JP6805583B2 - Manufacturing method of precipitation type heat resistant Ni-based alloy - Google Patents

Manufacturing method of precipitation type heat resistant Ni-based alloy Download PDF

Info

Publication number
JP6805583B2
JP6805583B2 JP2016132781A JP2016132781A JP6805583B2 JP 6805583 B2 JP6805583 B2 JP 6805583B2 JP 2016132781 A JP2016132781 A JP 2016132781A JP 2016132781 A JP2016132781 A JP 2016132781A JP 6805583 B2 JP6805583 B2 JP 6805583B2
Authority
JP
Japan
Prior art keywords
mass
based alloy
temperature
less
type heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016132781A
Other languages
Japanese (ja)
Other versions
JP2018003107A (en
Inventor
昌樹 高野
昌樹 高野
武司 墨
武司 墨
健二 後藤
健二 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2016132781A priority Critical patent/JP6805583B2/en
Publication of JP2018003107A publication Critical patent/JP2018003107A/en
Application granted granted Critical
Publication of JP6805583B2 publication Critical patent/JP6805583B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は析出型耐熱Ni基合金の製造方法に関する。 The present invention relates to a method for producing a precipitation type heat resistant Ni-based alloy.

従来、高温環境にて使用される析出型耐熱Ni基合金には、高温にて優れた強度特性を発現することが求められる。合金を構成する結晶粒の粒径が大きいと、この要求を満たすことができるため、通常、析出型耐熱Ni基合金には高温・長時間での焼鈍が施されていた。
Ni基耐熱合金の焼鈍法に関して、従来、例えば特許文献1,2に記載の方法が提案されている。
Conventionally, a precipitation type heat-resistant Ni-based alloy used in a high temperature environment is required to exhibit excellent strength characteristics at a high temperature. Since this requirement can be satisfied when the grain size of the crystal grains constituting the alloy is large, the precipitation type heat-resistant Ni-based alloy is usually annealed at a high temperature for a long time.
Regarding the annealing method for Ni-based heat-resistant alloys, conventionally, for example, the methods described in Patent Documents 1 and 2 have been proposed.

特開2000−64005号公報Japanese Unexamined Patent Publication No. 2000-64005 特許第5652730号公報Japanese Patent No. 5652730

ここで析出型耐熱Ni基合金にバッチ式の焼鈍ではなく、高温・長時間での連続光輝焼鈍(Continuous Bright Annealing)を施したとしても、結晶粒度は大きくなる。しかし、連続焼鈍にて高温・長時間の処理を行うためには、通常、低速度で処理する必要があるため、必然的に冷却速度が遅くなり、その結果、析出物が生じやすくなる。析出物が生じると硬くなるため加工し難い。
例えば、焼鈍後、加工し、その後、時効処理を施して析出物を生じさせて硬度を高めることで最終製品を得る場合があるが、このような処理が極めて困難となってしまう。
Here, even if the precipitation-type heat-resistant Ni-based alloy is subjected to continuous brightness annealing at a high temperature for a long time instead of batch annealing, the crystal grain size becomes large. However, in order to carry out high-temperature and long-term treatment by continuous annealing, it is usually necessary to carry out the treatment at a low speed, so that the cooling speed is inevitably slowed down, and as a result, precipitates are likely to be generated. When precipitates are formed, they become hard and difficult to process.
For example, a final product may be obtained by annealing, processing, and then aging treatment to generate precipitates to increase hardness, but such treatment becomes extremely difficult.

本発明は上記のような課題を解決することを目的とする。
すなわち、本発明の目的は、連続焼鈍法によって結晶粒径を大きく成長させることができる程度の高温・長時間の熱処理を施しても、焼鈍後に、析出物の発生が抑制されていて加工しやすい析出型耐熱Ni基合金が得られる、析出型耐熱Ni基合金の製造方法を提供することである。
An object of the present invention is to solve the above problems.
That is, an object of the present invention is that even if heat treatment is performed at a high temperature for a long time so that the crystal grain size can be greatly grown by the continuous annealing method, the generation of precipitates is suppressed after annealing and the processing is easy. It is an object of the present invention to provide a method for producing a precipitation type heat-resistant Ni-based alloy, which can obtain a precipitation-type heat-resistant Ni-based alloy.

