JP2006339304A - Metal material for printed circuit board - Google Patents

Metal material for printed circuit board Download PDF

Info

Publication number
JP2006339304A
JP2006339304A JP2005160467A JP2005160467A JP2006339304A JP 2006339304 A JP2006339304 A JP 2006339304A JP 2005160467 A JP2005160467 A JP 2005160467A JP 2005160467 A JP2005160467 A JP 2005160467A JP 2006339304 A JP2006339304 A JP 2006339304A
Authority
JP
Japan
Prior art keywords
plating
copper
metal material
foil
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005160467A
Other languages
Japanese (ja)
Other versions
JP4538375B2 (en
Inventor
Masateru Murata
正輝 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Kinzoku KK
Original Assignee
Nikko Kinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Kinzoku KK filed Critical Nikko Kinzoku KK
Priority to JP2005160467A priority Critical patent/JP4538375B2/en
Publication of JP2006339304A publication Critical patent/JP2006339304A/en
Application granted granted Critical
Publication of JP4538375B2 publication Critical patent/JP4538375B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal material for printed circuit board where the copper alloy foil including smooth surfaces and having heat resistance property is plated by Ni or Ni-alloy. <P>SOLUTION: In the metal material for printed circuit board, at least one surface of the rolled copper alloy foil, which is not softened even when it is heated for an hour at 300°C, is finished as the glossy surface. The surface thereof is plated by Ni or Ni alloy of 0.3 μm or more. The surface roughness is 0.10 μm or less in terms of Ra, and the a value of the relative skewness (Rsk) of the surface roughness is a negative value. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

プリント配線基板に用いられる耐熱用銅合金箔の表面に関する。   The present invention relates to the surface of a heat-resistant copper alloy foil used for a printed wiring board.

携帯電話等の各種の電気・電子機器の軽薄短小化が急速に進んでいる。その発展は、各種半導体部品の微小製造技術,半導体部品を搭載するプリント配線基板の多層化技術、更にはプリント配線基板への受動部品の高密度実装技術などで裏付けられている。
そして、半導体材料の著しい発達に伴って電気・電子部品は、より一層の小型化・高密度実装化が要求されるようになり、前記受動部品の小型化等ではその要求を満足することが出来なくなっていた。
Various electric and electronic devices such as mobile phones are rapidly becoming lighter and thinner. The development is supported by microfabrication technology for various semiconductor components, multilayer technology for printed circuit boards on which semiconductor components are mounted, and high-density mounting technology for passive components on printed circuit boards.
With the remarkable development of semiconductor materials, electrical and electronic parts are required to be further miniaturized and mounted with high density, and such demands can be satisfied by miniaturization of the passive parts. It was gone.

このような要求に応える試みの1つとして、大きな実装面積を占める受動部品(例えば、インダクタ,キャパシタ,抵抗器など)をプリント配線基板の内層に内蔵して、実質的な高密度実装とコスト低減、および性能向上を実現するための努力がなされている。
この部品内蔵化の技術に関しては、例えば、プリント配線基板にキャパシタを設ける方法として、チップコンデンサ等の外部キャパシタをプリント配線基板に取り付ける方法の他、高誘電率材料をプリント配線板の内層に用いてプリント配線基板自体にキャパシタの機能を持たせる方法が知られている。近年の電子製品の小型化を考慮すると、高誘電率材料を内層に用いてキャパシタにする後者の方法が望ましい。
誘電体層をプリント配線基板に内蔵する方法が種々検討されているが、誘電体樹脂を予め電極を形成したフィルム上に塗布後半硬化させて、更にその上に電極を形成した後、基板へ転写する方法が特許文献1に開示されている。
しかしながら、電極を形成する際に銅箔の平滑性がそのまま、キャパシタの品質に影響するので、銅箔の平滑性が問題となる。
As one of the attempts to meet such demands, passive components (for example, inductors, capacitors, resistors, etc.) that occupy a large mounting area are built in the inner layer of the printed wiring board to achieve substantial high-density mounting and cost reduction. Efforts are being made to achieve performance improvements.
With regard to the technology for incorporating components, for example, as a method of providing a capacitor on a printed wiring board, a method of attaching an external capacitor such as a chip capacitor to the printed wiring board, or using a high dielectric constant material for the inner layer of the printed wiring board There is known a method of giving a printed circuit board itself a capacitor function. In view of the recent miniaturization of electronic products, the latter method using a high dielectric constant material as an inner layer to form a capacitor is desirable.
Various methods for incorporating a dielectric layer into a printed wiring board have been studied, but a dielectric resin is applied onto a film on which an electrode has been formed in advance and then cured in the second half. After further forming an electrode on the film, it is transferred to the substrate. Japanese Patent Application Laid-Open No. H10-228707 discloses a method for performing the above.
However, since the smoothness of the copper foil directly affects the quality of the capacitor when the electrode is formed, the smoothness of the copper foil becomes a problem.

