JP2022034040A - Copper alloy material, electrical and electronic components, electronic device, and method for manufacturing copper alloy material - Google Patents

Copper alloy material, electrical and electronic components, electronic device, and method for manufacturing copper alloy material Download PDF

Info

Publication number
JP2022034040A
JP2022034040A JP2021211420A JP2021211420A JP2022034040A JP 2022034040 A JP2022034040 A JP 2022034040A JP 2021211420 A JP2021211420 A JP 2021211420A JP 2021211420 A JP2021211420 A JP 2021211420A JP 2022034040 A JP2022034040 A JP 2022034040A
Authority
JP
Japan
Prior art keywords
copper alloy
alloy material
limit value
metal powder
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021211420A
Other languages
Japanese (ja)
Inventor
真之 長野
Masayuki Nagano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2021211420A priority Critical patent/JP2022034040A/en
Publication of JP2022034040A publication Critical patent/JP2022034040A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce occurrence of metal powder during punching.
SOLUTION: A copper alloy material includes 0.01-0.3 mass% of Sn and the rest composed of copper and inevitable impurities. The copper alloy material is a stripe or plate and has a stretch of 11% or less. A product of tensile strength and stretch is 3700 (MPa %) or more.
SELECTED DRAWING: None
COPYRIGHT: (C)2022,JPO&INPIT

Description

本発明は、銅合金材料、電気電子部品、電子機器、及び銅合金材料の製造方法
に関する。より具体的には、Snを含む銅合金材料、電気電子部品、電子機器、及び銅合金材料の製造方法に関する。
The present invention relates to a copper alloy material, an electric / electronic component, an electronic device, and a method for manufacturing a copper alloy material. More specifically, the present invention relates to a copper alloy material containing Sn, an electric / electronic component, an electronic device, and a method for manufacturing a copper alloy material.

銅合金の板及び条は、主要な方法としてプレス加工により所定の形状に加工され電気電子部品に組み込まれる。プレス加工には、抜き加工、曲げ加工、絞り加工等があり、このうち抜き加工はすべてのプレス加工の一部に含まれる加工である。 Copper alloy plates and strips are, as the main method, processed into a predetermined shape by press working and incorporated into electrical and electronic parts. Pressing includes punching, bending, drawing, etc. Of these, punching is a part of all stamping.

抜き加工を行う過程で金属粉が生じる。特許文献1では、金属粉の発生を有効に抑制することのできる抜き加工方法が開示されている。より具体的には、特許文献1では、複数段階での抜き加工(前段打抜き加工、後段打ち抜き加工)を行うこと、そして、前段打抜き加工後、後段打ち抜き加工前にスエージ加工を施すことが開示されている。 Metal powder is generated in the process of punching. Patent Document 1 discloses a punching method capable of effectively suppressing the generation of metal powder. More specifically, Patent Document 1 discloses that punching in a plurality of stages (pre-stage punching, post-stage punching) is performed, and that sage processing is performed after the pre-stage punching and before the post-stage punching. ing.

また、特許文献2では、プレス打ち抜き加工性を改善したCu-Zn-Sn-Ca系合金が開示されている。より具体的には、特許文献2には、MgOやMgSの化合物粒子を生成してプレス打ち抜き加工後のバリを小さくすることが開示されている。 Further, Patent Document 2 discloses a Cu—Zn—Sn—Ca based alloy having improved press punching workability. More specifically, Patent Document 2 discloses that compound particles of MgO or MgS are generated to reduce burrs after press punching.

また、特許文献3では、プレス打ち抜き加工性を改善したCu-Sn系合金が開示されている。より具体的には、せん断試験における変位―荷重曲線から求められる半価幅の、板厚に対する比(r)が0.2≦r≦0.7である銅合金板が開示されている。 Further, Patent Document 3 discloses a Cu—Sn-based alloy having improved press punching workability. More specifically, a copper alloy plate in which the ratio (r) of the half-value width obtained from the displacement-load curve in the shear test to the plate thickness is 0.2 ≦ r ≦ 0.7 is disclosed.

特開2016-163904号公報Japanese Unexamined Patent Publication No. 2016-163904 特開2013-185221号公報Japanese Unexamined Patent Publication No. 2013-185221 特開2016-191088号公報Japanese Unexamined Patent Publication No. 2016-191088

銅合金の板及び条に対して抜き加工を行うと金属粉が発生する。この金属粉の存在は、加工の工程において金型摩耗、打痕等の原因となる。また、抜き加工後の処理、加工等において、有害な異物となる可能性もある。例えば、プレス成型品と樹脂製の部材とを結合した物品を得る際、樹脂の内部に金属粉が異物として混入し、樹脂又は結合した物品の品質を低下させる場合がある。 Metal powder is generated when punching is performed on copper alloy plates and strips. The presence of this metal powder causes mold wear, dents, etc. in the processing process. In addition, it may become a harmful foreign substance in the processing and processing after the punching process. For example, when an article in which a press-molded product and a resin member are bonded is obtained, metal powder may be mixed as a foreign substance inside the resin, which may deteriorate the quality of the resin or the bonded article.

発生した金属粉は、プレス成型品を洗浄することにより除去することが可能な場合もある。しかし、仮に洗浄したとしも、意図せずに残存し不具合をもたらす場合もある。そこで、本発明は、抜き加工時に金属粉の発生しにくい銅合金材料を提供することを目的とする。 In some cases, the generated metal powder can be removed by washing the press-molded product. However, even if it is washed, it may remain unintentionally and cause problems. Therefore, an object of the present invention is to provide a copper alloy material in which metal powder is less likely to be generated during punching.

金属粉の発生は、プレス加工のなかでも特に抜き加工において顕著となる。抜き加工とは、銅合金等の板及び条から、必要な形状と不要な部分とを分離する加工である。必要な形状と不要な部分との境界において、せん断により板及び条が破断する。そして、板及び条の破断において、金属粉が発生する。 The generation of metal powder is particularly remarkable in the punching process in the press process. The punching process is a process of separating a necessary shape and an unnecessary part from a plate or strip of a copper alloy or the like. Shear breaks the plates and strips at the boundary between the required shape and the unwanted portion. Then, metal powder is generated at the breakage of the plate and the strip.

金属粉が発生する態様の一つとして、バリの発生が挙げられ、これは、抜き加工において板及び条がせん断され、そして、破断する際に生じる。バリとは、板及び条の破断部の輪郭が有する凹凸である。この凹凸で尖った箇所から微小な部分が脱落し金属粉となる。一般に、抜き加工において生じるバリは、プレス品の品質において有害であるため、バリを抑制するためにプレス条件が設定される。 One embodiment of the generation of metal powder is the generation of burrs, which occur when plates and strips are sheared and broken during punching. The burr is an unevenness of the contour of the broken portion of the plate and the strip. Small parts fall off from the sharp points due to this unevenness and become metal powder. In general, burrs generated in punching are harmful to the quality of pressed products, so press conditions are set to suppress burrs.