本発明者は上記課題を解決するため鋭意検討し、本発明を完成させた。
本発明は以下の(1)〜(3)である。
(1)Ni基合金を1000〜1200℃の温度で5〜60分保持した後、0.3〜10℃/秒の冷却速度で室温まで冷却する第1工程と、
その後、1000〜1200℃の温度で0.5〜10分保持した後、3〜40℃/秒の冷却速度で室温まで冷却する第2工程と、
を有し、前記第2工程の冷却速度は前記第1工程の冷却速度よりも早く、かつ、前記第2工程の保持時間は前記第1工程の保持時間よりも短いことを特徴とする、析出型耐熱Ni基合金の製造方法。
(2)連続焼鈍炉で行う、上記(1)に記載の析出型耐熱Ni基合金の製造方法。
(3)前記Ni基合金が帯鋼である、上記(1)又は(2)に記載の析出型耐熱Ni基合金の製造方法。
The present inventor has made diligent studies to solve the above problems and completed the present invention.
The present invention is the following (1) to (3).
(1) The first step of holding the Ni-based alloy at a temperature of 1000 to 1200 ° C. for 5 to 60 minutes and then cooling it to room temperature at a cooling rate of 0.3 to 10 ° C./sec.
Then, after holding at a temperature of 1000 to 1200 ° C. for 0.5 to 10 minutes, the second step of cooling to room temperature at a cooling rate of 3 to 40 ° C./sec, and
The precipitation rate of the second step is faster than the cooling rate of the first step, and the holding time of the second step is shorter than the holding time of the first step. Mold Heat resistant Ni-based alloy manufacturing method.
(2) The method for producing a precipitation-type heat-resistant Ni-based alloy according to (1) above, which is carried out in a continuous annealing furnace.
(3) The method for producing a precipitation-type heat-resistant Ni-based alloy according to (1) or (2) above, wherein the Ni-based alloy is steel strip.

本発明によれば、連続焼鈍法によって結晶粒径を大きく成長させることができる程度の高温・長時間の熱処理を施しても、焼鈍後に、析出物の発生が抑制されていて加工しやすい析出型耐熱Ni基合金が得られる、析出型耐熱Ni基合金の製造方法を提供することができる。 According to the present invention, even if heat treatment is performed at a high temperature for a long time so that the crystal grain size can be greatly grown by the continuous annealing method, the generation of precipitates is suppressed after annealing and the precipitation type is easy to process. It is possible to provide a method for producing a precipitation type heat-resistant Ni-based alloy, which can obtain a heat-resistant Ni-based alloy.

本発明の製造方法について説明する。
本発明の製造方法は、第1工程と第2工程を含む。また、第1工程と第2工程は連続している。
The production method of the present invention will be described.
The production method of the present invention includes a first step and a second step. Moreover, the first step and the second step are continuous.

<第1工程>
第1工程について説明する。第1工程では、初めに、Ni基合金を用意する。
Ni基合金はNiをベースとして、Cr、Ti、Al、Nb等を含有する合金である。
Ni基合金はCr、Ti、Al、Nb等がNiと結合することで硬度が高まる、従来公知の析出型耐熱Ni基合金を得るために用いる材料であることが好ましい。
<First step>
The first step will be described. In the first step, a Ni-based alloy is first prepared.
The Ni-based alloy is an alloy based on Ni and containing Cr, Ti, Al, Nb and the like.
The Ni-based alloy is preferably a material used to obtain a conventionally known precipitation-type heat-resistant Ni-based alloy in which the hardness is increased by combining Cr, Ti, Al, Nb and the like with Ni.