また、導体回路形成用の銅箔の片面または両面に、抵抗回路を形成するための材料層(抵抗層という)を形成して成る抵抗層付き銅箔を樹脂基材にラミネートして製造する抵抗回路内蔵型のプリント配線基板が知られている。このプリント配線基板は、概ね、次のようにして製造される。まず、上記した銅箔の抵抗層側の面と絶縁樹脂から成る基材とをラミネートして銅張り積層板にする。ついで、所定のエッチャントで1次エッチングを行って、銅箔と抵抗層が一体化した状態になっている所定の回路パターンを形成し、ついで、この回路パターンの表面側に位置する導体回路(銅箔)に対して2次エッチングを行って当該銅箔の必要箇所のみを選択的にエッチング除去し、その箇所の抵抗層は残置させる。その後、全体の上に更に絶縁基材を積層し、抵抗層を内蔵する。   Resistance produced by laminating a copper foil with a resistance layer formed by forming a material layer (referred to as a resistance layer) for forming a resistance circuit on one or both sides of a copper foil for forming a conductor circuit on a resin substrate A circuit-embedded printed wiring board is known. This printed wiring board is generally manufactured as follows. First, the surface of the copper foil on the resistance layer side and a base material made of an insulating resin are laminated to form a copper-clad laminate. Next, primary etching is performed with a predetermined etchant to form a predetermined circuit pattern in which the copper foil and the resistance layer are integrated, and then a conductor circuit (copper circuit (copper copper) located on the surface side of the circuit pattern is formed. The foil) is subjected to secondary etching to selectively remove only the necessary portion of the copper foil, and the resistance layer at that portion is left behind. Thereafter, an insulating base material is further laminated on the entire surface, and a resistance layer is incorporated.

特開平11−26943号公報JP 11-26943 A

従来からこのような電気・電子部品のプリント配線基板に用いられている銅箔(基体銅箔)には、電解銅箔と圧延銅箔がある。電解銅箔は、一般に、表面がTiやステンレス鋼から成る回転ドラムの当該表面にCuを連続的に電着させて銅箔を成膜したのち、その銅箔を連続的に剥離して製造されている。製造された銅箔は、電解めっき液側の表面が粗面になっている。ただし、回転ドラムの表面は電解液の腐食等で筋状に凹凸が生成するため、それが転写する光沢面の表面粗さは、後述する圧延銅箔と比較すると非常に粗い。   Conventionally, copper foils (base copper foils) used for printed wiring boards of such electric / electronic parts include electrolytic copper foils and rolled copper foils. Generally, an electrolytic copper foil is manufactured by continuously depositing Cu on a surface of a rotating drum made of Ti or stainless steel to form a copper foil, and then continuously peeling the copper foil. ing. The manufactured copper foil has a rough surface on the electrolytic plating solution side. However, since the surface of the rotating drum has streaky irregularities due to corrosion of the electrolytic solution or the like, the surface roughness of the glossy surface to which it is transferred is very rough compared to the rolled copper foil described later.

最近では銅箔表面に平坦性を要求されるようになっており、電着粒を細かくする添加剤を電解めっき液中に添加して、平滑なめっきを成長させて電解めっき液側の表面を光沢面として使用する電解銅箔も使用されている。しかし、その表面粗さは通常電解銅箔よりは平滑であるが圧延銅箔に比較するとまだ粗いのが一般的である。   Recently, flatness has been demanded on the surface of the copper foil, and an additive for making electrodeposits finer is added to the electrolytic plating solution to grow a smooth plating so that the surface on the electrolytic plating solution side Electrolytic copper foil used as a glossy surface is also used. However, the surface roughness is generally smoother than the electrolytic copper foil, but is generally rougher than the rolled copper foil.

一方、圧延銅箔は、インゴットを溶製し,これを熱間圧延で板にした後,再結晶焼鈍と冷間圧延を繰り返し,最後に冷間圧延で所望の厚みの箔に仕上げる。このように,圧延ロールにより塑性加工して製造されるので,圧延ロールの表面形態が箔の表面に転写した平滑な表面が得られることが知られている。
ただし、電解銅箔とは異なりその軟化温度は150℃程度と比較的低い。FPCのように屈曲性を必要とする場合には軟化温度が低く、接着や樹脂硬化処理時に軟化することは、有利な特性である。
On the other hand, for the rolled copper foil, an ingot is melted and formed into a plate by hot rolling, and then recrystallization annealing and cold rolling are repeated, and finally the foil having a desired thickness is finished by cold rolling. Thus, since it is manufactured by plastic working with a rolling roll, it is known that a smooth surface in which the surface form of the rolling roll is transferred to the surface of the foil is obtained.
However, unlike the electrolytic copper foil, the softening temperature is relatively low at about 150 ° C. When flexibility is required as in FPC, the softening temperature is low, and softening at the time of bonding or resin curing is an advantageous characteristic.