銅合金等の板及び条の延性が低いと、バリは発生しにくい。この理由として、延性が低いと、抜き加工によるせん断において生じる塑性変形が小さく、これにより破断部の輪郭が有する凹凸も小さくなるためである。結果として、金属粉の発生が抑制される。従って、金属粉の発生を抑制するには、銅合金等の板及び条の延性を低くする設計をすればよい。例えば、延性を示す指標として伸びに着目し、伸びを低くする銅合金等の板および条を設計すればよい。 If the ductility of plates and strips such as copper alloy is low, burrs are unlikely to occur. The reason for this is that when the ductility is low, the plastic deformation caused by shearing due to the punching process is small, and as a result, the unevenness of the contour of the fractured portion is also small. As a result, the generation of metal powder is suppressed. Therefore, in order to suppress the generation of metal powder, a design may be made to reduce the ductility of plates and strips of copper alloy or the like. For example, attention may be paid to elongation as an index showing ductility, and plates and strips such as copper alloys having low elongation may be designed.

しかし、本発明者が鋭意検討を行ったところ、更なる問題点を見出した。具体的には、延性が低いと、これが原因となって、かえって微小な部分が脱落しやすくなり、金属粉が発生しやすくなる傾向が見られた。 However, as a result of diligent studies by the present inventor, a further problem was found. Specifically, when the ductility is low, this causes a tendency that minute parts are more likely to fall off and metal powder is more likely to be generated.

すなわち、延性が高いとバリに起因する金属粉が発生する。一方で、延性が低いとバリに起因する金属粉は原理的に抑制されるものの、延性の低さに起因する金属粉の発生が促進される。 That is, if the ductility is high, metal powder due to burrs is generated. On the other hand, if the ductility is low, the metal powder caused by burrs is suppressed in principle, but the generation of the metal powder caused by the low ductility is promoted.

そこで、銅合金等の板及び条の延性を適正な範囲に調整することにより、はじめて金属粉の発生を最小限に抑制することができることを見出した。 Therefore, it has been found that the generation of metal powder can be minimized for the first time by adjusting the ductility of plates and strips of copper alloys and the like within an appropriate range.

本発明は、上記知見に基づいて完成され、一側面において、以下の発明を包含する。
(発明1)
Snを0.01~0.30質量%含有し、
残部が銅及び不可避的不純物からなる銅合金材料であり、
前記銅合金材料は、条又は板であり、
伸びが11%以下であり、
引張強さと伸びとの積が3700(MPa・%)以上である、
銅合金材料。
(発明2)
発明1の銅合金材料であって、下記の元素のうち少なくとも1種を、下記の上限値を超えない量で更に含有する、銅合金材料:
Pb:0.03質量%以下
Fe:0.02質量%以下
Zn:0.10質量%以下
P:0.020質量%以下
(発明3)
発明1又は2に記載の銅合金材料を備える電気電子部品。
(発明4)
発明3の電気電子部品を備える電子機器。
(発明5)
発明1又は2に記載の銅合金材料を製造する方法であって、
仕上げ冷間圧延の後に歪取焼鈍を行う工程を含み、
前記歪取焼鈍が、最大ばね限界値に対応する温度又は時間よりも高温又は長時間、且つばね限界値低下率10~25%となる条件で焼鈍を行うことを含む、
該方法。
The present invention has been completed based on the above findings and includes the following inventions in one aspect.
(Invention 1)
Containing 0.01 to 0.30% by mass of Sn,
The balance is a copper alloy material consisting of copper and unavoidable impurities.
The copper alloy material is a strip or a plate.
Growth is less than 11%
The product of tensile strength and elongation is 3700 (MPa ·%) or more.
Copper alloy material.
(Invention 2)
A copper alloy material according to the invention 1, further containing at least one of the following elements in an amount not exceeding the following upper limit value:
Pb: 0.03% by mass or less Fe: 0.02% by mass or less Zn: 0.10% by mass or less P: 0.020% by mass or less (Invention 3)
An electrical and electronic component comprising the copper alloy material according to invention 1 or 2.
(Invention 4)
An electronic device including the electrical and electronic components of the invention 3.
(Invention 5)
A method for producing a copper alloy material according to the invention 1 or 2.
Including the process of performing strain removal annealing after finish cold rolling,
The strain-removing annealing includes annealing under a condition that the temperature or time corresponding to the maximum spring limit value is higher or longer than that of the maximum spring limit value and the spring limit value decrease rate is 10 to 25%.
The method.

一側面において、本発明の銅合金材料は、伸びが11%以下であり、引張強さと伸びとの積が3700(MPa・%)以上である。これにより、バリの発生に起因する金属粉の発生と、低すぎる延性に起因する金属粉の発生とを低減することができる。 In one aspect, the copper alloy material of the present invention has an elongation of 11% or less and a product of tensile strength and elongation of 3700 (MPa ·%) or more. This makes it possible to reduce the generation of metal powder due to the generation of burrs and the generation of metal powder due to too low ductility.

最大ばね限界値及びばね限界値低下率に関する説明図である。縦軸はばね限界値を示し、横軸は温度を示す。It is explanatory drawing about the maximum spring limit value and the spring limit value decrease rate. The vertical axis shows the spring limit value, and the horizontal axis shows the temperature.

以下、本発明を実施するための具体的な実施形態について説明する。以下の説明は、本発明の理解を促進するためのものである。即ち、本発明の範囲を限定することを意図するものではない。 Hereinafter, specific embodiments for carrying out the present invention will be described. The following description is intended to facilitate understanding of the present invention. That is, it is not intended to limit the scope of the present invention.

1.銅合金材料
一実施形態において、本発明は銅合金材料に関する。
1. 1. Copper Alloy Material In one embodiment, the present invention relates to a copper alloy material.

1-1.形状
一実施形態において、本発明の銅合金材料は、条又は板である。通常、条及び板は以下の様に定義される。
「条」(strip、ribbon)とは、「0.1mm以上の均一な肉厚で、長方形断面をもち、スリットされたコイル形状で供給される圧延製品」をさす。
「板」(sheet、plate)とは、「0.1mm以上の均一な肉厚で、長方形断面をもち、シャー又はのこ(鋸)切断された平板で供給される圧延製品」をさす。
しかし、本明細書における条又は板は、上記定義内容のうち、「0.1mm以上」の部分を「0.05mm以上」に置き換えた内容で定義される物を指す。
1-1. Shape In one embodiment, the copper alloy material of the present invention is a strip or plate. Normally, strips and boards are defined as follows.
"Stripe" (ribbon) refers to "a rolled product having a uniform wall thickness of 0.1 mm or more, having a rectangular cross section, and being supplied in a slit coil shape".
"Sheet, plate" refers to "a rolled product having a uniform wall thickness of 0.1 mm or more, having a rectangular cross section, and being supplied by a flat plate cut with a shear or a saw (saw)".
However, the article or board in the present specification refers to a thing defined by the content of the above definition in which the portion of "0.1 mm or more" is replaced with "0.05 mm or more".

また、好ましい一実施形態において、本発明の銅合金材料の厚さは、0.05~2.0mmである。0.05mm未満であると、電気電子部品用として強度が不十分な場合がある。2.0mm超であると、電気電子部品の小型化および高精細化に対応できない場合がある。 Further, in a preferred embodiment, the thickness of the copper alloy material of the present invention is 0.05 to 2.0 mm. If it is less than 0.05 mm, the strength may be insufficient for electrical and electronic parts. If it exceeds 2.0 mm, it may not be possible to cope with miniaturization and high definition of electrical and electronic parts.

