JPH06232553A - Single-sided flexible copper plated board for lamination - Google Patents

Single-sided flexible copper plated board for lamination

Info

Publication number
JPH06232553A
JPH06232553A JP1371693A JP1371693A JPH06232553A JP H06232553 A JPH06232553 A JP H06232553A JP 1371693 A JP1371693 A JP 1371693A JP 1371693 A JP1371693 A JP 1371693A JP H06232553 A JPH06232553 A JP H06232553A
Authority
JP
Japan
Prior art keywords
polyimide film
adhesive
lamination
sided
copper foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1371693A
Other languages
Japanese (ja)
Inventor
Hiroshi Nomura
宏 野村
Junichi Imaizumi
純一 今泉
Koichi Nagao
孝一 長尾
Masakatsu Suzuki
正勝 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP1371693A priority Critical patent/JPH06232553A/en
Publication of JPH06232553A publication Critical patent/JPH06232553A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)
  • Laminated Bodies (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PURPOSE:To obtain a single-sided flexible copper plated board which is enhanced in dimensional stability, heat resistance, and adhesive properties by a method wherein a polyimide film is bonded to a copper foil with adhesive agent specified in glass transition temperature, and the side of the polyimide film opposite to the copper foil is roughened. CONSTITUTION:A polyimide film 3 serving as a board and a copper foil 1 serving as a circuit are bonded together with polyimide adhesive agent 2 whose glass transition temperature is 200 to 250 deg.C, and the side of the polyimide film 3 opposite to the copper foil 1 is mechanically roughened to 0.4 to 1.0mum in average roughness. By this setup, the glass transition temperature of the adhesive agent 2 used for a single-sided flexible copper plate becomes 200 deg.C or above, so that the adhesive agent 2 is hardly softened by heat at lamination, and the formed circuit is restrained from getting out of place or getting out of position due to the shrinkage of a base material. As the surface of the polyimide film 3 is roughened, a single-sided flexible copper board is enhanced in adhesive power and reliability after lamination.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多層印刷配線板をはじ
め、他の基材や部品等の接続用として用いられるポリイ
ミドフィルムを基材とした片面フレキシブル銅張板に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single-sided flexible copper clad board having a polyimide film as a base material, which is used for connecting other base materials and parts such as multilayer printed wiring boards.

【0002】[0002]

【従来の技術】現在、電子機器は軽薄短小化し、その電
子機器に用いられる印刷配線板も薄型化、多層化、微細
化等が要求されている。それらの要求に対し、フレキシ
ブル印刷配線板(以下FPCと略す)は、薄型化が可
能、折り曲げが可能である為の組み込みスペースの有効
活用が可能等の多くの利点を持っている。この為にFP
Cは、配線板と配線板、配線板と他の部品間の単純な電
気的接続のみならず、多層印刷配線(以下MLBと略
す)や半導体等の実装基板としても用いられることが多
くなっており、その需要が増加しているばかりでなく、
要求特性も高度化している。上記用途の中でも特に他の
材料と熱圧着法により積層されるような場合、例えばM
LBの場合は層間に接着剤(以下層間接着剤とする)を
介して熱プレスされる。また半導体実装用として使用さ
れる場合には、回路とは反対側に金属板等を熱圧着し、
放熱性を向上させる場合がある。これらの積層用として
は、片面FPC、両面FPCが用いられるが、片面FP
Cの場合に従来のポリイミドフィルム/ゴム成分を多量
に含む接着剤/銅箔の構成より成るFPCでは、以下の
問題がある。
2. Description of the Related Art At present, electronic devices are becoming lighter, thinner, shorter, and smaller, and printed wiring boards used in the electronic devices are also required to be thin, multilayer, and miniaturized. In response to these demands, a flexible printed wiring board (hereinafter abbreviated as FPC) has many advantages such as thinness and effective use of a built-in space because it can be bent. For this reason FP
C is often used not only as a simple electrical connection between a wiring board and a wiring board or between a wiring board and another component, but also as a mounting board for a multilayer printed wiring (hereinafter abbreviated as MLB) or a semiconductor. And not only is the demand increasing,
The required characteristics are also becoming more sophisticated. Among the above applications, in the case of being laminated with another material by thermocompression bonding, for example, M
In the case of LB, heat pressing is performed through an adhesive agent (hereinafter referred to as an interlayer adhesive agent) between layers. Also, when used for semiconductor mounting, thermocompression bonding a metal plate etc. on the side opposite to the circuit,
It may improve heat dissipation. For stacking these, single-sided FPC and double-sided FPC are used.
In the case of C, the conventional FPC having the composition of polyimide film / adhesive containing a large amount of rubber component / copper foil has the following problems.