しかしながら、銅箔表面にキャパシタ機能を付与するために、誘電体を含有した樹脂等を硬化させるときや、誘電体をスパッタ等で形成させる時にその温度で軟化してしまうと、銅箔が変形することがあるため好ましくない。樹脂の硬化温度は樹脂種類で異なるが、使用時の耐熱性を考えた場合、高温で硬化する樹脂が望ましく、300℃〜400℃の高温で処理することが多くなっている。タフピッチ銅等の圧延銅箔では、この温度に耐えられずに変形してしまう。 However, in order to impart a capacitor function to the surface of the copper foil, if the resin containing the dielectric is cured or if the dielectric is softened at that temperature when formed by sputtering or the like, the copper foil will be deformed. This is not preferable because there are cases. The curing temperature of the resin varies depending on the type of resin, but considering the heat resistance during use, a resin that cures at a high temperature is desirable, and treatment at a high temperature of 300 ° C. to 400 ° C. is increasing. A rolled copper foil such as tough pitch copper cannot withstand this temperature and deforms.

また、樹脂硬化は大気中で行うことも多い。その場合、銅表面が酸化することも問題である。例えばキャパシタの場合では樹脂を通じて酸素が供給される場合もあり、銅表面が酸化される。こうなるとキャパシタとしての性能が得られない。抵抗層の場合も同様であり、銅表面の酸化は好ましくない。
これを防止するためには、窒素やアルゴンといった不活性ガス中で加熱する必要があり、設備投資が大きくなる欠点があった。
In addition, resin curing is often performed in the air. In that case, oxidation of the copper surface is also a problem. For example, in the case of a capacitor, oxygen may be supplied through the resin, and the copper surface is oxidized. If it becomes like this, the performance as a capacitor cannot be obtained. The same applies to the resistance layer, and oxidation of the copper surface is not preferable.
In order to prevent this, it is necessary to heat in an inert gas such as nitrogen or argon, which has the disadvantage of increasing capital investment.

そこで、本発明の目的は、表面が平滑でかつ耐熱性を有する銅合金箔にNiもしくはNi合金めっきを施したプリント配線基板用金属材料を提供することにある。 Accordingly, an object of the present invention is to provide a metal material for a printed wiring board in which a copper alloy foil having a smooth surface and heat resistance is subjected to Ni or Ni alloy plating.

発明者は、鋭意研究の結果、表面が平滑でかつ耐熱性を有するNiもしくはNi合金めっきを施したプリント配線基板用銅合金箔の表面の平滑性を表す指標として表面粗さの相対性スキューネス(Rsk)の値を用いることが有効であることを見出した。相対性スキューネス(Rsk)の値を規定した。 As a result of diligent research, the inventor has found that the surface roughness relative skewness (indicating the smoothness of the surface of the copper alloy foil for printed wiring boards subjected to Ni or Ni alloy plating with a smooth surface and heat resistance ( It has been found effective to use the value of Rsk). The value of relative skewness (Rsk) was defined.

即ち、本発明は
(1)300℃で1時間加熱しても軟化しない圧延銅合金箔の少なくとも一方の面を光沢面に仕上げ、その面に0.3μm以上のNiもしくはNi合金めっきを施し、その表面粗さがRaで0.10μm以下であり、かつ表面粗さの相対性スキューネス(Rsk)の値が負であることを特徴とするプリント配線基板用金属材料、
(2)銅合金箔の化学組成が、0.05〜0.25質量%のSn残部Cuおよび不可避的不純物であることを特徴とする上記(1)に記載のプリント配線基板用金属材料、
(3)銅合金箔の化学組成が、0.02〜0.4質量%のCrおよび0.01〜0.25質量%のZr、残部がCuおよび不可避的不純物であることを特徴とする上記(1)に記載のプリント配線基板用金属材料
である。
That is, the present invention (1) finishes at least one surface of a rolled copper alloy foil that does not soften even when heated at 300 ° C. for 1 hour to a glossy surface, and Ni or Ni alloy plating of 0.3 μm or more is applied to the surface, A metal material for a printed wiring board, characterized in that the surface roughness Ra is 0.10 μm or less and the value of the surface roughness relative skewness (Rsk) is negative,
(2) The metal composition for printed wiring boards according to (1) above, wherein the chemical composition of the copper alloy foil is 0.05 to 0.25% by mass of Sn balance Cu and unavoidable impurities,
(3) The chemical composition of the copper alloy foil is 0.02 to 0.4% by mass of Cr and 0.01 to 0.25% by mass of Zr, the balance being Cu and unavoidable impurities It is a metal material for printed wiring boards as described in (1).

本発明により、表面が平滑でかつ耐熱性を有する銅合金箔にNiまたはNi合金めっきを施したプリント配線基板用金属材料を用いることで、プリント配線基板の内層に受動部品(例えば、インダクタ、キャパシタ、抵抗器など)の内蔵化が図れる。 According to the present invention, by using a metal material for printed wiring boards in which a copper alloy foil having a smooth surface and heat resistance is subjected to Ni or Ni alloy plating, passive components (for example, inductors, capacitors, etc.) are formed on the inner layer of the printed wiring board. , Resistors, etc.) can be built in.