1-2.組成
一実施形態において、本発明の銅合金材料のSn濃度が0.01~0.30質量%である。Sn濃度が高いと導電率が低下し、特に、Sn濃度が0.30質量%を超えると導電率が70%を下回る場合がある。一方、Sn濃度が高いと0.2%耐力および引張強さが高くなる。Sn濃度の調整は、製品の引張強さを調整する手段のひとつである。好ましくは、Sn濃度が0.10~0.20質量%である。さらに好ましくは0.10~0.15質量%である。残部は、Cuおよび不可避的不純物である。
1-2. Composition In one embodiment, the Sn concentration of the copper alloy material of the present invention is 0.01 to 0.30% by mass. When the Sn concentration is high, the conductivity decreases, and in particular, when the Sn concentration exceeds 0.30% by mass, the conductivity may be less than 70%. On the other hand, when the Sn concentration is high, the 0.2% proof stress and the tensile strength are high. Adjusting the Sn concentration is one of the means for adjusting the tensile strength of the product. Preferably, the Sn concentration is 0.10 to 0.20% by mass. More preferably, it is 0.10 to 0.15% by mass. The balance is Cu and unavoidable impurities.

一実施形態において、本発明の銅合金材料は、上記Sn及びCuの他に、少なくとも下記のいずれか1種の元素を、下記の量だけ、更に含有してもよい:
Pb:0~0.03質量%
Fe:0~0.02質量%
Zn:0~0.10質量%
P:0~0.020質量%(好ましくは、0.001質量%以上)
In one embodiment, the copper alloy material of the present invention may further contain at least one of the following elements in the following amounts in addition to the Sn and Cu described above:
Pb: 0 to 0.03% by mass
Fe: 0 to 0.02% by mass
Zn: 0 to 0.10% by mass
P: 0 to 0.020% by mass (preferably 0.001% by mass or more)

一実施形態において、本発明の銅合金は、JISH3100(2018年)に規定される、合金番号がC1441の「すず入り銅」を含む。C1441の合金成分は、Snが0.10~0.20質量%であり、上述した範囲内である。更には、C1441の合金成分は、Pbが0.03質量%以下、Feが0.02質量%以下、Znが0.10質量%以下、Pが0.001~0.020質量%、残部がCuである。ただし、Pb、Fe、Zn、および、Pは、本発明が解決しようとする金属粉に係わる課題および解決手段に影響はないものの、導電性を損なう場合がある。Pb、Fe、Zn、および、Pは、導電性を損なわない範囲で許容するものとする。 In one embodiment, the copper alloy of the present invention comprises "tin-filled copper" with an alloy number of C1441, as defined in JIS H3100 (2018). The alloy component of C1441 has Sn of 0.10 to 0.20% by mass, which is within the above-mentioned range. Furthermore, the alloy components of C1441 are Pb of 0.03% by mass or less, Fe of 0.02% by mass or less, Zn of 0.10% by mass or less, P of 0.001 to 0.020% by mass, and the balance. It is Cu. However, Pb, Fe, Zn, and P may impair conductivity, although they do not affect the problems and means for solving the metal powder to be solved by the present invention. Pb, Fe, Zn, and P are allowed as long as the conductivity is not impaired.

1-3.導電率
一実施形態において、本発明の銅合金材料の導電率は、70%IACS以上である。導電率が70%IACS以上であれば、電気電子部品に使用したとき、優れた導電性が発現する。好ましくは74%IACS以上、より好ましくは78%IACS以上である。
1-3. Conductivity In one embodiment, the conductivity of the copper alloy material of the present invention is 70% IACS or higher. When the conductivity is 70% IACS or more, excellent conductivity is exhibited when used for electrical and electronic parts. It is preferably 74% IACS or higher, more preferably 78% IACS or higher.

導電率は、長手方向が圧延方向と平行な方向に採取した試験片に対して、20℃で、四端子法により測定する。測定方法は、JISH0505(1975年)「非鉄金属材料の体積抵抗率及び導電率測定方法」に準拠する。 The conductivity is measured by the four-terminal method at 20 ° C. with respect to the test piece collected in the direction in which the longitudinal direction is parallel to the rolling direction. The measuring method conforms to JISH0505 (1975) "Method for measuring volume resistivity and conductivity of non-ferrous metal materials".

1-4.引張強さ(TS)
一実施形態において、本発明の銅合金材料の引張強さは、425MPa~580MPaである。引張強さが425MPa未満であると、電気電子部品に使用したとき、十分な強度が発揮されない。引張強さが580MPaを超えると、曲げ加工性が劣化する。好ましくは460MPa以上、及び/又は540MPa以下である。
1-4. Tensile strength (TS)
In one embodiment, the tensile strength of the copper alloy material of the present invention is 425 MPa to 580 MPa. If the tensile strength is less than 425 MPa, sufficient strength will not be exhibited when used for electrical and electronic components. If the tensile strength exceeds 580 MPa, the bending workability deteriorates. It is preferably 460 MPa or more and / or 540 MPa or less.

1-5.伸び(EL)
一実施形態において、本発明の銅合金材料の伸び率の上限は、11.0(%)である。一方で、下限値については、以下の様に規定される。
伸び(%)≧3700/引張強さ(MPa)
1-5. Elongation (EL)
In one embodiment, the upper limit of the elongation rate of the copper alloy material of the present invention is 11.0 (%). On the other hand, the lower limit is defined as follows.
Elongation (%) ≧ 3700 / tensile strength (MPa)

伸びが下限を下回るものは、引張強さに対し伸びが相対的に低い。そのため、延性が劣り、抜き加工において金属粉が発生しやすい。一方で、伸びが上限を上回るものは、抜き加工によるプレス加工においてバリが発生しやすい。バリが発生しやすいと金属粉も発生しやすくなる。 If the elongation is below the lower limit, the elongation is relatively low with respect to the tensile strength. Therefore, the ductility is inferior, and metal powder is likely to be generated in the punching process. On the other hand, if the elongation exceeds the upper limit, burrs are likely to occur in the press working by punching. When burrs are likely to occur, metal powder is also likely to be generated.

ここで、伸びの下限は、一定の値が定まらず、引張強さと関連付けて規定する。具体的には、次式のように引張強さと伸びとの積により規定する。
・引張強さ(MPa)×伸び(%)≧3700
Here, the lower limit of elongation is defined in relation to the tensile strength because a constant value is not determined. Specifically, it is specified by the product of tensile strength and elongation as shown in the following equation.
・ Tensile strength (MPa) x elongation (%) ≧ 3700

上記の式において、引張強さが高く、かつ、伸びが高いものは、金属粉が発生しにくい。金属粉が発生しにくいのは、引張強さが高く、かつ、延性が高いと、プレス加工において破断部の輪郭から微小部分が脱落しにくいからである。 In the above formula, those having high tensile strength and high elongation are less likely to generate metal powder. The reason why metal powder is less likely to be generated is that if the tensile strength is high and the ductility is high, it is difficult for a minute portion to fall off from the contour of the fractured portion in press working.

また、上記の式において、引張強さと伸びとの積の好ましい下限は3700(MPa・%)である。引張強さと伸びとの積が3700(MPa・%)を下回ると、強度および延性の低下により、金属粉が発生しやすくなる。上限値は特に規定されないが、典型的には6000(MPa・%)以下である。 Further, in the above formula, the preferable lower limit of the product of the tensile strength and the elongation is 3700 (MPa ·%). When the product of tensile strength and elongation is less than 3700 (MPa ·%), metal powder is likely to be generated due to a decrease in strength and ductility. The upper limit is not particularly specified, but is typically 6000 (MPa ·%) or less.