Ni基合金としては、例えば、C:0.02〜0.10質量%、Si:0.15質量%以下、Mn:0.10質量%以下、P:0.015質量%以下、S:0.015質量%以下、Cr:18.0〜21.0質量%、Fe:2.0質量%以下、Mo:3.5〜5.0質量%、Cu:0.10質量%以下、Al:1.20〜1.60質量%、Ti:2.75〜3.25質量%、B:0.003〜0.010質量%、Co:12.0〜15.0質量%、Zr:0.02〜0.08質量%、Pb:0.0005質量%以下、Bi:0.00003質量%以下、Se:0.0003質量%以下、Ni:残部、の組成を備えるものが挙げられる。 Examples of the Ni-based alloy include C: 0.02 to 0.10% by mass, Si: 0.15% by mass or less, Mn: 0.10% by mass or less, P: 0.015% by mass or less, S: 0. .015% by mass or less, Cr: 18.0 to 21.0% by mass, Fe: 2.0% by mass or less, Mo: 3.5 to 5.0% by mass, Cu: 0.10% by mass or less, Al: 1.20 to 1.60% by mass, Ti: 2.75 to 3.25% by mass, B: 0.003 to 0.010% by mass, Co: 12.0 to 15.0% by mass, Zr: 0. Examples include those having a composition of 02 to 0.08% by mass, Pb: 0.0005% by mass or less, Bi: 0.00003% by mass or less, Se: 0.0003% by mass or less, and Ni: the balance.

上記とは別のNi基合金としては、例えば、C:0.08質量%以下、Si:0.50質量%以下、Mn:1.00質量%以下、P:0.030質量%以下、S:0.015質量%以下、Ni:70.00質量%以上、Cr:14.0〜17.0質量%、Fe:5.00〜9.00質量%、Cu:0.50質量%以下、Al:0.40〜1.00質量%、Ti:2.25〜2.75質量%、Nb+Ta:0.70〜1.20質量%の組成を備えるものが挙げられる。 Examples of Ni-based alloys other than the above include C: 0.08% by mass or less, Si: 0.50% by mass or less, Mn: 1.00% by mass or less, P: 0.030% by mass or less, S. : 0.015% by mass or less, Ni: 70.00% by mass or more, Cr: 14.0 to 17.0% by mass, Fe: 5.00 to 9.00% by mass, Cu: 0.50% by mass or less, Examples thereof include those having a composition of Al: 0.40 to 1.00% by mass, Ti: 2.25 to 2.75% by mass, and Nb + Ta: 0.70 to 1.20% by mass.

上記とはさらに別のNi基合金としては、例えば、C:0.08質量%以下、Si:0.35質量%以下、Mn:0.35質量%以下、P:0.015質量%以下、S:0.015質量%以下、Ni:50.00〜55.00質量%、Cr:17.0〜21.0質量%、Mo:2.80〜3.30質量%、Cu:0.30質量%以下、Al:0.20〜0.80質量%、Ti:0.65〜1.15質量%、Nb+Ta:4.75〜5.50質量%、B:0.006質量%以下、Fe:残部、の組成を備えるものが挙げられる。 Examples of Ni-based alloys different from the above include C: 0.08% by mass or less, Si: 0.35% by mass or less, Mn: 0.35% by mass or less, P: 0.015% by mass or less, S: 0.015% by mass or less, Ni: 50.00 to 55.00% by mass, Cr: 17.0 to 21.0% by mass, Mo: 2.80 to 3.30% by mass, Cu: 0.30 Mass% or less, Al: 0.25 to 0.80 mass%, Ti: 0.65 to 1.15 mass%, Nb + Ta: 4.75 to 5.50 mass%, B: 0.006 mass% or less, Fe : Those having the composition of the balance can be mentioned.

上記とはさらに別のNi基合金としては、例えば、C:0.04〜0.08質量%、Si:0.40質量%以下、Mn:0.60質量%以下、P:0.020質量%以下、S:0.015質量%以下、Cr:19.0〜21.0質量%、Fe:0.70質量%以下、Mo:5.6〜6.1質量%、Cu:0.20質量%以下、Al:0.30〜0.60質量%、Ti:1.9〜2.4質量%、B:0.005質量%以下、Co:19.0〜21.0質量%、Ni:残部、の組成を備えるものが挙げられる。
なお、以上の合金は、JIS G 4902規格に含まれるものもあり、含まれるもの以外のJIS G 4902規格の合金に本発明を適用することも可能である。
Examples of Ni-based alloys different from the above include C: 0.04 to 0.08% by mass, Si: 0.40% by mass or less, Mn: 0.60% by mass or less, and P: 0.020% by mass. % Or less, S: 0.015% by mass or less, Cr: 19.0 to 21.0% by mass, Fe: 0.70% by mass or less, Mo: 5.6 to 6.1% by mass, Cu: 0.20 Mass% or less, Al: 0.30 to 0.60 mass%, Ti: 1.9 to 2.4 mass%, B: 0.005 mass% or less, Co: 19.0 to 21.0 mass%, Ni : Those having the composition of the balance can be mentioned.
Some of the above alloys are included in the JIS G 4902 standard, and the present invention can be applied to alloys of the JIS G 4902 standard other than those included.