限定理由を以下に示す。
(1)表面粗さについて
プリント配線基板に用いられる合金箔は、一方の面に粗化めっきが施され、樹脂と密着させる。もう一方の面には、たとえば、受動部品内蔵基板の場合には、キャパシタやインダクタンス、抵抗等を実装される。
特に、キャパシタを表面に実装するためには銅合金箔の面に平滑性を要求させる。箔の表面粗さが粗い場合には、キャパシタの電極を実装する際に表面の粗さの影響を受け、キャパシタの重要な特性である電極間の安定した間隔が確保できないからである。従って、銅合金箔のキャパシタ等を実装する片面は、光沢面に仕上る必要がある。この面に下記に示すNiもしくはNi合金めっきを施した後の表面の粗さがRaで0.1μm以下、好ましくは0.06μm以下であることが望ましい。
The reasons for limitation are shown below.
(1) Surface Roughness The alloy foil used for the printed wiring board is subjected to roughening plating on one surface and is in close contact with the resin. On the other surface, for example, in the case of a passive component built-in substrate, a capacitor, an inductance, a resistance, and the like are mounted.
In particular, in order to mount the capacitor on the surface, the surface of the copper alloy foil is required to be smooth. This is because, when the surface roughness of the foil is rough, it is affected by the surface roughness when mounting the electrodes of the capacitor, and a stable distance between the electrodes, which is an important characteristic of the capacitor, cannot be secured. Accordingly, it is necessary to finish the one side on which the copper alloy foil capacitor or the like is mounted with a glossy surface. It is desirable that the roughness of the surface after Ni or Ni alloy plating described below is applied to this surface is 0.1 μm or less, preferably 0.06 μm or less in terms of Ra.

さらに、キャパシタの場合、キャパシタ皮膜の厚さが薄い部分があると、電圧をかけたときにその部分が破壊されたり、電流がリークしたりしてしまうことがある。これは、基板となる銅箔表面の突起状の凹凸が原因になることがある。従って銅箔の表面粗さの形態として、上に突起状の凸形状の分布よりも上に曲面状の凸形状の分布、即ち下に突起状の凹形状の分布であることが望ましい。これは、表面粗さの相対性スキューネス(Rsk)で示すことが可能である。Rskとは平均線に対しての振幅分布曲線の相対性を示す値で以下の式で表せる。 Furthermore, in the case of a capacitor, if there is a portion where the thickness of the capacitor film is thin, the portion may be destroyed or current may leak when a voltage is applied. This may be caused by protrusions and depressions on the surface of the copper foil serving as the substrate. Accordingly, it is desirable that the surface roughness of the copper foil be a curved convex distribution above the upward convex convex distribution, that is, a convex concave distribution below. This can be indicated by surface roughness relative skewness (Rsk). Rsk is a value indicating the relativity of the amplitude distribution curve with respect to the average line and can be expressed by the following equation.

Figure 2006339304
Figure 2006339304

図1(a)にRskが正の場合の表面形状を模式図として示したが、上方向に突起状の凸形状となる。一方、Rskが負の場合には、図1(b)に示すように、下方向に突起状の凹形状となり、表面には表面形状の平らな部分が見られる。
Rskが負の場合に見られる表面の平らな部分にキャパシタを形成すれば、安定したものが確保できる。
FIG. 1A shows a schematic diagram of the surface shape when Rsk is positive, but the protrusion shape is a projection shape upward. On the other hand, when Rsk is negative, as shown in FIG. 1 (b), the projection has a concave shape downward, and a flat portion of the surface shape is seen on the surface.
If a capacitor is formed on a flat portion of the surface seen when Rsk is negative, a stable one can be secured.

また、RaやRsk以外のRmax、Rz、Ryといった粗さ指標も、キャパシタ性能に与える影響が大きい。これらは、最大粗さに非常に影響される指標であり、キャパシタとしてはいずれも小さい方が好ましいのが明らかである。しかし、これらの指標は評価する位置や評価長さによってその値が大きく変化することから、平均的な粗さ指標であるRaやRskに比較するとばらつきが大きいためここでは指標として用いなかった。しかし、これらの値での規定を排除するものではない。   In addition, roughness indices such as Rmax, Rz, and Ry other than Ra and Rsk also have a large effect on capacitor performance. These are indicators that are greatly influenced by the maximum roughness, and it is apparent that a smaller capacitor is preferable. However, since the values of these indexes vary greatly depending on the position to be evaluated and the evaluation length, they are not used here because they have large variations compared to the average roughness indexes Ra and Rsk. However, it does not exclude the provision of these values.

このようなRskが負の値を示す表面形状は、最終圧延時に転写される圧延ロールの表面形状を調整することで得られる。しかしながら、本発明においてはRskの規定のみではなく、Raも規定しており、両方の条件を満たすためには、圧延ロールの表面粗さを小さくすればよい。ロール表面に光沢めっきを施すことも有効である。さらに、圧延ロールのロール径の選択、圧延油粘度と圧延速度の制御によって調整が可能である。   Such a surface shape in which Rsk has a negative value can be obtained by adjusting the surface shape of the rolling roll transferred during final rolling. However, in the present invention, not only Rsk but also Ra is defined, and in order to satisfy both conditions, the surface roughness of the rolling roll may be reduced. It is also effective to apply bright plating to the roll surface. Furthermore, adjustment is possible by selecting the roll diameter of the rolling roll and controlling the rolling oil viscosity and rolling speed.