引張強さ及び伸びは、引張試験により測定する。引張試験は、JISZ2241(2011年)による。試験片は、圧延方向と平行な方向に採取し、JISZ2241に規定される5号試験片または13B号試験片を用い、評点距離を50mmとする。 Tensile strength and elongation are measured by a tensile test. The tensile test is based on JISZ2241 (2011). The test piece is collected in a direction parallel to the rolling direction, and the No. 5 test piece or the No. 13B test piece specified in JISZ2241 is used, and the scoring distance is 50 mm.

試験片が規定の寸法どおりに採取できない場合は、幅が5mm以上25mm以下、長さが150mm以上250mm以下である長方形の板を作製し試験片としてよい。または、幅の製品規格が5mm以上25mm以下である板又は条については、板又は条から150mm以上250mm以下の長さを切り出し試験片としてよい。 If the test piece cannot be collected according to the specified dimensions, a rectangular plate having a width of 5 mm or more and 25 mm or less and a length of 150 mm or more and 250 mm or less may be produced and used as the test piece. Alternatively, for a plate or strip having a product standard of width of 5 mm or more and 25 mm or less, a length of 150 mm or more and 250 mm or less may be cut out from the plate or strip and used as a test piece.

試験片の寸法、あるいは、JISZ2241に規定される諸々の試験条件の設定によっては、引張強さおよび伸びの値に違いが生じる場合もあり得る。その場合において、いずれか1種類の試験片の寸法、あるいは、いずれか1種類の試験条件により引張強さおよび伸び率が上記の範囲に含まれるとき、その条または板は本発明の範囲に含まれるものとする。 Differences in tensile strength and elongation values may occur depending on the dimensions of the test piece or the setting of various test conditions specified in JISZ2241. In that case, when the tensile strength and elongation are included in the above range due to the dimensions of any one type of test piece or any one type of test condition, the strip or plate is included in the scope of the present invention. It shall be.

2.製造方法
一実施形態において、本発明は、銅合金材料の製造方法に関する。より具体的には、上述したいずれかの特性を備える銅合金材料の製造方法に関する。
2. 2. Manufacturing Method In one embodiment, the present invention relates to a method for manufacturing a copper alloy material. More specifically, the present invention relates to a method for producing a copper alloy material having any of the above-mentioned characteristics.

2-1.製造方法の工程の概要
溶解鋳造、熱間圧延、及び面削により得た板に、冷間圧延及び再結晶焼鈍を交互に行い、仕上げ冷間圧延を行うことができる。仕上げ冷間圧延は、製品の板厚を調整する最終の冷間圧延である。仕上げ冷間圧延後に、歪取焼鈍を行い製品とする。
2-1. Outline of the process of the manufacturing method Cold rolling and recrystallization annealing can be alternately performed on a plate obtained by melt casting, hot rolling, and face milling to perform finish cold rolling. Finish cold rolling is the final cold rolling that adjusts the plate thickness of the product. Finish After cold rolling, strain removal and annealing are performed to obtain a product.

各工程における条件は、本発明にかかわる成分の銅合金等の板及び条の製造方法に関する周知技術を用いて設定すればよい。また、上記工程のほかに、任意で、脱脂する工程、酸洗する工程、研磨する工程、及び防錆処理工程のうち少なくともいずれか1以上を追加してもよい。脱脂する工程により、圧延油及び金属粉を除去することができる。酸洗及び研磨する工程により、酸化膜又は酸化層を除去することができる。防錆処理は、変色防止剤を用いてもよい。 The conditions in each step may be set by using a well-known technique for manufacturing a plate and a strip of a copper alloy or the like, which is a component related to the present invention. Further, in addition to the above steps, at least one or more of a degreasing step, a pickling step, a polishing step, and a rust preventive treatment step may be optionally added. Rolling oil and metal powder can be removed by the degreasing step. The oxide film or the oxide layer can be removed by the pickling and polishing steps. For the rust preventive treatment, a discoloration inhibitor may be used.

2-2.最終の再結晶焼鈍
最終の再結晶焼鈍で結晶粒度を微細化し、その後に仕上げ冷間圧延を行うと0.2%耐力および引張強さが高くなる。最終の再結晶焼鈍は、製品の引張強さを調整する手段のひとつである。一実施形態において、最終の再結晶焼鈍で得られる結晶粒度は例えば0.030mm以下である。
2-2. Final recrystallization annealing When the crystal grain size is refined by the final recrystallization annealing and then the finish cold rolling is performed, the 0.2% proof stress and tensile strength are increased. The final recrystallization annealing is one of the means for adjusting the tensile strength of the product. In one embodiment, the grain size obtained by the final recrystallization annealing is, for example, 0.030 mm or less.

2-3.仕上げ冷間圧延
冷間圧延の加工度が高いと引張強さが高くなる。ここで、加工度は以下の式により算出される。
加工度(%)=((冷間圧延前の板厚-冷間圧延後の板厚)/冷間圧延前の板厚)×100
仕上げ冷間圧延の加工度は、製品の引張強さを調整する手段のひとつである。一実施形態において、加工度は、たとえば50%以上である。
2-3. Finish cold rolling The higher the workability of cold rolling, the higher the tensile strength. Here, the degree of processing is calculated by the following formula.
Workability (%) = ((plate thickness before cold rolling-plate thickness after cold rolling) / plate thickness before cold rolling) x 100
The workability of finish cold rolling is one of the means for adjusting the tensile strength of the product. In one embodiment, the degree of processing is, for example, 50% or more.

2-4.歪取焼鈍
一般に、銅合金等の板及び条の製造においては、仕上げ冷間圧延後に歪取焼鈍を行う。当該歪取焼鈍の目的は、ばね性の向上、低温焼鈍効果による強度の向上、残留応力の低減、熱伸縮特性の向上、延性の向上、延性の向上による曲げ加工性の向上等が挙げられる。
2-4. Strain relief annealing Generally, in the production of plates and strips of copper alloys and the like, strain relief annealing is performed after finish cold rolling. The purpose of the strain-removing annealing is to improve springiness, strength by low-temperature annealing effect, reduction of residual stress, improvement of thermal expansion and contraction characteristics, improvement of ductility, improvement of bending workability by improvement of ductility, and the like.

一実施形態において、本発明では、上記のうちばね性の向上、及び、延性の向上に着目し、歪取焼鈍の条件を調整する。ばね性と延性の関係について述べると、ばね性が高いと延性が劣り、延性が高いとばね性が劣る場合がある。一実施形態において、本発明では、最良のばね性に比べ劣る条件にて歪取焼鈍を行うことにより、必要な延性を確保する。 In one embodiment, the present invention focuses on the improvement of springiness and ductility among the above, and adjusts the conditions for strain relief annealing. Regarding the relationship between springiness and ductility, if the springiness is high, the ductility may be inferior, and if the ductility is high, the springiness may be inferior. In one embodiment, the present invention ensures the required ductility by performing strain relief annealing under conditions inferior to the best springiness.