【0003】基材と銅箔を貼り合わせるために用いら
れている接着剤が、エポキシ系やアクリルゴム系、及び
それらの混合物であり、ガラス転移温度が100〜15
0℃と低いため、FPCの積層時の熱により、金属箔を
エッチング加工して形成した回路が動いたり、また接着
剤層の熱収縮により位置ずれが生じる。 他の材料とは、層間にプリプレグ接着剤(以下層間接
着剤とする)を挟んで熱プレス法により接着させるのが
通常である。この時に金属箔をエッチング加工した面
は、金属箔の粗化の状態が接着剤表面に転写されてお
り、その形状により接着性は良好であるが、反対のポリ
イミドフィルムの表面は平滑であり、かつ化学的にも安
定な為接着性が悪い。以上の問題点により、積層用に従
来の片面FPCを用いた場合には、信頼性の高い製品を
作ることが困難となる。また、積層時の接着力を向上さ
せるために、積層前にポリイミドフィルムの表面をアル
カリ性の水溶液で処理し、その後表面をカップリング剤
やプライマー処理を施して接着力を向上させることも可
能であるが、工数増による高価格化は避けられない。
The adhesive used to bond the base material and the copper foil is an epoxy type, an acrylic rubber type, or a mixture thereof, and has a glass transition temperature of 100 to 15
Since the temperature is as low as 0 ° C., the circuit formed by etching the metal foil may move due to the heat at the time of laminating the FPC, or the position may be displaced due to the heat shrinkage of the adhesive layer. The other material is usually bonded by a hot pressing method with a prepreg adhesive (hereinafter referred to as an interlayer adhesive) sandwiched between the layers. At this time, the surface processed by etching the metal foil, the roughened state of the metal foil is transferred to the adhesive surface, the adhesiveness is good due to its shape, the surface of the opposite polyimide film is smooth, Also, it is chemically stable and has poor adhesion. Due to the above problems, when a conventional single-sided FPC is used for stacking, it is difficult to manufacture a highly reliable product. Further, in order to improve the adhesive strength at the time of lamination, it is also possible to treat the surface of the polyimide film with an alkaline aqueous solution before laminating, and then subject the surface to a coupling agent or a primer treatment to improve the adhesive strength. However, it is inevitable that the price will increase due to the increase in man-hours.

【0004】[0004]

【発明が解決しようとする課題】本発明はかかる状況に
鑑みなされたものであり、寸法安定性、耐熱性並びに接
着特性にすぐれ、信頼性の高い積層用に適した片面フレ
キシブル銅張板(以下片面MCFと略す)を提供するも
のである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has a single-sided flexible copper clad plate (hereinafter referred to as a flexible single-sided flexible copper clad plate, which has excellent dimensional stability, heat resistance, and adhesive properties and is suitable for lamination. One-sided MCF).

【0005】[0005]

