JP2009242676A - Method of manufacturing polyimide film - Google Patents

Method of manufacturing polyimide film Download PDF

Info

Publication number
JP2009242676A
JP2009242676A JP2008092705A JP2008092705A JP2009242676A JP 2009242676 A JP2009242676 A JP 2009242676A JP 2008092705 A JP2008092705 A JP 2008092705A JP 2008092705 A JP2008092705 A JP 2008092705A JP 2009242676 A JP2009242676 A JP 2009242676A
Authority
JP
Japan
Prior art keywords
polyimide
linear expansion
expansion coefficient
base material
polyimide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008092705A
Other languages
Japanese (ja)
Inventor
Nobuyuki Hayashi
信行 林
Hirotoku Nagaoka
広徳 永岡
Toshifumi Yoshimura
年史 吉村
Shinichi Iwashita
新一 岩下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2008092705A priority Critical patent/JP2009242676A/en
Publication of JP2009242676A publication Critical patent/JP2009242676A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Wire Bonding (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyamide film used for a wiring substrate with fine wiring, particularly used for the wiring substrate which has not only heat resistance intrinsic to polyimides but excellent dimensional stability, and on which a chip can be mounted stably without improper connection. <P>SOLUTION: The method of manufacturing the polyimide film comprises forming a polyimide layer on a support base material and removing the support base material, wherein the base material is 5 to 50 μm thick, the difference between a temperature-increased linear expansion coefficient of the base material and a temperature-decreased linear expansion coefficient thereof is within ±3 ppm in the case of changing the temperature in the range from ambient temperature to 400°C, the difference of the linear expansion coefficient between the base material and the polyimide layer formed on the base material is within 2 to 5 ppm, a resin solution of a polyimide precursor giving the polyimide layer having the linear expansion coefficient of 15 to 25 ppm is applied onto the base material, dryed and heat-treated to form the polyimide layer, and the whole base material is removed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ポリイミドフィルムの製造方法に関し、特に微細配線が要求されるCOF(チップ・オン・フィルム)用途に適したポリイミドフィルムの製造方法に関する。   The present invention relates to a method for producing a polyimide film, and more particularly to a method for producing a polyimide film suitable for COF (chip-on-film) applications that require fine wiring.

近年、電子機器の高性能化、高機能化が急速に進んでおり、これに伴い電子機器に用いられる電子部品やそれらを実装する基板に対しても、より高密度で高性能なものへと要求が高まっている。そして、電子機器は益々軽量化、小型化、薄型化の傾向にあり、電子部品を収容するスペースは狭まる一方である。この状況下において、これらの課題を解決する技術の1つとして、フレキシブル配線基板上に半導体チップを実装する技術が注目されており、その用途に関しては、COF用フレキシブル配線基板として特別に検討されている。   In recent years, the performance and functionality of electronic devices have been rapidly increasing, and with this, electronic components used in electronic devices and the boards on which they are mounted have become higher density and higher performance. The demand is growing. Electronic devices are becoming lighter, smaller, and thinner, and the space for storing electronic components is becoming narrower. Under these circumstances, as one of the techniques for solving these problems, a technique for mounting a semiconductor chip on a flexible wiring board is attracting attention, and its use is specially studied as a flexible wiring board for COF. Yes.

このいわゆるCOF用途に使用されるフレキシブル配線基板においても、更なる高密度化を目指して配線の狭ピッチ化が進んでおり、微細加工の要求が高まっている。現在、25μmピッチに配線加工されたCOFが既に作製されており、近い将来には20μmピッチ以下になると推測されている。   Also in the flexible wiring board used for this so-called COF application, the pitch of the wiring is becoming narrower with the aim of further increasing the density, and the demand for fine processing is increasing. At present, COFs that have been processed to have a wiring pitch of 25 μm have already been produced, and it is estimated that the pitch will be 20 μm or less in the near future.

また、COF基板用積層体の狭ピッチ化が進む中、チップ実装時における寸法・位置の要求精度も上がっている。しかしながら、ポリイミドは熱によりその寸法が変化することが知られており、回路形成時及び実装時に掛かる熱に起因して、積層体中のポリイミド部分が寸法変化を引き起し、同じ積層体上の配線ピッチがばらつくため、結果としてチップのバンプ部分が位置ズレを引き起こし、それが電気信頼性の低下に繋がり歩留低下の原因になっている。そのため、熱寸法変化率及びそのフィルム内でのばらつきを低減する事が求められている。   Further, as the pitch of the COF substrate laminate is reduced, the required accuracy of dimensions and positions during chip mounting is also increasing. However, it is known that the dimensions of polyimide change due to heat, and due to the heat applied during circuit formation and mounting, the polyimide part in the laminate causes a dimensional change, and on the same laminate. Since the wiring pitch varies, as a result, the bump portion of the chip causes a positional shift, which leads to a decrease in electrical reliability and a decrease in yield. Therefore, it is required to reduce the thermal dimensional change rate and the variation in the film.

このポリイミドフィルムの一般的な製造方法は次の通りである。即ち、ポリイミドの前駆体であるポリアミック酸の有機溶媒溶液を支持体上に流延塗布し、加熱して自己支持性フィルムとなるまで溶剤を蒸発させ、支持体から自己支持性のポリアミック酸フィルムを剥離し、フィルム両端を把持しながら更に加熱して残存する溶剤の除去及びポリアミック酸のイミド化を完結する事で製造される。しかしながら、この方法は支持体から剥離した自己支持性フィルムを加熱する際に、フィルムに含まれる溶剤が可塑剤として作用するため、張力下での加熱処理により、フィルムの延伸が容易に発生する。従って、面内の等方性を得るため、支持体から単離したフィルムを加熱処理する際、延伸比率制御による面内配向度の調整が施されるのが通常である。   The general manufacturing method of this polyimide film is as follows. That is, an organic solvent solution of polyamic acid, which is a polyimide precursor, is cast on a support, heated to evaporate the solvent until it becomes a self-supporting film, and a self-supporting polyamic acid film is formed from the support. It is manufactured by peeling and completing the removal of the remaining solvent and imidization of the polyamic acid by further heating while gripping both ends of the film. However, in this method, since the solvent contained in the film acts as a plasticizer when the self-supporting film peeled from the support is heated, the film is easily stretched by heat treatment under tension. Therefore, in order to obtain in-plane isotropic properties, when the film isolated from the support is subjected to heat treatment, the in-plane orientation is usually adjusted by controlling the stretching ratio.