上記Ni基合金における各成分の添加理由は、以下の通りである。 The reasons for adding each component in the Ni-based alloy are as follows.

Cは結晶粒界の強度を高める効果を有する。Cを過剰に含有した場合は、粗大な炭化物が形成され、強度および熱間加工性を低下させる。このような効果および他の添加元素とのバランスから上記のCの添加量としている。 C has the effect of increasing the strength of the grain boundaries. When C is excessively contained, coarse carbides are formed, which reduces the strength and hot workability. The above-mentioned amount of C is used in consideration of such effects and the balance with other additive elements.

Crは耐酸化性や耐食性を向上させる元素である。Crを過剰に含有すると、σ相などの脆化相を形成し、強度や熱間加工性を低下させる。このような効果および他の添加元素とのバランスから上記のCrの添加量としている。 Cr is an element that improves oxidation resistance and corrosion resistance. When Cr is excessively contained, an embrittled phase such as a σ phase is formed, and the strength and hot workability are lowered. The amount of Cr added is set in consideration of such effects and the balance with other additive elements.

Coは組成の安定性を改善し、合金が強化元素であるTiを多く含有する場合でも、その熱間加工性を維持することを可能とする。Coが多くなるほど熱間加工性は向上するものの、過剰になると、σ相やη相といった有害相が形成され、強度および熱間加工性が低下する。このような効果および他の添加元素とのバランスから上記のCoの添加量としている。 Co improves the stability of the composition and makes it possible to maintain its hot workability even when the alloy contains a large amount of Ti, which is a reinforcing element. As the amount of Co increases, the hot workability improves, but when it becomes excessive, harmful phases such as σ phase and η phase are formed, and the strength and hot workability decrease. The above-mentioned amount of Co is used in consideration of such effects and the balance with other additive elements.

Alは、強化相であるγ'(Ni3Al)相を形成し、高温強度を向上させる必須元素である。過度の添加は熱間加工性を低下させ、加工中の割れなどの材料欠陥の原因となる。このような効果および他の添加元素とのバランスから上記のAlの添加量としている。 Al is an essential element that forms a γ'(Ni 3 Al) phase, which is a strengthening phase, and improves high-temperature strength. Excessive addition reduces hot workability and causes material defects such as cracks during processing. The above-mentioned amount of Al is used in consideration of such effects and the balance with other additive elements.

Tiも、Alと同様に、γ'相を形成し、γ'相を固溶強化して高温強度を高める必須元素である。過度の添加は、γ'相が高温で不安定となり高温での粗大化を招くとともに、有害なη(イータ)相を形成し、熱間加工性を損なう。このような効果および他の添加元素とのバランスから上記のTiの添加量としている。 Like Al, Ti is also an essential element that forms a γ'phase and strengthens the γ'phase by solid solution to increase high-temperature strength. Excessive addition causes the γ'phase to become unstable at high temperatures, leading to coarsening at high temperatures, forming a harmful η (eta) phase, and impairing hot workability. The above-mentioned Ti addition amount is used in consideration of such effects and the balance with other additive elements.

Moはマトリックスの固溶強化に寄与し、高温強度を向上させる効果がある。Moが過剰となると、金属間化合物相が形成され、高温強度を損なう。このような効果および他の添加元素とのバランスから上記のMoの添加量としている。 Mo contributes to the solid solution strengthening of the matrix and has the effect of improving the high temperature strength. When Mo is excessive, an intermetallic compound phase is formed, which impairs high-temperature strength. The amount of Mo added is determined from the balance between such effects and other additive elements.