【課題を解決するための手段】上記のような目的を達成
するために鋭意検討した結果、以下の結論を得た。基板
となるポリイミドフィルムと回路となる銅箔との接着に
は、ガラス転移温度が200〜250℃程度となるポリ
イミド系接着剤を用い、かつポリイミドフィルムの銅箔
の反対側は機械的に粗化し、その表面粗さは、平均粗さ
で0.4〜1.0μmとした。図1に本発明による片面
MCFの概略を示した。本発明による構成とすること
で、片面MCFに使用される接着材のガラス転移温度は
200℃以上となり、通常の積層温度が170〜190
℃であるので、積層時の熱により軟化することはなく、
形成した回路のずれや基材の収縮による位置ずれは微小
にすることができる。また、層間接着剤と接着力におい
ては、ポリイミドフィルムの表面が粗化されている為に
安定した接着力が得られ、積層後の信頼性が高い。ま
た、ポリイミドフィルムの粗化は片面MCFの製造の前
に実施され、連続したロール品による処理が可能であ
り、価格の上昇は積層直前にアルカリ性水溶液等で表面
処理するよりも、はるかに安価にすむ。
[Means for Solving the Problems] As a result of intensive studies to achieve the above-mentioned object, the following conclusions were obtained. A polyimide adhesive having a glass transition temperature of about 200 to 250 ° C. is used for adhesion between the polyimide film as a substrate and the copper foil as a circuit, and the opposite side of the copper foil of the polyimide film is mechanically roughened. The average surface roughness was 0.4 to 1.0 μm. FIG. 1 schematically shows a single-sided MCF according to the present invention. With the configuration according to the present invention, the glass transition temperature of the adhesive used for the one-sided MCF is 200 ° C. or higher, and the normal lamination temperature is 170 to 190.
Since it is ℃, it does not soften due to heat during lamination,
The displacement of the formed circuit and the displacement due to the contraction of the base material can be made minute. Regarding the interlayer adhesive and the adhesive force, a stable adhesive force is obtained because the surface of the polyimide film is roughened, and the reliability after lamination is high. In addition, the roughening of the polyimide film is performed before the production of the single-sided MCF, and it is possible to treat with a continuous roll product, and the price increase is much cheaper than the surface treatment with an alkaline aqueous solution or the like immediately before lamination. I'm sorry.

【0006】[0006]

【作用】以上述べた通り、本発明による片面MCFを用
いることにより、積層時の熱の影響を受けず、またMC
Fと他の材料との接着力が良好な為に、信頼性の高い製
品を作ることができる。そればかりか、追加する工程は
ポリイミドフィルム単体での表面粗化処理のみであり、
それも連続したロール品で処理可能である為、価格の上
昇は少なくて済む。
As described above, by using the single-sided MCF according to the present invention, it is not affected by heat during lamination and the MC
Since the adhesive force between F and other materials is good, a highly reliable product can be manufactured. Not only that, the additional step is only surface roughening treatment with a polyimide film alone,
Since it can be processed with continuous rolls, the price increase is small.

【0007】[0007]

【実施例】以下に図2に示した実施例をもとに本発明を
説明する。本実施例は、ガラスエポキシ両面印刷配線板
上に、本発明による片面MCFを加工した片面FPCを
積層したものであり、そのサイズは約200mm角であ
る。本実施例に用いた片面MCFの構成は以下の通りで
ある。銅箔としては、日本鉱業(株)製JTC箔(電解
銅箔:35μm厚さ)を用い、接着剤としては、特願平
3−302734号に示されるポリイミド系接着剤を用
いた。本接着剤はガラス転移温度が200〜250℃と
高い。また基材となるポリイミドフィルムとしては、カ
プトン100H(デュポン社製ポリイミドフィルム)を
用いた。また、このポリイミドフィルムは片面MCFの
製造前に片側にサンドブラスト処理を施してあり、表面
の平均粗さは0.5〜0.7μmに粗化してある。片面
MCFの製造は以下の通りに実施した。
The present invention will be described below with reference to the embodiment shown in FIG. In this embodiment, a single-sided FPC obtained by processing the single-sided MCF according to the present invention is laminated on a glass epoxy double-sided printed wiring board, and its size is about 200 mm square. The structure of the single-sided MCF used in this example is as follows. As the copper foil, JTC foil (electrolytic copper foil: 35 μm in thickness) manufactured by Nippon Mining Co., Ltd. was used, and as the adhesive, the polyimide adhesive shown in Japanese Patent Application No. 3-302734 was used. This adhesive has a high glass transition temperature of 200 to 250 ° C. As the polyimide film serving as the base material, Kapton 100H (polyimide film manufactured by DuPont) was used. Further, this polyimide film is sandblasted on one side before the production of the one-sided MCF, and the average roughness of the surface is roughened to 0.5 to 0.7 μm. The single-sided MCF was manufactured as follows.