しかしながら、上記の様な延伸をフィルム全面において均一に行う事は困難であり、通常はフィルム面内に加熱収縮のムラが生じて寸法変化率が大きくなるか、面内でばらついてしまうため、上記の様な製造方法により、高精細配線用基板用途向けのフィルムを作製することは困難である。   However, it is difficult to perform stretching as described above uniformly over the entire surface of the film. Usually, unevenness of heat shrinkage occurs in the film surface, resulting in a large dimensional change rate or in-plane variation. It is difficult to produce a film for use in high-definition wiring substrates by such a manufacturing method.

このフィルム面内における加熱収縮のムラを改善する方法が、特開2007−144638号公報(特許文献1)において提案されている。即ち、ポリイミドの前駆体の有機溶媒溶液を金属箔上に流延塗布し、これを金属箔ごと加熱処理して実質的にイミド化が完結したポリイミドフィルムが積層した金属箔を得た後、金属箔とポリイミドフィルムを引き剥がしてポリイミドフィルムを単離するという、ポリイミドフィルムの製造方法である。   Japanese Patent Application Laid-Open No. 2007-144638 (Patent Document 1) proposes a method for improving the unevenness of the heat shrinkage in the film plane. That is, an organic solvent solution of a polyimide precursor is cast-coated on a metal foil, and this is heated together with the metal foil to obtain a metal foil laminated with a polyimide film that is substantially completely imidized. This is a method for producing a polyimide film, in which the polyimide film is isolated by peeling off the foil and the polyimide film.

しかしながら、特許文献1に示された内容においては、その金属箔とポリイミドフィルムの物性等にはなんら言及がなされていなかった。そのため、導体パターンの形成を行った後に金属箔の剥離又はエッチングを行うと、ポリイミド層の寸法変化率が大きいため、特に30μmピッチ以下ではチップ実装時の接続不良が懸念されるものであった。   However, in the contents shown in Patent Document 1, no mention has been made of the physical properties of the metal foil and the polyimide film. For this reason, if the metal foil is peeled or etched after the conductor pattern is formed, the dimensional change rate of the polyimide layer is large, and therefore, particularly when the pitch is 30 μm or less, there is a concern about poor connection during chip mounting.

一方、特開2007−223052号公報(特許文献2)には、銅箔とポリイミドのラミネート後の冷却速度を制御して寸法変化率を低減する方法が開示されている。しかしながら、特許文献2に示された方法で作製された銅張積層板の寸法安定率の平均値は、その実施例によれば0.06〜0.10%となっており、特許文献1でも述べられている通り、60μmピッチ以下のファインピッチで用いるとチップ実装時の接続不良が懸念される水準であった。
特開2007−144638号公報 特開2007−223052号公報
On the other hand, Japanese Patent Application Laid-Open No. 2007-223052 (Patent Document 2) discloses a method of reducing the dimensional change rate by controlling the cooling rate after laminating copper foil and polyimide. However, the average value of the dimensional stability of the copper-clad laminate produced by the method shown in Patent Document 2 is 0.06 to 0.10% according to the example. As stated, when used at a fine pitch of 60 μm or less, it was at a level where there was concern about poor connection during chip mounting.
JP 2007-144638 A JP 2007-223052 A

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、COF用途に代表される微細配線形成された配線基板に用いられるポリイミドフィルムとして、ポリイミド本来の持つ耐熱性などの特性に加えて、従来のポリイミドフィルムに比べてより寸法安定性に優れており、30μmピッチ以下のファインピッチでの実装においても接続不良を起こさず安定してチップ実装可能な配線基板に用いられるポリイミドフィルムを提供することを目的とする。   The present invention has been made in view of the above-mentioned problems of the prior art, and as a polyimide film used for a wiring board on which fine wiring is typified by COF use, in addition to characteristics such as heat resistance inherent in polyimide. In addition, it offers superior dimensional stability compared to conventional polyimide films, and provides polyimide films that can be used for wiring boards that can be stably mounted on chips without causing poor connections even when mounted at fine pitches of 30 μm or less. The purpose is to do.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、支持基材に加熱前後での線膨張係数の変化が少ないものを使用し、かつ、支持基材層及び絶縁樹脂層間の線膨張係数の差を制御することで上記課題を解決し得ることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have used a support base material having a small change in linear expansion coefficient before and after heating, and between the support base material layer and the insulating resin layer. The inventors have found that the above problem can be solved by controlling the difference in linear expansion coefficient, and have completed the present invention.

即ち、本発明は、支持基材上にポリイミド層を形成した後、該支持基材を除去して得られるポリイミドフィルムの製造方法であって、該支持基材の厚みが5〜50μmの範囲にあり、該支持基材を常温から400℃の温度範囲で温度を変化させた場合の昇温時と降温時との線膨張係数の差Δαが±3ppmの範囲にあり、かつ該支持基材上に形成するポリイミド層との線膨張係数の差Δαが2〜5ppmの範囲にある支持基材を準備し、該支持基材上にイミド化した場合のポリイミド層の線膨張係数が15〜25ppmの範囲となるポリイミド前駆体の樹脂溶液を塗布し、乾燥及びイミド化のための熱処理を行いポリイミド層を形成した後、該支持基材を全面除去してポリイミドフィルムを得ることを特徴とするポリイミドフィルムの製造方法である。 That is, this invention is a manufacturing method of the polyimide film obtained by forming this polyimide layer on a support base material, and removing this support base material, Comprising: The thickness of this support base material is in the range of 5-50 micrometers. The difference Δα 1 in the linear expansion coefficient between when the temperature is raised and when the temperature is lowered when the temperature of the supporting substrate is changed in the temperature range from room temperature to 400 ° C. is in the range of ± 3 ppm, and the supporting substrate A support base material having a linear expansion coefficient difference Δα 2 with a polyimide layer formed thereon in the range of 2 to 5 ppm is prepared, and the linear expansion coefficient of the polyimide layer when imidized on the support base material is 15 to A polyimide precursor resin solution having a range of 25 ppm is applied, heat treatment for drying and imidization is performed to form a polyimide layer, and then the support substrate is entirely removed to obtain a polyimide film. Manufacture of polyimide film It is the law.

本発明においては、前記支持基材が、10〜40μmの厚さの金属箔であり、かつ55GPa以上の引張り弾性率を有するものであることが好ましい。また、前記ポリイミドフィルムの厚さを8〜50μmの範囲とすることが好ましい。   In this invention, it is preferable that the said support base material is a metal foil with a thickness of 10-40 micrometers, and has a tensile elasticity modulus of 55 GPa or more. Moreover, it is preferable to make the thickness of the said polyimide film into the range of 8-50 micrometers.