具体的には、最良のばね性を示す指標としてばね限界値を採用し、ばね限界値の低下率を調整する。ばね限界値低下率は、以下の手順において定義され調整される。
(1)歪取焼鈍の時間が一定のもとで、歪取焼鈍の予備実験を行い、歪取焼鈍の温度と、歪取焼鈍後のばね限界値との関係についてデータを採取する。
(2)得られたデータから、温度とばね限界値との関係を表す曲線を作成する(図1参照)。ここで、横軸を温度とし、縦軸をばね限界値とする。
(3)曲線中、ある温度において、ばね限界値は最大値を示す。このばね限界値を最大ばね限界値Kb(MAX)とする。また、ばね限界値が最大値を示す温度をT(Kb(MAX))とする。
(4)次式よりばね限界値低下量ΔKbを定義する。
ΔKb=Kb(MAX)-Kb
(5)ばね限界値低下量の最大ばね限界値に対する比率として、ばね限界値低下率として定義する。
ばね限界値低下率(%)=(ΔKb/Kb(MAX))×100(%)
(6)本発明の一実施形態では、ばね限界値が最大値を示す温度T(Kb(MAX))より高温で、かつ、ばね限界値低下率が10~25%の温度にて歪取焼鈍をする。ばね限界値が最大値を示す温度T(Kb(MAX))より低温で、かつ、ばね限界値低下率が10~25%の温度にて歪取焼鈍をすると、高い伸び(%)が得られず、引張強さと伸びとの積(MPa・%)が好ましい範囲を下回り、プレス加工において金属粉が発生しやすくなる。
Specifically, the spring limit value is adopted as an index indicating the best spring property, and the reduction rate of the spring limit value is adjusted. The spring limit reduction rate is defined and adjusted in the following procedure.
(1) Perform a preliminary experiment of strain annealing under a constant strain annealing time, and collect data on the relationship between the temperature of strain annealing and the spring limit value after strain annealing.
(2) From the obtained data, a curve showing the relationship between the temperature and the spring limit value is created (see FIG. 1). Here, the horizontal axis is the temperature and the vertical axis is the spring limit value.
(3) In the curve, the spring limit value shows the maximum value at a certain temperature. This spring limit value is defined as the maximum spring limit value Kb (MAX). Further, the temperature at which the spring limit value indicates the maximum value is T (Kb (MAX)).
(4) The spring limit value decrease amount ΔKb is defined from the following equation.
ΔKb = Kb (MAX) -Kb
(5) The ratio of the amount of decrease in the spring limit value to the maximum spring limit value is defined as the rate of decrease in the spring limit value.
Spring limit value decrease rate (%) = (ΔKb / Kb (MAX)) × 100 (%)
(6) In one embodiment of the present invention, strain removal annealing is performed at a temperature higher than the temperature T (Kb (MAX)) at which the spring limit value indicates the maximum value and at a temperature at which the spring limit value decrease rate is 10 to 25%. do. High elongation (%) is obtained by strain-removal annealing at a temperature lower than the temperature T (Kb (MAX)) at which the spring limit value indicates the maximum value and at a temperature where the spring limit value decrease rate is 10 to 25%. However, the product of tensile strength and elongation (MPa ·%) is less than the preferable range, and metal powder is likely to be generated in the press working.

上記において、時間とばね限界値との関係につき予備実験をしてもよい。その場合、上記の(1)~(6)および図の記載は、「温度」を「時間」と、「高温」を「長時間」と読み替える。例えば、(6)の記載は、「本発明の一実施形態では、ばね限界値が最大値を示す時間t(Kb(MAX))より長時間で、かつ、ばね限界値低下率が10~25%の時間にて歪取焼鈍をする。」という記載に読み替える。 In the above, a preliminary experiment may be performed on the relationship between time and the spring limit value. In that case, in the above (1) to (6) and the description in the figure, "temperature" is read as "time" and "high temperature" is read as "long time". For example, the description of (6) states, "In one embodiment of the present invention, the spring limit value is longer than the time t (Kb (MAX)) showing the maximum value, and the spring limit value decrease rate is 10 to 25. It should be read as "The strain is removed and annealed in% time."

また、温度及び時間を規則的に同時に変える予備実験、例えば、温度と時間との比が一定である条件のもとで、温度と時間との積とばね限界値との関係につき予備実験をしてもよい。 In addition, a preliminary experiment in which the temperature and time are changed regularly at the same time, for example, a preliminary experiment on the relationship between the product of temperature and time and the spring limit value under the condition that the ratio of temperature and time is constant. You may.

上記温度及び時間以外に、予備実験の方法や条件によって、ばね限界値の最大値が変動し、ばね限界値低下率の最適な範囲が変動することは、あり得ることであるが大勢に影響はなく当業者の実施に支障はない。なお、ばね限界値については、歪取焼鈍後の材料から、幅が10mmの短冊形状の試験片を、試験片の長手方向が圧延方向と平行方向になるように採取し、JISH3130に規定されているモーメント式試験により、ばね限界値を測定した。 In addition to the above temperature and time, it is possible that the maximum value of the spring limit value fluctuates and the optimum range of the spring limit value decrease rate fluctuates depending on the method and conditions of the preliminary experiment, but it affects many people. There is no hindrance to the implementation of those skilled in the art. Regarding the spring limit value, a strip-shaped test piece with a width of 10 mm is collected from the material after strain removal and annealing so that the longitudinal direction of the test piece is parallel to the rolling direction, and is specified in JIS H3130. The spring limit value was measured by the existing moment type test.

ばね限界値低下率の好ましい範囲は10~25%である。10%未満であると延性が低下し、金属粉が発生しやすくなる。一方で、25%を超えると延性が高くなり、バリの発生による金属粉が発生する。 The preferred range of the spring limit value reduction rate is 10 to 25%. If it is less than 10%, the ductility is lowered and metal powder is likely to be generated. On the other hand, if it exceeds 25%, the ductility becomes high and metal powder is generated due to the generation of burrs.

3.電気電子部品及び電子機器
上記銅合金材料に対して更に加工(例:プレス加工(抜き加工、曲げ加工等))及び/又は処理(例:メッキ処理等)を行ってもよい。上記銅合金材料を用いて、電気電子部品(例:コネクター、リレー、端子等)を製造することができる。そして、当該電気電子部品用いて電子機器を製造することもできる。
3. 3. Electrical and electronic parts and electronic devices The copper alloy material may be further processed (eg, press working (punching, bending, etc.)) and / or treated (eg, plating, etc.). Electrical and electronic components (eg, connectors, relays, terminals, etc.) can be manufactured using the copper alloy material. Then, an electronic device can be manufactured by using the electric / electronic component.

溶解鋳造、熱間圧延、面削により得た板に、冷間圧延および再結晶焼鈍を交互に行い、仕上げ冷間圧延を行い、板厚が0.1mmの板を得た。所望の引張強さを得るため、最終の再結晶焼鈍における結晶粒度、仕上げ冷間圧延における加工度を調整した。また、Sn濃度についても表1に記載の条件に従って調整した。なお、仕上げ冷間圧延を終えた時点において、いずれの事例も伸びは5%未満であった。 Cold rolling and recrystallization annealing were alternately performed on the plates obtained by melt casting, hot rolling, and face milling, and finish cold rolling was performed to obtain a plate having a plate thickness of 0.1 mm. In order to obtain the desired tensile strength, the grain size in the final recrystallization annealing and the workability in the finish cold rolling were adjusted. The Sn concentration was also adjusted according to the conditions shown in Table 1. At the time when the finish cold rolling was completed, the elongation was less than 5% in all cases.

