JP6611222B2 - Copper alloy plate for electric and electronic parts having high strength, high conductivity and excellent stress relaxation characteristics, and method for producing the same - Google Patents

Copper alloy plate for electric and electronic parts having high strength, high conductivity and excellent stress relaxation characteristics, and method for producing the same Download PDF

Info

Publication number
JP6611222B2
JP6611222B2 JP2015034594A JP2015034594A JP6611222B2 JP 6611222 B2 JP6611222 B2 JP 6611222B2 JP 2015034594 A JP2015034594 A JP 2015034594A JP 2015034594 A JP2015034594 A JP 2015034594A JP 6611222 B2 JP6611222 B2 JP 6611222B2
Authority
JP
Japan
Prior art keywords
mass
copper alloy
stress relaxation
electrical
electronic parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015034594A
Other languages
Japanese (ja)
Other versions
JP2016156057A (en
Inventor
裕也 隅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2015034594A priority Critical patent/JP6611222B2/en
Publication of JP2016156057A publication Critical patent/JP2016156057A/en
Application granted granted Critical
Publication of JP6611222B2 publication Critical patent/JP6611222B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、耐応力緩和特性に優れる高強度、高導電率の電気電子部品用銅合金板及びその製造方法、より具体的には電気電子部品用Cu−Cr系合金板及びその製造方法に関する。 The present invention relates to a high-strength and high-conductivity copper alloy plate having excellent stress relaxation resistance and a method for producing the same , and more specifically to a Cu—Cr alloy plate for electrical and electronic components and a method for producing the same .

自動車に搭載される電装品の端子に用いる銅合金には、導電率、強度、耐応力緩和特性、曲げ加工性、Snめっきの耐熱剥離性等の特性が要求される。Cu−Ni−Si系合金は、このバランスがよく通電電流の低い小型の嵌合端子として多く用いられている。一方、通電電流の高いバスバーやパワー系の端子には、Cu−Fe−P系合金が用いられている。近年増加しているハイブリッド自動車や電気自動車は、200〜600Vの電圧に加え従来よりも高い電流が流れ、端子が加熱される。このため、良好な接点を維持するためには、従来よりも高い耐応力緩和特性が必要である。具体的には200℃レベルの耐熱性が要求されている。   Copper alloys used for terminals of electrical components mounted on automobiles are required to have characteristics such as electrical conductivity, strength, stress relaxation resistance, bending workability, and heat resistance peelability of Sn plating. Cu-Ni-Si alloys are often used as small fitting terminals with a good balance and a low energization current. On the other hand, Cu-Fe-P-based alloys are used for bus bars and power-based terminals with high energization current. In hybrid cars and electric cars that have been increasing in recent years, in addition to a voltage of 200 to 600 V, a higher current flows than before, and the terminals are heated. For this reason, in order to maintain a favorable contact, the stress relaxation resistance higher than before is required. Specifically, heat resistance at the 200 ° C. level is required.

Cu−Ni−Si系合金は200℃での耐応力緩和特性が低く、またCu−Fe−P系合金は導電率は高いが耐応力緩和特性が低い。このため従来よりも高い耐応力緩和特性を兼備した高導電率・高耐応力緩和特性に優れる銅合金が求められている。
このような要求に対し、特許文献1には、Cr:0.1〜0.4質量%、Ti:0.005〜0.15質量%、Si:0.01〜0.10質量%を含むCu−Cr系合金が提案されている。この銅合金は、導電率が65%IACS以上、0.2%耐力が460MPaで、150℃にて1000時間加熱後の応力緩和率が20%以下の特性を有する。
また、特許文献2には、Cr:0.10〜0.50質量%、Ti:0.010〜0.30質量%、Si:0.01〜0.10質量%を含むCu−Cr系合金が提案されている。この銅合金は、導電率が70%IACS以上、0.2%耐力が450MPa以上で、優れた曲げ加工性を有する。
The Cu—Ni—Si based alloy has low stress relaxation resistance at 200 ° C., and the Cu—Fe—P based alloy has high electrical conductivity but low stress relaxation resistance. For this reason, there is a demand for a copper alloy having a high electrical conductivity and a high stress relaxation property that has a higher stress relaxation property than before.
In response to such a requirement, Patent Document 1 includes Cr: 0.1 to 0.4 mass%, Ti: 0.005 to 0.15 mass%, and Si: 0.01 to 0.10 mass%. Cu-Cr alloys have been proposed. This copper alloy has the characteristics that the electrical conductivity is 65% IACS or more, the 0.2% proof stress is 460 MPa, and the stress relaxation rate after heating at 150 ° C. for 1000 hours is 20% or less.
Patent Document 2 discloses a Cu-Cr alloy containing Cr: 0.10 to 0.50 mass%, Ti: 0.010 to 0.30 mass%, and Si: 0.01 to 0.10 mass%. Has been proposed. This copper alloy has an electrical conductivity of 70% IACS or higher, a 0.2% proof stress of 450 MPa or higher, and excellent bending workability.

特開2012−214882号公報JP 2012-214882 A 特開2013−204060号公報JP2013-204060A

前記Cu−Cr系合金は、Cu−Ni−Si系合金よりも高導電率が要求される嵌合型端子等の材料として使用が検討されている。一方、自動車のエンジンルーム近傍など、とくに高温環境下に曝される端子の接触信頼性を確保するには、耐応力緩和特性が重要となる。
特許文献1に記載されたCu−Cr系合金は、高強度、高導電率で、耐応力緩和特性に優れるとされているが、近年、より高温環境下において優れた耐応力緩和特性が要求されている。また、耐応力緩和特性に関しては、一定温度に所定の時間保持したときの応力緩和率だけでなく、時間経過に伴う応力緩和率の変化(一定温度にH時間保持後の応力緩和率とH(<H)時間保持後の応力緩和率の差)も重要な特性である。時間経過に伴う応力緩和率の変化が小さければ、自動車搭載後の応力緩和量を予測しやすく、端子の設計自由度も向上できる。
The use of the Cu—Cr alloy is being studied as a material for a fitting terminal or the like that requires a higher conductivity than the Cu—Ni—Si alloy. On the other hand, stress relaxation resistance is important to ensure contact reliability of terminals exposed to high-temperature environments such as in the vicinity of an automobile engine room.
The Cu-Cr alloy described in Patent Document 1 is said to have high strength, high electrical conductivity, and excellent stress relaxation resistance, but in recent years, excellent stress relaxation resistance is required in higher temperature environments. ing. In addition, regarding the stress relaxation resistance, not only the stress relaxation rate when holding at a constant temperature for a predetermined time, but also the change in stress relaxation rate with the passage of time (stress relaxation rate and H after holding at a constant temperature for 1 hour). 2 (<H 1 ) Difference in stress relaxation rate after holding for an hour) is also an important characteristic. If the change in the stress relaxation rate with the passage of time is small, it is easy to predict the amount of stress relaxation after the vehicle is mounted, and the degree of freedom in terminal design can be improved.

本発明は、Cu−Cr系合金板の耐応力緩和特性を改善すること、より具体的には、高温長時間保持後の応力緩和率を低減し、かつ時間経過に伴う応力緩和率の変化を小さくすることを目的とする。   The present invention improves the stress relaxation resistance of the Cu-Cr alloy plate, more specifically, reduces the stress relaxation rate after holding at high temperature for a long time, and changes the stress relaxation rate over time. The purpose is to make it smaller.