更に、本発明は、配線幅30μmピッチ以下の微細配線形成用として用いられる微細配線形成用ポリイミドフィルムを製造する方法として特に有用である。   Furthermore, the present invention is particularly useful as a method for producing a polyimide film for forming a fine wiring used for forming a fine wiring having a wiring width of 30 μm or less.

本発明によれば、耐熱性及び寸法安定性等に優れており、特に寸法安定性において他の製法で製造されたフィルムよりも優れているポリイミドフィルムを提供することが可能となる。したがって、本発明によれば、COF用途に代表される微細配線形成された配線基板に用いられるポリイミドフィルムとして、ファインピッチでの実装においても接続不良を起こさず安定してチップ実装可能な配線基板に用いられるポリイミドフィルムを提供することが可能となる。   According to the present invention, it is possible to provide a polyimide film that is excellent in heat resistance, dimensional stability, and the like, and that is particularly superior in dimensional stability to a film manufactured by another manufacturing method. Therefore, according to the present invention, as a polyimide film used for a wiring board on which fine wiring is typified by COF application, a wiring board that can be stably mounted on a chip without causing a connection failure even when mounted at a fine pitch. It is possible to provide a polyimide film to be used.

以下、本発明をその好適な実施形態に即して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.

本発明は、支持基材上にポリイミド層を形成した後、該支持基材を除去して得られるポリイミドフィルムの製造方法である。   This invention is a manufacturing method of the polyimide film obtained by forming a polyimide layer on a support base material, and removing this support base material.

支持基材の材質は特に限定されるものではないが、常温から400℃まで熱処理した場合の熱処理前後での線膨張係数の差や、後に形成されるポリイミド層との線膨張係数との関係は重要であり、それらとの関係から、金属箔であることが好ましい。支持基材となる金属箔としては、銅、アルミニウム、鉄、銀、パラジウム、ニッケル、クロム、モリブデン、タングステン、亜鉛およびそれらの合金等の金属を挙げることができ、これらの中でもステンレス箔、銅箔又は銅を90%以上含む合金銅箔が好ましく、線膨張係数(CTE)が安定していることからステンレス箔が最も好ましい。   The material of the supporting substrate is not particularly limited, but the relationship between the linear expansion coefficient before and after the heat treatment when the heat treatment is performed from room temperature to 400 ° C., and the relationship with the linear expansion coefficient with the polyimide layer formed later is It is important and it is preferable that it is a metal foil from the relationship with them. Examples of the metal foil used as the support base include metals such as copper, aluminum, iron, silver, palladium, nickel, chromium, molybdenum, tungsten, zinc, and alloys thereof. Among these, stainless steel foil and copper foil Alternatively, an alloy copper foil containing 90% or more of copper is preferable, and a stainless steel foil is most preferable because the linear expansion coefficient (CTE) is stable.

支持基材の厚さは、5〜50μmの範囲にあることが必要であり、10〜40μmの範囲にあることがより好ましく、12〜30μmの範囲にあることが特に好ましい。支持基材の厚みが5μmに満たないと、原料の入手が困難な他、積層体製造時のハンドリング性が悪化し、積層体製造時に皺などが生じやすくなる。一方、支持基材の厚みが50μmを超えると、積層体製造時のハンドリング性が悪化するばかりでなく、化学エッチングによる基材除去工程の生産性が劣るものとなる。   The thickness of the supporting base material needs to be in the range of 5 to 50 μm, more preferably in the range of 10 to 40 μm, and particularly preferably in the range of 12 to 30 μm. If the thickness of the supporting substrate is less than 5 μm, it is difficult to obtain the raw materials, handling properties at the time of manufacturing the laminate are deteriorated, and wrinkles are easily generated at the time of manufacturing the laminate. On the other hand, when the thickness of the supporting substrate exceeds 50 μm, not only the handling property at the time of producing the laminate is deteriorated, but also the productivity of the substrate removing step by chemical etching is inferior.

本発明で用いる支持基材は、該支持基材を常温から400℃の温度範囲で温度を変化させた場合の昇温時と降温時との線膨張係数の差Δαが±3ppmの範囲にある事が必要である。線膨張係数の差Δαがこの値よりも大きい支持基材を用いた場合、製造されるポリイミドフィルムの面内における寸法変化率のバラツキが大きくなってしまう。これは、支持基材の熱処理時における線膨張係数(寸法変化率)と、放冷時の線膨張係数(寸法変化率)の差が大きい場合、積層体の各箇所に加熱・冷却ムラによる膨張・収縮差が生じ、その膨張・収縮量の差が結果としてフィルム面内での寸法変化率のバラツキにつながるためと本発明者らは推察する。 The support substrate used in the present invention has a linear expansion coefficient difference Δα 1 between ± 3 ppm when the temperature is raised and lowered when the temperature of the support substrate is changed in the temperature range from room temperature to 400 ° C. There must be something. If the difference [Delta] [alpha] 1 of the linear expansion coefficient using a large supporting substrate than this value, the variation of the dimensional change in the plane of the polyimide film produced increases. This is because when the difference between the linear expansion coefficient (dimensional change rate) during heat treatment of the support substrate and the linear expansion coefficient (dimensional change rate) during cooling is large, expansion due to heating / cooling unevenness at each location of the laminate The present inventors infer that the difference in shrinkage occurs and the difference in the amount of expansion / contraction results in variations in the dimensional change rate in the film plane.

また、本発明で準備される支持基材は、該支持基材上に形成されるポリイミド層との線膨張係数の差Δαが2〜5ppmの範囲にあることが必要である。線膨張係数の差Δαの値が、5ppmよりも大きいと支持基材層とポリイミド層との界面での膨張率の差が大きくなって大きな残留応力を生じ、その結果として寸法変化率が大きなポリイミドフィルムしか得られなくなる。一方、線膨張係数の差Δαの値が2よりも小さい場合も、Δαの値が大きい場合と同様に、大きな残留応力を生じて、寸法変化率が大きくなる。これは、支持基材層の線膨張係数が厚み方向に対してほぼ一定であるのに対し、ポリイミド層の線膨張係数が厚み方向に勾配を持つために、ポリイミド層全体の線膨張係数と支持基材層の線膨張係数を同程度にした場合、支持基材層近傍の樹脂の線膨張係数は支持基材層の線膨張係数よりも小さくなってしまい、結果として膨張率の差が大きくなるためと本発明者らは推察する。 Moreover, the support base material prepared by this invention needs to be in the range whose difference (DELTA) (alpha) 2 of a linear expansion coefficient with the polyimide layer formed on this support base material is 2-5 ppm. The value of the difference [Delta] [alpha] 2 of the coefficient of linear expansion, caused a large residual stress difference in the expansion coefficient at the interface between the large and the supporting substrate layer and the polyimide layer than 5ppm is increased, the dimensional change rate is large as a result Only a polyimide film can be obtained. On the other hand, when the value of the linear expansion coefficient difference Δα 2 is smaller than 2 , as in the case where the value of Δα 2 is large, a large residual stress is generated and the dimensional change rate is increased. This is because the linear expansion coefficient of the support base layer is almost constant in the thickness direction, whereas the linear expansion coefficient of the polyimide layer has a gradient in the thickness direction. When the linear expansion coefficient of the base material layer is set to the same level, the linear expansion coefficient of the resin in the vicinity of the support base material layer becomes smaller than the linear expansion coefficient of the support base material layer, and as a result, the difference in expansion coefficient becomes large. Therefore, the present inventors speculate.

