JP2017155334A - Aluminum alloy sheet for hot molding and manufacturing method therefor - Google Patents

Aluminum alloy sheet for hot molding and manufacturing method therefor Download PDF

Info

Publication number
JP2017155334A
JP2017155334A JP2017021879A JP2017021879A JP2017155334A JP 2017155334 A JP2017155334 A JP 2017155334A JP 2017021879 A JP2017021879 A JP 2017021879A JP 2017021879 A JP2017021879 A JP 2017021879A JP 2017155334 A JP2017155334 A JP 2017155334A
Authority
JP
Japan
Prior art keywords
aluminum alloy
hot
temperature
manufacturing
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017021879A
Other languages
Japanese (ja)
Inventor
新里喜文
Yoshifumi Shinzato
工藤智行
Tomoyuki Kudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UACJ Corp
Original Assignee
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UACJ Corp filed Critical UACJ Corp
Priority to CA2958723A priority Critical patent/CA2958723A1/en
Priority to GB1702957.0A priority patent/GB2552399A/en
Priority to US15/442,128 priority patent/US20170247781A1/en
Publication of JP2017155334A publication Critical patent/JP2017155334A/en
Priority to US16/373,157 priority patent/US20190226070A1/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an Al-Mn-Si-based aluminum alloy sheet for hot molding having not only high aging curability, but also high m value in high range of strain rate zone, good in surface shape after molding and suitable for hot molding.SOLUTION: There are provided an aluminum alloy sheet for hot molding which consists of an aluminum alloy containing Mg:0.3-1.8 mass%, Si:0.6-2.0 mass% and Fe:0.04% to 0.20 mass% with limitations of Mn:0.030 mass% or less and Cr:0.030 mass% or less and the balance Al with inevitable impurities and has conductivity of 60% or less by IACS%, and a manufacturing method therefor.SELECTED DRAWING: None

Description

本発明は、高い時効硬化性を有するだけでなく、高範囲のひずみ速度域において高いm値を有し、熱間成形に好適なAl−Mg−Si系の熱間成形用アルミニウム合金板及びその製造方法に関する。   The present invention not only has high age-hardening properties, but also has a high m value in a high strain rate range, and is an Al-Mg-Si-based aluminum alloy plate for hot forming suitable for hot forming and its It relates to a manufacturing method.

近年、構造部品の軽量化手段の一つとして、アルミニウム合金の適用が進んでいる。しかしながら、一般的にアルミニウム合金は鋼板に比べて成形性が低く、様々な加工法の検討が必要である。そのような加工法の一つとして、超塑性変形を利用した熱間成形が挙げられる。このような熱間成形の代表的な例として、ブロー成形が挙げられる。   In recent years, application of aluminum alloys has been progressing as one of means for reducing the weight of structural parts. However, aluminum alloys generally have lower formability than steel plates, and various processing methods need to be studied. One of such processing methods is hot forming using superplastic deformation. A typical example of such hot forming is blow molding.

ブロー成形とは、特にアルミニウムが高温で超塑性と呼ばれる著しく大きな延性を示すことを利用した成形方法である。具体的には、加熱された上下金型でアルミニウム板材を挟持し、アルミニウム板材を加熱した後に高圧ガスで加圧して、アルミニウム板材を成形金型形状に成形する方法が一般的である。ブロー成形は、アルミニウム材の大きな高温延性を利用することにより冷間プレス成形では不可能な複雑形状の成形を可能とするだけでなく、高温での変形抵抗が小さいために、金型への転写性に優れ高意匠性部品の成形に適する。加えて、基本的には片方の金型だけで成形が可能なため、冷間プレス成形に比べて金型費を低減でき、少量多品種の部品の成形に用いられている。   Blow molding is a molding method that makes use of the fact that aluminum exhibits a remarkably large ductility called superplasticity at high temperatures. Specifically, a method is generally used in which an aluminum plate is sandwiched between heated upper and lower molds, and the aluminum plate is heated and then pressurized with a high-pressure gas to form the aluminum plate into a molding die shape. Blow molding not only enables molding of complex shapes that are impossible with cold press molding by utilizing the high-temperature ductility of aluminum material, but also transfer to a mold due to low deformation resistance at high temperature. Excellent in properties and suitable for molding high-design parts. In addition, since molding is basically possible with only one mold, the mold cost can be reduced as compared with cold press molding, and it is used for molding a small variety of parts.

特にアルミニウム合金に関しては、優れた超塑性特性を示す材料が積極的に開発されている。中でもAl−Cu系及びAl−Zn−Mg−Cu系のアルミニウム合金は、高温で著しく大きな延性を示すことに加え、ブロー成形後の熱処理により高強度が得られるために、幾つかのブロー成形用合金が開発されている。   Particularly for aluminum alloys, materials exhibiting excellent superplastic properties have been actively developed. Among them, Al-Cu-based and Al-Zn-Mg-Cu-based aluminum alloys exhibit remarkably large ductility at high temperatures and high strength can be obtained by heat treatment after blow molding. Alloys have been developed.

しかしながら、Al−Cu系やAl−Zn−Mg−Cu系のアルミニウム合金は、耐食性と溶接性に劣り、また製造コストが高価になるために航空機などの特殊部品への適用に限られているのが現状である。一方で、Mgが多量に固溶したAl−Mg系合金は高温で大きな延性を示すことは勿論であるが、中程度の強度と溶接性、ならびに、耐食性に優れており、一般部品向けの熱間成形用材料として広く用いられている。特にその需要の大部分は、自動車部品用途に占められている。しかしながら、自動車部品への軽量化の需要が増大するにつれ、高強度の一般部品用途の熱間成形用材料が求められるようになってきた。   However, Al-Cu-based and Al-Zn-Mg-Cu-based aluminum alloys are inferior in corrosion resistance and weldability and are expensive to manufacture, and are limited to application to special parts such as aircraft. Is the current situation. On the other hand, an Al-Mg alloy with a large amount of Mg in solid solution exhibits high ductility at a high temperature, but it has excellent medium strength, weldability, and corrosion resistance. Widely used as an inter-molding material. In particular, most of the demand is occupied by automobile parts. However, as the demand for weight reduction of automobile parts increases, a hot molding material for general parts with high strength has been demanded.

そのため、近年では特許文献1、2のような熱間成形用Al−Mg−Si系合金が開発されている。しかしながら、これらの熱間成形用Al−Mg−Si系合金の成形性は必ずしも十分ではなかった。特に生産性の点において、実用的な歪み速度域である10−2〜10−1/秒でのm値(ひずみ速度感受性指数)は十分とは言えなかった。m値はその材料の変形の局所化に対する抵抗の指標である。上記特許文献に記載の熱間成形用Al−Mg−Si系合金では、m値が低いために変形が局所化し易く難成形品を高速で成形することが困難であった。 Therefore, in recent years, Al-Mg-Si alloys for hot forming like Patent Documents 1 and 2 have been developed. However, the formability of these Al-Mg-Si alloys for hot forming is not always sufficient. In particular, in terms of productivity, the m value (strain rate sensitivity index) in a practical strain rate range of 10 −2 to 10 −1 / sec was not sufficient. The m value is a measure of resistance to localization of deformation of the material. In the Al-Mg-Si alloy for hot forming described in the above-mentioned patent document, since the m value is low, deformation is likely to be localized, and it is difficult to form a difficult-to-form product at high speed.

特開2006−37139号公報JP 2006-37139 A 特開2008−62255号公報JP 2008-62255 A

本発明は上記問題を解決すべくなされたもので、高い時効硬化性を有するだけでなく、高範囲のひずみ速度域において高いm値を有し、かつ、成形後の表面性状が良好で熱間成形に好適なAl−Mg−Si系の熱間成形用アルミニウム合金板を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, not only has high age-hardening properties, but also has a high m value in a high strain rate range, and has good surface properties after molding and is hot. An object of the present invention is to provide an Al—Mg—Si-based aluminum alloy plate for hot forming suitable for forming.