(2)NiもしくはNi合金めっき
合金箔にNiおよびNi合金めっきを施すことで、高温での光沢面のCu酸化を防止することができる。
光沢面が酸化するとキャパシタや抵抗層の実装に悪影響を及ぼすためである。
さらに、実装に当たっては、表面の平滑性が要求されるため、NiもしくはNi合金めっきは光沢の得られるめっきを用いることがより好ましい。例えば、Niめっきの場合、添加剤をめっき浴に添加してめっき皮膜に光沢を持たせる光沢めっきを用いることが有効である。また、Ni−Pのような合金めっきを行うと、電着粒を細かくすることが可能であり、表面を平滑にすることができ、さらに、Cuの熱による拡散バリア能もNiめっきよりも高くすることができる。Ni−Pめっき以外にも、Ni−FeめっきやNi−Coめっき等のNi合金めっきを用いてもかまわない。
(2) Ni or Ni alloy plating By applying Ni and Ni alloy plating to the alloy foil, Cu oxidation of the glossy surface at high temperature can be prevented.
This is because oxidation of the glossy surface adversely affects the mounting of the capacitor and the resistance layer.
Furthermore, since surface smoothness is required for mounting, it is more preferable to use a plating that can provide gloss for Ni or Ni alloy plating. For example, in the case of Ni plating, it is effective to use bright plating that adds an additive to the plating bath to give the plating film a gloss. Further, when alloy plating such as Ni-P is performed, the electrodeposited grains can be made finer, the surface can be smoothed, and the diffusion barrier ability due to the heat of Cu is higher than that of Ni plating. can do. In addition to Ni-P plating, Ni alloy plating such as Ni-Fe plating or Ni-Co plating may be used.

(3)金属箔の耐熱性について
金属箔は、樹脂を硬化させたり、キャパシタ成分であるBTO等の酸化物の焼結を行ったりするために、300℃以上の高温の環境にさられるので、最低でも300℃で軟化しないことが条件となる。ここで軟化とは、加熱により加熱前の引張り強度の60%以下に低下することとする。
本発明では、300℃で1時間加熱しても軟化しない圧延銅合金箔を規定する。具体的には以下に示す。
(3) Heat resistance of the metal foil Since the metal foil is subjected to a high temperature environment of 300 ° C. or higher in order to cure the resin or to sinter oxide such as BTO which is a capacitor component, The condition is that it does not soften at least at 300 ° C. Here, softening refers to a reduction to 60% or less of the tensile strength before heating due to heating.
In the present invention, a rolled copper alloy foil that does not soften even when heated at 300 ° C. for 1 hour is specified. Specifically, it is shown below.

(a)Sn入り銅箔
Snを添加することによりCuの耐熱性が向上する。その効果として,300℃で1時間加熱した際の引張強さの低下量が小さくなり,0.05質量%以上のSn添加で350 MPa以上の引張強さを保つことが可能となる。この引張強さのレベルは,Agを添加する場合(特願平2001-216411)よりも50
MPa以上も高い。上述した圧延上がりの強度の改善効果をも考慮すると,好ましいSn添加量は0.05質量%以上であり,Snの上限値は目標とする導電率より決定される。
この銅合金の不純物はOが60ppm以下、Sが10ppm以下、Bi、Pb、Sb、Se、As、FeおよびTeの合計濃度が10ppm以下であることが望ましい。
(A) Copper foil containing Sn The heat resistance of Cu improves by adding Sn. As an effect, the amount of decrease in tensile strength when heated at 300 ° C. for 1 hour becomes small, and it becomes possible to maintain a tensile strength of 350 MPa or more by adding 0.05 mass% or more of Sn. This tensile strength level is 50% higher than when Ag is added (Japanese Patent Application No. 2001-216411).
Higher than MPa. Considering the effect of improving the strength after rolling as described above, the preferable Sn addition amount is 0.05% by mass or more, and the upper limit value of Sn is determined from the target conductivity.
As for impurities of this copper alloy, it is desirable that O is 60 ppm or less, S is 10 ppm or less, and the total concentration of Bi, Pb, Sb, Se, As, Fe, and Te is 10 ppm or less.

(b)CrおよびZr入り銅箔
純銅に0.02%〜0.4質量%のCrおよび0.01〜0.25質量%のZrを添加した銅合金であり、残部が銅および不可避的不純物である合金の場合、さらに耐熱性が向上し、350℃で1時間加熱後でも引張強さの低下がほとんど無い。
更にZn、Ni、Ti、Sn、Si、Mn、P、Mg、Co、Te、Al、B、In、AgおよびHf等の元素1種以上を総量で0.005質量%〜1.5質量%を含有させると、さらに強度を向上することが可能であり、強度を必要とする場合にはより有利である。また耐熱性にも悪影響が無いのでこれら第三元素の添加を除外するものではない。
(B) Copper foil containing Cr and Zr It is a copper alloy obtained by adding 0.02% to 0.4% by mass of Cr and 0.01 to 0.25% by mass of Zr to pure copper, with the balance being copper and inevitable impurities In the case of the alloy, the heat resistance is further improved and there is almost no decrease in tensile strength even after heating at 350 ° C. for 1 hour.
Furthermore, the total amount of one or more elements such as Zn, Ni, Ti, Sn, Si, Mn, P, Mg, Co, Te, Al, B, In, Ag, and Hf is 0.005% by mass to 1.5% by mass. If it contains, it is possible to further improve the strength, and it is more advantageous when strength is required. Further, since there is no adverse effect on heat resistance, addition of these third elements is not excluded.