支持基材となる金属箔は、引張り弾性率が55GPa以上であるものが好ましく、この場合、支持基材の厚さは10〜40μmの厚み範囲にあることが好ましい。引張り弾性率が55GPaに満たない金属箔を支持基材に用いた場合、ロールtoロール方式による製造工程の搬送の際に掛かるテンションにより延伸の影響を受けやすく、フィルム面内での寸法変化率のバラツキが大きくなってしまう傾向にある。   The metal foil serving as the supporting substrate preferably has a tensile modulus of 55 GPa or more. In this case, the thickness of the supporting substrate is preferably in the thickness range of 10 to 40 μm. When a metal foil with a tensile modulus of elasticity of less than 55 GPa is used as the support substrate, it is easily affected by stretching due to the tension applied during the manufacturing process by the roll-to-roll method, and the dimensional change rate in the film plane The variation tends to increase.

本発明では、上記した支持基材上にポリイミド層を形成する。このポリイミド層を構成するポリイミドは、一般的に下記一般式(1)で表され、ジアミン成分と酸二無水物成分とを実質的に等モル使用し、有機極性溶媒中で重合する公知の方法によって製造することができる。   In the present invention, a polyimide layer is formed on the support substrate described above. The polyimide constituting this polyimide layer is generally represented by the following general formula (1), and is a known method of polymerizing in an organic polar solvent by using substantially equimolar amounts of a diamine component and an acid dianhydride component. Can be manufactured by.

Figure 2009242676
Figure 2009242676

一般式(1)において、Arは芳香族環を1個以上有する4価の有機基であり、Arは芳香族環を1個以上有する2価の有機基である。そして、Arは酸二無水物の残基ということができ、Arはジアミンの残基ということができる。 In the general formula (1), Ar 1 is a tetravalent organic group having one or more aromatic rings, and Ar 2 is a divalent organic group having one or more aromatic rings. Ar 1 can be referred to as an acid dianhydride residue, and Ar 2 can be referred to as a diamine residue.

酸二無水物としては、例えば、一般式:O(CO)−Ar−(CO)Oによって表される芳香族テトラカルボン酸二無水物が好ましく、下記芳香族酸無水物残基をArとして与えるものが例示される。 As the acid dianhydride, for example, an aromatic tetracarboxylic dianhydride represented by the general formula: O (CO) 2 —Ar 1 — (CO) 2 O is preferable. What is given as Ar 1 is exemplified.

Figure 2009242676
Figure 2009242676

このような酸二無水物は単独で又は2種以上混合して用いることができる。これらの中でも、ピロメリット酸二無水物(PMDA)、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(BTDA)、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物(DSDA)、4,4’−オキシジフタル酸二無水物(ODPA)から選ばれるものを使用することが好ましい。   Such acid dianhydrides can be used alone or in admixture of two or more. Among these, pyromellitic dianhydride (PMDA), 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA), 3,3 ′, 4,4′-benzophenone tetracarboxylic acid It is possible to use one selected from anhydride (BTDA), 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride (DSDA), 4,4′-oxydiphthalic dianhydride (ODPA). preferable.

ジアミンとしては、例えば、一般式:HN−Ar−NHによって表される芳香族ジアミンが挙げられる。好ましいArとしては、次に示す2価の有機基が例示される。 Examples of the diamine include aromatic diamines represented by the general formula: H 2 N—Ar 2 —NH 2 . Preferred examples of Ar 2 include the following divalent organic groups.

Figure 2009242676
Figure 2009242676

これらのジアミンの中でも、ジアミノジフェニルエーテル(DAPE)、2,2’−ジメチル−4,4’−ジアミノビフェニル(m−TB)、パラフェニレンジアミン(p−PDA)、1,3−ビス(4−アミノフェノキシ)ベンゼン(TPE−R)、1,3−ビス(3−アミノフェノキシ)ベンゼン(APB)、1,4−ビス(4−アミノフェノキシ)ベンゼン(TPE−Q)、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン(BAPP)が好適なものとして例示される。   Among these diamines, diaminodiphenyl ether (DAPE), 2,2′-dimethyl-4,4′-diaminobiphenyl (m-TB), paraphenylenediamine (p-PDA), 1,3-bis (4-amino) Phenoxy) benzene (TPE-R), 1,3-bis (3-aminophenoxy) benzene (APB), 1,4-bis (4-aminophenoxy) benzene (TPE-Q), 2,2-bis [4 -(4-Aminophenoxy) phenyl] propane (BAPP) is exemplified as preferred.

重合に用いる溶媒については、例えば、ジメチルアセトアミド、n−メチルピロリジノン、2−ブタノン、ジグライム、キシレン等を挙げることができ、これらについては1種若しくは2種以上を併用して使用することもできる。また、重合して得られたポリアミド酸(ポリイミド前駆体)の樹脂粘度については、500cps〜35000cpsの範囲とすることが好ましい。   Examples of the solvent used for polymerization include dimethylacetamide, n-methylpyrrolidinone, 2-butanone, diglyme, xylene, and the like. These can be used alone or in combination of two or more. The resin viscosity of the polyamic acid (polyimide precursor) obtained by polymerization is preferably in the range of 500 cps to 35000 cps.

前記支持基材上に形成されるポリイミド層は、単層からなるものであっても複数層からなるものであってもよいが、製造されるフィルムの寸法安定性やカールの低減、積層体基板用途に用いる際に銅箔との接着強度を優れたものとするためには、複数層とすることが好ましい。ポリイミド層を複数層とする場合、線膨張係数(CTE)が30ppm[1/K]以下、好ましくは1〜30ppm[1/K]の範囲の低線膨張性ポリイミド層(B)を主たるポリイミド層とし、その片面又は両面に熱可塑性ポリイミド層(A)を設けることが好ましい。   The polyimide layer formed on the support substrate may be composed of a single layer or a plurality of layers. However, the dimensional stability and curl of the produced film are reduced, and the laminate substrate. In order to make the adhesive strength with the copper foil excellent when used for applications, it is preferable to have a plurality of layers. In the case where a plurality of polyimide layers are used, the main polyimide layer is a low linear expansion polyimide layer (B) having a linear expansion coefficient (CTE) of 30 ppm [1 / K] or less, preferably in the range of 1 to 30 ppm [1 / K]. It is preferable to provide the thermoplastic polyimide layer (A) on one side or both sides.