Bは粒界強度を向上させ、クリープ強度や延性を改善する元素である。Bは、融点を低下させる効果が大きい。また、粗大なホウ化物が形成されると、加工性が阻害される。このような効果および他の添加元素とのバランスから上記のBの添加量としている。 B is an element that improves grain boundary strength and improves creep strength and ductility. B has a large effect of lowering the melting point. Further, when a coarse boride is formed, the processability is hindered. The amount of B added is set from the viewpoint of such effects and the balance with other additive elements.

Zrは、Bと同様に、粒界強度を向上させる効果を有している。Zrが過剰となると、融点の低下を招き、高温強度や熱間加工性が阻害される。このような効果および他の添加元素とのバランスから上記のZrの添加量としている。 Like B, Zr has the effect of improving the grain boundary strength. When Zr is excessive, the melting point is lowered, and high temperature strength and hot workability are impaired. The amount of Zr added is determined from the balance between such effects and other additive elements.

Ni基合金の製造方法は特に限定されない。例えば、前述のような特定の化学成分(組成)を含むように原料を調整し、溶解し、鋳造して得ることができる。真空溶解法を適用すれば、AlやTiといった活性元素の酸化を抑制し、介在物を低減することが可能となる。より高品位なNi基合金を得るために、エレクトロスラグ再溶解や真空アーク再溶解といった2次及び3次の溶解を行ってもよい。また、溶解の後に、ハンマ鍛造や、プレス鍛造、圧延、押出などの予備的加工を施してもよい。 The method for producing the Ni-based alloy is not particularly limited. For example, the raw material can be prepared, melted, and cast so as to contain a specific chemical component (composition) as described above. By applying the vacuum melting method, it is possible to suppress the oxidation of active elements such as Al and Ti and reduce inclusions. In order to obtain a higher quality Ni-based alloy, secondary and tertiary melting such as electroslag redissolving and vacuum arc redissolving may be performed. Further, after melting, preliminary processing such as hammer forging, press forging, rolling, and extrusion may be performed.

Ni基合金の形状や大きさ等は特に限定されない。
Ni基合金は帯鋼であることが好ましい。連続焼鈍に適しているからである。
The shape and size of the Ni-based alloy are not particularly limited.
The Ni-based alloy is preferably strip steel. This is because it is suitable for continuous annealing.

第1工程では、上記のようなNi基合金を1000〜1200℃の温度で5〜60分保持する。 In the first step, the Ni-based alloy as described above is held at a temperature of 1000 to 1200 ° C. for 5 to 60 minutes.

ここでNi基合金を加熱する温度は1000〜1200℃であり、1050℃以上とすることが好ましい。このような温度とすると、結晶粒の大きさがより大きくなる傾向があるからである。 Here, the temperature at which the Ni-based alloy is heated is 1000 to 1200 ° C., preferably 1050 ° C. or higher. This is because at such a temperature, the size of the crystal grains tends to be larger.

また、Ni基合金を上記のような温度にて保持する時間は5〜60分であり、10分以上とすることが好ましい。このような時間とすると、結晶粒の大きさがより大きくなる傾向があるからである。 The time for holding the Ni-based alloy at the above temperature is 5 to 60 minutes, preferably 10 minutes or more. This is because the size of the crystal grains tends to be larger at such a time.

第1工程では、上記のように、Ni基合金を1000〜1200℃の温度で5〜60分保持した後、0.3〜10℃/秒の冷却速度で室温まで冷却する。 In the first step, as described above, the Ni-based alloy is held at a temperature of 1000 to 1200 ° C. for 5 to 60 minutes, and then cooled to room temperature at a cooling rate of 0.3 to 10 ° C./sec.

<第2工程>
上記のような第1工程によってNi基合金を処理した後、連続して第2工程にて処理する。
<Second step>
After the Ni-based alloy is treated by the first step as described above, it is continuously treated in the second step.

第2工程では、第1工程に供した後のNi基合金を1000〜1200℃の温度で0.5〜10分保持する。 In the second step, the Ni-based alloy after being subjected to the first step is held at a temperature of 1000 to 1200 ° C. for 0.5 to 10 minutes.

ここで加熱する温度は1000〜1200℃であり、1050℃以上とすることが好ましい。このような温度にて加熱すると、第1工程における冷却速度が遅いことに起因して発生した析出物を再度、固溶化することができる。 The heating temperature here is 1000 to 1200 ° C., preferably 1050 ° C. or higher. When heated at such a temperature, the precipitate generated due to the slow cooling rate in the first step can be solidified again.

また、第1工程に供した後のNi基合金を上記のような温度にて保持する時間は0.5〜10分であり、1〜5分とすることが好ましく、2分程度とすることがより好ましい。 ここで、第2工程の保持時間は、第1工程の保持時間よりも短くする。 The time for holding the Ni-based alloy after being subjected to the first step at the above temperature is 0.5 to 10 minutes, preferably 1 to 5 minutes, and preferably about 2 minutes. Is more preferable. Here, the holding time of the second step is shorter than the holding time of the first step.

第2工程では、上記のように、Ni基合金を1000〜1200℃の温度で0.5〜10分保持した後、3〜40℃/秒の冷却速度で室温まで冷却する。 In the second step, as described above, the Ni-based alloy is held at a temperature of 1000 to 1200 ° C. for 0.5 to 10 minutes, and then cooled to room temperature at a cooling rate of 3 to 40 ° C./sec.

ここでこの第2工程の冷却速度は、前記第1工程の冷却速度よりも早くする。この場合、より析出物が生じ難くなるので好ましい。 Here, the cooling rate of the second step is made faster than the cooling rate of the first step. In this case, it is preferable because precipitation is less likely to occur.

本発明の製造方法は連続焼鈍炉にて行うことが好ましい。 The production method of the present invention is preferably carried out in a continuous annealing furnace.

このように本発明の製造方法では2回の連続焼鈍を行う。1回目の低速度での連続焼鈍(低速通板)によって結晶粒を大きくする。ここで冷却速度が遅いので冷却時に析出硬化で硬さは高くなる。そして、2回目の高速度での連続焼鈍(高速通板)にて析出物を再度固溶化し、冷却速度を早くして析出硬化を防ぐことで硬さを低減する。 As described above, in the production method of the present invention, two consecutive annealings are performed. The crystal grains are enlarged by the first continuous annealing at a low speed (low-speed sheeting). Since the cooling rate is slow here, the hardness increases due to precipitation hardening during cooling. Then, the precipitate is solidified again by the second continuous annealing at a high speed (high-speed passing plate), and the cooling rate is increased to prevent precipitation hardening, thereby reducing the hardness.

以下の第1表に示す組成となるように原料を混合し、真空溶解炉で溶解した。その後、エレクトロスラグ再溶解炉を用いて再溶解し、得られた鋼片を熱延し、冷延して、板厚0.2mmの試験片を得た。この試験片は本発明の製造方法におけるNi基合金に相当する。 The raw materials were mixed so as to have the composition shown in Table 1 below, and melted in a vacuum melting furnace. Then, it was redissolved using an electroslag remelting furnace, and the obtained steel pieces were hot-rolled and cold-rolled to obtain a test piece having a plate thickness of 0.2 mm. This test piece corresponds to a Ni-based alloy in the production method of the present invention.

Figure 0006805583
Figure 0006805583

<実施例>
初めに、得られた試験片について、次の連続焼鈍を施した。
この連続焼鈍は、試験片を1130℃の温度で10分間保持した後、2℃/秒の冷却速度で室温まで冷却し、その後、再度、1130℃の温度で2分間保持した後、9℃/秒の冷却速度で室温まで冷却する処理である。
このような連続焼鈍を上記試験片に施して得られたものを、以下では「サンプル1」とする。
<Example>
First, the obtained test pieces were subjected to the following continuous annealing.
In this continuous annealing, the test piece is held at a temperature of 1130 ° C. for 10 minutes, cooled to room temperature at a cooling rate of 2 ° C./sec, and then held again at a temperature of 1130 ° C. for 2 minutes, and then 9 ° C./. It is a process of cooling to room temperature at a cooling rate of seconds.
The product obtained by subjecting the test piece to such continuous annealing is referred to as "Sample 1" below.

<比較例>
次に、得られた別の試験片について、次の連続焼鈍を施した。
この連続焼鈍は、試験片を1130℃の温度で10分間保持した後、2℃/秒の冷却速度で室温まで冷却する処理である。
このような連続焼鈍を上記試験片に施して得られたものを、以下では「サンプル2」とする。
<Comparison example>
Next, the other test piece obtained was subjected to the following continuous annealing.
This continuous annealing is a process in which the test piece is held at a temperature of 1130 ° C. for 10 minutes and then cooled to room temperature at a cooling rate of 2 ° C./sec.
The product obtained by subjecting the test piece to such continuous annealing is referred to as "Sample 2" below.

得られたサンプル1およびサンプル2について、硬さ、引張強さ、伸び率を測定した。
各々の測定方法を以下に記す。
The hardness, tensile strength, and elongation of the obtained Samples 1 and 2 were measured.
Each measurement method is described below.

<硬さ>
JIS Z 2244(ビッカース硬さ試験方法)に準拠して、硬さ(Hv)を測定した。測定結果を第2表に示す。
<Hardness>
Hardness (Hv) was measured according to JIS Z 2244 (Vickers hardness test method). The measurement results are shown in Table 2.

<引張強さ、伸び率>
JIS Z 241(金属引張試験方法)に準拠して引張試験を行い、引張強さ(N/mm2)および伸び率(%)を測定した。測定結果を第2表に示す。
<Tensile strength, elongation rate>
JIS Z 2 2 41 subjected to a tensile test according to (metal tensile test method), tensile strength of the (N / mm 2) and elongation (%) were measured. The measurement results are shown in Table 2.

Figure 0006805583
Figure 0006805583

本発明の範囲内であり実施例に相当するサンプル1と、本発明の範囲外であり比較例に相当するサンプル2とを比較すると、サンプル1は、サンプル2に比べて硬さが低く、引張強度も低い。この理由は、焼鈍を2回行う実施例の場合、2回目の焼鈍時に析出物が溶け込み、材料が軟化するためと考えられる。このような軟化した材料は容易に加工することができる点で好ましい。これに対して、サンプル2の場合、熱処理温度が高く、通板速度が遅いので、冷却時に析出物が析出する。よって、材料が硬く、その後の加工することは困難になる。 Comparing the sample 1 which is within the scope of the present invention and corresponds to the example and the sample 2 which is outside the scope of the present invention and corresponds to the comparative example, the sample 1 has a lower hardness than the sample 2 and is tensile. The strength is also low. The reason for this is considered to be that in the case of the example in which the annealing is performed twice, the precipitate dissolves during the second annealing and the material is softened. Such a softened material is preferable in that it can be easily processed. On the other hand, in the case of sample 2, since the heat treatment temperature is high and the plate passing speed is slow, precipitates are deposited during cooling. Therefore, the material is hard and difficult to process thereafter.

Claims (2)

Ni基合金を1000〜1200℃の温度で5〜60分保持した後、0.3〜10℃/秒の冷却速度で室温まで冷却する第1工程と、
その後、1000〜1200℃の温度で0.5〜10分保持した後、3〜40℃/秒の冷却速度で室温まで冷却する第2工程と、
を有し、前記第2工程の冷却速度は前記第1工程の冷却速度よりも早く、かつ、前記第2工程の保持時間は前記第1工程の保持時間よりも短いことを特徴とする、連続焼鈍炉で行う、析出型耐熱Ni基合金の製造方法。
The first step of holding the Ni-based alloy at a temperature of 1000 to 1200 ° C. for 5 to 60 minutes and then cooling it to room temperature at a cooling rate of 0.3 to 10 ° C./sec.
Then, after holding at a temperature of 1000 to 1200 ° C. for 0.5 to 10 minutes, the second step of cooling to room temperature at a cooling rate of 3 to 40 ° C./sec, and
Has a cooling rate of the second step is faster than the cooling rate of the first step, and the retention time of the second step is being shorter than the retention time of the first step, continuous A method for producing a precipitation type heat-resistant Ni-based alloy , which is carried out in an annealing furnace .
前記Ni基合金が帯状の板材である、請求項1に記載の析出型耐熱Ni基合金の製造方法。 The method for producing a precipitation-type heat-resistant Ni-based alloy according to claim 1, wherein the Ni-based alloy is a strip-shaped plate material.
JP2016132781A 2016-07-04 2016-07-04 Manufacturing method of precipitation type heat resistant Ni-based alloy Active JP6805583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016132781A JP6805583B2 (en) 2016-07-04 2016-07-04 Manufacturing method of precipitation type heat resistant Ni-based alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016132781A JP6805583B2 (en) 2016-07-04 2016-07-04 Manufacturing method of precipitation type heat resistant Ni-based alloy

Publications (2)

Publication Number Publication Date
JP2018003107A JP2018003107A (en) 2018-01-11
JP6805583B2 true JP6805583B2 (en) 2020-12-23

Family

ID=60948383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016132781A Active JP6805583B2 (en) 2016-07-04 2016-07-04 Manufacturing method of precipitation type heat resistant Ni-based alloy

Country Status (1)

Country Link
JP (1) JP6805583B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116732390B (en) * 2023-06-30 2024-02-09 江西宝顺昌特种合金制造有限公司 80A alloy and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3272666A (en) * 1963-12-09 1966-09-13 Du Pont Method of heat treating nickel base alloy articles up to 20 mils in thickness
JPS552773A (en) * 1978-06-21 1980-01-10 Sumitomo Metal Ind Ltd Heat-treating method for heat resistant nickel base alloy pipe
US4253885A (en) * 1979-08-29 1981-03-03 Special Metals Corporation Treating nickel base alloys
US5551999A (en) * 1984-04-23 1996-09-03 United Technologies Corporation Cyclic recovery heat treatment
JP5657964B2 (en) * 2009-09-15 2015-01-21 三菱日立パワーシステムズ株式会社 High-strength Ni-base forged superalloy and manufacturing method thereof
JP5633883B2 (en) * 2010-08-26 2014-12-03 三菱日立パワーシステムズ株式会社 Forged alloy for steam turbine, steam turbine rotor using the same
CN103710656B (en) * 2013-12-28 2016-07-06 西安热工研究院有限公司 A kind of deformation processing technique of nickel-base alloy and iron nickel base alloy
CN105063526A (en) * 2015-07-29 2015-11-18 无锡市东杨电子有限公司 Nickel strap heat treatment device and technology

Also Published As

Publication number Publication date
JP2018003107A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
US20190040501A1 (en) Nickel-cobalt alloy
CN114921684B (en) High strength titanium alloy
US10260137B2 (en) Method for producing Ni-based superalloy material
US10344367B2 (en) Method for producing Ni-based superalloy material
CN111118422B (en) Preparation method of high-tungsten high-cobalt nickel alloy fine-grain plate
JP3308090B2 (en) Fe-based super heat-resistant alloy
JP2017508882A5 (en)
JP7310978B2 (en) Manufacturing method of precipitation hardening Ni alloy
JP2005002451A (en) Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING
JP5555154B2 (en) Copper alloy for electrical and electronic parts and method for producing the same
JP6805583B2 (en) Manufacturing method of precipitation type heat resistant Ni-based alloy
JP4581425B2 (en) β-type titanium alloy and parts made of β-type titanium alloy
JP5887449B2 (en) Copper alloy, cold-rolled sheet and method for producing the same
JP6860413B2 (en) Maraging steel and its manufacturing method
JP2020152965A (en) Aluminum alloy material, method for producing the same, and impeller
JP3210419B2 (en) Aluminum alloy sheet for DI can excellent in flange formability and method for producing the same
JP2006200008A (en) beta-TYPE TITANIUM ALLOY AND PARTS MADE FROM beta-TYPE TITANIUM ALLOY
JP2013104123A (en) Aluminum alloy wire for bolt, the bolt and methods for manufacturing the same
JP6787246B2 (en) Alloy original plate for heat-resistant parts, alloy plate for heat-resistant parts, and gasket for exhaust system parts of engine
TWI612143B (en) Precipitation-hardened nickel-based alloy and method of producing the same
TWI585212B (en) Nickel-based alloy and method of producing thereof
JP5026686B2 (en) Ni-base alloy material excellent in workability and high-temperature strength and method for producing the same
TWI564398B (en) Nickel-based alloy and method of producing thereof
JP2017155334A (en) Aluminum alloy sheet for hot molding and manufacturing method therefor
JP4296303B2 (en) High Cr ferritic iron alloy with excellent toughness and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201117

R150 Certificate of patent or registration of utility model

Ref document number: 6805583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150