上記問題に対して本発明者らは、m値と合金成分、導電率の関係を種々検討した結果、Al−Mg−Si系合金においては、Mgを添加し、MnとCrの添加量に関してはできるだけ少量とすることでm値が向上することを見出した。すなわち、固溶Mgは転位と相互作用を起こすことにより(Solute Drag Creep)、m値を向上させる一方で、Mn、Crを添加するとMn、Cr系の析出物が可動転位を減少させることにより、m値の向上を制限する。従って、Mg固溶量、ならびに、MnとCrの析出量を制御することが重要となり、その指標となる導電率を低くすることでm値が向上することを本発明者らは見出した。   As a result of various studies on the relationship between the m value, the alloy component, and the electrical conductivity, the present inventors have added Mg in the Al—Mg—Si based alloy, and regarding the addition amounts of Mn and Cr, It was found that the m value was improved by making the amount as small as possible. That is, solid solution Mg interacts with dislocations (Solution Drag Creep) to improve the m value, while Mn and Cr add Mn and Cr-based precipitates to reduce movable dislocations. Limit improvement in m value. Therefore, it is important to control the Mg solid solution amount and the precipitation amount of Mn and Cr, and the present inventors have found that the m value is improved by lowering the conductivity as an index.

一方で、MnとCrの添加量が少ない分、結晶粒界を安定化させるMnとCrの析出物が減少するため結晶粒が粗大化し、成形後に肌荒れが起こり易い。これに対しては、本発明者らの検討により、Feを一定量添加することでm値の低下を抑制しつつ、肌荒れ防止に有効であることが見出され、これに従ってFeの添加量を規定した。これにより、高い時効硬化性を有するだけでなく、高歪み速度域における成形性の向上を達成することができ、本発明を完成するに至った。   On the other hand, since the amount of Mn and Cr added is small, precipitates of Mn and Cr that stabilize the grain boundaries are reduced, so that the crystal grains are coarsened and rough skin is likely to occur after molding. In response to this, the inventors have found that adding a certain amount of Fe is effective in preventing rough skin while suppressing a decrease in m value, and the amount of Fe added is adjusted accordingly. Stipulated. Thereby, not only has high age-hardening property, but also improvement in formability in a high strain rate region can be achieved, and the present invention has been completed.

すなわち、本発明は請求項1において、Mg:0.3〜1.8mass%、Si:0.6〜2.0mass%、Fe:0.04〜0.20mass%を含有し、Mn:0.030mass%以下及びCr:0.030mass%以下に規制し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、導電率がIACS%で60%以下であることを特徴とする熱間成形用アルミニウム合金板とした。   That is, this invention contains Mg: 0.3-1.8mass%, Si: 0.6-2.0mass%, Fe: 0.04-0.20mass% in Claim 1, Mn: 0.0. Aluminum alloy for hot forming, characterized in that it is controlled to 030 mass% or less and Cr: 0.030 mass% or less, and consists of an aluminum alloy composed of the balance Al and inevitable impurities, and has a conductivity of 60% or less in terms of IACS%. A board was used.

本発明は請求項2では請求項1において、前記アルミニウム合金がCu:0.2〜1.0mass%を更に含有するものとした。   According to a second aspect of the present invention, in the first aspect, the aluminum alloy further contains Cu: 0.2 to 1.0 mass%.

更に本発明は請求項3では請求項1又は2において、熱間成形用アルミニウム合金板がブロー成形用途に用いられるものとした。   Furthermore, in the present invention, the present invention is such that, in claim 3, the aluminum alloy plate for hot forming is used for blow molding.

本発明は請求項4では請求項1〜3のいずれか一項に記載の熱間成形用アルミニウム合金板の製造方法であって、前記アルミニウム合金の溶湯を鋳造する工程と、鋳造した鋳塊を均質化処理する均質化処理工程と、均質化処理した鋳塊を熱間圧延する熱間圧延工程と、熱間圧延板を冷間圧延する冷間圧延工程とを含み、前記均質化処理工程において、鋳塊を500℃以上アルミニウム合金の融点未満の温度で1〜12時間加熱保持し、かつ、加熱保持の終了から300℃までの冷却速度を50℃/時間以上とし、前記熱間圧延工程において、熱間圧延中の圧延板の温度を250〜450℃とし、冷間圧延工程における圧下率を50%以上とすることを特徴とする熱間成形用アルミニウム合金板の製造方法とした。   The present invention provides a method for producing an aluminum alloy sheet for hot forming according to any one of claims 1 to 3 in claim 4, wherein the step of casting the molten aluminum alloy, and the cast ingot In the homogenization treatment step, including a homogenization treatment step of homogenizing, a hot rolling step of hot rolling the homogenized ingot, and a cold rolling step of cold rolling the hot rolled plate, The ingot is heated and held at a temperature of 500 ° C. or higher and lower than the melting point of the aluminum alloy for 1 to 12 hours, and the cooling rate from the end of the heating and holding to 300 ° C. is set to 50 ° C./hour or more. The temperature of the rolled sheet during hot rolling is 250 to 450 ° C., and the reduction ratio in the cold rolling process is 50% or more.

また、本発明は請求項5では請求項1〜3のいずれか一項に記載の熱間成形用アルミニウム合金板の製造方法であって、前記アルミニウム合金の溶湯を鋳造する工程と、鋳造した鋳塊を均質化処理する均質化処理工程と、均質化処理した鋳塊を熱間圧延する熱間圧延工程と、熱間圧延板を冷間圧延する冷間圧延工程と、圧延板を焼鈍する焼鈍工程とを含み、前記均質化処理工程において、鋳塊を500℃以上アルミニウム合金の融点未満の温度で1〜12時間加熱保持し、かつ、加熱保持の終了から300℃までの冷却速度を50℃/時間以上とし、前記熱間圧延工程において、熱間圧延中の圧延板の温度を250〜450℃とし、冷間圧延工程における圧下率を50%以上とし、前記焼鈍工程が、冷間圧延工程の途中に500〜580℃の温度で圧延板を焼鈍し、当該焼鈍温度までの昇温速度を5℃/秒以上とし、焼鈍後の冷却速度を100℃/秒以上とすることを特徴とする熱間成形用アルミニウム合金板の製造方法とした。   Moreover, this invention is the manufacturing method of the aluminum alloy plate for hot forming as described in any one of Claims 1-3 in Claim 5, Comprising: The process of casting the molten metal of the said aluminum alloy, and the cast casting Homogenization treatment process for homogenizing the ingot, hot rolling process for hot rolling the homogenized ingot, cold rolling process for cold rolling the hot rolled sheet, and annealing for annealing the rolled sheet In the homogenization step, the ingot is heated and held at a temperature of 500 ° C. or higher and lower than the melting point of the aluminum alloy for 1 to 12 hours, and the cooling rate from the end of the heating and holding to 300 ° C. is set to 50 ° C. / Hour or more, and in the hot rolling step, the temperature of the rolled sheet during hot rolling is 250 to 450 ° C., the reduction rate in the cold rolling step is 50% or more, and the annealing step is a cold rolling step. In the middle of 500-580 ° C An aluminum alloy sheet for hot forming, characterized in that the rolled sheet is annealed at a temperature, the rate of temperature rise to the annealing temperature is 5 ° C./second or more, and the cooling rate after annealing is 100 ° C./second or more. It was set as the manufacturing method.

また、本発明は請求項6では請求項4又は5において、前記冷間圧延工程における圧下率を80%以上とするものとした。   Further, in the sixth aspect of the present invention, in the fourth or fifth aspect, the rolling reduction in the cold rolling step is 80% or more.