【0008】ポリイミドフィルムの未サンドブラスト
処理面の反対側を酸素プラズマ処理し、表面を活性化し
た。プラズマ処理の条件としては、酸素の圧力が100
mTorr、プラズマ出力0.01kw/cm2、処理時間は30
秒である。 プラズマ処理した表面に、ポリイミド系接着剤を乾燥
後15μm厚さになるように塗布した。塗布後の乾燥条
件としては、100℃×10分、150℃×10分、2
00℃×30分とした。乾燥後の残揮発分は接着剤重量
比で0.2%以下が好ましい。 ポリイミド系接着剤を塗布したポリイミドフィルムと
銅箔を重ね、熱プレス法により接着した。熱プレスの条
件は熱板温度250℃で圧力は30kgf/cm2 、時間は1
時間である。
The opposite side of the unsandblasted surface of the polyimide film was treated with oxygen plasma to activate the surface. The plasma treatment condition is that the oxygen pressure is 100.
mTorr, plasma output 0.01 kw / cm 2 , processing time 30
Seconds. A polyimide adhesive was applied to the plasma-treated surface to a thickness of 15 μm after drying. The drying conditions after coating are 100 ° C. × 10 minutes, 150 ° C. × 10 minutes, 2
It was set to 00 ° C. × 30 minutes. The residual volatile content after drying is preferably 0.2% or less in terms of adhesive weight ratio. A polyimide film coated with a polyimide adhesive and a copper foil were overlaid and bonded by a hot pressing method. The conditions for hot pressing are: hot plate temperature 250 ° C, pressure 30 kgf / cm 2 , time 1
It's time.

【0009】以上の手段により製造した片面MCFをエ
ッチング加工し、図2に示した実施例に適用した。図2
に示した配線板では、層間接着剤としては、パイララッ
クス(デュポン社製アクリルゴム系接着剤フィルム、厚
さ50μm)を用いて積層した。積層は熱プレス法によ
り行ったが、その条件は、温度170℃、圧力20kgf/
cm2 、時間は1時間で実施した。また比較の為に、従来
の片面MCF(MCF−33R:日立化成工業(株)製
フレキシブル銅張板)を用いて、同様のエッチング加工
を施し、同じ層間接着剤を用いて同条件にて積層した。
上述した実施例以外にもいくつかの例はある。まず接着
剤としては、AS−2210(日立化成工業(株)製ポ
リイミド系接着フィルム)等のポリイミド系が適当であ
る。エポキシ成分を多く含めば、ガラス転移温度は低く
なり、200℃を越えることは困難であり、ましてゴム
系の成分を含めばなおさらである。また、ポリイミドフ
ィルムの粗化手段としては、サンドブラスト処理以外に
も研磨ブラシ等での研磨も有効であるが、均一性の点で
はサンドブラストの方が良好である。また、化学的な表
面粗化、例えばアルカリ性溶液によるエッチング等で
は、表面に変質層が残り易く、長期的にはフィルムの劣
化を引き起こし、信頼性の点では劣るため、本発明では
機械的な粗化手段を選択した。
The one-sided MCF manufactured by the above means was etched and applied to the embodiment shown in FIG. Figure 2
In the wiring board shown in (1), Pyralux (acrylic rubber adhesive film manufactured by DuPont, thickness 50 μm) was used as the interlayer adhesive and laminated. The lamination was carried out by the hot pressing method under the conditions of a temperature of 170 ° C. and a pressure of 20 kgf /
The measurement was carried out in cm 2 for 1 hour. For comparison, a conventional single-sided MCF (MCF-33R: flexible copper clad plate manufactured by Hitachi Chemical Co., Ltd.) was used to perform the same etching process, and the same interlayer adhesive was used to laminate under the same conditions. did.
There are some examples other than the above-mentioned embodiments. First, as the adhesive, a polyimide-based adhesive such as AS-2210 (a polyimide-based adhesive film manufactured by Hitachi Chemical Co., Ltd.) is suitable. If a large amount of epoxy component is included, the glass transition temperature becomes low, and it is difficult to exceed 200 ° C., and even more so if a rubber-based component is included. Further, as a means for roughening the polyimide film, polishing with a polishing brush or the like is effective in addition to sandblasting, but sandblasting is better in terms of uniformity. Further, in chemical surface roughening, for example, etching with an alkaline solution, an altered layer is likely to remain on the surface, causing deterioration of the film in the long term and inferior in terms of reliability. The method of conversion was selected.