ここで、熱可塑性ポリイミド層(A)とは、線膨張係数(CTE)が30ppm[1/K]を超え、ガラス転移温度が330℃以下にあるものを言う。好ましい熱可塑性ポリイミド層の線膨張係数は、30〜60ppm[1/K]で、ガラス転移温度が200〜330℃の範囲にあるものである。低線膨張性ポリイミド層(B)の線膨張係数が30ppm[1/K]より大きいと、銅張積層板を形成した際のカールが激しくなる傾向にあり、また、寸法安定性が低下する傾向にあるため製品として好ましくない。低線膨張性ポリイミド層(B)の厚みは、全ポリイミド樹脂層の厚みの50%以上であることが好ましく、70〜95%であることがより好ましい。   Here, the thermoplastic polyimide layer (A) refers to a layer having a linear expansion coefficient (CTE) exceeding 30 ppm [1 / K] and a glass transition temperature of 330 ° C. or lower. The linear expansion coefficient of a preferable thermoplastic polyimide layer is 30 to 60 ppm [1 / K], and the glass transition temperature is in the range of 200 to 330 ° C. When the linear expansion coefficient of the low linear expansion polyimide layer (B) is larger than 30 ppm [1 / K], curling tends to become severe when a copper clad laminate is formed, and dimensional stability tends to decrease. Therefore, it is not preferable as a product. The thickness of the low linear expansion polyimide layer (B) is preferably 50% or more of the total polyimide resin layer thickness, and more preferably 70 to 95%.

このようにしてポリイミド層を構成することができるが、支持基材上に形成されるポリイミド層の線膨張係数は、15〜25ppmの範囲とすることが必要である。ポリイミド樹脂層の線膨張係数をこの範囲とするには、上記低熱膨張係数を構成する原料モノマーを適宜選択するとともに、ポリイミド層を複数とする場合、低線膨張性ポリイミド層(B)と熱可塑性ポリイミド層(A)との層構成や厚み、そのほかイミド化時の硬化条件などを適宜制御することで容易に調整することができる。   Thus, although a polyimide layer can be comprised, it is necessary to make the linear expansion coefficient of the polyimide layer formed on a support base material into the range of 15-25 ppm. In order to set the linear expansion coefficient of the polyimide resin layer within this range, the raw material monomer constituting the low thermal expansion coefficient is appropriately selected, and when a plurality of polyimide layers are used, the low linear expansion polyimide layer (B) and thermoplasticity It can be easily adjusted by appropriately controlling the layer structure and thickness with the polyimide layer (A) and the curing conditions during imidization.

ポリイミド層を形成する方法については特に限定されないが、例えば、以下の方法が好ましい。即ち、ポリイミドの前駆体であるポリアミド酸の樹脂溶液を、支持基材上に直接塗布し、樹脂溶液に含まれる溶剤を150℃以下の温度である程度除去した後、更に、100〜450℃(より好ましくは300〜450℃)の温度範囲で5〜40分間程度の熱処理を行って、溶媒の除去及びイミド化を行う。2層以上にポリイミド層を設ける場合は、第一のポリアミド酸の樹脂溶液を塗布、乾燥したのち、第二のポリアミド酸の樹脂溶液を塗布、乾燥し、以下同様にして第三以下のポリアミド酸の樹脂溶液を順次、塗布、乾燥した後、まとめて300〜450℃の温度範囲で5〜40分間程度の熱処理を行って、イミド化を行うことが好ましい。熱処理の温度が100℃より低いとポリイミドの脱水閉環反応が十分に進行しない傾向にあり、他方、450℃を超えると、ポリイミド樹脂層が酸化等により劣化する傾向にある。   Although the method for forming the polyimide layer is not particularly limited, for example, the following method is preferable. That is, a polyamide acid resin solution, which is a precursor of polyimide, is directly applied onto a support substrate, and the solvent contained in the resin solution is removed to some extent at a temperature of 150 ° C. or lower. The solvent is removed and imidized by performing a heat treatment in a temperature range of preferably 300 to 450 ° C. for about 5 to 40 minutes. When the polyimide layer is provided in two or more layers, the first polyamic acid resin solution is applied and dried, and then the second polyamic acid resin solution is applied and dried. After sequentially applying and drying the resin solutions, it is preferable to perform imidization by collectively performing a heat treatment at a temperature range of 300 to 450 ° C. for about 5 to 40 minutes. If the temperature of the heat treatment is lower than 100 ° C., the dehydration ring-closing reaction of polyimide does not proceed sufficiently. On the other hand, if it exceeds 450 ° C., the polyimide resin layer tends to deteriorate due to oxidation or the like.

ポリイミド層の厚さは、8〜50μmの範囲とすることが好ましく、9〜40μmの範囲とすることがより好ましい。樹脂層の厚みが8μmに満たないと、支持基材を除去した後に搬送時にシワが入るなどの不具合が生じ易くなる傾向にあり、他方、50μmを超えると、フレキシブル配線基板として用いた際に屈曲性等が低くなる傾向にある。   The thickness of the polyimide layer is preferably in the range of 8 to 50 μm, and more preferably in the range of 9 to 40 μm. If the thickness of the resin layer is less than 8 μm, there is a tendency to cause problems such as wrinkling during transportation after removing the supporting base material. On the other hand, if the thickness exceeds 50 μm, it will be bent when used as a flexible wiring board. Tend to be low.

本発明において、前記支持基材上に前記ポリイミド層を形成した後、任意の方法で支持基材を除去することでポリイミドフィルムを得ることができる。支持基材を除去する方法としては、ポリイミドフィルムを剥離する方法や支持基材を化学エッチングにより除去する方法などが挙げられるが、ポリイミドフィルムに余分な応力を掛けないことでより寸法安定性の良好なポリイミドフィルムが得られることから、化学エッチングにより除去する方法が有利である。例えば、支持基材層に銅箔を用いた場合には、塩化第二鉄水溶液等の公知のエッチング液を用いることで除去が可能である。   In this invention, after forming the said polyimide layer on the said support base material, a polyimide film can be obtained by removing a support base material by arbitrary methods. Examples of the method for removing the supporting substrate include a method for peeling the polyimide film and a method for removing the supporting substrate by chemical etching. However, the dimensional stability is improved by not applying excessive stress to the polyimide film. Since a polyimide film can be obtained, a method of removing by chemical etching is advantageous. For example, when a copper foil is used for the support base material layer, it can be removed by using a known etching solution such as a ferric chloride aqueous solution.