更にまた、本発明は請求項7では請求項4〜6のいずれか一項において、前記鋳造工程が、50℃/分以上の冷却速度のDC鋳造法を用いるものとした。   Still further, according to the present invention, in the present invention, the casting process according to any one of claims 4 to 6 uses a DC casting method with a cooling rate of 50 ° C./min or more.

本発明により、高い時効硬化性を有するだけでなく、高範囲のひずみ速度域において高いm値を有し、かつ、成形後の表面性状が良好であり、熱間成形に好適なAl−Mg−Si系の熱間成形用アルミニウム合金板が得られる。   According to the present invention, Al-Mg- not only has high age-hardening properties, but also has a high m value in a high strain rate range and good surface properties after molding, and is suitable for hot forming. A Si-based aluminum alloy plate for hot forming is obtained.

本発明では、アルミニウム合金のm値を向上させるために、導電率との関係で金属組織としての第二相粒子の析出を抑制する。また、成形後の肌荒れを抑制するために、平均結晶粒径ついて規定する。更に、一般部品用途として要求される時効後の引張強度についても規定する。そして、これらの特徴を得るための合金組成についても規定する。本発明に係る熱間成形用のアルミニウム合金板におけるこれら各項目について、以下に詳細に説明する。   In the present invention, in order to improve the m value of the aluminum alloy, the precipitation of the second phase particles as the metal structure is suppressed in relation to the electrical conductivity. Moreover, in order to suppress rough skin after molding, the average crystal grain size is defined. Furthermore, the tensile strength after aging required for general parts is also specified. The alloy composition for obtaining these characteristics is also specified. Each of these items in the aluminum alloy plate for hot forming according to the present invention will be described in detail below.

1.金属組織
1−1.第二相粒子
特にMn系とCr系の第二相粒子は可動転移を抑制し、m値の低下を招く。従って、本発明ではこれらMn系、Cr系及びMg−Si系をはじめとする第二相粒子の形成量(固溶せずに析出した状態で存在するもので、以下、「析出量」と記す)を抑制する。これら第二相粒子の析出量は、アルミニウム合金の導電率により推し量ることができる。一般に、アルミニウム合金の導電率が高いほど第二相粒子の固溶量が低く、つまり第二相粒子の析出量が高いことを示す。本発明ではアルミニウム合金の導電率をIACS%で60%以下、好ましくは58%以下とする。IACS%が60%以下であると、第二相粒子の析出量が抑制されてm値の向上が期待できる。この導電率の下限値は特に限定するものではないが、アルミニウム合金組成や製造方法から本発明では56%程度である。
1. Metallographic structure 1-1. Second-phase particles In particular, Mn-based and Cr-based second-phase particles suppress the mobile transition and cause a decrease in m-value. Therefore, in the present invention, the formation amount of these second phase particles including Mn-based, Cr-based and Mg-Si-based materials (existing in a state of being precipitated without solid solution, hereinafter referred to as "precipitation amount"). ). The amount of precipitation of these second phase particles can be estimated by the electrical conductivity of the aluminum alloy. Generally, the higher the electrical conductivity of the aluminum alloy, the lower the solid solution amount of the second phase particles, that is, the higher the precipitation amount of the second phase particles. In the present invention, the electrical conductivity of the aluminum alloy is 60% or less, preferably 58% or less in terms of IACS%. When the IACS% is 60% or less, the amount of precipitation of the second phase particles is suppressed, and an improvement in m value can be expected. The lower limit of the conductivity is not particularly limited, but is about 56% in the present invention from the aluminum alloy composition and the manufacturing method.

1−2.平均結晶粒径
アルミニウム合金の結晶粒径が大きいと熱間成形後の肌荒れが生じる。本発明者らの検討によれば、熱間成形直前の平均結晶粒径を50μm以下、好ましくは45μm以下とすると、成形後の肌荒れを有効に抑制できる。また、この平均結晶粒径の下限値は特に限定されるものではないが、アルミニウム合金組成や製造方法から、本発明では40μm程度である。なお、結晶組織における平均結晶粒径の測定は、EBSD(後方散乱電子回折)を用いて800μm×1600μmの視野について15°以上の高角粒界によって囲まれる結晶粒の平均結晶粒径として行なった。
1-2. Average crystal grain size If the crystal grain size of the aluminum alloy is large, rough skin after hot forming occurs. According to the study by the present inventors, when the average crystal grain size immediately before hot forming is 50 μm or less, preferably 45 μm or less, rough skin after forming can be effectively suppressed. Further, the lower limit of the average crystal grain size is not particularly limited, but is about 40 μm in the present invention from the aluminum alloy composition and the production method. The average crystal grain size in the crystal structure was measured as the average crystal grain size of crystal grains surrounded by high-angle grain boundaries of 15 ° or more in a field of view of 800 μm × 1600 μm using EBSD (backscattered electron diffraction).

2.m値
本発明においては、Mn系、Cr系及びMg−Si系をはじめとする第二相粒子の析出量を抑制することにより、実用的な歪み速度域である10−2〜10−1/秒でのm値を0.23以上、好ましくは0.25以上と設定する。m値が0.23未満では、熱間成形時に変形の局所化が生じ、熱間成形性が低下する。なお、このm値の上限値は特に限定するものではないが、アルミニウム合金組成や製造方法から、本発明では0.29程度である。
2. m Value In the present invention, by suppressing the amount of precipitation of second phase particles including Mn-based, Cr-based, and Mg-Si-based materials, a practical strain rate range of 10 -2 to 10 -1 / The m value in seconds is set to 0.23 or more, preferably 0.25 or more. When the m value is less than 0.23, localization of deformation occurs during hot forming, and hot formability deteriorates. In addition, although the upper limit of this m value is not specifically limited, it is about 0.29 in this invention from an aluminum alloy composition and a manufacturing method.

3.時効後の引張強度
本発明に係る熱間成形用アルミニウム合金板は、一般部品用途として十分な強度である引張強度300MPa以上、好ましくは315MPa以上を熱間成形の後における時効後の引張強度として有する。なお、この時効後の引張強度の上限値は特に限定するものではないが、アルミニウム合金組成や製造方法から、本発明では330MPa程度である。
3. Tensile strength after aging The aluminum alloy plate for hot forming according to the present invention has a tensile strength of 300 MPa or more, preferably 315 MPa or more, which is sufficient strength for general parts, as the tensile strength after aging after hot forming. . In addition, although the upper limit of the tensile strength after aging is not specifically limited, it is about 330 MPa in the present invention from the aluminum alloy composition and the manufacturing method.

4.アルミニウム合金の成分組成
本発明の熱間成形用アルミニウム合金板の成分組成は、Mg、Si、Feを必須元素とし、MnとCrの含有量を規制し、Cuを選択元素とする。その限定理由を以下に示す。
4). Component composition of aluminum alloy The component composition of the aluminum alloy plate for hot forming according to the present invention uses Mg, Si, and Fe as essential elements, regulates the contents of Mn and Cr, and uses Cu as a selective element. The reason for the limitation is shown below.