仕上げ冷間圧延のあと、歪取焼鈍を行い製品とした。歪取焼鈍は、温度が300~600℃、時間が1秒~600秒において予備実験を行った上で実施し、ばね限界値低下量を表1の条件になるように制御した。 After cold rolling, strain removal and annealing were performed to obtain a product. Strain removal annealing was carried out after conducting a preliminary experiment at a temperature of 300 to 600 ° C. and a time of 1 to 600 seconds, and the amount of decrease in the spring limit value was controlled so as to meet the conditions shown in Table 1.

得られた製品つき、導電率、引張強さ、伸び、金属粉評価、曲げ性評価を行った。 With the obtained product, conductivity, tensile strength, elongation, metal powder evaluation, and bendability evaluation were performed.

金属粉の評価は、プレス加工において発生する金属粉を評価した。プレス加工では、長さが100mm、幅が10mmである長方形の板を、抜き加工により作製した。100個の板を重ねて束ね針金で両端を固定し、長さが100mm、幅が10mm、高さが10mmの直法体の試験片とした。ここで、「長さ」の方向は圧延方向と平行の方向、「幅」の方向は圧延方向と直角の方向である。 For the evaluation of the metal powder, the metal powder generated in the press working was evaluated. In the press working, a rectangular plate having a length of 100 mm and a width of 10 mm was produced by punching. 100 plates were stacked and bundled, and both ends were fixed with a wire to prepare a test piece of a straight body having a length of 100 mm, a width of 10 mm, and a height of 10 mm. Here, the direction of "length" is a direction parallel to the rolling direction, and the direction of "width" is a direction perpendicular to the rolling direction.

得られた直方体の試験片で、プレス加工による破断面が露頭した面、すなわち長さが100mm、高さが10mの面に粘着テープを貼りつけて引きはがす操作を行った。この方法の実施にあっては、JISH8504(1999年)「めっきの密着性試験方法」の「g)引きはがし試験方法」を参照した。 With the obtained rectangular parallelepiped test piece, an adhesive tape was attached to a surface having an exposed fracture surface by press working, that is, a surface having a length of 100 mm and a height of 10 m, and peeled off. In carrying out this method, JISH8504 (1999) "Plating Adhesion Test Method", "g) Peeling Test Method" was referred to.

得られた粘着テープの粘着面を光学顕微鏡にて観察し、金属粉が容易に認められた場合を不良(×)とし、金属粉がほとんど認められなかった場合を良好(○)とした。粘着面には外来性の不可避的で微小な異物も多数付着しており、光学顕微鏡で輝度の高いものを金属粉と判断した。 The adhesive surface of the obtained adhesive tape was observed with an optical microscope, and the case where metal powder was easily observed was regarded as defective (x), and the case where almost no metal powder was observed was regarded as good (◯). A large number of foreign unavoidable and minute foreign substances were also attached to the adhesive surface, and the one with high brightness was judged to be metal powder by an optical microscope.

曲げ性は、W曲げ試験により評価した。曲げの方法は、BAD WAY、すなわち、長手方向が圧延方向と直角な方向に採取した試験片を用い、曲げ軸を圧延方向と平行な方向とした。試験片の幅を0.2mm、曲げ半径を0.0mmとした。JISH3100(2018年)「銅及び銅合金の板」における「7.3曲げ試験」の項を参照した。 The bendability was evaluated by the W bending test. As a bending method, BAD WAY, that is, a test piece collected in a direction whose longitudinal direction is perpendicular to the rolling direction was used, and the bending axis was set in a direction parallel to the rolling direction. The width of the test piece was 0.2 mm and the bending radius was 0.0 mm. Refer to the section "7.3 Bending Test" in JISH3100 (2018) "Copper and Copper Alloy Plates".

W曲げ試験における評価は、目視判定および写真判定によった。具体的には、光学顕微鏡による曲げ部の観察、および、光学顕微鏡により撮影した曲げ部の写真の確認により評価した。曲げ部において、割れが認められたものを不良とし、シワが認められたもの、および、シワが認められなかったものを良好とした。光学顕微鏡の輝度の調整により割れと疑われるシワが写真に認められるものは、不良とした。 The evaluation in the W bending test was based on visual finish and photo finish. Specifically, it was evaluated by observing the bent portion with an optical microscope and confirming a photograph of the bent portion taken with an optical microscope. In the bent portion, those in which cracks were observed were regarded as defective, and those in which wrinkles were observed and those in which wrinkles were not observed were regarded as good. Wrinkles suspected to be cracked by adjusting the brightness of the optical microscope were found in the photograph as defective.

実施例および比較例を評価した結果を下表に示す。

Figure 2022034040000001
The results of evaluating the examples and comparative examples are shown in the table below.
Figure 2022034040000001

表1において、発明例は、Sn濃度、ばね限界値の低下率、および、引張強さが好ましい範囲に調整されており、更には、伸び、および、「引張強さと伸びとの積」が好ましい値を示した(伸びは11%以下、引張強さと伸びとの積は3700以上)。その結果、発明例は、プレス加工における金属粉の評価、および、曲げ性の評価において良好な結果が得られた。 In Table 1, in the examples of the invention, the Sn concentration, the rate of decrease in the spring limit value, and the tensile strength are adjusted within a preferable range, and further, elongation and "product of tensile strength and elongation" are preferable. Values were shown (elongation was 11% or less, product of tensile strength and elongation was 3700 or more). As a result, good results were obtained in the evaluation of the metal powder in the press working and the evaluation of the bendability of the invention example.

ここで、発明例16は、JISH3100(2018年)に規定される、合金番号がC1441の「すず入り銅」である。発明例16の合金成分は、Snが0.15質量、Pbが0.001質量%、Feが0.01質量%、Znが0.05質量%、Pが0.010質量%、残部がCuであった。 Here, the invention example 16 is "tin-containing copper" having an alloy number of C1441, which is defined in JIS H3100 (2018). The alloy components of Invention Example 16 are Sn of 0.15% by mass, Pb of 0.001% by mass, Fe of 0.01% by mass, Zn of 0.05% by mass, P of 0.010% by mass, and the balance of Cu. Met.

比較例1は、Sn濃度が低いため、引張強さが低く、電気電子部品に使用したとき、十分な強度が発揮されないことが予想される。また、比較例1は、ばね限界値の低下率が適正であったにもかかわらず、Sn濃度が低いため歪取焼鈍における軟化が著しく、伸び率が好ましい範囲の上限を超えた。その結果、プレス加工における金属粉の評価において不良となった。 In Comparative Example 1, since the Sn concentration is low, the tensile strength is low, and it is expected that sufficient strength will not be exhibited when used for electrical and electronic components. Further, in Comparative Example 1, although the rate of decrease in the spring limit value was appropriate, the Sn concentration was low, so that the softening in the strain-removing annealing was remarkable, and the elongation rate exceeded the upper limit of the preferable range. As a result, the evaluation of the metal powder in the press working was poor.

比較例2は、Sn濃度が低いため、引張強さが低く、電気電子部品に使用したとき、十分な強度が発揮されないことが予想される。また、ばね限界値の低下率が好ましい範囲を下回る設定をしたため、引張強さと伸びとの積が好ましい範囲を下回った。その結果、プレス加工における金属粉の評価において不良となった。 In Comparative Example 2, since the Sn concentration is low, the tensile strength is low, and it is expected that sufficient strength will not be exhibited when used for electrical and electronic parts. Further, since the rate of decrease of the spring limit value was set to be less than the preferable range, the product of the tensile strength and the elongation was set to be less than the preferable range. As a result, the evaluation of the metal powder in the press working was poor.