表1に示す組成のインゴットを溶製し,これを熱間圧延で板にした後,再結晶焼鈍と冷間圧延を繰り返し,最後に冷間圧延で35μmの厚みの素材に仕上げた。最終圧延工程の最終パスにおいて粗さの異なる圧延ロールを用いて表面粗さを調整した。比較例No.3〜5の箔については、最終圧延工程の圧延加工度を90%とし、最終パスでの圧延ロールの表面粗さRaを0.10μm、圧延油粘度を8.0cst、ロール噛み込み角を0.0058rad、圧延速度を600m/minとして作製した。一方、発明例No.6〜11の箔は、圧延ロールの表面粗さRaを0.02μm、圧延油粘度を6.5cst、ロール噛み込み角を0.0031rad、圧延速度を500m/minとしてRskを負の値になるように圧延した。   An ingot having the composition shown in Table 1 was melted and formed into a plate by hot rolling, and then recrystallization annealing and cold rolling were repeated. Finally, the material was finished to a thickness of 35 μm by cold rolling. In the final pass of the final rolling process, the surface roughness was adjusted using rolling rolls having different roughness. Comparative Example No. For the foils 3 to 5, the rolling degree in the final rolling step is 90%, the surface roughness Ra of the rolling roll in the final pass is 0.10 μm, the rolling oil viscosity is 8.0 cst, and the roll biting angle is 0 0058 rad, the rolling speed was 600 m / min. On the other hand, Invention Example No. The foils 6 to 11 have a negative Rsk value with a rolling roll surface roughness Ra of 0.02 μm, a rolling oil viscosity of 6.5 cst, a roll biting angle of 0.0031 rad, a rolling speed of 500 m / min. Rolled as follows.

Figure 2006339304
Figure 2006339304

さらに、比較例No.1、2、4、5及び発明例No.6、7について、表2に示す浴組成のワット浴を用い、電流密度5A/dm、浴温55℃の条件において、表4に示す厚みのNiめっきを施した。また、発明例No.8、9、11について、表2に示す光沢ワット浴を用い、電流密度5A/dm、浴温55℃の条件において、表3に示す厚みのNiめっきを施した。さらに、発明例No.10について表3に示すワット浴を用い、電流密度5A/dm、浴温55℃の条件において、表4に示す厚みのNi−Pめっきを施した。 Further, Comparative Example No. 1, 2, 4, 5 and Invention No. 6 and 7, Ni plating having a thickness shown in Table 4 was applied using a Watt bath having a bath composition shown in Table 2 under conditions of a current density of 5 A / dm 2 and a bath temperature of 55 ° C. In addition, Invention Example No. For 8, 9, and 11, Ni plating having a thickness shown in Table 3 was applied using the gloss watt bath shown in Table 2 under the conditions of a current density of 5 A / dm 2 and a bath temperature of 55 ° C. Furthermore, Invention Example No. 10 was subjected to Ni-P plating with the thickness shown in Table 4 under the conditions of a current density of 5 A / dm 2 and a bath temperature of 55 ° C. using the Watt bath shown in Table 3.

Figure 2006339304
Figure 2006339304

Figure 2006339304
Figure 2006339304

めっき後の表面を触針式の表面粗さ計を用いてJIS規格(B0601)に準拠して測定した。
この銅箔を用いてキャパシタ部品を組み込み、その性能を確認した。その結果を表4に示す。
The surface after plating was measured according to JIS standard (B0601) using a stylus type surface roughness meter.
Capacitor parts were assembled using this copper foil and the performance was confirmed. The results are shown in Table 4.

Figure 2006339304
Figure 2006339304

凡例: 箔変形 ×:加熱により変形
○:変形無し(300℃×1h)
◎:より高温(350℃×1h)まで変形無し
部品性能 ×:歩留10%以下
△:歩留10〜60%
○:歩留60〜80%
◎:歩留80%以上
Legend: Foil deformation ×: Deformation by heating ○: No deformation (300 ° C x 1h)
A: Deformation-free component performance up to higher temperature (350 ° C. × 1 h) ×: Yield 10% or less Δ: Yield 10-60%
○: Yield 60-80%
: Yield 80% or more

発明例No.6〜11は、請求項2を満たす組成の合金であり、請求項1に記載の300℃で1時間加熱しても軟化しないという条件を満たし、NiもしくはNi合金めっき後の表面粗さ(RaおよびRsk)が請求の範囲にあるため、良好な結果をえた。さらに、発明例No.8〜10は、Niめっきに光沢Niめっきを用いたことによりRaが0.05μm以下を満たすため、発明例No.5〜7よりも良好であった。
発明例No.11は請求項3を満たす組成の合金であり、さらに高温の処理にも耐えられるものであった。
Invention Example No. 6 to 11 are alloys having a composition satisfying claim 2, satisfying the condition of not softening even when heated at 300 ° C. for 1 hour according to claim 1, and surface roughness (Ra) after Ni or Ni alloy plating And Rsk) are within the scope of the claims, and good results were obtained. Furthermore, Invention Example No. In Nos. 8 to 10, since the bright Ni plating is used for the Ni plating, Ra satisfies 0.05 μm or less. It was better than 5-7.
Invention Example No. 11 is an alloy having a composition satisfying claim 3 and can withstand high temperature processing.