【0010】積層を終えた2種類の配線板の評価結果を
表1に示した。試作品は本発明による片面MCFを用
いたもの。試作品は従来MCFを用いたものである。
寸法精度は、片面FPCの4端にあらかじめ標点を設け
ておき、積層前後の各標点間距離の変化の割合いを、下
式により求めた値である。 マイナスの符号は、積層時の熱により片面MCFが収縮
したことを示すが、試作品の値は試作品の値に比べ
約1/5と変化が少ないことが判る。これは、両試作品
に用いた片面MCFの接着剤の耐熱性の差が原因であ
り、ガラス転移温度が200℃を越える接着剤を使用し
た本発明品は、170℃程度の積層温度では熱収縮、変
形等を起こさないためである。片面MCFのポリイミド
フィルムと層間接着剤間のピール強度については、試作
品が1.4kgf/cmであったのに対し、は0.9kgf/
cmであり、大幅に向上できたばかりでなく、それに伴っ
てはんだ耐熱性が向上していることが判る。特性の向上
は以上述べた初期特性についてばかりでなく、長期的信
頼性も向上できる。例えば両試作品を120℃のオーブ
ン内に放置し、長期に渡って処理した場合、試作品で
は1000時間処理後でも0.4kgf/cmの接着力を持っ
ているのに対し、では0.1kgf/cm以下であり、容易
に剥離してしまう。以上本発明による片面MCFを積層
して得られた製品は、従来のものに比べ優れた特性及び
信頼性を有する。
Table 1 shows the evaluation results of the two types of wiring boards that have been laminated. The prototype is a one-sided MCF according to the present invention. The prototype is a conventional MCF.
The dimensional accuracy is a value obtained by previously providing gauge marks at the four ends of the single-sided FPC and calculating the rate of change in the distance between the gauge marks before and after stacking by the following formula. The minus sign indicates that the one-sided MCF contracted due to the heat at the time of lamination, but it can be seen that the value of the prototype is about 1/5 of the value of the prototype and changes little. This is due to the difference in heat resistance of the adhesives of the one-sided MCF used for both prototypes, and the product of the present invention using the adhesive having a glass transition temperature of more than 200 ° C. is heated at a lamination temperature of about 170 ° C. This is because shrinkage or deformation does not occur. Regarding the peel strength between the polyimide film of one-sided MCF and the interlayer adhesive, the prototype was 1.4 kgf / cm, while the peel strength was 0.9 kgf / cm.
It is cm, and it is understood that not only was it greatly improved, but the solder heat resistance was also improved accordingly. In addition to the initial characteristics described above, the characteristics can be improved in the long-term reliability. For example, when both prototypes are left in an oven at 120 ° C and treated for a long period of time, the prototype has an adhesive force of 0.4 kgf / cm even after 1000 hours of treatment, whereas 0.1 kgf It is less than / cm and easily peels off. As described above, the product obtained by laminating the single-sided MCF according to the present invention has excellent characteristics and reliability as compared with the conventional products.

【0011】[0011]

【表1】 処理条件A:常態 B:120℃で1000時間処理後[Table 1] Treatment condition A: Normal state B: After treatment at 120 ° C. for 1000 hours

【0012】[0012]

【発明の効果】以上説明したように、本発明によれば寸
法安定性、耐熱性並びに接着特性にすぐれ高信頼性のあ
る片面フレキシブル銅張板を提供することが可能になっ
た。
As described above, according to the present invention, it has become possible to provide a single-sided flexible copper clad plate having excellent dimensional stability, heat resistance and adhesive properties and high reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係わる片面フレキシブル銅張板の断
面を示す。
FIG. 1 shows a cross section of a single-sided flexible copper clad plate according to the present invention.