比較例3は、ばね限界値の低下率が好ましい範囲の上限を超える設定をしたため、歪取焼鈍における軟化が著しく引張強さが好ましい範囲の下限を下回り、伸び率が好ましい範囲の上限を超えた。その結果、引張強さが低く、電気電子部品に使用したとき、十分な強度が発揮されないことが予想される。また、プレス加工における金属粉の評価において不良となった。 In Comparative Example 3, since the rate of decrease in the spring limit value was set to exceed the upper limit of the preferable range, the softening in strain relief annealing was significantly lower than the lower limit of the preferable range of tensile strength, and the elongation rate exceeded the upper limit of the preferable range. .. As a result, the tensile strength is low, and it is expected that sufficient strength will not be exhibited when used for electrical and electronic components. In addition, the evaluation of the metal powder in the press working was poor.

比較例4は、ばね限界値の低下率が好ましい範囲の上限を超える設定をしたため、歪取焼鈍における軟化が著しく、伸び率が好ましい範囲の上限を超えた。その結果、プレス加工における金属粉の評価において不良となった。 In Comparative Example 4, since the reduction rate of the spring limit value was set to exceed the upper limit of the preferable range, the softening in the strain relief annealing was remarkable, and the elongation rate exceeded the upper limit of the preferable range. As a result, the evaluation of the metal powder in the press working was poor.

比較例5は、ばね限界値の低下率が好ましい範囲の下限を下回る設定をしたため、引張強さと伸びとの積が好ましい範囲を下回った。その結果、プレス加工における金属粉の評価において不良となった。 In Comparative Example 5, since the rate of decrease in the spring limit value was set to be lower than the lower limit of the preferable range, the product of the tensile strength and the elongation was set to be lower than the preferable range. As a result, the evaluation of the metal powder in the press working was poor.

比較例6は、ばね限界値の低下率が好ましい範囲の上限を超える設定をしたため、歪取焼鈍における軟化が著しく、伸び率が好ましい範囲の上限を超えた。その結果、プレス加工における金属粉の評価において不良となった。 In Comparative Example 6, since the rate of decrease in the spring limit value was set to exceed the upper limit of the preferable range, the softening in the strain relief annealing was remarkable, and the elongation rate exceeded the upper limit of the preferable range. As a result, the evaluation of the metal powder in the press working was poor.

比較例7は、ばね限界値の低下率が好ましい範囲の下限を下回る設定をしたため、引張強さと伸びとの積が好ましい範囲を下回った。その結果、プレス加工における金属粉の評価において不良となった。 In Comparative Example 7, since the rate of decrease in the spring limit value was set to be lower than the lower limit of the preferable range, the product of the tensile strength and the elongation was set to be lower than the preferable range. As a result, the evaluation of the metal powder in the press working was poor.

比較例8は、Sn濃度が高いため、導電率が好ましい範囲の下限を下回った。電気電子部品に使用したとき、優れた導電性が発現しないことが予想される。また、比較例8は、Sn濃度が高いため、ばね限界値の低下率が好ましい範囲の上限を超える設定をしたにもかかわらず、伸びおよび「引張強さと伸びとの積」が好ましい範囲であった。その結果、プレス加工における金属粉の評価は良好であった。しかし、引張強さが高いため、曲げ性の評価において不良となった。 In Comparative Example 8, since the Sn concentration was high, the conductivity was below the lower limit of the preferable range. It is expected that excellent conductivity will not be exhibited when used in electrical and electronic components. Further, in Comparative Example 8, since the Sn concentration is high, the elongation and the “product of tensile strength and elongation” are in the preferable range even though the rate of decrease in the spring limit value is set to exceed the upper limit of the preferable range. rice field. As a result, the evaluation of the metal powder in the press working was good. However, due to its high tensile strength, it was poor in the evaluation of bendability.

比較例9は、Sn濃度が高いため、導電率が好ましい範囲の下限を下回った。電気電子部品に使用したとき、優れた導電性が発現しないことが予想される。また、比較例9は、ばね限界値の低下率が好ましい範囲で設定をしたため、伸びおよび「引張強さと伸びとの積」が好ましい範囲であった。その結果、プレス加工における金属粉の評価は良好であった。しかし、引張強さが高いため、曲げ性の評価において不良となった。 In Comparative Example 9, since the Sn concentration was high, the conductivity was below the lower limit of the preferable range. It is expected that excellent conductivity will not be exhibited when used in electrical and electronic components. Further, in Comparative Example 9, since the rate of decrease in the spring limit value was set in a preferable range, elongation and "product of tensile strength and elongation" were in a preferable range. As a result, the evaluation of the metal powder in the press working was good. However, due to its high tensile strength, it was poor in the evaluation of bendability.

比較例10は、Sn濃度が高いため、導電率が好ましい範囲の下限を下回った。電気電子部品に使用したとき、優れた導電性が発現しないことが予想される。また、比較例10は、ばね限界値の低下率が好ましい範囲の下限を下回る設定をしたため、引張強さと伸びとの積が好ましい範囲を下回った。その結果、プレス加工における金属粉の評価において不良となった。さらに、Sn濃度が高いため、引張強さが高くなり、曲げ性の評価において不良となった。 In Comparative Example 10, since the Sn concentration was high, the conductivity was below the lower limit of the preferable range. It is expected that excellent conductivity will not be exhibited when used in electrical and electronic components. Further, in Comparative Example 10, since the rate of decrease in the spring limit value was set to be lower than the lower limit of the preferable range, the product of the tensile strength and the elongation was set to be lower than the preferable range. As a result, the evaluation of the metal powder in the press working was poor. Further, since the Sn concentration is high, the tensile strength is high, which is poor in the evaluation of bendability.

比較例11は、ばね限界値が最大値を示す温度T(Kb(MAX))より低温で、かつ、ばね限界値低下率が10~25%の温度にて歪取焼鈍をした事例である。比較例11は、高い伸び(%)が得られず、引張強さと伸びとの積(MPa・%)が好ましい範囲を下回り、プレス加工における金属粉の評価において不良となった。 Comparative Example 11 is an example in which strain removal annealing is performed at a temperature lower than the temperature T (Kb (MAX)) at which the spring limit value indicates the maximum value and at a temperature at which the spring limit value decrease rate is 10 to 25%. In Comparative Example 11, high elongation (%) could not be obtained, the product of tensile strength and elongation (MPa ·%) was below the preferable range, and the evaluation of the metal powder in the press working was poor.

以上、本発明の具体的な実施形態について説明してきた。上記実施形態は、本発明の具体例に過ぎず、本発明は上記実施形態に限定されない。例えば、上述の実施形態の1つに開示された技術的特徴は、他の実施形態に適用することができる。また、特記しない限り、特定の方法については、一部の工程を他の工程の順序と入れ替えることも可能であり、特定の2つの工程の間に更なる工程を追加してもよい。本発明の範囲は、特許請求の範囲によって規定される。 The specific embodiment of the present invention has been described above. The above embodiment is merely a specific example of the present invention, and the present invention is not limited to the above embodiment. For example, the technical features disclosed in one of the above embodiments can be applied to other embodiments. Further, unless otherwise specified, for a specific method, it is possible to replace some steps with the order of other steps, and a further step may be added between the two specific steps. The scope of the present invention is defined by the claims.