一方、比較例No.1〜2は、電解銅箔であり表面粗さRaが満たさない例であり、良好な結果が得られなかった。とくにNo.2は平滑電解銅箔であるが本発明例には及ばない性能であった。
また、比較例No.3は純銅による圧延銅箔であるが、表面粗さRaは請求の範囲にあるが300℃で1時間加熱した時、軟化し、本用途に適さない。
比較例No.4は請求項5を満たす組成の合金であるが、Niめっきを施していないため、部品搭載時に銅の酸化が発生し、部品性能を満たすことができなかった。
比較例No.5は請求項5を満たす組成の合金であるが、Niめっき後の粗さが請求項1を満たしていないため、部品性能が充分ではなかった。
On the other hand, Comparative Example No. 1-2 are electrolytic copper foils and are examples in which the surface roughness Ra is not satisfied, and good results were not obtained. In particular, no. Although 2 is a smooth electrolytic copper foil, it was a performance that did not reach the example of the present invention.
Comparative Example No. Although 3 is a rolled copper foil made of pure copper, the surface roughness Ra is within the scope of the claims, but when heated at 300 ° C. for 1 hour, it softens and is not suitable for this application.
Comparative Example No. 4 is an alloy having a composition satisfying claim 5, but since Ni plating was not applied, copper oxidation occurred at the time of component mounting, and the component performance could not be satisfied.
Comparative Example No. Although 5 is an alloy having a composition satisfying claim 5, the roughness after Ni plating did not satisfy claim 1, and therefore the performance of the parts was not sufficient.

Rskの正負による測定表面形状の違いを示す模式図である。It is a schematic diagram which shows the difference in the measurement surface shape by the positive / negative of Rsk.

Claims (3)

300℃で1時間加熱しても軟化しない圧延銅合金箔の少なくとも一方の面を光沢面に仕上げ、その面に0.3μm以上のNiもしくはNi合金めっきを施し、その表面粗さがRaで0.10μm以下であり、かつ表面粗さの相対性スキューネス(Rsk)の値が負であることを特徴とするプリント配線基板用金属材料。 At least one surface of the rolled copper alloy foil that does not soften even when heated at 300 ° C. for 1 hour is finished to a glossy surface, and Ni or Ni alloy plating of 0.3 μm or more is applied to the surface, and the surface roughness is 0 in terms of Ra. A metal material for a printed wiring board, which is 10 μm or less and has a negative surface roughness relative skewness (Rsk) value. 銅合金箔の化学組成が、0.05〜0.25質量%のSn残部Cuおよび不可避的不純物であることを特徴とする請求項1に記載のプリント配線基板用金属材料。 2. The metal material for a printed wiring board according to claim 1, wherein the chemical composition of the copper alloy foil is 0.05 to 0.25 mass% of Sn remaining Cu and unavoidable impurities. 銅合金箔の化学組成が、0.02〜0.4質量%のCrおよび0.01〜0.25質量%のZr、残部がCuおよび不可避的不純物であることを特徴とする請求項1に記載のプリント配線基板用金属材料。
The chemical composition of the copper alloy foil is 0.02 to 0.4% by mass of Cr and 0.01 to 0.25% by mass of Zr, with the balance being Cu and inevitable impurities. The metal material for printed wiring boards as described.
JP2005160467A 2005-05-31 2005-05-31 Metal materials for printed wiring boards Expired - Fee Related JP4538375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005160467A JP4538375B2 (en) 2005-05-31 2005-05-31 Metal materials for printed wiring boards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005160467A JP4538375B2 (en) 2005-05-31 2005-05-31 Metal materials for printed wiring boards

Publications (2)

Publication Number Publication Date
JP2006339304A true JP2006339304A (en) 2006-12-14
JP4538375B2 JP4538375B2 (en) 2010-09-08

Family

ID=37559618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005160467A Expired - Fee Related JP4538375B2 (en) 2005-05-31 2005-05-31 Metal materials for printed wiring boards

Country Status (1)