【図2】 本発明に係わる片面フレキシブル銅張板をエ
ッチング加工した後、ガラスエポキシ基材両面印刷配線
板と積層した時の断面を示す。
FIG. 2 shows a cross section of a single-sided flexible copper clad board according to the present invention, which is etched and then laminated with a glass epoxy substrate double-sided printed wiring board.

【符号の説明】[Explanation of symbols]

1 銅箔 2 接着剤 3 ポリイミドフィルム 4 層間接着剤 5 ガラスエポキシ基材両面印刷配線板 1 Copper foil 2 Adhesive 3 Polyimide film 4 Interlayer adhesive 5 Glass epoxy base double-sided printed wiring board

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 正勝 茨城県下館市大字五所宮1150番地 日立化 成工業株式会社五所宮工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masakatsu Suzuki 1150, Goshomiya, Shimodate City, Ibaraki Prefecture Hitachi Chemical Co., Ltd. Goshomiya Plant

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 多層印刷配線板の全層または一部の層に
用いられたり、他の部品や基材に積層され、電気的な接
続用に用いられるポリイミドフィルムを基材とした片面
フレキシブル銅張板において、ポリイミドフィルムと銅
箔の接着にガラス転移温度が200〜250℃の接着剤
が用いられ、かつポリイミドフィルムの銅箔との反対面
が機械的に粗化されていることを特徴とする積層用片面
フレキシブル銅張板。
1. A single-sided flexible copper having a polyimide film as a base material, which is used for all or a part of layers of a multilayer printed wiring board or laminated on other parts or base materials and used for electrical connection. In the stretch board, an adhesive having a glass transition temperature of 200 to 250 ° C. is used for bonding the polyimide film and the copper foil, and the surface of the polyimide film opposite to the copper foil is mechanically roughened. Single sided flexible copper clad board for lamination.
JP1371693A 1993-01-29 1993-01-29 Single-sided flexible copper plated board for lamination Pending JPH06232553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1371693A JPH06232553A (en) 1993-01-29 1993-01-29 Single-sided flexible copper plated board for lamination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1371693A JPH06232553A (en) 1993-01-29 1993-01-29 Single-sided flexible copper plated board for lamination

Publications (1)

Publication Number Publication Date
JPH06232553A true JPH06232553A (en) 1994-08-19

Family

ID=11840975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1371693A Pending JPH06232553A (en) 1993-01-29 1993-01-29 Single-sided flexible copper plated board for lamination

Country Status (1)

Country Link
JP (1) JPH06232553A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0957664A4 (en) * 1996-06-07 1999-11-17
KR20010103584A (en) * 2000-03-21 2001-11-23 센타니 마이클 에이. Copper on polymer component having improved adhesion
EP1255427A1 (en) * 1999-11-10 2002-11-06 Fujikura Ltd. Flexible printed circuit board
JP2004009485A (en) * 2002-06-06 2004-01-15 Toppan Printing Co Ltd Polyimide resin film, multilayer circuit board using the same and its manufacturing process
US6911605B2 (en) * 2001-11-13 2005-06-28 Fujikura Ltd. Flexible printed circuit
KR101009825B1 (en) * 2005-06-13 2011-01-19 신닛테츠가가쿠 가부시키가이샤 Copper-clad laminated and manufacturing method thereof
JP2012146880A (en) * 2011-01-13 2012-08-02 Fujitsu Ltd Circuit board, method of manufacturing the same, and electronic device
US8298366B2 (en) 2004-10-05 2012-10-30 Kaneka Corporation Adhesive sheet and copper-clad laminate
CN104519657A (en) * 2013-09-30 2015-04-15 新日铁住金化学株式会社 Copper-clad laminate, and printed wiring board and use methods thereof
CN114379174A (en) * 2020-10-21 2022-04-22 湖北奥马电子科技有限公司 Single-sided soft copper-clad plate
KR20220169914A (en) 2021-06-18 2022-12-28 허페이 한즈허 머터리얼 사이언스 앤드 테크놀로지 컴퍼니 리미티드 Adhesive agent, adhesive sheet and flexible copper clad laminate

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0957664A1 (en) * 1996-06-07 1999-11-17 Asahi Kasei Kogyo Kabushiki Kaisha Resin-carrying metal foil for multilayered wiring board, process for manufacturing the same, multilayered wiring board, and electronic device
EP0957664A4 (en) * 1996-06-07 1999-11-17
EP1255427A1 (en) * 1999-11-10 2002-11-06 Fujikura Ltd. Flexible printed circuit board
US6664479B2 (en) 1999-11-10 2003-12-16 Fujikura Ltd. Flexible printed circuit board
KR20010103584A (en) * 2000-03-21 2001-11-23 센타니 마이클 에이. Copper on polymer component having improved adhesion
US6911605B2 (en) * 2001-11-13 2005-06-28 Fujikura Ltd. Flexible printed circuit
JP4677703B2 (en) * 2002-06-06 2011-04-27 凸版印刷株式会社 POLYIMIDE RESIN FILM AND METHOD FOR PRODUCING MULTILAYER WIRING BOARD USING SAME
JP2004009485A (en) * 2002-06-06 2004-01-15 Toppan Printing Co Ltd Polyimide resin film, multilayer circuit board using the same and its manufacturing process
US8298366B2 (en) 2004-10-05 2012-10-30 Kaneka Corporation Adhesive sheet and copper-clad laminate
KR101009825B1 (en) * 2005-06-13 2011-01-19 신닛테츠가가쿠 가부시키가이샤 Copper-clad laminated and manufacturing method thereof
JP2012146880A (en) * 2011-01-13 2012-08-02 Fujitsu Ltd Circuit board, method of manufacturing the same, and electronic device
CN104519657A (en) * 2013-09-30 2015-04-15 新日铁住金化学株式会社 Copper-clad laminate, and printed wiring board and use methods thereof
TWI634986B (en) * 2013-09-30 2018-09-11 新日鐵住金化學股份有限公司 Copper-covered laminate plate, printed circuit board and using method thereof
CN114379174A (en) * 2020-10-21 2022-04-22 湖北奥马电子科技有限公司 Single-sided soft copper-clad plate
CN114379174B (en) * 2020-10-21 2023-10-20 湖北奥马电子科技有限公司 Single-sided soft copper-clad plate
KR20220169914A (en) 2021-06-18 2022-12-28 허페이 한즈허 머터리얼 사이언스 앤드 테크놀로지 컴퍼니 리미티드 Adhesive agent, adhesive sheet and flexible copper clad laminate

Similar Documents

Publication Publication Date Title
CN1720766B (en) Method for manufacturing flexible wiring circuit board
EP0223716A2 (en) A copper-foiled laminated sheet for flexible printed circuit board
JPH1075053A (en) Method for manufacturing flexible metal foil laminated board
JP2009172996A (en) Flexible copper clad laminated board and its manufacturing method
EP1339270A3 (en) Method of manufacturing metal clad laminate for printed circuit board
JPH06232553A (en) Single-sided flexible copper plated board for lamination
JP2010147442A (en) Flexible printed wiring board, method of manufacturing the same, and flexible printed circuit board
JP3744970B2 (en) Manufacturing method of flex rigid wiring board
JPH07202417A (en) Flexible printed wiring board
JP2788779B2 (en) Material board for circuit board
JPS61224492A (en) Flexible printed circuit board
JPH1126938A (en) Manufacture of laminated board with inner layer circuit
JPH05183267A (en) Manufacture of dielectric sheet for circuit board
JPH10209583A (en) Flexible metal foil polyimide laminate
JPS58153390A (en) Substrate material for printed circuit and method of producing same
JP2501331B2 (en) Laminate
JPH03104185A (en) Manufacture of double surface conductor polyimide laminate
JP2007069617A (en) Method for manufacturing flexible metal foil laminated plate
JP2008302696A (en) Method of manufacturing flexible metal foil laminated plate
WO2002085621A1 (en) Laminated plate and part using the laminated plate
JPS61236882A (en) Cover-lay film
JP2005044880A (en) Flexible metal lamination and its manufacturing method
JP3954831B2 (en) Method for producing heat-resistant flexible laminate
JPH07142863A (en) Multilayer printed wiring board and its manufacture
JP3280604B2 (en) Method of manufacturing metal-clad laminate, method of manufacturing printed wiring board, and method of manufacturing multilayer board