Claims (4)

Snを0.01~0.30質量%含有し、
残部が銅及び不可避的不純物からなる銅合金材料であり、
前記銅合金材料は、条又は板であり、
伸びが11%以下であり、
引張強さと伸びとの積が3700(MPa・%)以上である、
銅合金材料。
Containing 0.01 to 0.30% by mass of Sn,
The balance is a copper alloy material consisting of copper and unavoidable impurities.
The copper alloy material is a strip or a plate.
Growth is less than 11%
The product of tensile strength and elongation is 3700 (MPa ·%) or more.
Copper alloy material.
請求項1に記載の銅合金材料を備える電気電子部品。 An electrical and electronic component comprising the copper alloy material according to claim 1. 請求項2の電気電子部品を備える電子機器。 An electronic device including the electrical and electronic components of claim 2. 請求項1に記載の銅合金材料を製造する方法であって、
仕上げ冷間圧延の後に歪取焼鈍を行う工程を含み、
前記歪取焼鈍が、最大ばね限界値に対応する温度又は時間よりも高温又は長時間、且つばね限界値低下率10~25%となる条件で焼鈍を行うことを含む、
該方法。
The method for producing a copper alloy material according to claim 1.
Including the process of performing strain removal annealing after finish cold rolling,
The strain-removing annealing includes annealing under a condition that the temperature or time corresponding to the maximum spring limit value is higher or longer than that of the maximum spring limit value and the spring limit value decrease rate is 10 to 25%.
The method.
JP2021211420A 2019-03-26 2021-12-24 Copper alloy material, electrical and electronic components, electronic device, and method for manufacturing copper alloy material Pending JP2022034040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021211420A JP2022034040A (en) 2019-03-26 2021-12-24 Copper alloy material, electrical and electronic components, electronic device, and method for manufacturing copper alloy material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019059099A JP7034112B2 (en) 2019-03-26 2019-03-26 Manufacturing methods for copper alloy materials, electrical and electronic components, electronic devices, and copper alloy materials
JP2021211420A JP2022034040A (en) 2019-03-26 2021-12-24 Copper alloy material, electrical and electronic components, electronic device, and method for manufacturing copper alloy material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019059099A Division JP7034112B2 (en) 2019-03-26 2019-03-26 Manufacturing methods for copper alloy materials, electrical and electronic components, electronic devices, and copper alloy materials

Publications (1)

Publication Number Publication Date
JP2022034040A true JP2022034040A (en) 2022-03-02

Family

ID=72642032

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019059099A Active JP7034112B2 (en) 2019-03-26 2019-03-26 Manufacturing methods for copper alloy materials, electrical and electronic components, electronic devices, and copper alloy materials
JP2021211420A Pending JP2022034040A (en) 2019-03-26 2021-12-24 Copper alloy material, electrical and electronic components, electronic device, and method for manufacturing copper alloy material

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019059099A Active JP7034112B2 (en) 2019-03-26 2019-03-26 Manufacturing methods for copper alloy materials, electrical and electronic components, electronic devices, and copper alloy materials

Country Status (1)

Country Link
JP (2) JP7034112B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335800A (en) * 1998-05-19 1999-12-07 Dowa Mining Co Ltd Production of copper base alloy with excellent stress relaxation resistance
JP2001148206A (en) * 1999-11-19 2001-05-29 Hitachi Cable Ltd Material for ultra thin copper alloy wire and its method of manufacturing
JP2005213629A (en) * 2004-02-02 2005-08-11 Nikko Metal Manufacturing Co Ltd Method for heat treatment of copper alloy, and copper alloy and material
JP2010065275A (en) * 2008-09-10 2010-03-25 Mitsui Mining & Smelting Co Ltd Heat-resistant copper alloy with high electroconductivity, and production method therefor
JP2016191088A (en) * 2015-03-30 2016-11-10 Jx金属株式会社 Copper alloy sheet and press molded article having the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335800A (en) * 1998-05-19 1999-12-07 Dowa Mining Co Ltd Production of copper base alloy with excellent stress relaxation resistance
JP2001148206A (en) * 1999-11-19 2001-05-29 Hitachi Cable Ltd Material for ultra thin copper alloy wire and its method of manufacturing
JP2005213629A (en) * 2004-02-02 2005-08-11 Nikko Metal Manufacturing Co Ltd Method for heat treatment of copper alloy, and copper alloy and material
JP2010065275A (en) * 2008-09-10 2010-03-25 Mitsui Mining & Smelting Co Ltd Heat-resistant copper alloy with high electroconductivity, and production method therefor
JP2016191088A (en) * 2015-03-30 2016-11-10 Jx金属株式会社 Copper alloy sheet and press molded article having the same

Also Published As

Publication number Publication date
JP7034112B2 (en) 2022-03-11
JP2020158830A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
JP4984108B2 (en) Cu-Ni-Sn-P based copper alloy with good press punchability and method for producing the same
JP5281031B2 (en) Cu-Ni-Si alloy with excellent bending workability
JP5476149B2 (en) Copper alloy with low strength anisotropy and excellent bending workability
JP6696769B2 (en) Copper alloy plate and connector
WO2012132713A1 (en) Copper alloy plate having superior heat dissipation and repeated bending workability
JP2006219733A (en) Copper alloy sheet for electric-electronic component having reduced anisotropy
WO2013018228A1 (en) Copper alloy
JP4157899B2 (en) High strength copper alloy sheet with excellent bending workability
JP5036623B2 (en) Copper alloy for connector and manufacturing method thereof
JP3717321B2 (en) Copper alloy for semiconductor lead frames
JP5467163B1 (en) Copper alloy plate, heat dissipating electronic component comprising the same, and method for producing copper alloy plate
JP2012207261A (en) Copper alloy sheet for electric and electronic part
JP2012211377A (en) Cu-Co-Si BASED ALLOY STRIP
JP6085633B2 (en) Copper alloy plate and press-molded product including the same
JP5822895B2 (en) Copper alloy plate and heat dissipating electronic component including the same
JPH10195562A (en) Copper alloy for electrical and electronic equipment, excellent in blanking workability, and its production
JP2012153938A (en) Cu-Ni-Si-BASED COPPER ALLOY EXCELLENT IN BENDABILITY AND STRESS RELAXATION RESISTANCE
JP7034112B2 (en) Manufacturing methods for copper alloy materials, electrical and electronic components, electronic devices, and copper alloy materials
JP6196429B2 (en) Copper alloy sheet with excellent heat dissipation and repeated bending workability
JP6670277B2 (en) Cu-Ni-Si based copper alloy with excellent mold wear
JP2503793B2 (en) Cu alloy plate material for electric and electronic parts, which has the effect of suppressing the wear of punching dies
JP5427968B1 (en) Copper alloy plate and heat dissipating electronic component including the same
KR20160001634A (en) Copper alloy material, method for producing copper alloy material, lead frames and connectors
JP6816056B2 (en) Manufacturing method of copper alloy material, electronic parts, electronic equipment and copper alloy material
JP6879971B2 (en) Manufacturing method of copper alloy material, electronic parts, electronic equipment and copper alloy material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230328