Country Link
JP (1) JP4538375B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092118A (en) * 2005-09-28 2007-04-12 Nikko Kinzoku Kk Metallic material for printed circuit board
WO2009044822A1 (en) * 2007-10-03 2009-04-09 The Furukawa Electric Co., Ltd. Copper alloy plate material for electric and electronic components
JP2011009267A (en) * 2009-06-23 2011-01-13 Hitachi Cable Ltd Copper foil for printed wiring board, and method of manufacturing the same
WO2013042663A1 (en) * 2011-09-21 2013-03-28 Jx日鉱日石金属株式会社 Copper foil for flexible printed wiring board
TWI601583B (en) * 2012-06-29 2017-10-11 Jx Nippon Mining & Metals Corp Rolled copper foil and its manufacturing method, and laminated board
CN112969824A (en) * 2018-11-19 2021-06-15 三井金属矿业株式会社 Surface-treated copper foil, copper foil with carrier, copper-clad laminate, and printed wiring board

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05140765A (en) * 1991-11-15 1993-06-08 Nikko Guurudo Foil Kk Treatment for surface of copper foil for printed circuit
JPH05177215A (en) * 1992-01-09 1993-07-20 Hitachi Cable Ltd Production of rolled foil of copper alloy for film carrier
JP2000178787A (en) * 1998-12-14 2000-06-27 Nikko Materials Co Ltd Copper foil excellent in oxidation resistance in lustrous face and its production
JP2000281427A (en) * 1999-03-26 2000-10-10 Toshiba Corp Ceramic sintered compact and wear-proofing member and member for electronic part using the sintered compact
JP2004060018A (en) * 2002-07-30 2004-02-26 Hitachi Cable Ltd Copper foil for electronic part

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05140765A (en) * 1991-11-15 1993-06-08 Nikko Guurudo Foil Kk Treatment for surface of copper foil for printed circuit
JPH05177215A (en) * 1992-01-09 1993-07-20 Hitachi Cable Ltd Production of rolled foil of copper alloy for film carrier
JP2000178787A (en) * 1998-12-14 2000-06-27 Nikko Materials Co Ltd Copper foil excellent in oxidation resistance in lustrous face and its production
JP2000281427A (en) * 1999-03-26 2000-10-10 Toshiba Corp Ceramic sintered compact and wear-proofing member and member for electronic part using the sintered compact
JP2004060018A (en) * 2002-07-30 2004-02-26 Hitachi Cable Ltd Copper foil for electronic part

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092118A (en) * 2005-09-28 2007-04-12 Nikko Kinzoku Kk Metallic material for printed circuit board
WO2009044822A1 (en) * 2007-10-03 2009-04-09 The Furukawa Electric Co., Ltd. Copper alloy plate material for electric and electronic components
KR100960168B1 (en) 2007-10-03 2010-05-26 후루카와 덴키 고교 가부시키가이샤 Copper alloy sheet material for electronic and electrical parts
JP2011009267A (en) * 2009-06-23 2011-01-13 Hitachi Cable Ltd Copper foil for printed wiring board, and method of manufacturing the same
WO2013042663A1 (en) * 2011-09-21 2013-03-28 Jx日鉱日石金属株式会社 Copper foil for flexible printed wiring board
TWI601583B (en) * 2012-06-29 2017-10-11 Jx Nippon Mining & Metals Corp Rolled copper foil and its manufacturing method, and laminated board
CN112969824A (en) * 2018-11-19 2021-06-15 三井金属矿业株式会社 Surface-treated copper foil, copper foil with carrier, copper-clad laminate, and printed wiring board

Also Published As

Publication number Publication date
JP4538375B2 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
KR100466062B1 (en) Copper-alloy foil to be used for laminate sheet
JP4662834B2 (en) Copper or copper alloy foil for circuit
JP4538375B2 (en) Metal materials for printed wiring boards
TWI633195B (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
KR101935128B1 (en) Copper foil for flexible printed wiring board, copper-clad laminate using the same, flexible printed wiring board and electronic device
JP3962291B2 (en) Rolled copper foil for copper clad laminate and method for producing the same
JP4744938B2 (en) Metal materials for printed wiring boards
EP2412520A1 (en) Metal foil with electric resistance film and production method therefor
JP6205269B2 (en) Copper foil for printed circuit, copper-clad laminate, printed wiring board, printed circuit board, and electronic equipment
JP4677381B2 (en) Metal materials for printed wiring boards
TWI528875B (en) Rolled copper foil for flexible dielectric wiring boards
CN107046763B (en) Copper foil for flexible printed board and copper-clad laminate using same
JP4744937B2 (en) Metal materials for printed wiring boards
JP5913355B2 (en) Copper foil for printed circuit, copper-clad laminate, printed wiring board, and electronic equipment
JP4539960B2 (en) Metal materials for printed wiring boards
JP2003041334A (en) Copper alloy foil for laminate
JP2007092118A (en) Metallic material for printed circuit board
KR20030007023A (en) Copper alloy foil for laminated sheet
JP4391449B2 (en) Ultra-thin copper foil with carrier and printed wiring board
TWI718025B (en) Copper foil for flexible printed circuit boards, copper-clad laminates, flexible printed circuit boards and electronic devices using the same
CN107046768B (en) Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
JP2006173549A (en) Metallic material for printed-circuit board
JP4304324B2 (en) Copper foil with resistance layer and manufacturing method thereof
JP2006054320A (en) Metallic material for printed wiring board
JP2003200524A (en) Resistance layer built-in copper clad laminated sheet and printed circuit board using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100621

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees