability decreases because a large amount of the rolled structure remains. Therefore, the aspect ratio (b /
a) is desirably 2.5 to 10.

【0015】(耐力/引張強さ)本発明の銅合金におい
ては、耐力と引張強さの比は、打抜き加工性(ばり量、
だれ量など)に影響する打抜き断面比(せん断面/破断
面)に影響を与える。打抜き断面比は、せん断面/破断
面=1に近いほど良好である。耐力と引張強さの比(耐
力/引張り強さ)が0.9以上になると、せん断面/破
断面がほぼ1になり打抜き加工性が向上する。従って、
耐力/引張強さの比は0.9以上であることが望まし
い。
(Proof Strength / Tensile Strength) In the copper alloy of the present invention, the ratio of the proof strength to the tensile strength is determined by the punching workability (burr amount,
It affects the punching cross-sectional ratio (shear surface / fracture surface) that affects the dripping amount. The closer the punching cross section ratio is to the shear plane / fraction surface = 1, the better. When the ratio of proof stress to tensile strength (proof stress / tensile strength) is 0.9 or more, the shear surface / fracture surface becomes almost 1 and the punching workability is improved. Therefore,
The ratio of proof stress / tensile strength is desirably 0.9 or more.

【0016】(製造工程)本発明の銅合金はスピノーダ
ル分解により強度と曲げ加工性が同時に向上する。本発
明の製造方法は、この点に着目して強度、ばね限界値、
延性、曲げ加工性等の極大化を達成したもので、概ね以
下の工程よりなる。・竪型連続鋳造又は半連続鋳造→熱
間圧延→冷間圧延→焼鈍→冷間圧延→焼鈍→冷
間圧延→焼鈍、さらにテンションレべリング(歪み
矯正)。・横型鋳造→均質化焼鈍→冷間圧延→焼鈍
→冷間圧延→焼鈍→冷間圧延→焼鈍、さらにテ
ンションレべリング(歪み矯正)。
(Manufacturing process) The copper alloy of the present invention has improved strength and bending workability due to spinodal decomposition. Focusing on this point, the manufacturing method of the present invention focuses on strength, spring limit,
It achieves maximization of ductility, bending workability, etc., and generally comprises the following steps.・ Vertical continuous or semi-continuous casting → hot rolling → cold rolling → annealing → cold rolling → annealing → cold rolling → annealing, and tension leveling (straightening).・ Horizontal casting → homogenized annealing → cold rolling → annealing → cold rolling → annealing → cold rolling → annealing, and tension leveling (straightening).

【0017】熱間圧延により製造する場合を例に取り、
各工程について以下に説明する。熱間圧延は、鋳塊が8
00〜950℃に到達後、30分〜4時間程度保持した
後行うのが望ましい。熱間圧延終了後は、10℃/秒以
上の速度で300℃以下の温度まで急冷することが望ま
しい。熱延材を冷間粗圧延した後、第1回目の焼鈍を行
う(前記工程における焼鈍)。第1回目の焼鈍の目的
は、冷間粗圧延によって加工硬化した組織を再結晶組織
とすることであり、スピノーダル分解を発生させないこ
とが望ましい。そのため、急速加熱−急速冷却が可能な
連続焼鈍炉を用いることが望ましく、加熱は高温短時間
で目的を達成することができる。例えば、所定温度まで
の昇温、所定温度からの降温速度は10℃/秒以上、保
持時間は被加熱材が600〜850℃の所定温度に到達
後1〜120秒程度でよい。
Taking the case of manufacturing by hot rolling as an example,
Each step will be described below. In hot rolling, the ingot is 8
It is desirable to carry out after holding for about 30 minutes to 4 hours after reaching 00 to 950 ° C. After the completion of the hot rolling, it is desirable to rapidly cool to a temperature of 300 ° C. or less at a rate of 10 ° C./sec or more. After cold-rolling the hot-rolled material, the first annealing is performed (annealing in the above step). The purpose of the first annealing is to make the structure work hardened by cold rough rolling into a recrystallized structure, and it is desirable that spinodal decomposition does not occur. Therefore, it is desirable to use a continuous annealing furnace capable of rapid heating and rapid cooling, and the heating can achieve the purpose in a short time at a high temperature. For example, the temperature rising rate to the predetermined temperature and the temperature decreasing rate from the predetermined temperature may be 10 ° C./sec or more, and the holding time may be about 1 to 120 seconds after the material to be heated reaches the predetermined temperature of 600 to 850 ° C.

【0018】前記第1回目の焼鈍後冷間圧延(加工率は
10〜90%程度より選定)を行い、第2回目の焼鈍
(前記工程における焼鈍)を行う。第2回目の焼鈍の
目的は冷間圧延により導入された転位組織を一部回復さ
せることであり、この焼鈍で完全な再結晶組織とすると
本発明の銅合金が目標とする高強度、高ばね限界値、高
延性の特性が得られなくなる。従って、第2回目の焼鈍
においては、再結晶の発生しない組織あるいは加工組織
と再結晶組織が混在した組織とすることが望ましい。こ
のような組織を得るには、中高温領域で短時間加熱の可
能な連続焼鈍炉を用いることが望ましい。また、材料の
加熱条件としては、例えば被加熱材が350〜650℃
に到達後1〜180秒程度保持すればよく、また所定温
度までの昇温及び所定温度からの降温速度は10℃/秒
以上が望ましい。
After the first annealing, cold rolling (working rate is selected from about 10 to 90%) is performed, and a second annealing (annealing in the above step) is performed. The purpose of the second annealing is to partially recover the dislocation structure introduced by the cold rolling, and if a complete recrystallized structure is obtained by this annealing, the copper alloy of the present invention aims at high strength and high spring strength. Limit value and high ductility characteristics cannot be obtained. Therefore, in the second annealing, it is desirable to have a structure in which recrystallization does not occur or a structure in which a reprocessed structure and a processed structure are mixed. In order to obtain such a structure, it is desirable to use a continuous annealing furnace that can be heated for a short time in a medium-high temperature range. As for the heating condition of the material, for example, the material to be heated is 350 to 650 ° C.
Is maintained for about 1 to 180 seconds after the temperature has reached, and the rate of temperature rise to the predetermined temperature and the rate of temperature decrease from the predetermined temperature are desirably 10 ° C./sec or more.