4−1.Mg:0.3〜1.8mass%、Si:0.6〜2.0mass%
Mg及びSiは、本発明に用いるアルミニウム合金の基本元素である。両元素は、超塑性成形性を確保し、ならびに、熱間成形後における時効硬化処理によりAl−Mg系アルミニウム合金以上の大きな強度を得るための必須添加元素である。また、固溶Mgは高温変形中に転移と相互作用してSolute Drag Creepを引き起こし、m値を向上させるため一定量のMg添加が必要である。Mg含有量が0.3mass%(以下、単に「%」と記す)未満、或いは、Si含有量が0.6%未満では、上述の効果が十分に得られない。一方、Mg含有量が1.8%を超え、或いは、Si含有量が2.0%を超える場合には、Mg−Si系の第二相が形成され、m値の低下に繋がる。以上により、Mg含有量を0.3〜1.8%、ならびに、Si含有量を0.6〜2.0%に規定した。なお、Mg含有量は、好ましくは0.6〜1.4%、ならびに、Si含有量は、好ましくは0.8〜1.4%である。
4-1. Mg: 0.3-1.8 mass%, Si: 0.6-2.0 mass%
Mg and Si are basic elements of the aluminum alloy used in the present invention. Both elements are essential additive elements for ensuring superplastic formability and for obtaining a strength greater than that of the Al—Mg-based aluminum alloy by age hardening after hot forming. In addition, solid solution Mg interacts with the transition during high temperature deformation to cause solid drag creep, and a certain amount of Mg needs to be added to improve the m value. If the Mg content is less than 0.3 mass% (hereinafter simply referred to as “%”) or the Si content is less than 0.6%, the above-described effects cannot be obtained sufficiently. On the other hand, when the Mg content exceeds 1.8% or the Si content exceeds 2.0%, an Mg—Si-based second phase is formed, leading to a decrease in the m value. As described above, the Mg content was regulated to 0.3 to 1.8% and the Si content was regulated to 0.6 to 2.0%. The Mg content is preferably 0.6 to 1.4%, and the Si content is preferably 0.8 to 1.4%.

4−2.Fe:0.04〜0.20%
Feの添加によりFe系析出物が形成されるが、m値の低下を抑制しつつ、結晶粒を安定化させて肌荒れを抑制するためFeの必要量を添加する。Fe含有量が0.04%未満では結晶粒を安定化させることができず肌荒れが発生するだけでなく、高純度の地金を使用する必要があり原料コスト増に繋がる。一方、Fe含有量が0.20%を超える場合には十分なm値が得られない。Feの含有量は、好ましくは0.08%〜0.14%である。
4-2. Fe: 0.04 to 0.20%
Fe-based precipitates are formed by the addition of Fe, but the necessary amount of Fe is added in order to stabilize the crystal grains and suppress the rough skin while suppressing the decrease in m value. If the Fe content is less than 0.04%, the crystal grains cannot be stabilized and rough skin occurs, and it is necessary to use high-purity bare metal, leading to an increase in raw material costs. On the other hand, when the Fe content exceeds 0.20%, a sufficient m value cannot be obtained. The content of Fe is preferably 0.08% to 0.14%.

4−3.Mn:0.030%以下、Cr:0.030%以下
Mn及びCrの添加によりMn系析出物とCr系析出物が形成され、これによって可動転位が抑制される。その結果、Solute Drag Creepの効果が抑止されてm値が低下する。従って、Mn及びCrの含有量はそれぞれ0.030%以下に規制される。Mn含有量が0.030%を超え、或いは、Cr含有量が0.030%を超える場合には、十分なm値が得られない。Mn含有量は、好ましくは0.010%以下であり、Cr含有量は、好ましくは0.010%以下である。なお、Mn含有量とCr含有量は、0%であってもよい。
4-3. Mn: 0.030% or less, Cr: 0.030% or less By the addition of Mn and Cr, Mn-based precipitates and Cr-based precipitates are formed, and thereby movable dislocations are suppressed. As a result, the effect of the Solution Drag Creep is suppressed and the m value decreases. Accordingly, the contents of Mn and Cr are each regulated to 0.030% or less. When the Mn content exceeds 0.030% or the Cr content exceeds 0.030%, a sufficient m value cannot be obtained. The Mn content is preferably 0.010% or less, and the Cr content is preferably 0.010% or less. Note that the Mn content and the Cr content may be 0%.

4−4.Cu:0.2〜1.0%
Cuは時効硬化性を向上させるため、必要に応じて選択的に添加してもよい。Cu含有量が0.2%未満では十分な添加効果が得られない。一方、Cu含有量が1.0%を超えると、耐食性が低下する。以上により、Cu含有量は0.2〜1.0%とするのが好ましく、0.3〜0.7%とするのがより好ましい。
4-4. Cu: 0.2 to 1.0%
Cu may be selectively added as necessary to improve age hardening. If the Cu content is less than 0.2%, a sufficient addition effect cannot be obtained. On the other hand, if the Cu content exceeds 1.0%, the corrosion resistance decreases. Accordingly, the Cu content is preferably 0.2 to 1.0%, and more preferably 0.3 to 0.7%.

4−6.Ti:0.20%以下
Tiを添加することで鋳塊組織を微細化することが可能となるため、必要に応じて選択的に添加してもよい。しかしながら、Tiを添加すると耐食性が低下する。Ti含有量は0.20%以下であれば、本発明の効果に問題は無い。
4-6. Ti: 0.20% or less Since the ingot structure can be refined by adding Ti, it may be selectively added as necessary. However, corrosion resistance decreases when Ti is added. If the Ti content is 0.20% or less, there is no problem in the effect of the present invention.

4−7.不可避的不純物
不可避的不純物として、Zr、Zn、B、Beなどを各々0.05%以下、全体として0.15%以下含有していても、本発明の効果を損なわないので許容される。
4-7. Inevitable impurities Even if it contains 0.05% or less of Zr, Zn, B, Be or the like as an inevitable impurity, and 0.15% or less as a whole, the effect of the present invention is not impaired.

5.製造方法
次に、本発明に係る熱間成形用アルミニウム合金板の製造方法について説明する。
5. Manufacturing method Next, the manufacturing method of the aluminum alloy plate for hot forming which concerns on this invention is demonstrated.

5−1.溶解鋳造工程
まず、上記合金成分の合金溶湯を溶製し、これを鋳造する。鋳造は例えばDC鋳造のような一般的な方法によって行われる。その際、冷却速度を大きくすることにより、粗大な第2相粒子の形成を抑制することが好ましい。本発明では、DC鋳造(半連続鋳造)における冷却速度として、50℃/分以上とするのが好ましく、100℃/分以上とするのがより好ましい。なお、この冷却速度の上限値は特に限定するものではないが、製造方法や用いる製造装置により本発明では300℃/分程度である。
5-1. Melting and casting process First, the molten alloy of the above alloy components is melted and cast. Casting is performed by a general method such as DC casting. At that time, it is preferable to suppress the formation of coarse second phase particles by increasing the cooling rate. In the present invention, the cooling rate in DC casting (semi-continuous casting) is preferably 50 ° C./min or more, and more preferably 100 ° C./min or more. The upper limit of the cooling rate is not particularly limited, but is about 300 ° C./min in the present invention depending on the manufacturing method and the manufacturing apparatus used.

5−2.均質化処理工程
溶解鋳造によって得られたアルミニウム合金の鋳塊は、面削を施してから均質化処理工程にかけられる。均質化処理温度は、500℃以上で、かつ、本発明で用いるアルミニウム合金の融点温度(例えば約580℃)未満と規定する。加熱温度が500℃未満では、m値の低下を招く第2相粒子が再固溶することによって得られるm値向上の効果が図れない。また、均質化処理温度を本発明に用いるアルミニウム合金の融点温度未満とすることによって、アルミニウム合金の溶解を防止することができる。従って、均質化処理温度は500℃以上でアルミニウム合金の融点未満とし、530〜560℃とするのが好ましい。均質化処理時間(加熱保持時間)については、1〜12時間とするのが好ましく、2〜8時間とするのがより好ましい。1時間未満では、m値の低下を招く第2相粒子の再固溶の促進が図れず、12時間を超えると鋳造時に過飽和状態で固溶しているFeが化合物として析出することにより、成形後の結晶粒粗大化を招く。また、均質化処理工程後(加熱保持の終了)から300℃までの冷却速度を、50℃/時間以上、好ましくは100℃/時間以上とする。冷却速度が50℃/時間以上であるとm値の低下を招く粗大な第二相粒子の析出が抑制される。なお、この冷却速度の上限値は特に限定するものではないが、製造方法や用いる製造装置により本発明では360℃/時間程度である。
5-2. Homogenization treatment process The ingot of aluminum alloy obtained by melt casting is subjected to a homogenization treatment process after chamfering. The homogenization temperature is defined as 500 ° C. or higher and lower than the melting point temperature (for example, about 580 ° C.) of the aluminum alloy used in the present invention. If the heating temperature is less than 500 ° C., the effect of improving the m value obtained by re-dissolving the second phase particles that cause a decrease in the m value cannot be achieved. Moreover, melt | dissolution of an aluminum alloy can be prevented by making homogenization process temperature less than melting | fusing point temperature of the aluminum alloy used for this invention. Therefore, the homogenization treatment temperature is 500 ° C. or more and less than the melting point of the aluminum alloy, and preferably 530 to 560 ° C. The homogenization treatment time (heat holding time) is preferably 1 to 12 hours, and more preferably 2 to 8 hours. If it is less than 1 hour, the re-solution of the second phase particles that causes a decrease in the m value cannot be promoted. If it exceeds 12 hours, Fe that is dissolved in a supersaturated state at the time of casting precipitates as a compound. Later coarsening of crystal grains is caused. Further, the cooling rate from the homogenization treatment step (end of heating and holding) to 300 ° C. is set to 50 ° C./hour or more, preferably 100 ° C./hour or more. When the cooling rate is 50 ° C./hour or more, the precipitation of coarse second-phase particles that cause a decrease in the m value is suppressed. The upper limit of the cooling rate is not particularly limited, but is about 360 ° C./hour in the present invention depending on the manufacturing method and the manufacturing apparatus used.

5−3.熱間圧延工程
熱間圧延中の材料温度は、250〜450℃、好ましくは350〜400℃とする。250℃以上にすることにより材料の変形抵抗が小さくなって、熱間圧延が容易となる。一方、450℃以下にすることにより熱間圧延中の粗大な第2相粒子の析出が抑制され、その結果、m値が増加するとともに、熱間成形の後における時効後の強度が向上する。
5-3. Hot rolling step The material temperature during hot rolling is 250 to 450 ° C, preferably 350 to 400 ° C. By setting the temperature to 250 ° C. or higher, the deformation resistance of the material becomes small, and hot rolling becomes easy. On the other hand, by setting it to 450 ° C. or lower, precipitation of coarse second phase particles during hot rolling is suppressed, and as a result, the m value increases and the strength after aging after hot forming improves.

5−4.冷間圧延工程
本発明においては、熱間圧延工程を経た圧延板は冷間圧延工程にかけられ、次いで冷間圧延板をそのまま熱間ブロー成形などの熱間成形に供することが可能である。なお、冷間圧延工程における圧下率を大きくすると最終焼鈍後の結晶粒微細化に繋がり、肌荒れの抑制効果を奏する。この圧下率は、50%以上、好ましくは80%以上とする。圧下率の上限値は特に限定するものではないが、合金組成、製造方法及び圧延装置などにより本発明では95%程度である。
5-4. Cold Rolling Process In the present invention, the rolled plate that has undergone the hot rolling process is subjected to a cold rolling process, and then the cold rolled sheet can be directly subjected to hot forming such as hot blow molding. In addition, when the rolling reduction rate in a cold rolling process is enlarged, it leads to the refinement | miniaturization of the crystal grain after final annealing, and there exists an inhibitory effect of rough skin. This rolling reduction is 50% or more, preferably 80% or more. The upper limit of the rolling reduction is not particularly limited, but is about 95% in the present invention depending on the alloy composition, the production method, the rolling device, and the like.

5−5.焼鈍工程
また、第二相粒子の再固溶のために、冷間圧延工程の途中において圧延板を焼鈍する焼鈍工程を設けてもよい。焼鈍により第二相粒子の固溶量が大きくした状態で冷間圧延を実施すると、より結晶粒の微細化に有効であるため、肌荒れの抑制効果を奏する。焼鈍温度は500〜580℃、好ましくは530〜570℃とする。焼鈍温度を500℃以上とすることにより、第二相粒子の固溶量を大きくできる。一方、焼鈍温度が580℃を超えると材料の局部溶融が起こり成形性の低下を招く。焼鈍温度までの昇温速度は5℃/秒以上とする。昇温速度が5℃/秒未満の場合、昇温中に第二相粒子の析出が生じ、m値が低下するとともに熱間成形の後における時効後の強度も低下する。なお、この昇温速度の上限値は特に限定するものではないが、製造方法や用いる製造装置から、本発明では10℃/秒程度である。更に、焼鈍後における室温までの冷却速度を、100℃/秒以上とするのが好ましい。この冷却速度が100℃/秒未満の場合は、冷却中に第二相粒子の析出が生じ、m値が低下するとともに熱間成形の後における時効後の強度も低下する。なお、この冷却速度の上限値は特に限定するものではないが、製造方法や用いる製造装置によりから、本発明では400℃/秒程度である。
5-5. Annealing process Moreover, you may provide the annealing process which anneals a rolled sheet in the middle of a cold rolling process for the re-solidification of 2nd phase particle | grains. When cold rolling is performed in a state in which the solid solution amount of the second phase particles is increased by annealing, the effect of suppressing roughening of the skin is exhibited because it is more effective for refinement of crystal grains. The annealing temperature is 500 to 580 ° C, preferably 530 to 570 ° C. By setting the annealing temperature to 500 ° C. or higher, the solid solution amount of the second phase particles can be increased. On the other hand, when the annealing temperature exceeds 580 ° C., local melting of the material occurs and the moldability is lowered. The rate of temperature rise to the annealing temperature is 5 ° C./second or more. When the rate of temperature increase is less than 5 ° C./second, precipitation of second phase particles occurs during the temperature increase, and the m value decreases and the strength after aging after hot forming also decreases. In addition, although the upper limit of this temperature increase rate is not specifically limited, it is about 10 degreeC / second in this invention from a manufacturing method and the manufacturing apparatus to be used. Furthermore, it is preferable that the cooling rate to room temperature after annealing is 100 ° C./second or more. When this cooling rate is less than 100 ° C./second, precipitation of the second phase particles occurs during cooling, the m value decreases, and the strength after aging after hot forming also decreases. The upper limit of the cooling rate is not particularly limited, but is about 400 ° C./second in the present invention depending on the manufacturing method and the manufacturing apparatus used.

以下に、本発明の実施例について説明する。表1、5に示すアルミニウム合金(合金番号1〜24)をそれぞれ溶解し、DC鋳造法によって鋳造した。DC鋳造における冷却速度は、80℃/分とした。得られた鋳塊を面削し、表2に示す条件で均質化処理とその後の冷却を行なった。次いで、圧延中の圧延板の温度を表2に示す温度で熱間圧延を行った。最後に、熱間圧延後の圧延板を表2に示す条件で中間焼鈍と冷間圧延に供して、最終板厚1mmの圧延板試料を得た。なお、中間焼鈍はソルトバスを使用して行った。   Examples of the present invention will be described below. Aluminum alloys (alloy numbers 1 to 24) shown in Tables 1 and 5 were melted and cast by the DC casting method. The cooling rate in DC casting was 80 ° C./min. The obtained ingot was chamfered, and homogenization treatment and subsequent cooling were performed under the conditions shown in Table 2. Next, hot rolling was performed at the temperature shown in Table 2 as the temperature of the rolled sheet during rolling. Finally, the rolled sheet after hot rolling was subjected to intermediate annealing and cold rolling under the conditions shown in Table 2 to obtain a rolled sheet sample having a final sheet thickness of 1 mm. The intermediate annealing was performed using a salt bath.

Figure 2017155334
Figure 2017155334

Figure 2017155334
Figure 2017155334

Figure 2017155334
Figure 2017155334

6.試料の評価
6−1.導電率IACS%
上記試料を、100mm×100mmに切断し、シグマテスタを用いて試料のIACS%を測定した。その際、測定回数は5回とし、その算術平均値をもって試料の導電率とした。
6). Evaluation of sample 6-1. Conductivity IACS%
The said sample was cut | disconnected to 100 mm x 100 mm, and IACS% of the sample was measured using the sigma tester. At that time, the number of measurements was five, and the arithmetic average value was used as the conductivity of the sample.

6−2.m値
試料を高温引張試験片に加工して高温引張試験機に設置し、ひずみ速度急変法によりm値を測定した。引張温度は530℃とし、10−2〜10−1/秒において応力−ひずみ速度のプロットを直線近似し、その直線の傾きをm値とした。m値が0.23以上を合格とし、それ未満を不合格とした。
6-2. m value The sample was processed into a high-temperature tensile test piece and placed in a high-temperature tensile tester, and the m-value was measured by a strain rate rapid change method. The tensile temperature was 530 ° C., and the stress-strain rate plot was linearly approximated at 10 −2 to 10 −1 / sec, and the slope of the straight line was defined as m value. An m value of 0.23 or more was accepted and less than that was rejected.

6−3.焼鈍後の平均結晶粒径
試料を530℃で5分間加熱した(焼鈍)後に、試料断面の結晶粒をEBSPで観察し、結晶粒径を測定した。15°以上の高角粒界を結晶粒界としてその結晶粒径を測定した。具体的には、EBSPを用いて800μm×1600μmの視野について15°以上の高角粒界によって囲まれる結晶粒の結晶粒径を測定し、これらの算術平均値をもって平均結晶粒径とした。平均結晶粒径が50μm以下のものを合格とし、50μmを超えるものを不合格とした。
6-3. Average crystal grain size after annealing After heating the sample at 530 ° C. for 5 minutes (annealing), the crystal grain of the sample cross section was observed with EBSP, and the crystal grain size was measured. The crystal grain size was measured using a high-angle grain boundary of 15 ° or more as a crystal grain boundary. Specifically, using EBSP, the crystal grain size of a crystal grain surrounded by a high-angle grain boundary of 15 ° or more was measured for a field of view of 800 μm × 1600 μm, and the arithmetic average value was used as the average crystal grain size. Those having an average crystal grain size of 50 μm or less were accepted and those exceeding 50 μm were rejected.

6−4.時効後の引張強度
上記試料から3cm×20cmの試験片を3個切り出し高温成形を模した530℃で1時間の熱処理を行った。これを室温まで水冷して焼き入れ処理した後に、連続して180℃×1時間のバッチ時効処理を行った。バッチ時効処理したものを用いて、JIS5号引張試験に準拠した引張強度を測定した。各試験片の算術平均値をもって熱間成形の後における時効後の引張強度とした。この引張強度が300MPa以上を合格とし、それ未満を不合格とした。
6-4. Tensile strength after aging Three test pieces of 3 cm × 20 cm were cut out from the sample and heat-treated at 530 ° C. for 1 hour simulating high-temperature molding. This was water-cooled to room temperature and quenched, and then batch-aged at 180 ° C. for 1 hour. The tensile strength based on the JIS No. 5 tensile test was measured using the batch aging treatment. The arithmetic average value of each specimen was taken as the tensile strength after aging after hot forming. When the tensile strength was 300 MPa or more, it was accepted and less than that was rejected.

6−5.耐食性評価
表5に示す化学成分を有する試料から5cm×6cmの試験片を3個切り出し,高温成形を模した530℃で1時間の熱処理を行った。これを室温まで水冷して焼き入れ処理した後に、連続して180℃×1時間のバッチ時効処理を施し、ISO11846(b)規格に基づいて粒界腐食試験を行った。腐食深さが300μm未満を耐食性が合格(○)とし、腐食深さが300μm以上を耐食性が不合格(△)とした。
6-5. Evaluation of Corrosion Resistance Three test pieces of 5 cm × 6 cm were cut out from samples having chemical components shown in Table 5, and heat treatment was performed at 530 ° C. for 1 hour simulating high temperature molding. This was water-cooled to room temperature and quenched, followed by continuous batch aging treatment at 180 ° C. for 1 hour, and an intergranular corrosion test was performed based on ISO11846 (b) standard. When the corrosion depth is less than 300 μm, the corrosion resistance is acceptable (◯), and when the corrosion depth is 300 μm or more, the corrosion resistance is unacceptable (Δ).

以上の各評価結果を表3、4及び6に示す。ここで、表3は、製造条件を同じにして、合金組成の異なる試料を用いた結果である。また、表4は、合金組成を同じにして、製造条件の異なる試料を用いた結果である。更に、表6は、アルミニウム合金の選択的添加元素を添加した試料を用いた結果である。なお、m値、平均結晶粒径及び時効後の引張強度が全て合格の場合を総合評価が合格(○)とし、それ以外を不合格(×)とした。   The above evaluation results are shown in Tables 3, 4 and 6. Here, Table 3 shows the results of using samples with different alloy compositions under the same manufacturing conditions. Table 4 shows the results of using samples having different alloy conditions with the same alloy composition. Further, Table 6 shows the results of using a sample to which a selective additive element of an aluminum alloy was added. In addition, when the m value, the average crystal grain size, and the tensile strength after aging were all acceptable, the overall evaluation was acceptable (◯), and the others were unacceptable (x).

Figure 2017155334
Figure 2017155334

Figure 2017155334
Figure 2017155334

Figure 2017155334
Figure 2017155334

表3において、発明例1〜12では、本発明で規定する合金組成のものを用いたため、IACSを満たし、更に、m値、結晶粒径及び時効後の引張強度が全て合格となり総合評価も合格であった。   In Table 3, since Invention Examples 1 to 12 used the alloy composition defined in the present invention, the IACS was satisfied, and the m value, the crystal grain size, and the tensile strength after aging were all passed and the overall evaluation was also passed. Met.

これに対して、比較例1では、Mg含有量が少な過ぎたために、IACSが本発明で規定する範囲外となり、m値、時効後の引張強度が不合格となって総合評価も不合格となった。   On the other hand, in Comparative Example 1, since the Mg content was too small, IACS was outside the range specified in the present invention, m value, tensile strength after aging was rejected, and overall evaluation was also rejected. became.

比較例2では、Mg含有量が多過ぎたために、第二相の析出が生じ、m値が不合格となって総合評価も不合格となった。   In comparative example 2, since there was too much Mg content, precipitation of the 2nd phase occurred, m value was rejected, and comprehensive evaluation was also rejected.

比較例3では、Si含有量が少な過ぎたために、IACSが本発明で規定する範囲外となり、m値、時効後の引張強度も不合格となって総合評価が不合格となった。   In Comparative Example 3, since the Si content was too small, IACS was outside the range defined by the present invention, and the m value and the tensile strength after aging were also rejected, and the comprehensive evaluation was rejected.

比較例4では、Si含有量が多過ぎたために、第二相の析出が生じ、m値が不合格となって総合評価も不合格となった。   In comparative example 4, since there was too much Si content, precipitation of the 2nd phase occurred, m value was rejected, and comprehensive evaluation was also rejected.

比較例5では、Fe含有量が少な過ぎたために、IACSが本発明で規定する範囲外となり、平均結晶粒径が粗大となり、総合評価が不合格となった。   In Comparative Example 5, since the Fe content was too small, IACS was outside the range defined by the present invention, the average crystal grain size was coarse, and the overall evaluation was unacceptable.

比較例6では、Fe含有量が多過ぎたために、第二相の析出が生じm値が不合格となって総合評価も不合格となった。   In Comparative Example 6, since the Fe content was too high, precipitation of the second phase occurred, the m value was rejected, and the overall evaluation was also rejected.

比較例7では、Mn含有量が多過ぎたために、第二相の析出が生じm値が不合格となって総合評価が不合格となった。   In comparative example 7, since there was too much Mn content, precipitation of the second phase occurred, m value failed, and comprehensive evaluation failed.

比較例8では、Cr含有量が多過ぎたために、第二相の析出が生じm値が不合格となって総合評価が不合格となった。   In comparative example 8, since there was too much Cr content, precipitation of the 2nd phase occurred, m value failed, and comprehensive evaluation failed.

表4において、発明例13〜33では、本発明で規定する製造条件を用いたため、IACSを満たし、更に、m値、結晶粒径及び時効後の引張強度が全て合格となり総合評価も合格であった。   In Table 4, since Invention Examples 13 to 33 used the manufacturing conditions specified in the present invention, the IACS was satisfied, and the m value, crystal grain size, and tensile strength after aging were all passed, and the overall evaluation was also passed. It was.

これに対して、比較例9では均質化温度が低過ぎたために、IACSが本発明で規定する範囲外となり、m値及び時効後の引張強度が不合格となって総合評価も不合格となった。   On the other hand, in Comparative Example 9, since the homogenization temperature was too low, IACS was outside the range defined by the present invention, the m value and the tensile strength after aging were rejected, and the overall evaluation was also rejected. It was.

比較例10では、均質化温度が高過ぎたために、均質化処理中に融解が起こり、第二相が形成されm値が低下し、総合評価が不合格となった。   In Comparative Example 10, since the homogenization temperature was too high, melting occurred during the homogenization treatment, a second phase was formed, the m value was lowered, and the overall evaluation was unacceptable.

比較例11では、均質化時間が長過ぎたために、Fe系析出物が形成し平均結晶粒径が大きくなり総合評価も不合格となった。   In Comparative Example 11, since the homogenization time was too long, Fe-based precipitates were formed, the average crystal grain size was increased, and overall evaluation was also rejected.

比較例12では、均質化時間が短過ぎたために、第二相が残存したためm値が低下し、時効後の強度も低くなり総合評価も不合格となった。   In Comparative Example 12, since the homogenization time was too short, the second phase remained, so the m value was lowered, the strength after aging was lowered, and the overall evaluation was also rejected.

比較例13では、均質化処理工程後における冷却速度が遅過ぎたために、第二相が形成されm値が低下し、時効後の強度も低くなり総合評価が不合格となった。   In Comparative Example 13, since the cooling rate after the homogenization treatment process was too slow, the second phase was formed, the m value was lowered, the strength after aging was lowered, and the comprehensive evaluation was rejected.

比較例14では、熱間圧延中における圧延板の温度が低過ぎたために、熱間圧延時の変形抵抗が大きくなり、熱間圧延ができなかった。   In Comparative Example 14, since the temperature of the rolled sheet during hot rolling was too low, the deformation resistance during hot rolling increased, and hot rolling could not be performed.

比較例15では、熱間圧延中における圧延板の温度が高過ぎたために、第二相が形成されm値が低下し、時効後の強度も低下し総合評価が不合格となった。   In Comparative Example 15, since the temperature of the rolled sheet during hot rolling was too high, the second phase was formed, the m value was lowered, the strength after aging was also lowered, and the comprehensive evaluation was rejected.

比較例16では、冷間圧延工程における圧下率が小さ過ぎたために、結晶粒径が粗大となって総合評価も不合格となった。   In Comparative Example 16, since the rolling reduction in the cold rolling process was too small, the crystal grain size was coarse and the overall evaluation was also rejected.

比較例17では、中間焼鈍温度が低過ぎたために、第二相が形成しm値が低下し、結晶粒径が粗大となり、時効後の強度も低下し総合評価が不合格となった。   In Comparative Example 17, since the intermediate annealing temperature was too low, the second phase was formed, the m value was lowered, the crystal grain size was coarse, the strength after aging was lowered, and the comprehensive evaluation was rejected.

比較例18では、中間焼鈍温度が高過ぎたために、焼鈍中に共晶融解が生じm値が低下し、総合評価も不合格となった。   In Comparative Example 18, since the intermediate annealing temperature was too high, eutectic melting occurred during annealing, the m value decreased, and the overall evaluation also failed.

比較例19では、中間焼鈍工程における昇温速度が低過ぎたために、IACSが本発明で規定する範囲外となり、第二相が形成しm値が低下し、時効後の強度も低下し総合評価が不合格となった。   In Comparative Example 19, since the rate of temperature increase in the intermediate annealing process was too low, IACS was outside the range defined by the present invention, the second phase was formed, the m value was lowered, and the strength after aging was also lowered. Was rejected.

比較例20では、中間焼鈍後の冷却速度が低過ぎたために、第二相が形成しm値が低下し、時効後の強度も低下し総合評価が不合格となった。   In Comparative Example 20, since the cooling rate after the intermediate annealing was too low, the second phase was formed, the m value was lowered, the strength after aging was also lowered, and the overall evaluation was rejected.

表6において、発明例34〜36では、本発明で規定する合金組成のものを用いたため、IACSを満たし、更に、m値、結晶粒径、時効後の引張強度及び耐食性が全て合格となり総合評価も合格であった。   In Table 6, since Examples 34-36 used the alloy composition specified in the present invention, the IACS was satisfied, and the m value, the crystal grain size, the tensile strength after aging, and the corrosion resistance all passed and were comprehensively evaluated. Also passed.

これに対して、比較例21では、Cu含有量が多過ぎたため、耐食性が劣る結果となった。   On the other hand, in comparative example 21, since there was too much Cu content, it resulted in inferior corrosion resistance.

本発明に係る熱間成形用アルミニウム合金板は、高い時効硬化性を有するだけでなく、高範囲のひずみ速度域において高いm値を有し、かつ、成形後の表面性状が良好であるため、産業上の利用可能性に優れている。   The aluminum alloy plate for hot forming according to the present invention not only has high age-hardening properties, but also has a high m value in a high strain rate range, and has good surface properties after forming, Excellent industrial applicability.

Claims (7)

Mg:0.3〜1.8mass%、Si:0.6〜2.0mass%、Fe:0.04〜0.20mass%を含有し、Mn:0.030mass%以下及びCr:0.030mass%以下に規制し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、導電率がIACS%で60%以下であることを特徴とする熱間成形用アルミニウム合金板。   Mg: 0.3 to 1.8 mass%, Si: 0.6 to 2.0 mass%, Fe: 0.04 to 0.20 mass%, Mn: 0.030 mass% or less, and Cr: 0.030 mass% An aluminum alloy plate for hot forming, characterized in that it is made of an aluminum alloy composed of the balance Al and inevitable impurities, and has an electrical conductivity of 60% or less in terms of IACS%. 前記アルミニウム合金がCu:0.2〜1.0mass%を更に含有する、請求項1に記載の熱間成形用アルミニウム合金板。   The aluminum alloy plate for hot forming according to claim 1, wherein the aluminum alloy further contains Cu: 0.2 to 1.0 mass%. ブロー成形用途に用いられる、請求項1又は2に記載の熱間成形用アルミニウム合金板。   The aluminum alloy plate for hot forming according to claim 1 or 2, which is used for blow molding. 請求項1〜3のいずれか一項に記載の熱間成形用アルミニウム合金板の製造方法であって、前記アルミニウム合金の溶湯を鋳造する工程と、鋳造した鋳塊を均質化処理する均質化処理工程と、均質化処理した鋳塊を熱間圧延する熱間圧延工程と、熱間圧延板を冷間圧延する冷間圧延工程を含み、前記均質化処理工程において、鋳塊を500℃以上アルミニウム合金の融点未満の温度で1〜12時間加熱保持し、かつ、加熱保持の終了から300℃までの冷却速度を50℃/時間以上とし、前記熱間圧延工程において、熱間圧延中の圧延板の温度を250〜450℃とし、冷間圧延工程における圧下率を50%以上とすることを特徴とする熱間成形用アルミニウム合金板の製造方法。   It is a manufacturing method of the aluminum alloy plate for hot forming as described in any one of Claims 1-3, Comprising: The process which casts the molten metal of the said aluminum alloy, The homogenization process which homogenizes the cast ingot A hot rolling process for hot-rolling a homogenized ingot, and a cold rolling process for cold-rolling a hot-rolled plate. Rolled sheet that is heated and held at a temperature lower than the melting point of the alloy for 1 to 12 hours, and the cooling rate from the end of heating and holding to 300 ° C. is 50 ° C./hour or more, and in the hot rolling step, during hot rolling The manufacturing method of the aluminum alloy plate for hot forming characterized by making the temperature of 250-450 degreeC and making the reduction rate in a cold rolling process 50% or more. 請求項1〜3のいずれか一項に記載の熱間成形用アルミニウム合金板の製造方法であって、前記アルミニウム合金の溶湯を鋳造する工程と、鋳造した鋳塊を均質化処理する均質化処理工程と、均質化処理した鋳塊を熱間圧延する熱間圧延工程と、熱間圧延板を冷間圧延する冷間圧延工程と、圧延板を焼鈍する焼鈍工程とを含み、前記均質化処理工程において、鋳塊を500℃以上アルミニウム合金の融点未満の温度で1〜12時間加熱保持し、かつ、加熱保持の終了から300℃までの冷却速度を50℃/時間以上とし、前記熱間圧延工程において、熱間圧延中の圧延板の温度を250〜450℃とし、冷間圧延工程における圧下率を50%以上とし、前記焼鈍工程が、冷間圧延工程の途中に500〜580℃の温度で圧延板を焼鈍し、当該焼鈍温度までの昇温速度を5℃/秒以上とし、焼鈍後の冷却速度を100℃/秒以上とすることを特徴とする熱間成形用アルミニウム合金板の製造方法。   It is a manufacturing method of the aluminum alloy plate for hot forming as described in any one of Claims 1-3, Comprising: The process which casts the molten metal of the said aluminum alloy, The homogenization process which homogenizes the cast ingot A homogenization process comprising: a process, a hot rolling process for hot rolling a homogenized ingot, a cold rolling process for cold rolling a hot rolled sheet, and an annealing process for annealing the rolled sheet In the process, the ingot is heated and held at a temperature of 500 ° C. or higher and lower than the melting point of the aluminum alloy for 1 to 12 hours, and the cooling rate from the end of the heating and holding to 300 ° C. is set to 50 ° C./hour or more. In the process, the temperature of the rolled sheet during hot rolling is 250 to 450 ° C., the rolling reduction in the cold rolling process is 50% or more, and the annealing process is performed at a temperature of 500 to 580 ° C. during the cold rolling process. Annealing the rolled plate with Blunt the heating rate up to temperature of 5 ° C. / sec or more, a manufacturing method of hot-forming an aluminum alloy sheet, characterized in that the cooling rate after annealing and 100 ° C. / sec or more. 前記冷間圧延工程における圧下率を80%以上とする、請求項4又は5に記載の熱間成形用アルミニウム合金板の製造方法。   The manufacturing method of the aluminum alloy plate for hot forming of Claim 4 or 5 which makes the reduction rate in the said cold rolling process 80% or more. 前記鋳造工程が、50℃/分以上の冷却速度のDC鋳造法を用いる、請求項4〜6のいずれか一項に記載の熱間成形用アルミニウム合金板の製造方法。   The manufacturing method of the aluminum alloy plate for hot forming as described in any one of Claims 4-6 in which the said casting process uses the DC casting method of the cooling rate of 50 degreeC / min or more.
JP2017021879A 2016-02-26 2017-02-09 Aluminum alloy sheet for hot molding and manufacturing method therefor Pending JP2017155334A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2958723A CA2958723A1 (en) 2016-02-26 2017-02-23 Aluminum alloy plate for hot forming production and method therefor
GB1702957.0A GB2552399A (en) 2016-02-26 2017-02-23 Hot forming aluminium alloy plate and production method therefor
US15/442,128 US20170247781A1 (en) 2016-02-26 2017-02-24 Hot forming aluminum alloy plate and production method therefor
US16/373,157 US20190226070A1 (en) 2016-02-26 2019-04-02 Hot forming aluminum alloy plate and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016035786 2016-02-26
JP2016035786 2016-02-26

Publications (1)

Publication Number Publication Date
JP2017155334A true JP2017155334A (en) 2017-09-07

Family

ID=59808189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017021879A Pending JP2017155334A (en) 2016-02-26 2017-02-09 Aluminum alloy sheet for hot molding and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2017155334A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115011848A (en) * 2022-05-11 2022-09-06 北京理工大学 High-purity aluminum alloy conductor and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115011848A (en) * 2022-05-11 2022-09-06 北京理工大学 High-purity aluminum alloy conductor and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5847987B2 (en) Copper alloy containing silver
JP4934759B2 (en) Copper alloy sheet, connector using the same, and method for producing copper alloy sheet
JP2008081762A (en) Cu-Cr-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP5247010B2 (en) Cu-Zn alloy with high strength and excellent bending workability
JP6611222B2 (en) Copper alloy plate for electric and electronic parts having high strength, high conductivity and excellent stress relaxation characteristics, and method for producing the same
JP5558639B1 (en) Bus bar plate conductor and bus bar comprising the same
JP2021085040A (en) Rolled aluminum alloy material having excellent thermal conductivity, electrical conductivity and strength and method for producing the same
JP5555154B2 (en) Copper alloy for electrical and electronic parts and method for producing the same
JP4780600B2 (en) Magnesium alloy sheet excellent in deep drawability and manufacturing method thereof
JP5111966B2 (en) Method for manufacturing aluminum alloy panel
JP2007070672A (en) Method for producing aluminum alloy thick plate having excellent fatigue property
JP6581347B2 (en) Method for producing aluminum alloy plate
JP4201745B2 (en) 6000 series aluminum alloy plate for superplastic forming excellent in paint bake hardenability and method for producing the same
JP5981866B2 (en) Copper alloy
JP2017155334A (en) Aluminum alloy sheet for hot molding and manufacturing method therefor
JP5665186B2 (en) Copper-zinc alloy strip
JP6778615B2 (en) Aluminum alloy plate for superplastic molding and its manufacturing method
US20190226070A1 (en) Hot forming aluminum alloy plate and production method therefor
WO2012060359A1 (en) Copper alloy hot-forged part and process for producing copper alloy hot-forged part
JP2019056163A (en) Aluminum alloy plate and method of producing the same
JP5026686B2 (en) Ni-base alloy material excellent in workability and high-temperature strength and method for producing the same
JP2016211053A (en) Copper alloy excellent in heat resistance
JP6805583B2 (en) Manufacturing method of precipitation type heat resistant Ni-based alloy
JP6345016B2 (en) Aluminum alloy plate for hot forming and manufacturing method thereof
JP2018204115A (en) Copper alloy having excellent heat resistance

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170306

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20170306