本発明によって製造されたポリイミドフィルムは、微細配線形成用に適して用いられるが、ポリイミドフィルムに導体金属層を設ける方法は特に制限されるものでなく、例えば、ポリイミドフィルムの表面にスパッタ処理により導通層を形成した後、電気メッキにより導体層を形成するスパッタメッキ法が好適に採用される。その他、銅箔を加熱加圧下に積層してもよい。   The polyimide film produced according to the present invention is suitably used for forming fine wiring, but the method of providing a conductive metal layer on the polyimide film is not particularly limited. For example, the polyimide film surface is conductive by sputtering. A sputter plating method in which a conductor layer is formed by electroplating after the layer is formed is preferably employed. In addition, a copper foil may be laminated under heat and pressure.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、以下の実施例において、特に断りのない限り各種評価については下記によるものである。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example. In the following Examples, various evaluations are as follows unless otherwise specified.

[線膨張係数(CTE)の測定:支持基材及びポリイミドフィルムの線膨張係数(CTE)の測定]
支持基材又はポリイミドフィルム(3mm×15mm)を測定サンプルとして、熱機械分析(TMA)装置にて5.0gの荷重を加えながら20℃/minの昇温速度で25℃から400℃まで昇温し、60分間保持した後、25℃まで5℃/minの降温速度で温度を下げた。降温過程での温度変化に対する測定サンプルの伸縮(収縮量)から線膨張係数を測定した。
[Measurement of linear expansion coefficient (CTE): measurement of linear expansion coefficient (CTE) of support base material and polyimide film]
Using a supporting substrate or a polyimide film (3 mm × 15 mm) as a measurement sample, the temperature was increased from 25 ° C. to 400 ° C. at a temperature increase rate of 20 ° C./min while applying a 5.0 g load with a thermomechanical analysis (TMA) apparatus. Then, after holding for 60 minutes, the temperature was lowered to 25 ° C. at a rate of 5 ° C./min. The linear expansion coefficient was measured from the expansion and contraction (shrinkage amount) of the measurement sample with respect to the temperature change in the temperature lowering process.

[支持基材を常温から400℃の温度範囲で温度を変化させた場合の昇温時と降温時との線膨張係数の差Δαの測定]
支持基材(3mm×15mm)を測定サンプルとして、熱機械分析(TMA)装置にて5.0gの荷重を加えながら20℃/minの昇温速度で25℃から400℃まで昇温し、60分間保持した後、25℃まで5℃/minの降温速度で温度を下げた。この際に測定された昇温過程での線膨張係数の値(α)と降温過程での線膨張係数の値(α)を測定し、その差を常温(25℃)から400℃の温度範囲で温度を変化させた場合の昇温時と降温時との線膨張係数の差Δαとした。
[Measurement of the difference Δα 1 in linear expansion coefficient between when the temperature is raised and when the temperature of the supporting substrate is changed in the temperature range from room temperature to 400 ° C.]
Using a supporting substrate (3 mm × 15 mm) as a measurement sample, the temperature was raised from 25 ° C. to 400 ° C. at a temperature rising rate of 20 ° C./min while applying a 5.0 g load with a thermomechanical analysis (TMA) apparatus. After holding for a minute, the temperature was lowered to 25 ° C. at a rate of 5 ° C./min. The value of the linear expansion coefficient (α h ) in the temperature rising process and the value of the linear expansion coefficient (α L ) in the temperature lowering process measured at this time are measured, and the difference is measured from room temperature (25 ° C.) to 400 ° C. The difference in linear expansion coefficient Δα 1 between when the temperature was raised and when the temperature was lowered when the temperature was changed in the temperature range was set.

[エッチング寸法変化率の測定]
IPC‐TM‐650、2.2.4 B項に記載された方法に従い、幅250mm、長さ250mmに切り出した積層体(ポリイミドフィルム)の任意の箇所に測定用のマークを形成した試験片を作成し、エッチング前後での寸法変化率を求めた。
[Measurement of etching dimensional change rate]
In accordance with the method described in IPC-TM-650, Section 2.2.4 B, a test piece in which a mark for measurement was formed at an arbitrary position of a laminate (polyimide film) cut into a width of 250 mm and a length of 250 mm. The dimensional change rate before and after etching was determined.

(合成例1)
熱電対及び攪拌機を備えると共に窒素導入が可能な反応容器に、N,N−ジメチルアセトアミドを入れた。この反応容器に2,2’−ジメチル−4,4’−ジアミノビフェニル(m−TB)を容器中で撹拌しながら溶解させた。次に、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物およびピロメリット酸二無水物(PMDA)を加えた。モノマーの投入総量が15wt%で、各酸無水物のモル比率(BPDA:PMDA)が20:80となるように投入した。その後、3時間撹拌を続け、ポリアミド酸の樹脂溶液aを得た。ポリアミド酸の樹脂溶液aの溶液粘度は20,000cpsであった。
(Synthesis Example 1)
N, N-dimethylacetamide was placed in a reaction vessel equipped with a thermocouple and a stirrer and capable of introducing nitrogen. 2,2′-Dimethyl-4,4′-diaminobiphenyl (m-TB) was dissolved in this reaction vessel with stirring. Next, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and pyromellitic dianhydride (PMDA) were added. The total amount of monomers charged was 15 wt%, and the molar ratio of each acid anhydride (BPDA: PMDA) was 20:80. Thereafter, stirring was continued for 3 hours to obtain a resin solution a of polyamic acid. The solution viscosity of the polyamic acid resin solution a was 20,000 cps.

(合成例2)
熱電対及び攪拌機を備えると共に窒素導入が可能な反応容器に、N,N−ジメチルアセトアミドを入れた。この反応容器に2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパンを容器中で撹拌しながら溶解させた。次に、ピロメリット酸二無水物を加え、モノマーの投入総量が12wt%となるようにした。その後、3時間撹拌を続け、ポリアミド酸の樹脂溶液bを得た。ポリアミド酸の樹脂溶液bの溶液粘度は3,000cpsであった。
(Synthesis Example 2)
N, N-dimethylacetamide was placed in a reaction vessel equipped with a thermocouple and a stirrer and capable of introducing nitrogen. 2,2-bis [4- (4-aminophenoxy) phenyl] propane was dissolved in the reaction vessel with stirring. Next, pyromellitic dianhydride was added so that the total amount of monomers was 12 wt%. Thereafter, stirring was continued for 3 hours to obtain a resin solution b of polyamic acid. The solution viscosity of the polyamide acid resin solution b was 3,000 cps.

(実施例1)
表1に示した特性を有するステンレス箔1を支持基材とし、この支持基材上に、合成例2で調製したポリアミド酸の樹脂溶液bを硬化後の厚みが2μmとなるように塗布し、次いで、合成例1で調整したポリアミド酸の樹脂溶液aを硬化後の厚みが33μmとなるように塗布し、乾燥後、最終的に300℃以上で約10分間熱処理を行い、支持基材上のポリイミド層の厚みが35μmである積層体を得た。この積層体の支持基材を塩化第二鉄水溶液によって全面エッチングし、積層体から支持基材層を全て除去した。得られたポリイミドフィルムの線膨張係数は21ppmであり、積層体とポリイミドフィルムの線膨張係数の差Δαは3ppmであった。また、エッチング前後での寸法変化率はMD方向で0.012%、TD方向で−0.009%であった。評価結果を表1に示す。
Example 1
The stainless steel foil 1 having the characteristics shown in Table 1 was used as a supporting base, and the polyamic acid resin solution b prepared in Synthesis Example 2 was applied onto the supporting base so that the thickness after curing was 2 μm. Next, the polyamic acid resin solution a prepared in Synthesis Example 1 was applied so that the thickness after curing was 33 μm, dried, and finally subjected to heat treatment at 300 ° C. or higher for about 10 minutes. A laminate having a polyimide layer thickness of 35 μm was obtained. The entire surface of the support substrate of this laminate was etched with an aqueous ferric chloride solution, and all of the support substrate layer was removed from the laminate. The resulting polyimide film had a linear expansion coefficient of 21 ppm, and the difference Δα 2 in linear expansion coefficient between the laminate and the polyimide film was 3 ppm. Further, the dimensional change rate before and after etching was 0.012% in the MD direction and -0.009% in the TD direction. The evaluation results are shown in Table 1.

(実施例2)
表1に示した特性を有する銅箔1を支持基材とし、実施例1と同様の方法で、厚みが40μmであるポリイミドフィルムを得た。なお、この際、合成例2で調製したポリアミド酸の樹脂溶液bを用いて得られたポリイミド層の厚みは2μmであり、合成例1で調製したポリアミド酸の樹脂溶液aを用いて得られたポリイミド層の厚みは38μmであった。得られたポリイミドフィルムの線膨張係数は21ppmであり、積層体とポリイミドフィルムの線膨張係数の差Δαは4ppmであった。エッチング寸法変化率はMD方向で0.014%、TD方向で−0.005%であった。評価結果を表1に示す。
(Example 2)
A polyimide film having a thickness of 40 μm was obtained in the same manner as in Example 1 using the copper foil 1 having the characteristics shown in Table 1 as a supporting substrate. At this time, the thickness of the polyimide layer obtained using the polyamic acid resin solution b prepared in Synthesis Example 2 was 2 μm, and was obtained using the polyamic acid resin solution a prepared in Synthesis Example 1. The thickness of the polyimide layer was 38 μm. The resulting polyimide film had a linear expansion coefficient of 21 ppm, and the difference Δα 2 in linear expansion coefficient between the laminate and the polyimide film was 4 ppm. The etching dimensional change rate was 0.014% in the MD direction and -0.005% in the TD direction. The evaluation results are shown in Table 1.

(比較例1)
表1に示した特性を有するステンレス箔2を支持基材とし、実施例1と同様の方法で、厚みが35μmであるポリイミドフィルムを得た。得られたポリイミドフィルムの線膨張係数は21ppmであり、積層体とポリイミドフィルムの線膨張係数の差Δαは6ppmであった。エッチング寸法変化率はMD方向で−0.023%、TD方向で−0.022%であった。評価結果を表1に示す。
(Comparative Example 1)
A polyimide film having a thickness of 35 μm was obtained in the same manner as in Example 1 using the stainless steel foil 2 having the characteristics shown in Table 1 as a supporting substrate. The resulting polyimide film had a linear expansion coefficient of 21 ppm, and the difference Δα 2 in linear expansion coefficient between the laminate and the polyimide film was 6 ppm. The etching dimensional change rate was -0.023% in the MD direction and -0.022% in the TD direction. The evaluation results are shown in Table 1.

(比較例2)
表1に示した特性を有する銅箔2を支持基材とし、実施例2と同様の方法で、厚みが40μmであるポリイミドフィルムを得た。得られたポリイミドフィルムの線膨張係数は20ppmであり、積層体とポリイミドフィルムの線膨張係数の差Δαは3.0ppmであった。エッチング寸法変化率はMD方向で0.032%、TD方向で0.023%であった。
(Comparative Example 2)
A polyimide film having a thickness of 40 μm was obtained in the same manner as in Example 2 using the copper foil 2 having the characteristics shown in Table 1 as a supporting substrate. The resulting polyimide film had a linear expansion coefficient of 20 ppm, and the difference Δα 2 in linear expansion coefficient between the laminate and the polyimide film was 3.0 ppm. The etching dimensional change rate was 0.032% in the MD direction and 0.023% in the TD direction.

(比較例3)
表1に示した特性を有する銅箔3を支持基材とし、実施例2と同様の方法で、厚みが40μmであるポリイミドフィルムを得た。得られたポリイミドフィルムの線膨張係数は17ppmであり、積層体とポリイミドフィルムの線膨張係数の差Δαは0ppmであった。エッチング寸法変化率はMD方向で0.103%、TD方向で0.081%であった。
(Comparative Example 3)
A polyimide film having a thickness of 40 μm was obtained in the same manner as in Example 2 using the copper foil 3 having the characteristics shown in Table 1 as a supporting substrate. The resulting polyimide film had a linear expansion coefficient of 17 ppm, and the difference Δα 2 in linear expansion coefficient between the laminate and the polyimide film was 0 ppm. The etching dimensional change rate was 0.103% in the MD direction and 0.081% in the TD direction.

Figure 2009242676
Figure 2009242676

表1に示した結果から明らかなように、本発明の方法によって製造されたポリイミドフィルム(実施例1〜2)は、本発明の条件を満たさない方法によって製造されたポリイミドフィルム(比較例1〜3)に比べて寸法安定性が非常に優れていることが確認された。   As is clear from the results shown in Table 1, the polyimide films produced by the method of the present invention (Examples 1 and 2) are polyimide films produced by the method not satisfying the conditions of the present invention (Comparative Examples 1 and 2). Compared with 3), it was confirmed that the dimensional stability was very excellent.