【0019】前記第2回目の焼鈍後冷間圧延(加工率は
10〜60%程度より選定)を行い、第3回目の焼鈍
(前記工程における焼鈍)を行う。第3回目の焼鈍の
目的は、スピノーダル分解を発生させて強度、ばね限界
値、伸びなどの機械的性質を向上させることである。ス
ピノーダル分解の進行には溶質元素の拡散が不可欠であ
ることから、この焼鈍には長時間加熱の可能なベル型炉
などのバッチ炉を用いるとよい。この時の加熱条件とし
ては、被加熱材が300〜550℃に到達後0.5〜1
0時間程度保持すればよく、昇温及び降温速度は特に制
限を設けなくてもよい。なお、前記の製造工程によって
製造した本発明の銅合金にさらにテンションレベラーな
どを適用し、歪み矯正を行ってもよい。本発明の製造方
法は3回の焼鈍工程を含むが、そのうち2回は連続焼鈍
炉により焼鈍が可能であるため、バッチ焼鈍を行う従来
の製造方法に比べて製造に必要な期間が長くなることは
ない。
After the second annealing, cold rolling (working rate is selected from about 10 to 60%) is performed, and a third annealing (annealing in the above step) is performed. The purpose of the third anneal is to cause spinodal decomposition to improve mechanical properties such as strength, spring limit, and elongation. Since diffusion of the solute element is indispensable for the progress of spinodal decomposition, a batch furnace such as a bell furnace capable of heating for a long time may be used for this annealing. The heating conditions at this time are: 0.5 to 1 after the material to be heated reaches 300 to 550 ° C.
The temperature may be maintained for about 0 hours, and there is no particular limitation on the temperature raising and lowering rates. It should be noted that the copper alloy of the present invention manufactured by the above manufacturing process may be further subjected to strain correction by applying a tension leveler or the like. Although the manufacturing method of the present invention includes three annealing steps, two of which can be annealed by a continuous annealing furnace, the time required for manufacturing is longer than that of the conventional manufacturing method of performing batch annealing. There is no.

【0020】[0020]

【実施例】以下に本合金の実施例について比較例と比較
しその特性を説明する。実施例1にて板材の製造可否に
ついて実証し、実施例2にて添加元素の効果について実
証し、実施例3にて熱処理条件の効果について検証す
る。 (実施例1)表1に示す組成の銅合金を電気炉により大
気中で木炭被覆下で溶解した。溶製した鋳塊(厚さ60
mm、幅70mm、長さ200mm)を850〜900
℃に到達後1時間保持してから厚さ15mmまで熱間圧
延した。熱間圧延中及び熱間圧延終了後、割れの発生有
無を目視にて判定した。その結果を表1に示す。
EXAMPLES The characteristics of the examples of the present alloy will be described below in comparison with comparative examples. Example 1 demonstrates the feasibility of manufacturing a sheet material, Example 2 demonstrates the effect of the added element, and Example 3 verifies the effect of the heat treatment conditions. (Example 1) A copper alloy having a composition shown in Table 1 was melted in an air atmosphere under a charcoal coating in an electric furnace. Melted ingot (thickness 60
mm, width 70mm, length 200mm) from 850 to 900
After the temperature reached 1 ° C., it was kept for 1 hour and then hot-rolled to a thickness of 15 mm. During and after hot rolling, the occurrence of cracks was visually determined. Table 1 shows the results.

【0021】[0021]

【表1】 [Table 1]

【0022】本発明の組成範囲内のNo.1〜6はいず
れも熱延性が良好であり、熱間圧延材に割れは発生しな
かった。一方、No.7はNiの含有量が過剰で、熱間
圧延時に割れが生じた。No.8はSnの含有量が、N
o.9はPbの含有量が、No.10はSの含有量が、
No.11はCの含有量が、No.12はHの含有量
が、No.13はPの含有量が過剰であるため、熱間圧
延時に割れが発生し、途中で熱間圧延を中止した。これ
らについてはその後の加工熱処理を行わなかった。
No. 1 within the composition range of the present invention. All of Nos. 1 to 6 had good hot ductility, and no cracks occurred in the hot-rolled material. On the other hand, No. In No. 7, the Ni content was excessive, and cracks occurred during hot rolling. No. 8 has a Sn content of N
o. No. 9 has a Pb content of No. 9; 10 is the content of S,
No. No. 11 has a C content of No. 11; No. 12 has an H content of No. Sample No. 13 had an excessive P content, so cracks occurred during hot rolling, and hot rolling was stopped halfway. These were not subjected to a subsequent thermomechanical treatment.

【0023】(実施例2)表2に示す組成の銅合金をク
リプトル炉を用いて木炭被覆下で大気溶解した。表2で
はPb、S、H、Cはすべて請求範囲内に位置している
ため容易に良好な熱間圧延材が得られた(熱延条件は実
施例1に同じ)。実施例1で作製した本発明例の合金1
〜6、及び本実施例の比較例の合金14〜23について
は、熱延圧延材(板厚:15mm)について、前記発明
の実施の形態の欄の製造工程の項目で述べた条件で加工
熱処理を行い、0.25mmの板材を作製した。なお、
第1回目及び第2回目の熱処理には、連続焼鈍の熱履歴
を模擬するために塩浴炉及び硝石炉を用いた。
Example 2 A copper alloy having the composition shown in Table 2 was melted in the air under a charcoal coating using a kryptor furnace. In Table 2, Pb, S, H, and C were all within the claims, so that a good hot-rolled material was easily obtained (the hot rolling conditions were the same as in Example 1). Alloy 1 of the present invention produced in Example 1
6 and the alloys 14 to 23 of the comparative example of the present example, the hot-rolled material (thickness: 15 mm) was subjected to the thermomechanical treatment under the conditions described in the item of the manufacturing process in the column of the embodiment of the present invention. Was performed to produce a 0.25 mm plate material. In addition,
In the first and second heat treatments, a salt bath furnace and a nitrite furnace were used to simulate the thermal history of continuous annealing.

【0024】[0024]

【表2】 [Table 2]

【0025】このようにして作製した板材より各種試験
片を加工し、下記の要領で特性評価を行った。その結果
を表3及び表4に示す。 (機械的強度)耐力、伸びは試験片の長手方向を圧延方
向に平行とした JIS5号試験片(n=2)にて測定
した。 (ばね限界値)アカシ製ばね限界値試験機(MODE
L:APT)を用いてモーメント式試験により求めた。
材料の試験方向は圧延方向に平行(L.D.)とした。 (打抜き加工性)上記板材より幅30mm、長さ2mの
条を必要本数加工し、打抜きプレスを用いて幅3mm、
長さ20mmのリードをクリアランス:5%にて100
shot打抜き、リードのその後の材料のばり高さ及び
だれ幅を10shot毎に測定し、それらの平均値を算
出した。
Various test pieces were processed from the plate material thus produced, and the characteristics were evaluated in the following manner. The results are shown in Tables 3 and 4. (Mechanical strength) The proof stress and elongation were measured using JIS No. 5 test pieces (n = 2) with the longitudinal direction of the test pieces parallel to the rolling direction. (Spring Limit) Akashi Spring Limit Tester (MODE
L: APT) by a moment equation test.
The test direction of the material was parallel to the rolling direction (LD). (Punching workability) The required number of strips having a width of 30 mm and a length of 2 m were processed from the above-mentioned plate material, and the width was 3 mm using a punching press.
Clearance of 20mm length lead: 100 at 5%
The burring height and droop width of the material after the shot punching and the lead were measured every 10 shots, and their average values were calculated.

【0026】(疲労特性)疲労特性は株式会社アカシ製
の薄板疲労試験機を用いて幅:10mmの試験片に対
し、60Hzの周期で最大曲げ応力:300N/m
、両振り、振り幅:2.5mmの繰り返し応力を負
荷して破断までの回数を測定した。 (はんだ耐候性)MIL−STD−202F METH
OD 208Dに基づいて、はんだ付けを行なった後、
n=3にて大気中150℃・1000Hr経過後、1m
mφで180゜曲げ戻しを行い、はんだの剥離の有無を
目視で確認した。
(Fatigue Characteristics) Fatigue characteristics were measured using a thin plate fatigue tester manufactured by Akashi Co., Ltd. on a test piece having a width of 10 mm and a maximum bending stress of 300 N / m at a cycle of 60 Hz.
m 2 , double swing, swing width: a repetitive stress of 2.5 mm was applied, and the number of breaks was measured. (Solder weather resistance) MIL-STD-202F METH
After soldering based on OD 208D,
1m after 150 ℃ ・ 1000Hr in air at n = 3
After 180 ° bending back at mφ, the presence or absence of peeling of the solder was visually confirmed.

【0027】(耐マイグレーション性)上記板材から
幅:3.0mm、長さ:80mmの試験片を採取した。
この試験片を2枚1組としn=4にて供試した。図1及
び図2は、上記試験片を使用した漏洩電流測定用の試験
装置であり、2a、2bは試験片、3は厚さ1mmのA
BS樹脂、3aはこのABS樹脂に形成された穴、4は
このABS樹脂3の押え板である。5は押え板4を押圧
固定するため表面に絶縁塗料を塗布したクリップ、6は
バッテリ−、7は電線である。試験片2a、2bは端部
に電線6が接続されている。図1及び図2に示す2枚の
試験片2a、2bにバッテリ−6から直流電流14Vを
印加して、水道水中に5分間浸漬した後、続いて10分
間乾燥する乾燥試験を50回行い、その間の最大漏電流
を高感度レコ−ダ−(図示せず)で測定した。
(Migration resistance) A test piece having a width of 3.0 mm and a length of 80 mm was sampled from the above plate material.
This test piece was set as a set of two pieces and tested at n = 4. FIGS. 1 and 2 show test devices for measuring leakage current using the above-mentioned test pieces, wherein 2a and 2b are test pieces and 3 is 1 mm thick A
BS resin, 3a are holes formed in the ABS resin, and 4 is a holding plate for the ABS resin 3. Reference numeral 5 denotes a clip having an insulating coating applied to the surface to press and fix the holding plate 4, reference numeral 6 denotes a battery, and reference numeral 7 denotes an electric wire. The test piece 2a, 2b has an electric wire 6 connected to an end. A dry test of applying a DC current of 14 V from the battery 6 to the two test pieces 2a and 2b shown in FIGS. 1 and 2 and immersing the test pieces in tap water for 5 minutes, followed by drying for 10 minutes, was performed 50 times. The maximum leakage current during that time was measured with a high-sensitivity recorder (not shown).

【0028】(曲げ加工性)CESM0002金属材料
W曲げ試験に規定されているB型曲げ治具で幅:10m
m、長さ:35mmに加工した供試材をはさみ、島津製
作所製万能試験機RH−30を使用して1tの荷重でR
/t=0にて先ずW曲げ加工を行った後、さらに1tの
荷重で90゜曲げ部を密着曲げして、曲げ部の割れの有
無を判別した(n=2)。 (耐応力腐食割れ性)上記板材より0.25mmt×1
2.7mmw×150mmlの試験片(n=4)を切り
出し、応力腐食割れ試験をトンプソンの方法(Mate
rialsResearch & Standards
(1961)1081) に準じて行った。すなわち、
試験片を図3に示すループ状にした後、14mass%
のアンモニア水を入れ、40℃の温度で飽和蒸気を充満
させたデシケータ中に暴露し、試験片が破断するまでの
時間を測定した。
(Bending workability) B type bending jig specified in CESM0002 metal material W bending test, width: 10 m
m, length: Insert the test material processed to 35 mm, and use a universal testing machine RH-30 manufactured by Shimadzu Corporation to load R with a load of 1 t.
After performing W bending at / t = 0, the 90 ° bent portion was further bent tightly with a load of 1 t, and the presence or absence of cracks in the bent portion was determined (n = 2). (Stress corrosion cracking resistance) 0.25mmt x 1
A 2.7 mmw × 150 mm test piece (n = 4) was cut out and subjected to a stress corrosion cracking test by the method of Thompson (Mate).
realsResearch & Standards
(1961) 1081). That is,
After the test piece was formed into a loop shape as shown in FIG.
, And exposed to a desiccator filled with saturated steam at a temperature of 40 ° C., and the time until the test piece fractured was measured.

【0029】(耐熱性)試験片の長手方向を圧延方向に
平行としたJIS5号試験片を400〜700℃の温度
で5分間加熱後、引張試験を行って加熱温度−引張強さ
の関係をグラフ化し、前記グラフより引張強さが加熱を
行っていない試験片の80%となる温度を求めた。その
温度が550℃以上の試験片については耐熱性良好、5
50℃未満の試験片については耐熱性劣化と分類した。 (耐ウイスカー性)短冊状の試験片を曲げて、約400
N/mmの圧縮応力を負荷し、室温で3ヶ月保持した
後、圧縮面のウイスカーの発生状況を実体顕微鏡にて観
察した。
(Heat Resistance) A JIS No. 5 test piece with the longitudinal direction parallel to the rolling direction was heated at a temperature of 400 to 700 ° C. for 5 minutes, and then subjected to a tensile test to determine the relationship between heating temperature and tensile strength. A graph was obtained, and a temperature at which the tensile strength was 80% of the test piece not heated was obtained from the graph. Good heat resistance for test pieces with a temperature of 550 ° C. or higher.
A test piece at a temperature lower than 50 ° C. was classified as heat-resistant deterioration. (Whisker resistance) Approximately 400
After applying a compressive stress of N / mm 2 and maintaining the same at room temperature for 3 months, the occurrence of whiskers on the compressed surface was observed with a stereoscopic microscope.

【0030】[0030]

【表3】 [Table 3]

【0031】[0031]

【表4】 [Table 4]

【0032】No.1〜6は組成、板幅方向の平均結晶
粒径a及びアスペクト比b/aが本発明の範囲内であ
り、耐力、ばね限界値、密着曲げ加工性は良好で、耐マ
イグレーション性における最大漏洩電流値は低く抑制さ
れており、さらにはんだ耐候性、耐応力腐食割れ性も良
好であり、打抜き加工性にも優れている。一方、No.
14はNiの含有量が不足するため、耐力及びばね限界
値は低く、疲労特性にも劣る。No.15はSnの含有
量が不足するため、耐力及びばね限界値が低く、さらに
疲労特性にも劣る。No.16はPb及びSの含有量が
不足するため打ち抜き加工性に劣る。No.17はOの
含有量が過剰であるため伸び特性に劣り、密着曲げでは
割れが生じている。No.18はMnの含有量が不足す
るため耐熱性に劣る。No.19はMnの含有量が過剰
であるためはんだ耐候性にて剥離が生じている。No.
20はMgの含有量が不足するため、十分な耐力及びば
ね限界値は得られず、さらに耐熱性にも劣る。No.2
1はMgの含有量が過剰であるため伸び特性に劣り、密
着曲げでは割れが生じている。No.22はZnの含有
量が不足するためはんだ耐候性にて剥離が生じ、耐マイ
グレーション性に劣り、さらにウイスカーが発生してい
る。No.23はZnの含有量が過剰であるため耐応力
腐食割れ性が劣っている。
No. Nos. 1 to 6 have compositions, average grain size a in the sheet width direction, and aspect ratio b / a within the range of the present invention, and have good proof stress, spring limit value, close bending workability, and maximum leakage in migration resistance. The current value is kept low, solder weather resistance, stress corrosion cracking resistance is good, and punching workability is excellent. On the other hand, No.
In the case of No. 14, the Ni content is insufficient, so that the yield strength and the spring limit value are low, and the fatigue properties are also inferior. No. In No. 15, the Sn content is insufficient, so that the yield strength and the spring limit value are low, and the fatigue characteristics are also poor. No. No. 16 is inferior in punching workability due to insufficient content of Pb and S. No. No. 17 is inferior in elongation properties due to an excessive O content, and cracks occur in close bending. No. No. 18 is inferior in heat resistance due to insufficient Mn content. No. In No. 19, since the Mn content is excessive, peeling occurs due to solder weather resistance. No.
20 has insufficient Mg content, so that sufficient proof stress and spring limit values cannot be obtained, and heat resistance is also poor. No. 2
No. 1 is inferior in elongation properties due to an excessive content of Mg, and cracks occur in close bending. No. In No. 22, the Zn content was insufficient, so that peeling occurred due to solder weather resistance, migration resistance was poor, and whiskers were generated. No. Sample No. 23 is inferior in stress corrosion cracking resistance due to excessive Zn content.

【0033】(実施例3)表1のNo.2の組成の熱間
圧延材(15mm厚)について、冷間圧延→焼鈍→
冷間圧延→焼鈍→冷間圧延→焼鈍の工程で表5
に示す種々の板材(厚さ0.25mm)を製作し、これ
らの板材について材料特性を評価した。その結果を表5
に示す。なお、No.2−1〜2−8においては、冷間
圧延:90%以上、焼鈍:650〜800℃×5〜
30秒、冷間圧延:30〜50%、焼鈍:400〜
650℃×10〜120秒、冷間圧延:10〜50
%、焼鈍:400〜550℃×0.5〜5時間の加工
熱処理条件とした。一方、No.2−9〜2−18にお
いては、焼鈍以降の工程において、発明の実施の形態
の欄の製造工程の項目で述べた条件を外れる範囲で加工
熱処理を行った。また、比較例2−19は従来の工程で
あり、冷間圧延:90%以上、焼鈍:600℃×1
時間、冷間圧延:60%、焼鈍:400℃×1時
間、冷間圧延:37.5%、焼鈍:400℃×2時
間の加工熱処理を行った。
(Embodiment 3) For the hot-rolled material (15 mm thick) having the composition of No. 2, cold rolling → annealing →
Table 5 in the process of cold rolling → annealing → cold rolling → annealing
Were manufactured (thickness: 0.25 mm), and the material properties of these plate materials were evaluated. Table 5 shows the results.
Shown in In addition, No. In 2-1 to 2-8, cold rolling: 90% or more, annealing: 650 to 800 ° C. × 5
30 seconds, cold rolling: 30-50%, annealing: 400-
650 ° C. × 10 to 120 seconds, cold rolling: 10 to 50
%, Annealing: working heat treatment conditions of 400 to 550 ° C. × 0.5 to 5 hours. On the other hand, No. In 2-9 to 2-18, in the steps after the annealing, the working heat treatment was performed in a range outside the conditions described in the item of the manufacturing process in the column of the embodiment of the invention. Comparative Example 2-19 is a conventional process, in which cold rolling: 90% or more, annealing: 600 ° C. × 1.
Working temperature, cold rolling: 60%, annealing: 400 ° C. × 1 hour, cold rolling: 37.5%, annealing: 400 ° C. × 2 hours.

【0034】[0034]

【表5】 [Table 5]

【0035】表5のNo.2−1〜2−8は、板幅方向
の平均結晶粒径a及びアスペクト比b/aが規定の範囲
内であり、耐力、引張強さ、ばね限界値は高く、かつ密
着曲げ加工性は良好であり、強度と曲げ加工性の相反す
る特性を兼備している。さらに疲労特性にも優れる。一
方、No.2−9は第1回目の焼鈍温度が低すぎたもの
で、平均結晶粒径が小さく、引張り強さ、耐力、及びば
ね限界値が低く、疲労特性及び曲げ加工性も劣る。N
o.2−10は第1回目の焼鈍条件が温度が高すぎたも
ので、結晶粒が粗大化し、かつアスペクト比が小さく、
引張り強さ、耐力及びばね限界値が低く、疲労特性も劣
る。No.2−11は第1回目の焼鈍後の冷間圧延の加
工率が小さすぎたもので、耐力/引張強さの比及び結晶
粒径のアスペクト比(b/a)が低く、引張り強さ、耐
力、及びばね限界値が低く、打抜き加工性が劣る。N
o.2−12は第1回目の焼鈍後の冷間圧延の加工率が
大きすぎたもので、結晶粒径aが小さく、アスペクト比
(b/a)が大きくなり、曲げ加工性が低下した。
No. 5 in Table 5. In 2-1 to 2-8, the average crystal grain size a in the plate width direction and the aspect ratio b / a are within specified ranges, the proof stress, tensile strength, spring limit value are high, and the close-contact bending workability is high. It is good, and has the opposite properties of strength and bending workability. Furthermore, it has excellent fatigue characteristics. On the other hand, No. 2-9, the first annealing temperature was too low, the average crystal grain size was small, the tensile strength, the proof stress, and the spring limit were low, and the fatigue properties and bending workability were poor. N
o. 2-10 is the first annealing condition in which the temperature was too high, the crystal grains became coarse and the aspect ratio was small,
Low tensile strength, proof stress and spring limit value, and poor fatigue properties. No. No. 2-11 shows that the working ratio of the cold rolling after the first annealing was too small, and the proof stress / tensile strength ratio and the aspect ratio (b / a) of the crystal grain size were low. The proof stress and the spring limit value are low, and the punching workability is inferior. N
o. In No. 2-12, the working ratio of the cold rolling after the first annealing was too large, and the crystal grain size a was small, the aspect ratio (b / a) was large, and the bending workability was reduced.

【0036】No.2−13は第2回目の焼鈍温度が低
すぎたもので、圧延組織のみのため結晶粒径の測定がで
きず、曲げ加工性に劣る。No.2−14は第2回目の
焼鈍温度が高すぎたもので、結晶粒が粗大化しアスペク
ト比(b/a)が低く、引張り強さ、耐力、及びばね限
界値が低い。No.2−15は第2回目の焼鈍後の冷間
圧延の加工率が小さすぎたもので、耐力/引張強さの比
及び結晶粒径のアスペクト比(b/a)が低く、引張り
強さ、耐力及びばね限界値が低く、打抜き加工性及び疲
労特性も劣化している。No.2−16は第2回目の焼
鈍後の冷間圧延の加工率が大きすぎたもので、圧延組織
が大半を占有するようになり、曲げ加工性及び疲労特性
に劣る。No.2−17は第3回目の焼鈍温度が低すぎ
たもので、スピノーダル分解が十分に起こらず、ばね限
界値が低く、疲労特性及び曲げ加工性も劣る。No.2
−18は第3回目の焼鈍温度が高すぎたもので、再結晶
組織となり、耐力/引張強さの比及び結晶粒径のアスペ
クト比(b/a)が低く、引張り強さ、耐力、及びばね
限界値が低く、打抜き加工性及び疲労特性も劣る。N
o.2−19はいずれの熱処理も再結晶とスピノーダル
分解を生じさせる条件であったため、アスペクト比が低
く、引張り強さ、耐力、及びばね限界値が低い。
No. In No. 2-13, the second annealing temperature was too low, and the grain size could not be measured because of only the rolled structure, and the bending workability was poor. No. No. 2-14, in which the second annealing temperature was too high, the crystal grains were coarsened, the aspect ratio (b / a) was low, and the tensile strength, proof stress, and spring limit value were low. No. No. 2-15 shows that the working ratio of the cold rolling after the second annealing was too small, and the proof stress / tensile strength ratio and the crystal grain size aspect ratio (b / a) were low. The proof stress and the spring limit value are low, and the punching workability and fatigue properties are also deteriorated. No. In No. 2-16, the working ratio of the cold rolling after the second annealing was too large, and the rolled structure occupied the majority, and the bending workability and fatigue properties were poor. No. In No. 2-17, the third annealing temperature was too low, spinodal decomposition did not sufficiently occur, the spring limit was low, and the fatigue properties and bending workability were poor. No. 2
-18 is the third annealing temperature that was too high, resulting in a recrystallized structure, a low proof stress / tensile strength ratio and a low crystal grain size aspect ratio (b / a), and a high tensile strength, proof stress, and The spring limit value is low, and the punching workability and fatigue characteristics are also poor. N
o. In each of the heat treatment conditions 2-19, recrystallization and spinodal decomposition were caused, so that the aspect ratio was low, and the tensile strength, proof stress, and spring limit value were low.

【0037】[0037]

【発明の効果】以上説明したように、本発明に係る銅合
金は、機械的性質及び疲労特性に優れ、曲げ加工性にも
優れており、次世代の端子、コネクタおよび携帯電話、
パソコン等に使用される高級ばね材料として極めて優れ
た品質を有するものである。
As described above, the copper alloy according to the present invention is excellent in mechanical properties and fatigue properties, and is also excellent in bending workability.
It has extremely excellent quality as a high-grade spring material used for personal computers and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 漏洩電流を測定する試験装置の平面図であ
る。
FIG. 1 is a plan view of a test device for measuring a leakage current.

【図2】 その断面図である。FIG. 2 is a sectional view of the same.

【図3】 耐応力腐食割れ性を評価するためのD.H.
Thompson方法によるループ状の試験片である。
FIG. 3 shows D.E. for evaluating stress corrosion cracking resistance. H.
It is a loop-shaped test piece by the Thompson method.

【符号の説明】[Explanation of symbols]

2a、2b 試験片 3 ABS樹脂 2a, 2b test piece 3 ABS resin

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 623 C22F 1/00 623 630 630K 630F 630A 661 661A 685 685Z 691 691C ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 623 C22F 1/00 623 630 630K 630F 630A 661 661A 685 685Z 691 691C

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Ni:8.5〜10.5質量%(以下に
おいては質量%を単に%と記載)、Sn:1.8〜2.
8%、Mn:0.005〜0.05%、Mg:0.00
01〜0.005%、Zn:0.01〜5%、Pb:
0.0005〜0.005%、S:0.0003〜0.
003%を含有し、さらにC:0.004%以下、H:
0.0002%以下、O:0.004%以下に規制さ
れ、残部がCu及び不可避的不純物からなることを特徴
とする高強度銅合金。
1. Ni: 8.5 to 10.5% by mass (hereinafter, mass% is simply referred to as%), Sn: 1.8 to 2.2% by mass.
8%, Mn: 0.005 to 0.05%, Mg: 0.00
01 to 0.005%, Zn: 0.01 to 5%, Pb:
0.0005-0.005%, S: 0.0003-0.
003%, C: 0.004% or less, H:
A high-strength copper alloy characterized by being restricted to 0.0002% or less and O: 0.004% or less, with the balance being Cu and unavoidable impurities.
【請求項2】 請求項1に記載された銅合金からなり、
板又は条の圧延面において、板幅方向に測定した平均結
晶粒径aが5〜20μmであり、かつ圧延方向に平行な
方向に測定した平均結晶粒径をbとしたときアスペクト
比b/aが2.5〜10であることを特徴とする高強度
銅合金板又は条。
2. It is made of the copper alloy according to claim 1,
On the rolled surface of the sheet or strip, the average crystal grain size a measured in the sheet width direction is 5 to 20 μm, and the average crystal grain size measured in a direction parallel to the rolling direction is b. Is a high-strength copper alloy plate or strip.
【請求項3】 請求項1に記載された銅合金からなり、
耐力(σ0.2)/引張強さ(σB)の値が0.9以上であ
ることを特徴とする高強度銅合金板又は条。
3. It is made of the copper alloy according to claim 1,
A high-strength copper alloy plate or strip having a value of proof stress (σ0.2) / tensile strength (σB) of 0.9 or more.
【請求項4】 請求項1に記載された銅合金について、
冷間圧延の途中に再結晶を伴う短時間焼鈍を行い、さら
に冷間圧延を行った後完全には再結晶しない短時間焼鈍
を行い、さらに冷間圧延を行った後焼鈍を行ってスピノ
ーダル分解を起こさせることを特徴とする請求項2又は
3に記載された高強度銅合金板又は条の製造方法。
4. The copper alloy according to claim 1,
Short-time annealing with recrystallization in the middle of cold rolling, further cold rolling, then short-time annealing that does not completely recrystallize, further cold rolling, then annealing, spinodal decomposition The method for producing a high-strength copper alloy sheet or strip according to claim 2 or 3, wherein
【請求項5】 引続きテンションレべリングを行うこと
を特徴とする請求項4に記載された高強度銅合金板又は
条の製造方法。
5. The method for producing a high-strength copper alloy sheet or strip according to claim 4, wherein the tension leveling is continuously performed.
JP2001097783A 2001-03-30 2001-03-30 High strength copper alloy and production method therefor Pending JP2002294369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001097783A JP2002294369A (en) 2001-03-30 2001-03-30 High strength copper alloy and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001097783A JP2002294369A (en) 2001-03-30 2001-03-30 High strength copper alloy and production method therefor

Publications (1)

Publication Number Publication Date
JP2002294369A true JP2002294369A (en) 2002-10-09

Family

ID=18951519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001097783A Pending JP2002294369A (en) 2001-03-30 2001-03-30 High strength copper alloy and production method therefor

Country Status (1)

Country Link
JP (1) JP2002294369A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266445A (en) * 2005-03-25 2006-10-05 Daido Metal Co Ltd Sliding member
WO2011096576A1 (en) * 2010-02-08 2011-08-11 日立電線株式会社 Soft-dilute-copper-alloy material, soft-dilute-copper-alloy wire, soft-dilute-copper-alloy sheet, soft-dilute-copper-alloy stranded wire, and cable, coaxial cable and composite cable using same
JP2012089692A (en) * 2010-10-20 2012-05-10 Hitachi Cable Ltd Bus bar for solar cell and method of manufacturing the same
WO2012124804A1 (en) * 2011-03-17 2012-09-20 日立電線株式会社 Soft dilute-copper alloy wire, soft dilute-copper alloy twisted wire, and insulated wire, coaxial cable, and composite cable using these
WO2013002247A1 (en) * 2011-06-29 2013-01-03 三菱伸銅株式会社 Silver-white copper alloy and method for manufacturing silver-white copper alloy
JP2013026475A (en) * 2011-07-21 2013-02-04 Hitachi Cable Ltd Copper bonding wire
US9809872B2 (en) 2009-04-17 2017-11-07 Hitachi Metals, Ltd. Dilute copper alloy material, dilute copper alloy wire, dilute copper alloy twisted wire and cable using the same, coaxial cable and composite cable, and method of manufacturing dilute copper alloy material and dilute copper alloy wire
CN114507794A (en) * 2022-02-11 2022-05-17 无锡日月合金材料有限公司 Copper-nickel-tin alloy material for high-elasticity element and preparation method thereof
CN114737071A (en) * 2022-04-18 2022-07-12 宁波金田铜业(集团)股份有限公司 Preparation method of high-strength tin-phosphor bronze bar

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006266445A (en) * 2005-03-25 2006-10-05 Daido Metal Co Ltd Sliding member
US9809872B2 (en) 2009-04-17 2017-11-07 Hitachi Metals, Ltd. Dilute copper alloy material, dilute copper alloy wire, dilute copper alloy twisted wire and cable using the same, coaxial cable and composite cable, and method of manufacturing dilute copper alloy material and dilute copper alloy wire
WO2011096576A1 (en) * 2010-02-08 2011-08-11 日立電線株式会社 Soft-dilute-copper-alloy material, soft-dilute-copper-alloy wire, soft-dilute-copper-alloy sheet, soft-dilute-copper-alloy stranded wire, and cable, coaxial cable and composite cable using same
JP2011179110A (en) * 2010-02-08 2011-09-15 Hitachi Cable Ltd Soft-dilute-copper-alloy material, soft-dilute-copper-alloy wire, soft-dilute-copper-alloy sheet, soft-dilute-copper-alloy stranded wire, and cable, coaxial cable and composite cable using the same
CN102753713A (en) * 2010-02-08 2012-10-24 日立电线株式会社 Soft-dilute-copper-alloy material, soft-dilute-copper-alloy wire, soft-dilute-copper-alloy sheet, soft-dilute-copper-alloy stranded wire, and cable, coaxial cable and composite cable using same
US10030287B2 (en) 2010-02-08 2018-07-24 Hitachi Metals, Ltd. Soft-dilute-copper-alloy material, soft-dilute-copper-alloy wire, soft-dilute-copper-alloy sheet, soft-dilute-copper-alloy stranded wire, and cable, coaxial cable and composite cable using same
JP2012089692A (en) * 2010-10-20 2012-05-10 Hitachi Cable Ltd Bus bar for solar cell and method of manufacturing the same
US9734937B2 (en) 2011-03-17 2017-08-15 Hitachi Metals, Ltd. Soft dilute-copper alloy wire, soft dilute-copper alloy twisted wire, and insulated wire, coaxial cable, and composite cable using these
WO2012124804A1 (en) * 2011-03-17 2012-09-20 日立電線株式会社 Soft dilute-copper alloy wire, soft dilute-copper alloy twisted wire, and insulated wire, coaxial cable, and composite cable using these
CN103608474A (en) * 2011-03-17 2014-02-26 日立电线株式会社 Soft dilute-copper alloy wire, soft dilute-copper alloy twisted wire, and insulated wire, coaxial cable, and composite cable using these
JP5245015B1 (en) * 2011-06-29 2013-07-24 三菱伸銅株式会社 Silver-white copper alloy and method for producing silver-white copper alloy
US9353426B2 (en) 2011-06-29 2016-05-31 Mitsubishi Materials Corporation Silver-white copper alloy and method of producing silver-white copper alloy
US9512507B2 (en) 2011-06-29 2016-12-06 Mitsubishi Materials Corporation Silver-white copper alloy and method of producing silver-white copper alloy
AU2012276705B2 (en) * 2011-06-29 2015-06-11 Mitsubishi Materials Corporation Silver-white copper alloy and method of producing silver-white copper alloy
WO2013002247A1 (en) * 2011-06-29 2013-01-03 三菱伸銅株式会社 Silver-white copper alloy and method for manufacturing silver-white copper alloy
JP2013026475A (en) * 2011-07-21 2013-02-04 Hitachi Cable Ltd Copper bonding wire
CN114507794A (en) * 2022-02-11 2022-05-17 无锡日月合金材料有限公司 Copper-nickel-tin alloy material for high-elasticity element and preparation method thereof
CN114737071A (en) * 2022-04-18 2022-07-12 宁波金田铜业(集团)股份有限公司 Preparation method of high-strength tin-phosphor bronze bar
CN114737071B (en) * 2022-04-18 2023-02-24 宁波金田铜业(集团)股份有限公司 Preparation method of high-strength tin-phosphor bronze bar

Similar Documents

Publication Publication Date Title
JP3953357B2 (en) Copper alloy for electrical and electronic parts
JP4566048B2 (en) High-strength copper alloy sheet excellent in bending workability and manufacturing method thereof
JP4943095B2 (en) Copper alloy and manufacturing method thereof
JP4439447B2 (en) Manufacturing method of irregular cross-section copper alloy sheet
JP4787986B2 (en) Copper alloy and manufacturing method thereof
JP2001294957A (en) Copper alloy for connector and its producing method
JP2002180165A (en) Copper based alloy having excellent press blanking property and its production method
US5322575A (en) Process for production of copper base alloys and terminals using the same
JP2002294368A (en) Copper alloy for terminal and connector and production method therefor
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
JP3729662B2 (en) High strength and high conductivity copper alloy sheet
JP5261691B2 (en) Copper-base alloy with excellent press punchability and method for producing the same
JP4166147B2 (en) Method for producing copper alloy plate for high-strength electrical and electronic parts
JP2002294369A (en) High strength copper alloy and production method therefor
JP5557761B2 (en) Cu-Ni-Si based copper alloy with excellent bending workability and stress relaxation resistance
JP4407953B2 (en) High strength and high conductivity copper alloy sheet
JP3729733B2 (en) Copper alloy plate for lead frame
JP4043118B2 (en) High strength and high conductivity Cu-Fe alloy plate for electric and electronic parts with excellent heat resistance
JP4431741B2 (en) Method for producing copper alloy
JP3807475B2 (en) Copper alloy plate for terminal and connector and manufacturing method thereof
JPH10152737A (en) Copper alloy material and its production
JP4224859B2 (en) Copper-based alloy with excellent stress relaxation resistance
JP2011046970A (en) Copper alloy material and method for producing the same
JP4461269B2 (en) Copper alloy with improved conductivity and method for producing the same
JPH11335800A (en) Production of copper base alloy with excellent stress relaxation resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070710