Cu−Cr系合金は、特許文献1,2に記載されているように、一般的に、均質化処理、熱間圧延(熱間圧延後に焼き入れ)、複数回の冷間圧延と冷間圧延工程間の中間焼鈍、及び時効処理の工程で製造される。
一方、Cuに対するCrの固溶量は、Cuの融点付近である1080℃で0.65±0.1質量%と大きくなく、1000℃で0.37質量%、800℃で0.15質量%、500℃で0.05%、400℃で0.03質量%未満といわれており、温度低下に伴って急減する。また、Crと化合物を形成する元素、Crの固溶限を狭くする元素がCuに添加されると、Cuに対するCrの固溶量はさらに小さくなる。このため、従来の熱間圧延後の焼き入れ条件では、第二相粒子であるCr含有析出物が意図せず形成されてしまう。発明者らの知見によれば、このCr含有析出物は、熱間圧延後の加工熱処理工程においてサイズが大きくなり、銅合金の耐応力緩和特性を低下させる原因となっている。
As described in Patent Documents 1 and 2, generally, Cu-Cr alloys are generally homogenized, hot rolled (quenched after hot rolling), multiple cold rolling and cold rolling. Manufactured in the process of intermediate annealing between processes and aging treatment.
On the other hand, the solid solution amount of Cr with respect to Cu is not so large as 0.65 ± 0.1% by mass at 1080 ° C. near the melting point of Cu, but is 0.37% by mass at 1000 ° C. and 0.15% by mass at 800 ° C. It is said to be 0.05% at 500 ° C. and less than 0.03% by mass at 400 ° C., and rapidly decreases as the temperature decreases. Further, when an element that forms a compound with Cr or an element that narrows the solid solubility limit of Cr is added to Cu, the solid solution amount of Cr with respect to Cu is further reduced. For this reason, under the conventional quenching conditions after hot rolling, Cr-containing precipitates that are second phase particles are unintentionally formed. According to the knowledge of the inventors, this Cr-containing precipitate is increased in size in the heat treatment process after hot rolling, which causes the stress relaxation resistance of the copper alloy to deteriorate.

この知見に基づき、本発明では、冷間圧延工程間で溶体化処理を行って、熱間圧延後に析出したCr含有析出物を再固溶させ、これにより、従来に比べて顕著に優れた耐応力緩和特性を有する銅合金板を得ることができた。この溶体化処理を行う代わりに、熱間圧延後の焼き入れ温度(冷却開始温度)を従来より高温に設定して、Cr含有析出物の析出自体を防止した場合も、同様に、従来に比べて顕著に優れた耐応力緩和特性を有する銅合金板を得ることができた。   Based on this knowledge, in the present invention, a solution treatment is performed between the cold rolling processes, and the Cr-containing precipitates precipitated after the hot rolling are re-dissolved. A copper alloy sheet having stress relaxation characteristics could be obtained. Instead of performing this solution treatment, when the quenching temperature (cooling start temperature) after hot rolling is set to a higher temperature than before to prevent the precipitation of Cr-containing precipitates, it is also compared with the conventional case. Thus, a copper alloy sheet having remarkably excellent stress relaxation resistance could be obtained.

本発明に係る電気電子部品用銅合金(Cu−Cr系合金)板は、Cr:0.15〜0.60質量%、Si:0.01〜0.20質量%、及びTi:0.01〜0.30質量%とZr:0.01〜0.20質量%の1種又は2種を含み、残部がCu及び不可避的不純物からなり、圧延方向に平行方向及び垂直方向の0.2%耐力が共に500MPa以上、導電率が65%IACS以上であり、200℃にて100時間加熱後の応力緩和率をR100とし、200℃にて1000時間加熱後の応力緩和率をR1000としたとき、応力緩和率の増分(R1000−R100)が7%以下であり、かつR1000が25%以下であることを特徴とする。この銅合金板は、必要に応じて、Ag、Fe、Ni、Sn、Mg、Zn、Co、Mnの1種又は2種以上を、合計で1.0質量%以下含むことができる。なお、本発明において、板は条を含む。 The copper alloy (Cu—Cr alloy) plate for electrical and electronic parts according to the present invention is Cr: 0.15 to 0.60 mass%, Si: 0.01 to 0.20 mass%, and Ti: 0.01. ~ 0.30 mass% and Zr: 0.01 to 0.20 mass% of one or two, the balance is made of Cu and unavoidable impurities , 0.2% in the direction parallel to and perpendicular to the rolling direction Both the proof stress are 500 MPa or more, the electrical conductivity is 65% IACS or more, the stress relaxation rate after heating at 200 ° C. for 100 hours is R 100, and the stress relaxation rate after heating at 200 ° C. for 1000 hours is R 1000 . The increase in stress relaxation rate (R 1000 -R 100 ) is 7% or less, and R 1000 is 25% or less. This copper alloy plate can contain 1.0% by mass or less of one or more of Ag, Fe, Ni, Sn, Mg, Zn, Co, and Mn as required. In the present invention, the plate includes a strip.

本発明に係る銅合金板は、強度、導電率及び曲げ加工性等の特性は従来材同様で、耐応力緩和特性が顕著に優れる。本発明に係る銅合金板を、例えば嵌合型端子等に用いた場合、自動車のエンジンルーム近傍や高電流部位など、特に高温環境下での端子の接触信頼性を確保することができる。   The copper alloy sheet according to the present invention has characteristics such as strength, electrical conductivity, bending workability and the like similar to those of conventional materials, and remarkably excellent stress relaxation resistance. When the copper alloy plate according to the present invention is used for, for example, a fitting type terminal or the like, contact reliability of the terminal particularly in a high temperature environment such as the vicinity of an automobile engine room or a high current part can be ensured.

実施例の試験No.2の銅合金板の断面の顕微鏡組織写真である。Test No. of Example It is a microscope picture of the section of No. 2 copper alloy board.

以下、本発明に係る電気電子部品用銅合金(Cu−Cr系合金)板について、より具体的に説明する。
[銅合金の組成]
(Cr:0.15〜0.60質量%)
Crは、Cr単体で、又はSi,Tiと共にCr−Si、Cr−Ti、Cr−Si−Tiなどの化合物を形成し、析出硬化によって銅合金の強度を向上させる。この析出により、Cu母相中のCr、Si及びTiの固溶量が減少し銅合金の導電率が高まる。Crの含有量が0.15質量%未満では、析出による強度の増加が十分でない。一方、Crの含有量が0.60質量%を超えると、析出物が粗大化する原因となり、耐応力緩和特性及び曲げ加工性が低下する。従って、Crの含有量は0.15〜0.60質量%の範囲とする。Cr含有量の下限は、好ましくは0.20質量%、さらに好ましくは0.25質量%、上限は、好ましくは0.50質量%、さらに好ましくは0.40質量%である。
Hereinafter, the copper alloy (Cu—Cr alloy) plate for electrical and electronic parts according to the present invention will be described more specifically.
[Composition of copper alloy]
(Cr: 0.15-0.60 mass%)
Cr forms a compound such as Cr—Si, Cr—Ti, Cr—Si—Ti alone or together with Si and Ti, and improves the strength of the copper alloy by precipitation hardening. By this precipitation, the solid solution amount of Cr, Si and Ti in the Cu matrix is decreased, and the conductivity of the copper alloy is increased. If the Cr content is less than 0.15% by mass, the increase in strength due to precipitation is not sufficient. On the other hand, if the Cr content exceeds 0.60 mass%, the precipitates become coarse, and the stress relaxation resistance and bending workability deteriorate. Therefore, the Cr content is in the range of 0.15 to 0.60 mass%. The lower limit of the Cr content is preferably 0.20% by mass, more preferably 0.25% by mass, and the upper limit is preferably 0.50% by mass, more preferably 0.40% by mass.

(Si:0.01〜0.20質量%)
Siは、Cr,Tiと共にCr−Si、Cr−Si−Ti化合物を形成して、析出硬化によって銅合金の強度を増加させる。この析出により、Cu母相中のCr、Si及びTiの固溶量が減少し導電率が高まる。Siの含有量が0.01質量%未満では、Cr−Si析出物又はCr−Si−Ti析出物による強度の向上が十分ではない。一方、Siの含有量が0.20質量%を超えると、Cu母相中のSiの固溶量が増加し導電率が低下する。また、Cr−Si析出物が粗大化し、曲げ加工性及び耐応力緩和特性が低下する。従って、Siの含有量は0.01〜0.20質量%の範囲とする。Si含有量の下限は、好ましくは0.015質量%,さらに好ましくは0.02質量%、上限は、好ましくは0.15質量%、さらに好ましくは0.10質量%である。
(Si: 0.01-0.20 mass%)
Si forms Cr—Si and Cr—Si—Ti compounds together with Cr and Ti, and increases the strength of the copper alloy by precipitation hardening. By this precipitation, the solid solution amount of Cr, Si and Ti in the Cu matrix is reduced, and the conductivity is increased. When the Si content is less than 0.01% by mass, the strength is not sufficiently improved by the Cr—Si precipitate or the Cr—Si—Ti precipitate. On the other hand, when the Si content exceeds 0.20 mass%, the solid solution amount of Si in the Cu matrix increases and the conductivity decreases. In addition, Cr—Si precipitates are coarsened, and bending workability and stress relaxation resistance are reduced. Therefore, the Si content is in the range of 0.01 to 0.20 mass%. The lower limit of the Si content is preferably 0.015% by mass, more preferably 0.02% by mass, and the upper limit is preferably 0.15% by mass, more preferably 0.10% by mass.

(Ti:0.01〜0.30質量%)
Tiは、Cu母材中に固溶して銅合金の耐熱性及び耐応力緩和特性を向上させる作用がある。また、Tiは、Cr,Siと共に析出物を形成し、析出硬化によって銅合金の強度を向上させる。この析出により、Cu母相中のCr、Si及びTiの固溶量が減少し銅合金の導電率が高まる。Tiの含有量が0.01質量%未満では、銅合金の耐熱性が低く焼鈍工程で軟化し高強度を得にくい。また、銅合金の耐応力緩和特性を向上させることができない。一方、Tiの含有量が0.30質量%を超えると、Cu母相中のTiの固溶量が増加して、導電率の低下を招く。従って、Tiの含有量は0.01〜0.30質量%の範囲とする。Ti含有量の下限は、好ましくは0.015質量%、さらに好ましくは0.03質量%、上限は,好ましくは0.20質量%、さらに好ましくは0.15質量%である。
(Ti: 0.01-0.30 mass%)
Ti has a function of improving the heat resistance and stress relaxation resistance of the copper alloy by dissolving in the Cu base material. Ti forms precipitates with Cr and Si, and improves the strength of the copper alloy by precipitation hardening. By this precipitation, the solid solution amount of Cr, Si and Ti in the Cu matrix is decreased, and the conductivity of the copper alloy is increased. When the Ti content is less than 0.01% by mass, the heat resistance of the copper alloy is low, and it is difficult to obtain high strength by softening in the annealing process. Further, the stress relaxation resistance of the copper alloy cannot be improved. On the other hand, when the Ti content exceeds 0.30 mass%, the solid solution amount of Ti in the Cu matrix increases, leading to a decrease in conductivity. Accordingly, the Ti content is in the range of 0.01 to 0.30 mass%. The lower limit of the Ti content is preferably 0.015% by mass, more preferably 0.03% by mass, and the upper limit is preferably 0.20% by mass, more preferably 0.15% by mass.

(Zr:0.01〜0.20質量%)
Zrは、加工熱処理の途中で加工熱による回復又は再結晶を抑制し母材内にひずみを蓄積させ、銅合金の強度を向上させる作用があり、Tiに代えて、又はTiと共に銅合金中に含有させることができる。Zrの含有量が0.01質量%未満では、ひずみを蓄積させる効果が十分に得られない。一方、Zrの含有量が0.20質量%を超えると、粗大な化合物が形成され、銅合金の耐応力緩和特性及び曲げ加工性が低下する。従って、Zrの含有量は0.01〜0.20質量%の範囲とする。Zr含有量の下限は、好ましくは0.015質量%、さらに好ましくは0.03質量%、上限は、好ましくは0.17質量%、さらに好ましくは0.15質量%である。
(Zr: 0.01-0.20 mass%)
Zr has the effect of suppressing recovery or recrystallization due to processing heat in the course of thermomechanical processing, accumulating strain in the base material, and improving the strength of the copper alloy. It can be included. If the content of Zr is less than 0.01% by mass, the effect of accumulating strain cannot be obtained sufficiently. On the other hand, when the content of Zr exceeds 0.20% by mass, a coarse compound is formed, and the stress relaxation resistance and bending workability of the copper alloy are lowered. Therefore, the Zr content is in the range of 0.01 to 0.20 mass%. The lower limit of the Zr content is preferably 0.015% by mass, more preferably 0.03% by mass, and the upper limit is preferably 0.17% by mass, more preferably 0.15% by mass.

(副成分:1.0質量%以下)
副成分(Ag、Fe、Ni、Sn、Mg、Zn、Co、Mn)は、1種又は2種以上を合計で1.0質量%以下、必要に応じて銅合金中に含有させることができる。
Agは、Cu母材中に固溶し、銅合金の耐熱性及び耐応力緩和特性を向上させる作用を有する。また、溶湯中の硫黄と化合物を形成し硫黄含有介在物を低減させる効果がある。しかし、Agの含有量が多くなると、Cu母相中の固溶量が多くなり導電性が低下する。従って、Agの含有量は0.01〜0.5質量%とする。Ag含有量の下限は、好ましくは0.03質量%、より好ましくは0.05質量%、上限は、好ましくは0.4質量%、より好ましくは0.3質量%である。
(Subcomponent: 1.0% by mass or less)
Subcomponents (Ag, Fe, Ni, Sn, Mg, Zn, Co, Mn) can be contained in one or more of a total of 1.0% by mass or less in the copper alloy as required. .
Ag is dissolved in the Cu base material and has the effect of improving the heat resistance and stress relaxation resistance of the copper alloy. Moreover, there exists an effect which forms sulfur and a compound in molten metal and reduces a sulfur containing inclusion. However, when the Ag content increases, the amount of solid solution in the Cu matrix increases and the conductivity decreases. Therefore, the content of Ag is set to 0.01 to 0.5% by mass. The lower limit of the Ag content is preferably 0.03% by mass, more preferably 0.05% by mass, and the upper limit is preferably 0.4% by mass, more preferably 0.3% by mass.

Fe、Niは、Cr、Ti、Siと化合物を形成し、Cu母相中のCr、Ti及びSiの固溶量を減少させ導電率を向上させる。一方、Fe、NiはCu母相中のTiを減少させ、銅合金の耐応力緩和特性を低下させる。従って、Fe、Niの含有量はそれぞれ0.01〜0.3質量%とし、下限は、好ましくは0.03質量%、より好ましくは0.05質量%、上限は、好ましくは0.2質量%、より好ましくは0.1質量%とする。
Sn,Mgは、冷間圧延による加工硬化特性を向上させ、銅合金の強度の増加、及び応力緩和特性の向上に効果がある。Znは、電子部品の接合に用いるSnめっき又ははんだの耐熱剥離性を改善する効果がある。しかし、Sn,Mg,Znの含有量が多くなると、Cu母相中のこれらの元素の固溶量が増え導電率が低下する。従って、Snの含有量は0.001〜0.7質量%とし、Mgの含有量は0.001〜0.3質量%とし、Znの含有量は0.001〜1.0質量%とする。Sn含有量の下限は、好ましくは0.01質量%、より好ましくは0.1質量%、上限は0.6質量%、より好ましくは0.5質量%である。Mg含有量の下限は、好ましくは0.005質量%、より好ましくは0.01質量%、上限は、好ましくは0.2質量%、より好ましくは0.15質量%である。Zn含有量の下限は、好ましくは0.01質量%、より好ましくは0.1質量%、上限は、好ましくは0.8質量%、より好ましくは0.6質量%である。
Fe and Ni form a compound with Cr, Ti, and Si, thereby reducing the solid solution amount of Cr, Ti, and Si in the Cu matrix and improving the conductivity. On the other hand, Fe and Ni decrease Ti in the Cu matrix and reduce the stress relaxation resistance of the copper alloy. Accordingly, the Fe and Ni contents are each 0.01 to 0.3% by mass, the lower limit is preferably 0.03% by mass, more preferably 0.05% by mass, and the upper limit is preferably 0.2% by mass. %, More preferably 0.1% by mass.
Sn and Mg improve work hardening characteristics by cold rolling, and are effective in increasing the strength of the copper alloy and improving stress relaxation characteristics. Zn has an effect of improving the heat-resistant peelability of Sn plating or solder used for joining electronic components. However, when the content of Sn, Mg, Zn increases, the solid solution amount of these elements in the Cu matrix increases and the conductivity decreases. Accordingly, the Sn content is 0.001 to 0.7 mass%, the Mg content is 0.001 to 0.3 mass%, and the Zn content is 0.001 to 1.0 mass%. . The lower limit of the Sn content is preferably 0.01% by mass, more preferably 0.1% by mass, and the upper limit is 0.6% by mass, more preferably 0.5% by mass. The lower limit of the Mg content is preferably 0.005% by mass, more preferably 0.01% by mass, and the upper limit is preferably 0.2% by mass, more preferably 0.15% by mass. The lower limit of the Zn content is preferably 0.01% by mass, more preferably 0.1% by mass, and the upper limit is preferably 0.8% by mass, more preferably 0.6% by mass.

Co、Mnは、Ti、Siと化合物を形成し、Cu母相中のTi及びSiの固溶量を減少させ、導電率を低下させる。一方、Co、Mnは、Cu母相中のTiを減少させ、銅合金の耐応力緩和特性を低下させる。従って、Co、Mnの含有量はそれぞれ0.01〜0.2質量%とし、下限は好ましくは0.03質量%、より好ましくは0.05質量%、上限は、好ましくは0.15質量%、より好ましくは0.1質量%とする。
また、以上の副成分は、銅に対する固溶量が少なく、総量で1.0質量%を超えて含有させると、粒界に偏析したり、晶出物を形成して、強度特性や曲げ加工性を劣化させる。従って、本発明に係る銅合金に、Ag、Fe、Ni、Sn、Mg、Zn、Co、Mnの1種又は2種以上を添加する場合、合計で1.0質量%以下とする。
Co and Mn form a compound with Ti and Si, reduce the solid solution amount of Ti and Si in the Cu matrix, and lower the electrical conductivity. On the other hand, Co and Mn reduce Ti in the Cu matrix and reduce the stress relaxation resistance of the copper alloy. Accordingly, the contents of Co and Mn are each 0.01 to 0.2% by mass, the lower limit is preferably 0.03% by mass, more preferably 0.05% by mass, and the upper limit is preferably 0.15% by mass. More preferably, the content is 0.1% by mass.
Further, the above-mentioned subcomponents have a small solid solution amount with respect to copper, and if they are contained in a total amount exceeding 1.0 mass%, they segregate at the grain boundaries or form crystallized products, resulting in strength characteristics and bending work. Deteriorate the sex. Accordingly, when one or more of Ag, Fe, Ni, Sn, Mg, Zn, Co, and Mn is added to the copper alloy according to the present invention, the total amount is 1.0% by mass or less.

(不可避的不純物)
本発明に係る銅合金(Cu−Cr系合金)は、不可避的不純物としてAl、As、Sb、B、Pb、V、Mo、Hf、Ta、Bi及びInの1種以上を含むことがある。Cu−Cr系合金において、これらの不可避的不純物は、特に添加しない限り(つまり不可避的不純物として)、通常、合計で0.1質量%以下の範囲内にあり、その範囲内であれば特性上の問題は生じない。しかし、これらの元素は銅に対する固溶量が著しく少なく、合計含有量が0.1質量%を超えると、粒界に偏析したり、晶出物を形成して、耐応力緩和特性や曲げ加工性を劣化させる。従って、これらの不可避的不純物の含有量は、合計で0.1質量%以下であることが好ましい。
(Inevitable impurities)
The copper alloy (Cu—Cr alloy) according to the present invention may contain one or more of Al, As, Sb, B, Pb, V, Mo, Hf, Ta, Bi, and In as inevitable impurities. In Cu—Cr alloys, these unavoidable impurities are usually in the range of 0.1% by mass or less in total unless otherwise added (that is, as unavoidable impurities). The problem does not occur. However, these elements have a remarkably small amount of solid solution with respect to copper, and when the total content exceeds 0.1% by mass, they segregate at the grain boundaries or form crystallized products, resulting in stress relaxation resistance and bending work. Deteriorate the sex. Therefore, the content of these inevitable impurities is preferably 0.1% by mass or less in total.

[銅合金板の製造方法]
所定の組成を有する銅合金材料を溶解、鋳造して鋳塊を作製した後、この鋳塊に均質化処理を施し、続いて熱間圧延(熱間圧延後に焼き入れ)及び冷間圧延を施し、冷間圧延の工程途中で溶体化処理を行い、冷間圧延後、時効析出処理を施す。熱間圧延後の焼き入れにおいて焼き入れ温度(冷却開始温度)を従来より高く設定した場合、前記溶体化処理を省くこともできる。以下、各工程についてより具体的に説明する。
[Method for producing copper alloy sheet]
After a copper alloy material having a predetermined composition is melted and cast to produce an ingot, the ingot is homogenized, followed by hot rolling (quenching after hot rolling) and cold rolling. The solution treatment is performed during the cold rolling process, and after the cold rolling, the aging precipitation treatment is performed. In the quenching after hot rolling, when the quenching temperature (cooling start temperature) is set higher than before, the solution treatment can be omitted. Hereinafter, each step will be described more specifically.

銅合金の溶解、鋳造は通常の方法によって行うことができる。例えば所定の組成に調整した銅合金を電気炉で溶解した後、銅合金鋳塊を鋳造する。
鋳塊を、800〜1000℃で0.5時間以上均質化処理した後、加工率60%以上の熱間圧延を行う。Cuに対するCrの固溶量は、先に述べたとおり温度低下に伴って急減するから、本発明のようにCrを0.15質量%以上含むCu−Cr系銅合金では、熱間圧延終了温度が低いと熱間圧延中にCrが析出する。熱間圧延終了温度が低いほどCrが析出しやすく、析出したCrは成長しやすい。このため、熱間圧延は700℃以上で終了し、その後急冷して焼き入れる。焼き入れは好ましくは水冷とする。この焼き入れ温度(冷却開始温度)が700℃よりも低くなると、粗大なCr含有析出物が形成され、それが熱間圧延後の溶体化処理で再固溶し切れずに残留しやすく、銅合金の耐応力緩和特性や曲げ加工性が低下する。なお、熱間圧延中にCrが析出するのを抑えるため、可能な範囲で熱間圧延開始温度を高くし、かつ熱間圧延時間を短くすることが好ましい。
The melting and casting of the copper alloy can be performed by ordinary methods. For example, after a copper alloy adjusted to a predetermined composition is melted in an electric furnace, a copper alloy ingot is cast.
The ingot is homogenized at 800 to 1000 ° C. for 0.5 hour or longer, and then hot rolled at a processing rate of 60% or more. Since the solid solution amount of Cr with respect to Cu rapidly decreases as the temperature decreases as described above, in the Cu—Cr series copper alloy containing 0.15% by mass or more of Cr as in the present invention, the hot rolling end temperature If it is low, Cr precipitates during hot rolling. The lower the hot rolling finish temperature, the easier it is for Cr to precipitate and the precipitated Cr tends to grow. For this reason, hot rolling is completed at 700 ° C. or higher, and then quenched and quenched. The quenching is preferably water cooling. When this quenching temperature (cooling start temperature) is lower than 700 ° C., coarse Cr-containing precipitates are formed, which tend to remain without being completely re-dissolved in the solution treatment after hot rolling. The stress relaxation resistance and bending workability of the alloy are reduced. In order to suppress the precipitation of Cr during hot rolling, it is preferable to increase the hot rolling start temperature and shorten the hot rolling time as much as possible.

続いて、熱間圧延材に対し冷間圧延を施し、所望の厚みを有する銅合金板(又は条)に仕上げる。冷間圧延の工程途中で行われる溶体化処理は、熱間圧延後の焼き入れ時に形成されるCr含有析出物を再固溶させるためのもので、750〜850℃で15〜120秒保持する条件で加熱した後、焼き入れる。この溶体化処理は再結晶を伴う。溶体化処理温度が750℃より低いか保持時間が15秒より短いと、Cr含有析出物の再固溶が不十分であり、溶体化処理温度が850℃より高いか保持時間が120秒より長いとエネルギーの無駄になる。溶体化処理の温度及び時間は、再結晶後の結晶粒径が熱間圧延終了後の結晶粒径よりも大きくなるように、上記範囲内から選択することが好ましい。溶体化処理の保持時間は、好ましくは15〜60秒とする。   Subsequently, the hot-rolled material is cold-rolled to finish a copper alloy plate (or strip) having a desired thickness. The solution treatment performed in the middle of the cold rolling process is for re-solidifying Cr-containing precipitates formed during quenching after hot rolling, and is held at 750 to 850 ° C. for 15 to 120 seconds. After heating under conditions, quench. This solution treatment is accompanied by recrystallization. When the solution treatment temperature is lower than 750 ° C. or the holding time is shorter than 15 seconds, re-solution of the Cr-containing precipitate is insufficient, and the solution treatment temperature is higher than 850 ° C. or the holding time is longer than 120 seconds. And waste of energy. It is preferable to select the solution treatment temperature and time from the above range so that the crystal grain size after recrystallization is larger than the crystal grain size after hot rolling. The retention time of the solution treatment is preferably 15 to 60 seconds.

冷間圧延後に行われる時効析出処理は、Cr単体、及びCr−Si、Cr−Si−Tiなどの化合物を時効析出させるのが目的である。時効析出処理は400〜550℃で2時間以上の条件で実施する。この時効処理は、再結晶温度より低く、硬度ができるだけ高くかつ伸びが10%以上となる温度を選択するのが適切である。
時効析出処理後の銅合金板断面の顕微鏡組織写真を図1に示す(実施例の試験No.2)。図1に示すように、再結晶組織ではなく、結晶粒組織が圧延方向に沿って大きく伸長した繊維状の加工組織が観察される。
The purpose of aging precipitation treatment performed after cold rolling is to age-precise Cr alone and compounds such as Cr—Si and Cr—Si—Ti. The aging precipitation treatment is performed at 400 to 550 ° C. for 2 hours or more. For this aging treatment, it is appropriate to select a temperature lower than the recrystallization temperature, having a hardness as high as possible and an elongation of 10% or more.
A microstructure photograph of the cross section of the copper alloy sheet after the aging precipitation treatment is shown in FIG. 1 (Test No. 2 in the example). As shown in FIG. 1, not a recrystallized structure, but a fibrous processed structure in which the crystal grain structure greatly extends along the rolling direction is observed.

熱間圧延終了温度を800℃以上とし、800℃以上の焼き入れ温度で焼き入れを行った場合、熱間圧延中のCr含有析出物の析出が抑えられる。従って、この場合、熱間圧延後の焼き入れが溶体化処理を兼ねることになり、冷間圧延途中の溶体化処理は省くことができる。この焼き入れ温度は850℃以上が好ましく、焼き入れ温度の上限は特にない。なお、溶体化処理を行わない場合の焼き入れ温度の下限値(800℃)は、溶体化処理の温度の下限値(750℃)より高く設定される。これは、板厚の大きい熱間圧延材では、焼き入れ時の冷却が水冷であっても、板厚中央部の冷却速度が小さくなり、固溶量の温度依存性が高い(温度低下に伴う固溶量の減少が大きい)Cr,Zr等の析出が進行しやすいためである。   When the hot rolling end temperature is 800 ° C. or higher and quenching is performed at a quenching temperature of 800 ° C. or higher, the precipitation of Cr-containing precipitates during hot rolling can be suppressed. Accordingly, in this case, quenching after hot rolling also serves as a solution treatment, and the solution treatment during the cold rolling can be omitted. The quenching temperature is preferably 850 ° C. or higher, and there is no particular upper limit for the quenching temperature. In addition, the lower limit (800 degreeC) of the quenching temperature in the case of not performing a solution treatment is set higher than the lower limit (750 degreeC) of the temperature of a solution treatment. This is because, in a hot-rolled material having a large thickness, even if the cooling at the time of quenching is water cooling, the cooling rate of the central portion of the thickness is reduced, and the temperature dependence of the solid solution amount is high (according to the temperature decrease) This is because precipitation of Cr, Zr, etc. easily proceeds.

[銅合金板の特性]
本発明では、上記組成のCu−Cr系合金板の製造において、上記のとおり、冷間圧延の工程途中に溶体化処理を含むプロセスを適用し、又は熱間圧延後の焼き入れを800℃以上の焼き入れ温度で行うプロセスを適用する。これにより、強度及び導電率が従来材と同等で、耐応力緩和特性が従来材に比べて顕著に優れる電気電子部品用銅合金板(冷間圧延材)を製造することができる。本発明に係る電気電子部品用銅合金板の具体的な耐応力緩和特性は、200℃で100時間加熱後の応力緩和率をR100とし、200℃で1000時間加熱後の応力緩和率をR1000としたとき、応力緩和率の増分(R1000−R100)が7%以下であり、かつR1000が25%以下である。
[Characteristics of copper alloy sheet]
In the present invention, in the production of the Cu-Cr alloy plate having the above composition, as described above, a process including a solution treatment is applied during the cold rolling process, or quenching after hot rolling is performed at 800 ° C or higher. Apply the process performed at the quenching temperature. This makes it possible to produce a copper alloy sheet (cold rolled material) for electrical and electronic parts that has the same strength and electrical conductivity as the conventional material and has significantly better stress relaxation resistance than the conventional material. The specific stress relaxation characteristics of the copper alloy plate for electrical and electronic parts according to the present invention are as follows: R 100 is the stress relaxation rate after heating at 200 ° C. for 100 hours, and R is the stress relaxation rate after heating at 200 ° C. for 1000 hours. When 1000 , the increase in stress relaxation rate (R 1000 −R 100 ) is 7% or less, and R 1000 is 25% or less.

表1に示す種々の合金組成(合金No.1〜20)を有する銅合金を溶製した後、ブックモールドに鋳造して、厚さ70mmの鋳塊を得た。
この鋳塊を950℃で1時間均熱処理後、熱間圧延して板厚を12mmとし、700℃から焼入れを行った。次に、焼き入れ後の銅合金板の両面を厚さ1mm程度研磨して表面の酸化スケールを除去した。続いて、厚さ10mmの銅合金板を冷間圧延により厚さ5mmに成形し、800℃に20秒保持後焼き入れる溶体化処理を行った。この溶体化処理により銅合金板は再結晶した。その後、さらに冷間圧延により厚さ0.25mmに成形し、450℃の温度で2時間の時効析出処理を施し、試験No.1〜20の銅合金板(製品板)を得た。
試験No.1〜20の銅合金板から試料(試験片)を切り出し、0.2%耐力の測定、導電率の測定、応力緩和試験を下記要領で行った。その結果を表1に示す。
Copper alloys having various alloy compositions (alloy Nos. 1 to 20) shown in Table 1 were melted and then cast into a book mold to obtain an ingot having a thickness of 70 mm.
The ingot was soaked at 950 ° C. for 1 hour, then hot rolled to a plate thickness of 12 mm, and quenched from 700 ° C. Next, both surfaces of the copper alloy plate after quenching were polished to a thickness of about 1 mm to remove the oxide scale on the surface. Subsequently, a copper alloy plate having a thickness of 10 mm was formed into a thickness of 5 mm by cold rolling, held at 800 ° C. for 20 seconds, and then subjected to a solution treatment. The copper alloy sheet was recrystallized by this solution treatment. Thereafter, it was further formed into a thickness of 0.25 mm by cold rolling and subjected to an aging precipitation treatment at a temperature of 450 ° C. for 2 hours. 1 to 20 copper alloy plates (product plates) were obtained.
Test No. Samples (test pieces) were cut out from 1 to 20 copper alloy plates, and 0.2% proof stress measurement, conductivity measurement, and stress relaxation test were performed as follows. The results are shown in Table 1.