以上説明したように、本発明によれば、COF用途に代表される微細配線形成された配線基板に用いられるポリイミドフィルムとして、ポリイミド本来の持つ耐熱性などの特性に加えて、従来のポリイミドフィルムに比べてより寸法安定性に優れており、30μmピッチ以下のファインピッチでの実装においても接続不良を起こさず安定してチップ実装可能な配線基板に用いられるポリイミドフィルムを提供することが可能となる。   As described above, according to the present invention, as a polyimide film used for a wiring board formed with fine wiring represented by COF applications, in addition to the characteristics such as heat resistance inherent in polyimide, Compared to this, it is possible to provide a polyimide film that is more excellent in dimensional stability and used for a wiring board that can be stably mounted on a chip without causing a connection failure even when mounted at a fine pitch of 30 μm or less.

したがって、本発明は、配線幅30μmピッチ以下の微細配線形成用として用いられる微細配線形成用ポリイミドフィルムを製造する方法として特に有用である。   Therefore, the present invention is particularly useful as a method for producing a fine wiring forming polyimide film used for forming a fine wiring having a wiring width of 30 μm or less.

Claims (4)

支持基材上にポリイミド層を形成した後、該支持基材を除去して得られるポリイミドフィルムの製造方法であって、該支持基材の厚みが5〜50μmの範囲にあり、該支持基材を常温から400℃の温度範囲で温度を変化させた場合の昇温時と降温時との線膨張係数の差Δαが±3ppmの範囲にあり、かつ該支持基材上に形成するポリイミド層との線膨張係数の差Δαが2〜5ppmの範囲にある支持基材を準備し、該支持基材上にイミド化した場合のポリイミド層の線膨張係数が15〜25ppmの範囲となるポリイミド前駆体の樹脂溶液を塗布し、乾燥及びイミド化のための熱処理を行いポリイミド層を形成した後、該支持基材を全面除去してポリイミドフィルムを得ることを特徴とするポリイミドフィルムの製造方法。 A method for producing a polyimide film obtained by forming a polyimide layer on a supporting substrate and then removing the supporting substrate, wherein the thickness of the supporting substrate is in the range of 5 to 50 μm, and the supporting substrate The difference in linear expansion coefficient Δα 1 between when the temperature is raised and when the temperature is lowered when the temperature is changed in the temperature range from room temperature to 400 ° C. is in the range of ± 3 ppm, and the polyimide layer formed on the support substrate A polyimide having a linear expansion coefficient of 15 to 25 ppm in the case of preparing a support base material having a linear expansion coefficient difference Δα 2 in the range of 2 to 5 ppm and imidizing on the support base material A method for producing a polyimide film, comprising: applying a resin solution of a precursor; performing heat treatment for drying and imidization to form a polyimide layer; and then removing the entire support substrate to obtain a polyimide film. 前記支持基材が、10〜40μmの厚さの金属箔であり、かつ55GPa以上の引張り弾性率を有するものであることを特徴とする請求項1に記載のポリイミドフィルムの製造方法。   2. The method for producing a polyimide film according to claim 1, wherein the support base is a metal foil having a thickness of 10 to 40 μm and a tensile elastic modulus of 55 GPa or more. 前記ポリイミドフィルムの厚さが8〜50μmの範囲にあることを特徴とする請求項1又は2に記載のポリイミドフィルムの製造方法。   The thickness of the said polyimide film exists in the range of 8-50 micrometers, The manufacturing method of the polyimide film of Claim 1 or 2 characterized by the above-mentioned. 前記ポリイミドフィルムが、配線幅30μmピッチ以下の微細配線形成用として用いられるものであることを特徴とする請求項1〜3のうちのいずれか一項に記載のポリイミドフィルムの製造方法。   The method for producing a polyimide film according to any one of claims 1 to 3, wherein the polyimide film is used for forming a fine wiring having a wiring width of 30 µm or less.
JP2008092705A 2008-03-31 2008-03-31 Method of manufacturing polyimide film Withdrawn JP2009242676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008092705A JP2009242676A (en) 2008-03-31 2008-03-31 Method of manufacturing polyimide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008092705A JP2009242676A (en) 2008-03-31 2008-03-31 Method of manufacturing polyimide film

Publications (1)

Publication Number Publication Date
JP2009242676A true JP2009242676A (en) 2009-10-22

Family

ID=41304950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008092705A Withdrawn JP2009242676A (en) 2008-03-31 2008-03-31 Method of manufacturing polyimide film

Country Status (1)

Country Link
JP (1) JP2009242676A (en)

Similar Documents

Publication Publication Date Title
JP5180814B2 (en) Laminated body for flexible wiring board
JP2017165909A (en) Polyimide, resin film, and metal clad laminate
JP2011031603A (en) Metalized polyimide film, flexible wiring board, and method for manufacturing the same
JP7053208B2 (en) Polyimide film, metal-clad laminate and circuit board
JP2006336011A (en) Polyimide resin and method for producing the same
KR101333808B1 (en) Laminate for wiring board
TWI771500B (en) Polyimide film, metal-clad laminate and circuit substrate
JP2008087254A (en) Flexible copper-clad laminate and flexible copper clad laminate with carrier
JP4994992B2 (en) Laminate for wiring board and flexible wiring board for COF
JP2004124091A (en) Polyimide film, its manufacturing method and its use
JP7453432B2 (en) Metal-clad laminates and circuit boards
JP2008135759A (en) Base substrate for printed wiring board and multilayer printed wiring board that use polyimide benzoxazole film as insulating layer
JP7230148B2 (en) Metal-clad laminates and circuit boards
JP2020104390A (en) Metal-clad laminate, method for manufacturing the same, and circuit board
JP7405644B2 (en) Metal-clad laminates and circuit boards
JP4805173B2 (en) Multilayer laminate and method for producing flexible copper clad laminate
JP4721657B2 (en) Polyimide benzoxazole film
JP6776087B2 (en) Manufacturing method of metal-clad laminate and manufacturing method of circuit board
JP2009242676A (en) Method of manufacturing polyimide film
KR102543928B1 (en) Metal-clad laminate and circuit board
JP7453434B2 (en) Metal-clad laminates and circuit boards
JP7453433B2 (en) Metal-clad laminates and circuit boards
JP4577833B2 (en) Method for manufacturing flexible laminated substrate
JP5009714B2 (en) Laminated body for flexible wiring board and flexible wiring board for COF
JP2024046788A (en) Circuit board manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110607