JPH11335800A - Production of copper base alloy with excellent stress relaxation resistance - Google Patents

Production of copper base alloy with excellent stress relaxation resistance

Info

Publication number
JPH11335800A
JPH11335800A JP17525698A JP17525698A JPH11335800A JP H11335800 A JPH11335800 A JP H11335800A JP 17525698 A JP17525698 A JP 17525698A JP 17525698 A JP17525698 A JP 17525698A JP H11335800 A JPH11335800 A JP H11335800A
Authority
JP
Japan
Prior art keywords
annealing
rolling
copper
stress relaxation
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17525698A
Other languages
Japanese (ja)
Other versions
JP3733548B2 (en
Inventor
Hiroto Narueda
宏人 成枝
Akira Sugawara
章 菅原
Koichi Hatakeyama
浩一 畠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP17525698A priority Critical patent/JP3733548B2/en
Publication of JPH11335800A publication Critical patent/JPH11335800A/en
Application granted granted Critical
Publication of JP3733548B2 publication Critical patent/JP3733548B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a copper base alloy having an excellent stress relaxation resistance as a terminal material for connectors of an automobile or the like and moreover having an excellent strength, elasticity, electrical conductivity, bendability, migration resistance, plating reliability or the like. SOLUTION: In a final stage after a slab of a copper base alloy contg., by weight, 0.1 to 10% Ni, 0.1 to 9% Sn, 0.001 to 0.30% P, and the balance Cu with inevitable impurities is, if required, subjected to a hot rolling, moreover subjected to a thermomechanical treating in which cold rolling and annealing are repeated and is subjected to rolling to a prescribed sheet thickness, the low temp. annealing is executed under a condition with a temp. higher than that in which a spring threshold value shows the maximum value, and 80 to <100% of the maximum value of the spring threshold value are attained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐応力緩和特性に
優れた銅基合金の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a copper-based alloy having excellent stress relaxation resistance.

【0002】[0002]

【従来の技術】この種の従来技術としては、次のような
ものが提案されている。即ち、特公平8−9745号公
報には、重量%でNi:0.5〜3.0%、Sn:0.
5〜2.0%、P:0.05〜0.20%を含有し、残
部がCuと不可避不純物からなる組成を有する銅基合金
が、Ni/Pの重量百分率の比率が20〜35の範囲と
なる相対量が添加されているNiとPとの一部がNi−
P系の化合物となってマトリックス中に均一微細に析出
した組織を有していることによって、引張強さが50K
gf/mm以上、ばね限界値が40Kgf/mm
上、応力緩和率10%以下及び導電率30%IACS以
上の特性を有する銅基合金に関する技術が開示されてい
る。
2. Description of the Related Art As the prior art of this kind, the following has been proposed. That is, Japanese Patent Publication No. Hei 8-9745 discloses that Ni: 0.5 to 3.0% and Sn: 0.
A copper-based alloy containing 5 to 2.0% and P: 0.05 to 0.20% and having a balance of Cu and unavoidable impurities has a Ni / P weight percentage ratio of 20 to 35. A part of Ni and P to which a relative amount in a range is added is Ni-
Having a structure which is a P-based compound and uniformly and finely precipitated in the matrix, the tensile strength is 50K.
A technique relating to a copper-based alloy having characteristics of gf / mm 2 or more, a spring limit value of 40 Kgf / mm 2 or more, a stress relaxation rate of 10% or less, and a conductivity of 30% IACS or more is disclosed.

【0003】また、特開平4−154942号公報に
は、Ni、Sn、Pを適量添加した銅基合金の鋳片から
熱間圧延工程及び冷間圧延と焼鈍とを繰返す冷間圧延工
程を経て、所定の板厚まで圧延するに際し、特定の条件
で処理する技術が開示されている。
Japanese Patent Application Laid-Open No. 4-154942 discloses that a slab of a copper-based alloy containing an appropriate amount of Ni, Sn, and P is subjected to a hot rolling step and a cold rolling step in which cold rolling and annealing are repeated. There is disclosed a technique of performing processing under specific conditions when rolling to a predetermined plate thickness.

【0004】特に最終焼鈍は、300〜750℃の温度
で5〜180秒間のテンションアニール処理を施すこと
により、ばね限界値、耐応力緩和特性の向上ならびに延
性の回復が発現でき、均質かつ平坦度の良好な製品を得
る技術が開示されている。
[0004] In particular, in the final annealing, by applying a tension annealing treatment at a temperature of 300 to 750 ° C for 5 to 180 seconds, an improvement in spring limit value, stress relaxation resistance and recovery of ductility can be exhibited, and uniform and flatness can be obtained. A technique for obtaining a good product is disclosed.

【0005】自動車等のコネクタに使用される材料は、
近年のエレクトロニクスの発達に伴い、高密度化、小型
化、軽量化そして信頼性の向上が求められるようになっ
てきている。
[0005] Materials used for connectors of automobiles and the like include:
With the development of electronics in recent years, higher density, smaller size, lighter weight, and improved reliability have been required.

【0006】また、更にエンジンの高性能化に伴い、エ
ンジンルーム内の温度も上昇してきており、そこに使用
される導電材料であるコネクタ用銅基合金には、優れた
耐応力緩和特性が要求されるようになってきている。
[0006] Further, as the performance of the engine has been further improved, the temperature in the engine room has been rising, and a copper-based alloy for connectors, which is a conductive material used therein, is required to have excellent stress relaxation resistance. It is becoming.

【0007】その対策として、上記の特公平8−974
5号公報や特開平4−154942号公報に記載されて
いるように、特定組成のNi、Sn、Pを含有する耐応
力緩和特性に優れた銅基合金等が提案されている。
As a countermeasure, the above-mentioned Japanese Patent Publication No. 8-974
As described in Japanese Patent Application Laid-open No. 5 and JP-A-4-154942, a copper-based alloy containing Ni, Sn, and P having a specific composition and having excellent stress relaxation resistance has been proposed.

【0008】従来の技術では、銅基合金をばね材料とし
て利用するために、最終板厚まで圧延された後の低温焼
鈍において、ばね限界値が最大となる条件を採用してい
た。しかしながら、本願発明者らは最終低温焼鈍を更に
詳しく検討したところ、従来の低温焼鈍条件で得られた
材料より更に耐応力緩和特性が向上できることを見出し
た。
[0008] In the prior art, in order to use a copper-based alloy as a spring material, a condition that maximizes a spring limit value in low-temperature annealing after rolling to a final sheet thickness has been adopted. However, the inventors of the present application have studied the final low-temperature annealing in more detail, and have found that the stress relaxation resistance can be further improved as compared with a material obtained under the conventional low-temperature annealing conditions.

【0009】[0009]

【発明が解決しようとする課題】本発明は、従来技術の
問題点に鑑みて、自動車等のコネクタ用端子材料として
極めて優れた耐応力緩和特性を有し、かつ強度、弾性、
電気伝導性、曲げ加工性、耐マイグレーション性および
めっき信頼性等に優れた銅基合金の製造方法を提案する
ものである。
SUMMARY OF THE INVENTION In view of the problems of the prior art, the present invention has extremely excellent stress relaxation resistance as a terminal material for connectors of automobiles and the like, and has strength, elasticity, and the like.
The present invention proposes a method for producing a copper-based alloy having excellent electrical conductivity, bending workability, migration resistance, plating reliability, and the like.

【0010】[0010]

【課題を解決するための手段】本発明は、重量%で、N
i:0.1〜10%,Sn:0.1〜9%,P:0.0
01〜0.30%を含有し、残部がCuと不可避不純物
からなる銅基合金の鋳片から場合によっては熱間圧延工
程を、そして更に冷間圧延と焼鈍とを繰返す加工熱処理
工程を経て所定の板厚まで圧延加工した後の最終工程に
おいて、低温焼鈍の条件をばね限界値が最高値を示す低
温焼鈍温度より高い温度で行うことを特徴とする耐応力
緩和特性に優れた銅基合金の製造方法を提供するもので
ある。
SUMMARY OF THE INVENTION The present invention provides a method for producing N by weight percent.
i: 0.1 to 10%, Sn: 0.1 to 9%, P: 0.0
A copper-based alloy slab containing 0.01 to 0.30%, with the balance being Cu and unavoidable impurities, may be subjected to a hot rolling step and, if necessary, to a working heat treatment step in which cold rolling and annealing are repeated. In the final step after rolling to the sheet thickness of the copper-based alloy excellent in stress relaxation resistance characterized by performing the conditions of low-temperature annealing at a temperature higher than the low-temperature annealing temperature at which the spring limit value shows the maximum value It is intended to provide a manufacturing method.

【0011】[0011]

【作用】本発明により製造する銅基合金は、上記の通り
Cu中に重量%でNi:0.1〜10%、Sn:0.1
〜9%、P:0.001〜0.30%を含有する成分組
成を有するものであり、その製造法は、上記成分組成の
銅基合金の鋳片から場合によっては熱間圧延工程を、そ
して更に冷間圧延と焼鈍とを繰返す加工熱処理工程を経
て所定の板厚まで加工する製造工程中で、熱間圧延後の
冷却条件、冷間圧延工程での圧下率と焼鈍条件を適切に
コントロールすることによって、Ni−P系の化合物を
この製造工程中で微細かつ均質分散させて優れた強度、
電気伝導性を有し、特に最終工程における低温焼鈍の条
件を、ばね限界値が最高値を示す低温焼鈍温度よりも高
い温度で行い、ばね限界値の最高値の80%以上100
%未満を達成する条件にすることによって、極めて優れ
た耐応力緩和特性を示す銅基合金を得ることができる
(図2参照)。
The copper-based alloy produced according to the present invention contains Ni: 0.1 to 10% and Sn: 0.1% by weight in Cu as described above.
-9%, P: 0.001-0.30%, and the manufacturing method thereof includes a hot rolling step from a slab of a copper-based alloy having the above-mentioned component composition, if necessary. In the manufacturing process of processing to a predetermined thickness through a thermomechanical treatment process in which cold rolling and annealing are repeated, the cooling conditions after hot rolling, the rolling reduction and the annealing conditions in the cold rolling process are appropriately controlled. By doing so, the Ni-P-based compound is finely and homogeneously dispersed in this manufacturing process, and excellent strength,
It has electrical conductivity, and the condition of low-temperature annealing in the final step is performed at a temperature higher than the low-temperature annealing temperature at which the spring limit value is the highest, and is 80% or more of the maximum value of the spring limit value.
%, A copper-based alloy exhibiting extremely excellent stress relaxation resistance can be obtained (see FIG. 2).

【0012】Cu−Ni−Sn−P系の銅合金のばね限
界値と応力緩和率の関係は、図2に示すように、低温焼
鈍条件と密接な関係がある。一定時間で低温焼鈍する場
合、ばね限界値と温度の関係は、焼鈍温度を上昇させて
行くと、ある温度でばね限界値が最高値となり、それよ
り高い温度になると、徐々にばね限界値は低下し、最高
値の80%を示す温度を越えると急激に低下する。
The relationship between the spring limit value and the stress relaxation rate of a Cu—Ni—Sn—P based copper alloy is closely related to the low-temperature annealing conditions, as shown in FIG. When performing low-temperature annealing for a certain period of time, the relationship between the spring limit value and the temperature is as follows: As the annealing temperature is increased, the spring limit value reaches a maximum value at a certain temperature, and when the temperature becomes higher, the spring limit value gradually increases. When the temperature exceeds 80% of the maximum value, the temperature rapidly decreases.

【0013】また、応力緩和率は焼鈍温度を上昇させる
と小さくすることができるが、ある温度を越えるとまた
大きくなる。応力緩和率が最低となる温度は、ばね限界
値が最高になる温度より高温側にあり、しかもばね限界
値の最高値の80%以上100%未満を示す温度範囲に
存在する。
Although the stress relaxation rate can be reduced by increasing the annealing temperature, the stress relaxation rate increases when the temperature exceeds a certain temperature. The temperature at which the stress relaxation rate becomes minimum is on the higher temperature side than the temperature at which the spring limit value becomes maximum, and exists in a temperature range showing 80% or more and less than 100% of the maximum value of the spring limit value.

【0014】これまでコネクタ用の銅合金を製造する場
合、ばね限界値が最高値を示すように製造条件を設定し
ていた。これに対して、本発明はこのばね限界値が最高
値を示す温度より高温側で低温焼鈍するので、ばね限界
値は最高値の80%以上100%未満であるが、耐応力
緩和特性は最も優れた値(応力緩和率の最低値)を示す
ことになる。
Until now, when manufacturing a copper alloy for a connector, the manufacturing conditions have been set so that the spring limit value has the highest value. On the other hand, in the present invention, since the low temperature annealing is performed at a higher temperature than the temperature at which the spring limit value is the highest value, the spring limit value is 80% or more and less than 100% of the maximum value, but the stress relaxation resistance is the most. It shows an excellent value (the lowest value of the stress relaxation rate).

【0015】次に、本発明法におけるCu−Ni−Sn
−P系銅基合金の添加元素の作用、並びに成分組成範囲
の限定理由について説明する。
Next, Cu-Ni-Sn in the method of the present invention is used.
The action of the added element of the -P-based copper-based alloy and the reason for limiting the component composition range will be described.

【0016】Niは、Cuマトリックス中に固溶して耐
応力緩和特性を向上させ、強度、弾性、耐マイグレーシ
ョン性も向上させる。また、Pと化合物を形成して分散
析出することにより、更にその効果は大きくなる。しか
しながら、Niが0.1%未満では所望の効果は得られ
ず、10%を超えると電気伝導性が極めて低くなり、実
用的でなくなる。好ましくは、0.5〜3.0%の範囲
とする。
Ni forms a solid solution in a Cu matrix to improve stress relaxation resistance, and also improves strength, elasticity, and migration resistance. The effect is further enhanced by forming a compound with P and dispersing and precipitating. However, if Ni is less than 0.1%, the desired effect cannot be obtained, and if it exceeds 10%, the electric conductivity becomes extremely low, which is not practical. Preferably, it is in the range of 0.5 to 3.0%.

【0017】Snは、Cuマトリックス中に固溶して強
度、弾性及び耐食性を向上させる。しかしながら、Sn
が0.1%未満では所望の効果が得られず、9%を超え
ると電気伝導性、耐マイグレーション性が著しく低下
し、また鋳造性や熱間加工性にも悪影響を及ぼす。好ま
しくは、0.5〜2.0%の範囲とする。
Sn forms a solid solution in a Cu matrix to improve strength, elasticity and corrosion resistance. However, Sn
If it is less than 0.1%, the desired effect cannot be obtained, and if it exceeds 9%, the electrical conductivity and migration resistance are significantly reduced, and the castability and hot workability are adversely affected. Preferably, it is in the range of 0.5 to 2.0%.

【0018】Pは、溶湯の脱酸剤として作用すると共
に、Niと化合物を形成して分散析出することにより、
耐応力緩和特性を向上させ、かつ強度、弾性並びに電気
伝導性を向上をさせる。しかしながら、P含有量が0.
001%未満では所望の効果は得られず、一方0.30
%を越えると電気伝導性や半田耐候性の低下が著しく、
鋳造性や熱間加工性にも悪影響を及ぼす。好ましくは、
0.005〜0.20%の範囲とする。
P acts as a deoxidizing agent for the molten metal and forms a compound with Ni to disperse and precipitate.
Improves stress relaxation resistance and improves strength, elasticity and electrical conductivity. However, when the P content is 0.
If it is less than 001%, the desired effect cannot be obtained, while 0.30%
%, The electrical conductivity and the weatherability of the solder decrease significantly,
It also has an adverse effect on castability and hot workability. Preferably,
The range is 0.005 to 0.20%.

【0019】次に、本発明法におけるCu−Ni−Sn
−P系銅基合金の製造条件について説明する。また本願
成分に、Fe、Co、Ti、Mg、Zr、Ca、Si、
Mn、Cd、Al、Pb、Te、In、Ag、B、Y、
La、Cr、Ce、Auの群のうち1種または2種以上
を総量で0.01〜2%の範囲で含有された合金に対し
ても本願の製造法は有効であり、耐応力緩和特性が向上
することから、Fe、Co、Ti、Mg、Zr、Ca、
Si、Mn、Cd、Al、Pb、Te、In、Ag、
B,Y、La、Cr、Ce、Auの群のうち1種または
2種以上を総量で0.01%〜2%の範囲で含有しても
よいものとする。
Next, Cu-Ni-Sn in the method of the present invention is used.
The production conditions for the -P-based copper-based alloy will be described. In addition, Fe, Co, Ti, Mg, Zr, Ca, Si,
Mn, Cd, Al, Pb, Te, In, Ag, B, Y,
The production method of the present application is also effective for an alloy containing one or more of La, Cr, Ce, and Au in a total amount of 0.01 to 2%, and has a stress relaxation resistance property. Is improved, Fe, Co, Ti, Mg, Zr, Ca,
Si, Mn, Cd, Al, Pb, Te, In, Ag,
One or more of B, Y, La, Cr, Ce, and Au may be contained in a total amount of 0.01% to 2%.

【0020】熱間圧延工程では、鋳塊を750℃以上に
加熱し、熱間圧延仕上温度を650℃以上として処理す
る。その際の熱間圧延圧下率を75%以上とすると、鋳
造組織を完全に潰すことができ、しかも鋳塊における偏
析の影響を無くすことができる。
In the hot rolling step, the ingot is heated to 750 ° C. or higher, and the hot rolling finish temperature is set to 650 ° C. or higher. If the hot rolling reduction at that time is 75% or more, the cast structure can be completely crushed, and the influence of segregation in the ingot can be eliminated.

【0021】熱間圧延加工後の冷却過程においては、3
00℃以下まで50℃/分以上の冷却速度で冷却し、N
i−P化合物を析出させずに、Ni、Sn、Pが固溶し
た熱間圧延材を得ることが重要である。
In the cooling process after hot rolling, 3
Cool at a cooling rate of 50 ° C / min or more to 00 ° C or less,
It is important to obtain a hot-rolled material in which Ni, Sn, and P form a solid solution without precipitating the i-P compound.

【0022】熱間圧延を行った方が好ましいが、熱間圧
延を用いなくても板材を得ることは可能であり冷間圧延
では、組織の均質化のために圧下率50%以上が必要で
あり、その後の焼鈍は、400〜600℃で5〜720
分間処理する。この処理により、銅基合金中にNi−P
化合物を均一微細に分散析出させることが重要である。
Although it is preferable to perform hot rolling, it is possible to obtain a sheet material without using hot rolling. In cold rolling, a rolling reduction of 50% or more is required to homogenize the structure. Yes, then annealing at 400-600 ° C for 5-720
Process for a minute. By this treatment, Ni-P is contained in the copper-based alloy.
It is important to uniformly and finely disperse and precipitate the compound.

【0023】最終圧延では、強度、弾性を得るため、3
0%以上の圧下率が必要である。
In the final rolling, to obtain strength and elasticity,
A rolling reduction of 0% or more is required.

【0024】本発明法の最大の特徴である低温焼鈍の条
件は、ばね限界値が最高値を示す低温焼鈍温度より高い
温度で行うことが重要であり、ばね限界値の最高値の8
0%以上100%未満を達成する条件にすることによっ
て、極めて耐応力緩和特性に優れた銅基合金を製造する
ことができる。
It is important that the low-temperature annealing condition, which is the greatest feature of the method of the present invention, is performed at a temperature higher than the low-temperature annealing temperature at which the spring limit value is the highest value.
By setting the conditions to achieve 0% or more and less than 100%, a copper-based alloy having extremely excellent stress relaxation resistance can be manufactured.

【0025】本発明の効果は、固溶強化型の銅合金、例
えばSnを固溶したりん青銅などの銅合金にも応用でき
る。
The effect of the present invention can be applied to a solid solution strengthened copper alloy, for example, a copper alloy such as phosphor bronze in which Sn is dissolved.

【0026】次に、本発明の実施の形態を実施例により
説明する。
Next, embodiments of the present invention will be described with reference to examples.

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0027】実施例 表1に示す組成の合金を、高周波溶解炉を用いて溶製
し、850℃に加熱した後、厚さ10.0mmまで熱間
圧延し、その後冷間圧延と熱処理を繰返し、最終加工率
を50%、67%とし、板厚0.25mmの板材を得
た。その後、各条件で低温焼鈍を行い、得られた材料の
ばね限界値、ビッカース硬さ、導電率を測定すると共に
耐応力緩和特性の調査を行った。応力緩和試験は、試験
片の中央部の応力がばね限界値の80%の応力となるよ
にアーチ曲げを行い、150℃の温度で1000時間保
持した後の曲げぐせを応力緩和率として次式により算出
した。その結果を表1に併せて示した。 応力緩和率(%)={(L−L)/(L
)}×100 L=治具の長さ(mm) L=試験開始前の試料長さ(mm) L=試験後の試料端間の水平距離(mm)
EXAMPLE An alloy having the composition shown in Table 1 was melted using a high-frequency melting furnace, heated to 850 ° C., hot-rolled to a thickness of 10.0 mm, and then cold-rolled and heat-treated repeatedly. The final working ratio was 50% and 67%, and a plate material having a plate thickness of 0.25 mm was obtained. Thereafter, low-temperature annealing was performed under each condition, and a spring limit value, Vickers hardness, and conductivity of the obtained material were measured, and a stress relaxation resistance was investigated. In the stress relaxation test, arch bending is performed so that the stress at the center of the test piece becomes 80% of the spring limit value, and the bending after holding at a temperature of 150 ° C. for 1000 hours is defined as a stress relaxation rate by the following equation. Was calculated by The results are shown in Table 1. Stress relaxation rate (%) = {(L 1 −L 2 ) / (L 1
L 0 ) × 100 L 0 = Length of jig (mm) L 1 = Length of sample before start of test (mm) L 2 = Horizontal distance between sample ends after test (mm)

【0028】[0028]

【表1】 [Table 1]

【0029】表1の結果から、本発明法に係る試料1〜
5の銅基合金はいずれもばね限界値が400N/mm
以上、導電率30%IACS以上を示し、応力緩和率は
約1%と極めて優れていることが分かった。
From the results in Table 1, it is found that Samples 1 to 5 according to the present invention were used.
The copper-based alloy of No. 5 has a spring limit value of 400 N / mm 2.
As described above, the conductivity was 30% IACS or more, and the stress relaxation rate was about 1%, which was extremely excellent.

【0030】これに対して、低温焼鈍していない圧延上
りの材料であるNo.6は、応力緩和率が大きく、また
ばね限界値が小さい。低温焼鈍条件が、ばね限界値が最
高値を示す条件かもしくはそれより低温側の条件である
No.7,No8は、本発明法で作られた材料よりも応
力緩和率が劣っている。
On the other hand, the as-rolled material No. No. 6 has a large stress relaxation rate and a small spring limit value. The low-temperature annealing condition is a condition in which the spring limit value indicates the maximum value or a condition on the lower temperature side. 7, No. 8 is inferior in stress relaxation rate to the material made by the method of the present invention.

【0031】また、低温焼鈍の条件が高温側になり、ば
ね限界値の最高値の80%以上を達成できない条件にな
ると、軟化が始まって実用的でない。
If the condition of the low-temperature annealing is on the high-temperature side and the condition that the maximum value of the spring limit value cannot be attained is 80% or more, softening starts and is not practical.

【0032】更に、本発明合金組成の規定範囲外の合金
であるNo.9,No.10,No.11は、それぞれ
Ni,Sn,Pが不足した場合であるが、いずれの場合
も応力緩和率が著しく劣っている。
Further, the alloy No. 1 which is out of the specified range of the alloy composition of the present invention. 9, No. 10, No. 11 is a case where Ni, Sn and P are insufficient, respectively, and in each case, the stress relaxation rate is remarkably inferior.

【0033】[0033]

【発明の効果】本発明は、鋳片から場合によっては熱間
圧延工程を、そして更に冷間圧延と焼鈍とを繰返す加工
熱処理工程を経て所定の板厚まで圧延加工した後の最終
工程において、低温焼鈍の条件をばね限界値が最高値を
示す低温焼鈍温度よりも高い温度とし、かつばね限界値
の最高値の80%以上100%未満を達成する条件にす
るものであり、これにより耐応力緩和特性に極めて優
れ、強度,弾性,電気伝導性にも優れた銅基合金を得る
ことができる。
According to the present invention, in a final step after rolling a slab to a predetermined thickness through a hot rolling step and a working heat treatment step in which cold rolling and annealing are further repeated, as the case may be, The condition of the low-temperature annealing is set to a temperature higher than the low-temperature annealing temperature at which the spring limit value has the maximum value, and the condition to achieve 80% or more and less than 100% of the maximum value of the spring limit value. It is possible to obtain a copper-based alloy having extremely excellent relaxation properties, and excellent strength, elasticity, and electric conductivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る耐応力緩和特性に優れた銅基合金
の概略製造工程を示す製造工程図である。
FIG. 1 is a manufacturing process diagram showing a schematic manufacturing process of a copper-based alloy excellent in stress relaxation resistance according to the present invention.

【図2】低温焼鈍条件によるばね限界値と応力緩和率と
の関係(処理時間一定の場合)を示すグラフである。
FIG. 2 is a graph showing a relationship between a spring limit value and a stress relaxation rate under a low-temperature annealing condition (when the processing time is constant).

【符号の説明】[Explanation of symbols]

A:本発明時の焼鈍条件 B:従来の焼鈍条件 A: Annealing condition in the present invention B: Conventional annealing condition

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 683 C22F 1/00 683 685 685Z 686 686A 691 691B 694 694B ──────────────────────────────────────────────────の Continuation of the front page (51) Int.Cl. 6 Identification code FI C22F 1/00 683 C22F 1/00 683 685 685Z 686 686A 691 691B 694 694B

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、Ni:0.1〜10%、S
n:0.1〜9%、P:0.001〜0.30%を含有
し、残部がCuと不可避不純物からなる銅基合金の鋳片
から場合によっては熱間圧延工程を、そして更に冷間圧
延と焼鈍とを繰返す加工熱処理工程を経て所定の板厚ま
で圧延加工した後の最終工程において、低温焼鈍の条件
をばね限界値が最高値を示す低温焼鈍温度より高い温度
で行うことを特徴とする耐応力緩和特性に優れた銅基合
金の製造方法。
1. Ni: 0.1 to 10% by weight, S
n: 0.1 to 9%, P: 0.001 to 0.30%, the balance being a hot-rolling step from a slab of a copper-based alloy consisting of Cu and unavoidable impurities, and further cooling In the final process after rolling to a predetermined thickness through a thermomechanical process that repeats cold rolling and annealing, the condition of low temperature annealing is performed at a temperature higher than the low temperature annealing temperature at which the spring limit value shows the maximum value. A method for producing a copper-based alloy having excellent stress relaxation resistance.
【請求項2】 重量%で、Ni:0.1〜10%、S
n:0.1〜9%、P:0.001〜0.30%を含有
し、残部がCuと不可避不純物からなる銅基合金の鋳片
から場合によっては熱間圧延工程を、そして更に冷間圧
延と焼鈍とを繰返す加工熱処理工程を経て所定の板厚ま
で圧延加工した後の最終工程において、低温焼鈍の温度
条件をばね限界値が最高値を示す低温焼鈍温度より高い
温度で行い、ばね限界値の最高値の80%以上100%
未満を達成する条件にすることを特徴とする耐応力緩和
特性に優れた銅基合金の製造方法。
2. Ni: 0.1 to 10% by weight, S
n: 0.1 to 9%, P: 0.001 to 0.30%, the balance being a hot-rolling step from a slab of a copper-based alloy consisting of Cu and unavoidable impurities, and further cooling In the final step after rolling to a predetermined thickness through a thermomechanical treatment step of repeating cold rolling and annealing, the temperature condition of low temperature annealing is performed at a temperature higher than the low temperature annealing temperature at which the spring limit value indicates the maximum value, and the spring 80% to 100% of the maximum limit
A method for producing a copper-based alloy having excellent stress relaxation resistance, characterized by satisfying the condition of attaining less than.
【請求項3】 重量%で、Ni:0.5〜3.0%、S
n:0.5〜2.0、P:0.005〜0.20%を含
有し、残部がCuと不可避不純物からなる銅基合金の鋳
片から場合によっては熱間圧延工程を、そして更に冷間
圧延と焼鈍とを繰返す加工熱処理工程を経て所定の板厚
まで圧延加工した後の最終工程において、低温焼鈍の条
件をばね限界値が最高値を示す低温焼鈍温度より高い温
度で行うことを特徴とする耐応力緩和特性に優れた銅基
合金の製造方法。
3. Ni: 0.5 to 3.0% by weight, S
a hot-rolling step, if necessary, from a slab of a copper-based alloy containing n: 0.5 to 2.0, P: 0.005 to 0.20%, the balance being Cu and unavoidable impurities, and In the final step after rolling to a predetermined thickness through a thermomechanical processing step of repeating cold rolling and annealing, the condition of low temperature annealing is performed at a temperature higher than the low temperature annealing temperature at which the spring limit value indicates the maximum value. A method for producing a copper-based alloy having excellent stress relaxation resistance characteristics.
【請求項4】 重量%で、Ni:0.5〜3.0%、S
n:0.5〜2.0、P:0.005〜0.20%を含
有し、残部がCuと不可避的不純物からなる銅基合金の
鋳片から場合によっては熱間圧延工程を、そして更に冷
間圧延と焼鈍とを繰返す加工熱処理工程を経て所定の板
厚まで圧延加工した後の最終工程において、低温焼鈍の
条件をばね限界値の最高値の80%以上100%未満を
達成する条件にすることを特徴とする耐応力緩和特性に
優れた銅基合金の製造方法。
4. Ni: 0.5 to 3.0% by weight, S
a hot rolling step, if necessary, from a slab of a copper-based alloy containing n: 0.5 to 2.0, P: 0.005 to 0.20%, the balance being Cu and unavoidable impurities; Further, in the final step after rolling to a predetermined thickness through a thermomechanical processing step in which cold rolling and annealing are repeated, conditions for achieving low-temperature annealing at 80% or more and less than 100% of the maximum spring limit value. A method for producing a copper-based alloy having excellent stress relaxation resistance.
JP17525698A 1998-05-19 1998-05-19 Method for producing a copper-based alloy having excellent stress relaxation resistance Expired - Lifetime JP3733548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17525698A JP3733548B2 (en) 1998-05-19 1998-05-19 Method for producing a copper-based alloy having excellent stress relaxation resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17525698A JP3733548B2 (en) 1998-05-19 1998-05-19 Method for producing a copper-based alloy having excellent stress relaxation resistance

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005149189A Division JP4224859B2 (en) 2005-05-23 2005-05-23 Copper-based alloy with excellent stress relaxation resistance

Publications (2)

Publication Number Publication Date
JPH11335800A true JPH11335800A (en) 1999-12-07
JP3733548B2 JP3733548B2 (en) 2006-01-11

Family

ID=15992993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17525698A Expired - Lifetime JP3733548B2 (en) 1998-05-19 1998-05-19 Method for producing a copper-based alloy having excellent stress relaxation resistance

Country Status (1)

Country Link
JP (1) JP3733548B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6749699B2 (en) 2000-08-09 2004-06-15 Olin Corporation Silver containing copper alloy
EP1612285A1 (en) * 2004-07-01 2006-01-04 Dowa Mining Co., Ltd. Copper-based alloy and method of manufacturing the same
JP2006070335A (en) * 2004-09-03 2006-03-16 Dowa Mining Co Ltd Copper alloy material and manufacturing method therefor
JP2007100146A (en) * 2005-09-30 2007-04-19 Dowa Holdings Co Ltd Cu-Ni-Sn-P-BASED COPPER ALLOY HAVING LESSENED ANISOTROPY OF STRESS RELAXATION RESISTANCE, AND MANUFACTURING METHOD THEREFOR
JP2007100111A (en) * 2005-09-30 2007-04-19 Dowa Holdings Co Ltd Cu-Ni-Sn-P-BASED COPPER ALLOY EXCELLENT IN PRESS-PUNCHING PROPERTY, AND ITS PRODUCTION METHOD
JP2020158830A (en) * 2019-03-26 2020-10-01 Jx金属株式会社 Copper alloy material, electrical and electronic components, electronic device, and method for manufacturing copper alloy material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6749699B2 (en) 2000-08-09 2004-06-15 Olin Corporation Silver containing copper alloy
EP1612285A1 (en) * 2004-07-01 2006-01-04 Dowa Mining Co., Ltd. Copper-based alloy and method of manufacturing the same
JP2006070335A (en) * 2004-09-03 2006-03-16 Dowa Mining Co Ltd Copper alloy material and manufacturing method therefor
JP4630025B2 (en) * 2004-09-03 2011-02-09 Dowaホールディングス株式会社 Method for producing copper alloy material
JP2007100146A (en) * 2005-09-30 2007-04-19 Dowa Holdings Co Ltd Cu-Ni-Sn-P-BASED COPPER ALLOY HAVING LESSENED ANISOTROPY OF STRESS RELAXATION RESISTANCE, AND MANUFACTURING METHOD THEREFOR
JP2007100111A (en) * 2005-09-30 2007-04-19 Dowa Holdings Co Ltd Cu-Ni-Sn-P-BASED COPPER ALLOY EXCELLENT IN PRESS-PUNCHING PROPERTY, AND ITS PRODUCTION METHOD
JP2020158830A (en) * 2019-03-26 2020-10-01 Jx金属株式会社 Copper alloy material, electrical and electronic components, electronic device, and method for manufacturing copper alloy material
JP2022034040A (en) * 2019-03-26 2022-03-02 Jx金属株式会社 Copper alloy material, electrical and electronic components, electronic device, and method for manufacturing copper alloy material

Also Published As

Publication number Publication date
JP3733548B2 (en) 2006-01-11

Similar Documents

Publication Publication Date Title
JP4247922B2 (en) Copper alloy sheet for electrical and electronic equipment and method for producing the same
JP3803981B2 (en) Method for producing copper alloy having high strength and high conductivity
JP3273613B2 (en) Method for producing copper alloy having high strength and conductivity
JPH08325681A (en) Production of copper-based alloy having improved combinationof ultimate tensile strength, electrical conductivity and stress relaxation resistance
JP2005539140A (en) Age-hardening copper-based alloy and manufacturing method
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
JP2001294957A (en) Copper alloy for connector and its producing method
JP4393663B2 (en) Copper-based alloy strip for terminal and manufacturing method thereof
US20110005644A1 (en) Copper alloy material for electric/electronic parts
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
JP2000256814A (en) Manufacture of copper-based alloy bar for terminal
JP2002266042A (en) Copper alloy sheet having excellent bending workability
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
JP3733548B2 (en) Method for producing a copper-based alloy having excellent stress relaxation resistance
JPS619563A (en) Manufacture of copper alloy
JP4186095B2 (en) Copper alloy for connector and its manufacturing method
JP4224859B2 (en) Copper-based alloy with excellent stress relaxation resistance
JP2001214226A (en) Copper base alloy for terminal, alloy bar thereof and producing method for the alloy bar
JP2001262297A (en) Copper-base alloy bar for terminal, and its manufacturing method
JPH0987814A (en) Production of copper alloy for electronic equipment
JP2001279347A (en) High strength copper alloy excellent in bending workability and heat resistance and its producing method
JP3410125B2 (en) Manufacturing method of high strength copper base alloy
JP4461269B2 (en) Copper alloy with improved conductivity and method for producing the same
JPH0418016B2 (en)
JP2000273561A (en) Copper base alloy for terminal and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050523

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051006

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081028

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081028

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term