(0.2%耐力の測定)
試験No.1〜20の各銅合金板から、JISZ2201に規定されたJIS5号試験片を作成した。JIS5号試験片として、長手方向が圧延方向に平行方向(L.D.:Longitudinal Direction)である第1試験片、及び長手方向が圧延方向に垂直方向(T.D.:Transverse Direction)である第2試験片の2種類を作成した。この第1,第2試験片を用い、JISZ2241に規定された引張試験を行い、永久伸び0.2%に相当する引張強さを、各試験片の0.2%耐力として測定した。0.2%耐力が500MPa以上であったものを合格と評価した。
(Measurement of 0.2% proof stress)
Test No. JIS No. 5 test pieces defined in JISZ2201 were prepared from 1 to 20 copper alloy plates. As a JIS No. 5 test piece, a first test piece whose longitudinal direction is parallel to the rolling direction (LD: Longitudinal Direction) and a second test piece whose longitudinal direction is perpendicular to the rolling direction (TD: Transverse Direction) Created a type. Using these first and second test pieces, the tensile test specified in JISZ2241 was performed, and the tensile strength corresponding to the permanent elongation of 0.2% was measured as the 0.2% proof stress of each test piece. Those having a 0.2% proof stress of 500 MPa or more were evaluated as acceptable.

(導電率の測定)
導電率の測定は、JISH0505に規定されている非鉄金属材料導電率測定法に準拠し、ダブルブリッジを用いた四端子法で体積抵抗率を測定することにより行った。そして、測定された体積抵抗率を、万国標準軟銅(International Annealed Copper Standard)の体積抵抗率1.7241×10−8Ω・mで除し、百分率で表すことにより、導電率を求めた。導電率が65%IACS以上であったものを合格と評価した。
(Measurement of conductivity)
The conductivity was measured by measuring the volume resistivity by a four-terminal method using a double bridge in accordance with the nonferrous metal material conductivity measurement method specified in JISH0505. And the electrical conductivity was calculated | required by dividing the measured volume resistivity by the volume resistivity 1.7241 * 10 < -8 > (omega | ohm) * m of a universal standard annealed copper (International Annealed Copper Standard). Those having an electrical conductivity of 65% IACS or higher were evaluated as acceptable.

(応力緩和率の測定)
試験No.1〜20の各銅合金板から、長手方向が圧延方向に垂直方向(T.D.)となる幅10mm、長さ90mmの短冊状試験片(試験No.1〜20の各銅合金板から5個ずつ)を切り出し、応力緩和率を片持ち梁方式によって測定した。まず、各試験片の一端を剛体試験台に固定し、固定端から所定距離(スパン長さ)の位置で試験片に10mmのたわみを与え、固定端に0.2%耐力の80%に相当する表面応力を負荷した。スパン長さは、日本伸銅協会技術標準(JCBA−T309:2004)に規定されている「銅及び銅合金薄板条の曲げによる応力緩和試験方法」により算出した。
続いて、上記のようにたわみを与えた各試験片を、200℃に加熱したオーブン中に入れ、100時間保持した後に取り出し、たわみ量d(10mm)を取り去ったときの永久歪みδを測定し、応力緩和率RS=(δ/d)×100を計算した。続いて、各試験片の一端を再び剛体試験台に固定し、固定端から同じスパン長さの位置に同じく10mmのたわみを与え、再度200℃に加熱したオーブン中に入れ、900時間(合計加熱時間が1000時間)保持した後に取り出し、同様に応力緩和率を計算した。試験No.1〜20の各銅合金板について、各5個の試験片を用いて測定試験を行い、求めた各5個の応力緩和率の平均値を、前記試験No.1〜20の各銅合金板の応力緩和率とした。
200℃で100時間保持後の応力緩和率をR100とし、200℃で1000時間(100時間+900時間)保持後の応力緩和率をR1000としたとき、応力緩和率の増分(R1000−R100)が7%以下であり、かつR1000が25%以下のとき、合格と評価した。
(Measurement of stress relaxation rate)
Test No. From each of the copper alloy plates 1 to 20, a strip-shaped test piece having a width of 10 mm and a length of 90 mm whose longitudinal direction is perpendicular to the rolling direction (TD) (five from each copper alloy plate of test Nos. 1 to 20) ) And the stress relaxation rate was measured by the cantilever method. First, one end of each test piece is fixed to a rigid test stand, and 10 mm of deflection is given to the test piece at a predetermined distance (span length) from the fixed end, corresponding to 80% of 0.2% proof stress at the fixed end. Loaded surface stress. The span length was calculated by a “stress relaxation test method by bending copper and copper alloy sheet strip” defined in the Japan Copper and Brass Association Technical Standard (JCBA-T309: 2004).
Subsequently, each test piece to which deflection was given as described above was put in an oven heated to 200 ° C., held for 100 hours, taken out, and the permanent strain δ when the deflection d (10 mm) was removed was measured. The stress relaxation rate RS = (δ / d) × 100 was calculated. Subsequently, one end of each test piece was fixed to the rigid body test stand again, the same span length was given to the position of the same span length from the fixed end, and it was again placed in an oven heated to 200 ° C. for 900 hours (total heating) The time was 1000 hours) and then taken out, and the stress relaxation rate was calculated in the same manner. Test No. For each of the copper alloy plates 1 to 20, a measurement test was performed using each of the five test pieces, and the average value of the obtained five stress relaxation rates was determined as the test number. It was set as the stress relaxation rate of each copper alloy plate of 1-20.
When the stress relaxation rate after holding at 200 ° C. for 100 hours is R 100 and the stress relaxation rate after holding at 200 ° C. for 1000 hours (100 hours + 900 hours) is R 1000 , the increase in stress relaxation rate (R 1000 −R 100 ) is 7% or less and R1000 is 25% or less, it was evaluated as passing.

表1に示すように、試験No.1〜12の銅合金板は、合金組成が本発明の規定を満たし、冷間圧延の工程途中に溶体化処理を含むプロセスを適用して製造している。試験No.1〜12は、保持時間が100時間経過後から1000時間に達するまでの応力緩和率の増分(R1000−R100)が7%以下、かつ1000時間保持後の応力緩和率(R1000)が25%以下であり、耐応力緩和特性が優れている。また、導電率及び0.2%耐力が高い。 As shown in Table 1, test no. The copper alloy sheets 1 to 12 are manufactured by applying a process including a solution treatment in the middle of the cold rolling process in which the alloy composition satisfies the provisions of the present invention. Test No. Nos. 1 to 12 show an increase in stress relaxation rate (R 1000 -R 100 ) of 7% or less until the holding time reaches 1000 hours after 100 hours have elapsed, and a stress relaxation rate (R 1000 ) after holding for 1000 hours. It is 25% or less, and the stress relaxation resistance is excellent. Moreover, electrical conductivity and 0.2% yield strength are high.

一方、試験No.13〜20の銅合金板は、冷間圧延の工程途中に溶体化処理を含むプロセスを適用して製造しているが、合金組成が本発明の規定を満たしていない。
試験No.13は、CrとTiの含有量が少ないため、0.2%耐力が低く、耐応力緩和特性が劣る。試験No. 14は、CrとTiの含有量が過剰なため、耐応力緩和特性が劣り、導電率も低い。試験No. 15は、CrとZrの含有量が過剰なため、耐応力緩和特性が劣る。試験No. 16は、Cr、Ti及びZrの含有量が過剰なため、耐応力緩和特性が劣り、導電率も低い。試験No. 17は、Si含有量が過剰なため、導電率が低い。試験No. 18は、Fe及びAgの含有量が過剰なため、導電率が低い。試験No. 19は、Fe及びAgの含有量が過剰で、かつ不可避不純物相当のAl及びMnの合計含有量が過剰(0.1質量%超)なため、導電率が低い。試験No.20は、Coの含有量が過剰なため、応力緩和特性が劣る。
On the other hand, test no. Although the copper alloy plates of 13 to 20 are manufactured by applying a process including a solution treatment during the cold rolling process, the alloy composition does not satisfy the provisions of the present invention.
Test No. No. 13 has a low content of Cr and Ti, and therefore has a low 0.2% proof stress and inferior stress relaxation resistance. In Test No. 14, since the contents of Cr and Ti are excessive, the stress relaxation resistance is inferior and the electrical conductivity is low. Test No. 15 is inferior in stress relaxation resistance because the contents of Cr and Zr are excessive. In Test No. 16, since the contents of Cr, Ti and Zr are excessive, the stress relaxation resistance is inferior and the electrical conductivity is low. Test No. 17 has low electrical conductivity because of excessive Si content. Test No. 18 has a low electrical conductivity because the Fe and Ag contents are excessive. In Test No. 19, the Fe and Ag contents are excessive, and the total content of Al and Mn corresponding to inevitable impurities is excessive (greater than 0.1% by mass), so the conductivity is low. Test No. No. 20 is inferior in stress relaxation characteristics because the Co content is excessive.

表1に示す合金No.1〜4の組成を有する銅合金を溶製した後、ブックモールドに鋳造して、厚さ70mmの鋳塊を得た。
この鋳塊を950℃で1時間均熱処理後、熱間圧延して板厚を12mmとし、700℃から焼入れを行った。次に、焼き入れ後の銅合金板の両面を厚さ1mm程度研磨して表面の酸化スケールを除去した。
続いて、厚さ10mmの銅合金板を、工程間で溶体化処理を施すことなく冷間圧延により厚さ0.25mmに成形し、450℃の温度で2時間の時効析出処理を施し、試験No.21〜24の銅合金板(製品板)を得た。
Alloy No. shown in Table 1 A copper alloy having a composition of 1 to 4 was melted and then cast into a book mold to obtain an ingot having a thickness of 70 mm.
The ingot was soaked at 950 ° C. for 1 hour, then hot rolled to a plate thickness of 12 mm, and quenched from 700 ° C. Next, both surfaces of the copper alloy plate after quenching were polished to a thickness of about 1 mm to remove the oxide scale on the surface.
Subsequently, a copper alloy plate having a thickness of 10 mm was formed into a thickness of 0.25 mm by cold rolling without performing a solution treatment between processes, and subjected to an aging precipitation treatment at a temperature of 450 ° C. for 2 hours. No. 21 to 24 copper alloy plates (product plates) were obtained.

また、合金No.4の銅合金鋳塊について、950℃で1時間均熱処理後、熱間圧延して板厚を12mmとし、800℃から焼入れを行った。次に、焼き入れ後の銅合金板の両面を厚さ1mm程度研磨して表面の酸化スケールを除去した。
続いて、厚さ10mmの銅合金板を冷間圧延により厚さ5mmに成形し、800℃に20秒保持後焼き入れる溶体化処理を行った。その後、さらに冷間圧延により厚さ0.25mmに成形し、450℃の温度で2時間の時効析出処理を施し、試験No.25の銅合金板(製品板)を得た。
In addition, Alloy No. The copper alloy ingot No. 4 was soaked at 950 ° C. for 1 hour, hot-rolled to a sheet thickness of 12 mm, and quenched from 800 ° C. Next, both surfaces of the copper alloy plate after quenching were polished to a thickness of about 1 mm to remove the oxide scale on the surface.
Subsequently, a copper alloy plate having a thickness of 10 mm was formed into a thickness of 5 mm by cold rolling, held at 800 ° C. for 20 seconds, and then subjected to a solution treatment. Thereafter, it was further formed into a thickness of 0.25 mm by cold rolling and subjected to an aging precipitation treatment at a temperature of 450 ° C. for 2 hours. 25 copper alloy plates (product plates) were obtained.

さらに、合金No.4の銅合金鋳塊について、950℃で1時間均熱処理後、熱間圧延して板厚を12mmとし、800℃から焼入れを行った。次に、焼き入れ後の銅合金板の両面を厚さ1mm程度研磨して表面の酸化スケールを除去した。
続いて、厚さ10mmの銅合金板を、工程間で溶体化処理を施すことなく冷間圧延により厚さ0.25mmに成形し、450℃の温度で2時間の時効析出処理を施し、試験No.26の銅合金板(製品板)を得た。
Furthermore, alloy no. The copper alloy ingot No. 4 was soaked at 950 ° C. for 1 hour, hot-rolled to a sheet thickness of 12 mm, and quenched from 800 ° C. Next, both surfaces of the copper alloy plate after quenching were polished to a thickness of about 1 mm to remove the oxide scale on the surface.
Subsequently, a copper alloy plate having a thickness of 10 mm was formed into a thickness of 0.25 mm by cold rolling without performing a solution treatment between processes, and subjected to an aging precipitation treatment at a temperature of 450 ° C. for 2 hours. No. 26 copper alloy plates (product plates) were obtained.

上記試験No.21〜26の銅合金板から試料(試験片)を切り出し、0.2%耐力の測定、導電率の測定及び応力緩和試験を、[実施例1]と同じ要領で行った。その結果を表2に示す。また、比較のため、[実施例1]で得られた試験No.1〜4の結果を表2に合わせて示す。   Test No. above. Samples (test pieces) were cut out from 21 to 26 copper alloy plates, and 0.2% proof stress measurement, conductivity measurement, and stress relaxation test were performed in the same manner as in [Example 1]. The results are shown in Table 2. For comparison, the test No. obtained in [Example 1] The results of 1-4 are shown in Table 2 together.

表2に示すように、試験No.1〜4,25の銅合金板は、合金組成が本発明の規定を満たし、冷間圧延の工程途中に溶体化処理を含むプロセスを適用して製造している。また、試験No.26の銅合金板は、合金組成が本発明の規定を満たし、熱間圧延後の焼き入れを800℃以上の焼き入れ温度で行うプロセスを適用して製造している。
試験No.1〜4,25,26は、保持時間が100時間経過後から1000時間に達するまでの応力緩和率の増分(R1000−R100)が7%以下、かつ1000時間保持後の応力緩和率(R1000)が25%以下であり、耐応力緩和特性が優れている。また、導電率及び0.2%耐力が高い。
As shown in Table 2, test no. The copper alloy sheets 1 to 4 and 25 are manufactured by applying a process including a solution treatment in the middle of the cold rolling process in which the alloy composition satisfies the provisions of the present invention. In addition, Test No. The copper alloy plate of No. 26 is manufactured by applying a process in which the alloy composition satisfies the provisions of the present invention and quenching after hot rolling is performed at a quenching temperature of 800 ° C. or higher.
Test No. 1-4, 25, and 26, the increase in the stress relaxation rate (R 1000 −R 100 ) after the holding time reaches 100 hours after 100 hours elapses is 7% or less, and the stress relaxation rate after holding for 1000 hours ( R 1000 ) is 25% or less, and the stress relaxation resistance is excellent. Moreover, electrical conductivity and 0.2% yield strength are high.

一方、試験No.21〜24は、合金組成が本発明の規定を満たすが、熱間圧延後の焼き入れ温度が700℃と低く、かつ冷間圧延の工程途中に溶体化処理を含むプロセスを適用して製造していない。このため、No.21〜24は耐応力緩和特性が劣る。   On the other hand, test no. 21 to 24 are manufactured by applying a process in which the alloy composition satisfies the provisions of the present invention, but the quenching temperature after hot rolling is as low as 700 ° C., and a solution treatment is included in the process of cold rolling. Not. For this reason, no. 21 to 24 are inferior in stress relaxation resistance.

Claims (6)

Cr:0.15〜0.60質量%、Si:0.01〜0.20質量%を含み、さらにTi:0.01〜0.30質量%とZr:0.01〜0.20質量%の1種又は2種を含み、残部がCu及び不可避的不純物からなり、圧延方向に平行方向及び垂直方向の0.2%耐力が共に500MPa以上、導電率が65%IACS以上であり、200℃で100時間加熱後の応力緩和率をR100とし、200℃で1000時間加熱後の応力緩和率をR1000としたとき、応力緩和率の増分(R1000−R100)が7%以下であり、かつR1000が25%以下であることを特徴とする高強度、高導電率で耐応力緩和特性に優れる電気電子部品用銅合金板。 Cr: 0.15 to 0.60% by mass, Si: 0.01 to 0.20% by mass, Ti: 0.01 to 0.30% by mass and Zr: 0.01 to 0.20% by mass One or two of the above, the balance is made of Cu and inevitable impurities , 0.2% proof stress both in the direction parallel to and perpendicular to the rolling direction is 500 MPa or more, the conductivity is 65% IACS or more, 200 ° C. When the stress relaxation rate after heating for 100 hours is R 100 and the stress relaxation rate after heating at 200 ° C. for 1000 hours is R 1000 , the increase in stress relaxation rate (R 1000 −R 100 ) is 7% or less. A copper alloy sheet for electrical and electronic parts having high strength, high electrical conductivity and excellent stress relaxation resistance , wherein R 1000 is 25% or less. Ag:0.01〜0.5質量%、Fe:0.01〜0.3質量%、Ni:0.01〜0.3質量%、Sn:0.001〜0.7質量%、Mg:0.001〜0.3質量%、Zn:0.001〜1.0質量%、Co:0.01〜0.2質量%、Mn:0.01〜0.2質量%の1種又は2種以上を、合計で1.0質量%以下含むことを特徴とする請求項1に記載された高強度、高導電率で耐応力緩和特性に優れる電気電子部品用銅合金板。 Ag: 0.01-0.5 mass%, Fe: 0.01-0.3 mass%, Ni: 0.01-0.3 mass%, Sn: 0.001-0.7 mass%, Mg: One or two of 0.001 to 0.3 mass%, Zn: 0.001 to 1.0 mass%, Co: 0.01 to 0.2 mass%, Mn: 0.01 to 0.2 mass% The copper alloy plate for electrical and electronic parts having high strength, high electrical conductivity, and excellent stress relaxation resistance according to claim 1, comprising a total of 1.0% by mass or less of seeds or more. 不可避的不純物であるAl、As、Sb、B、Pb、V、Mo、Hf、Ta、Bi及びInの1種以上の含有量の合計が0.1質量%以下であることを特徴とする請求項1又は2に記載された高強度、高導電率で耐応力緩和特性に優れる電気電子部品用銅合金板。 The total of at least one of the inevitable impurities Al, As, Sb, B, Pb, V, Mo, Hf, Ta, Bi and In is 0.1% by mass or less. Item 3. The copper alloy sheet for electrical and electronic parts according to item 1 or 2, which is excellent in stress relaxation resistance with high strength and high electrical conductivity . 銅合金鋳塊を熱間圧延後焼き入れし、続いて冷間圧延及び時効処理を行い、請求項1〜3のいずれかに記載された電気電子部品用銅合金板を製造する方法であって、前記冷間圧延が工程途中に750〜850℃で15〜120秒保持する条件で加熱した後焼き入れる溶体化処理を含むことを特徴とする電気電子部品用銅合金板の製造方法 A method for producing a copper alloy plate for electrical and electronic parts according to any one of claims 1 to 3, wherein the copper alloy ingot is quenched after hot rolling , followed by cold rolling and aging treatment. The manufacturing method of the copper alloy plate for electrical and electronic components characterized by including the solution treatment which quenches after the said cold rolling heats on the conditions hold | maintained at 750-850 degreeC for 15 to 120 second in the middle of a process . 前記熱間圧延後の焼き入れの焼き入れ温度が800℃以上であることを特徴とする請求項4に記載された電気電子部品用銅合金板の製造方法。 The method for producing a copper alloy sheet for electric and electronic parts according to claim 4, wherein a quenching temperature of the quenching after the hot rolling is 800 ° C or higher. 銅合金鋳塊を熱間圧延後焼き入れし、続いて冷間圧延及び時効処理を行い、請求項1〜3のいずれかに記載された電気電子部品用銅合金板を製造する方法であって、前記焼き入れの焼き入れ温度が800℃以上であることを特徴とする電気電子部品用銅合金板の製造方法 The copper alloy ingot quenched after hot rolling, followed have rows cold rolling and aging, there a method of manufacturing an electrical electronic component copper alloy sheet according to any of claims 1 to 3 A method for producing a copper alloy plate for electrical and electronic parts , wherein the quenching temperature of the quenching is 800 ° C. or higher.
JP2015034594A 2015-02-24 2015-02-24 Copper alloy plate for electric and electronic parts having high strength, high conductivity and excellent stress relaxation characteristics, and method for producing the same Active JP6611222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015034594A JP6611222B2 (en) 2015-02-24 2015-02-24 Copper alloy plate for electric and electronic parts having high strength, high conductivity and excellent stress relaxation characteristics, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015034594A JP6611222B2 (en) 2015-02-24 2015-02-24 Copper alloy plate for electric and electronic parts having high strength, high conductivity and excellent stress relaxation characteristics, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2016156057A JP2016156057A (en) 2016-09-01
JP6611222B2 true JP6611222B2 (en) 2019-11-27

Family

ID=56825162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015034594A Active JP6611222B2 (en) 2015-02-24 2015-02-24 Copper alloy plate for electric and electronic parts having high strength, high conductivity and excellent stress relaxation characteristics, and method for producing the same

Country Status (1)

Country Link
JP (1) JP6611222B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7035478B2 (en) * 2017-11-21 2022-03-15 三菱マテリアル株式会社 Molding material for casting
JP2022526677A (en) * 2019-04-12 2022-05-25 マテリオン コーポレイション Copper alloys with high strength and high conductivity, and methods for making such copper alloys.
CN110144486B (en) * 2019-06-04 2020-11-06 中北大学 Preparation method of high-strength high-conductivity copper alloy
CN111996411B (en) * 2020-07-15 2021-11-30 宁波博威合金板带有限公司 High-strength high-conductivity copper alloy material and preparation method and application thereof
TW202246536A (en) 2021-05-26 2022-12-01 國立清華大學 High strength and wear resistant multi-element copper alloy and use thereof
CN115125413B (en) * 2022-06-30 2023-08-01 宁波金田铜业(集团)股份有限公司 Copper alloy strip with excellent comprehensive performance and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6749699B2 (en) * 2000-08-09 2004-06-15 Olin Corporation Silver containing copper alloy
TWI539013B (en) * 2010-08-27 2016-06-21 Furukawa Electric Co Ltd Copper alloy sheet and method of manufacturing the same
JP5802150B2 (en) * 2012-02-24 2015-10-28 株式会社神戸製鋼所 Copper alloy

Also Published As

Publication number Publication date
JP2016156057A (en) 2016-09-01

Similar Documents

Publication Publication Date Title
JP6611222B2 (en) Copper alloy plate for electric and electronic parts having high strength, high conductivity and excellent stress relaxation characteristics, and method for producing the same
JP4566020B2 (en) Copper alloy sheet for electrical and electronic parts with low anisotropy
JP4357536B2 (en) Copper alloy sheet for electrical and electronic parts with excellent strength and formability
JP5847987B2 (en) Copper alloy containing silver
JP5320642B2 (en) Copper alloy manufacturing method and copper alloy
JP5818724B2 (en) Copper alloy material for electric and electronic parts, copper alloy material for plated electric and electronic parts
JP5039862B1 (en) Corson alloy and manufacturing method thereof
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
TWI521071B (en) Conductive and stress relief characteristics of excellent copper alloy plate
JP4834781B1 (en) Cu-Co-Si alloy for electronic materials
JP5132467B2 (en) Copper alloy and Sn-plated copper alloy material for electrical and electronic parts with excellent electrical conductivity and strength
JP2007126739A (en) Copper alloy for electronic material
JP5135914B2 (en) Manufacturing method of high-strength copper alloys for electrical and electronic parts
JP5558639B1 (en) Bus bar plate conductor and bus bar comprising the same
JP5787935B2 (en) Aluminum alloy plate for current-carrying parts and manufacturing method thereof
JP6283048B2 (en) Copper alloy strip for electrical and electronic parts
JP6301734B2 (en) Copper alloy material and method for producing the same
JP5952726B2 (en) Copper alloy
JP5981866B2 (en) Copper alloy
JP2001262297A (en) Copper-base alloy bar for terminal, and its manufacturing method
KR101622498B1 (en) Corson alloy and method for manufacturing same
JP5867859B2 (en) Copper alloy
JP2011190469A (en) Copper alloy material, and method for producing the same
JP5867861B2 (en) Copper alloy
JP2017155334A (en) Aluminum alloy sheet for hot molding and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180629

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191025

R150 Certificate of patent or registration of utility model

Ref document number: 6611222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150