JP2005044880A - Flexible metal lamination and its manufacturing method - Google Patents

Flexible metal lamination and its manufacturing method Download PDF

Info

Publication number
JP2005044880A
JP2005044880A JP2003200924A JP2003200924A JP2005044880A JP 2005044880 A JP2005044880 A JP 2005044880A JP 2003200924 A JP2003200924 A JP 2003200924A JP 2003200924 A JP2003200924 A JP 2003200924A JP 2005044880 A JP2005044880 A JP 2005044880A
Authority
JP
Japan
Prior art keywords
copper foil
polyimide
adhesive layer
flexible metal
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003200924A
Other languages
Japanese (ja)
Inventor
Tetsuya Yamamoto
哲也 山本
Ryuichi Kamei
隆一 亀井
Yoshio Suzuki
祥生 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003200924A priority Critical patent/JP2005044880A/en
Publication of JP2005044880A publication Critical patent/JP2005044880A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture and provide a flexible metal lamination of high performance with superior efficiency wherein compatibility of high performance and superior efficiency is difficult in the conventional case. <P>SOLUTION: In a method for manufacturing the flexible metal lamination, a copper foil with an adhesive layer wherein an adhesive layer is formed beforehand on a surface of the copper foil and a heat-resistant film are continuously stuck to each other by using a heating pressure device. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、フレキシブル金属積層体及びその製造方法に関する。
【0002】
【従来の技術】
電子電気機器印刷回路基板に用いられる積層体の代表例として、フレキシブルプリント配線板(Flexible Printed Circuits、以下FPCと略す)が挙げられる。フレキシブルプリント配線板に使用されるフレキシブル金属積層体である銅張りポリイミドフィルム(以下CCLと略す)には、銅箔、ポリイミドベースフィルム、エポキシ系熱硬化型接着剤の3つの材料で構成される安価な3層タイプと、接着剤層を有しない2層タイプ、さらにはポリイミドベースフィルムと同質のポリイミド系接着剤を有した3層タイプ(以下擬似2層という)のものがある。
【0003】
2層タイプ及び擬似2層タイプの製造は、接着剤を使用しないでポリイミドフィルムにほぼ直接銅をメッキしたり(メッキ2層CCL)、銅箔にポリアミック酸を塗布乾燥し、イミド化することでポリイミドフィルムを用いることなくポリイミド層を形成したり(キャスト2層CCL)、熱圧着性のポリイミド層を表面に形成したポリイミドフィルムを銅箔とラミネートする(ラミネート2層CCL(疑似2層タイプ))等によって行われることが知られている。
【0004】
ラミネート2層CCLのラミネート製造方法は、これまでいくつかの方法が提案されている。例えば、特許文献1に示された真空プレス機等を用いてポリイミドフィルムと金属箔との間にポリイミド接着剤をサンドイッチ状に接合する方法があるが、この方法では長尺品を得ることが不可能であり、ポリイミドフィルムの種類によっては、接着力が低く目標性能が得られないという問題がある。一方、熱ロールラミネート装置を用いて積層する特許文献2、特許文献3、特許文献4等に記載の方法や、ダブルベルトプレス装置を用いて積層する特許文献5、特許文献6等に記載の方法も開発されているが、0.5m/分〜2m/分ときわめて低速でしか製造できないという問題があった。
【0005】
【発明が解決しようとする課題】
よって、本発明の目的は、耐熱性フィルムの種類に依存せず、連続的に高速で積層するフレキシブル金属積層体の製造方法を提供することである。
【0006】
【特許文献1】
米国特許第4543295号明細書
【0007】
【特許文献2】
特開平4−33947号公報
【0008】
【特許文献3】
特開平4−33848号公報
【0009】
【特許文献4】
特開2003−1753号公報
【0010】
【特許文献5】
特開2001−129919号公報
【0011】
【特許文献6】
特開2000−103010号公報
【0012】
【課題を解決するための手段】
すなわち本発明は、銅箔表面に予め接着剤層が形成された接着剤層付き銅箔と耐熱性フィルムとを、加熱加圧装置を用いて連続的に接着するフレキシブル金属積層体の製造方法である。
【0013】
【発明の実施の形態】
本発明の製造方法とは、銅箔表面に予め接着剤層が形成された接着剤層付き銅箔と耐熱性フィルムとを、加熱加圧装置を用いて連続的に接着する方法である。
【0014】
本発明に用いられる接着剤層付き銅箔に使用される銅箔とは、一般的に圧延銅箔、電解銅箔、特殊電解銅箔及び粗面のプロファイルが小さい種類の銅箔等を用いることができ、その厚みは5μm〜70μmのものを使用することができる。また、本発明の一つの目的である高温での高速ラミネートを達成するためには、11μm〜70μmがより好ましい。10μm以下だと250℃以上における高速ラミネートを行った場合、波打ち、しわ等の欠点が増大する。
接着剤層付き銅箔とは、銅箔のマット面(粗面化面)に、接着剤の種類としては特に限定されないが、溶剤可溶型ポリイミド系組成物、シリコーンジアミン含有ポリイミド系組成物、熱圧着性ポリイミド系組成物等のポリイミド系組成物、ポリアミドイミド系組成物、エポキシ系組成物あるいはそれらを混合させたハイブリッド系組成物などが流延・製膜成形法、コーティング法で予め層として形成され、一体化された銅箔のことをいう。銅箔のマット面(粗面化面)に形成する接着剤層は、少なくとも芳香族ポリイミドを含むポリイミド系接着剤層であることが、積層後の製品の耐熱性、寸法安定性の点から好ましい。
【0015】
また、流延・製膜成形法とは、熱圧着性の芳香族ポリイミドまたはその前駆体溶液等をコーターにて塗布・乾燥し、必要に応じて高温で熱処理することでイミド化を進行させる等で例示することができる。また、接着剤層付き銅箔は、予め作製された接着剤シートを銅箔に張り合わせて作製しても良い。その接着剤シートとしては、例えば、熱圧着性の芳香族ポリイミドシートまたはその前駆体溶液をシート状に乾燥させたもの等が挙げられる。
【0016】
また、少なくとも芳香族ポリイミドを含むポリイミド系接着剤層付き銅箔を作製する場合、特に溶剤可溶性のポリイミド系接着剤組成物が好ましい。溶剤可溶性ポリイミドとは、すでにイミド化反応が終了したポリイミドで、N−メチルピロリドン(NMP)等の有機溶媒に可溶された状態のものをいう。溶剤可溶性ポリイミドを用いると、一般的なコンマコーター、リバースロールコーター、ナイフコーター、含浸コーター、やグラビアコーターさらにはスクリーン印刷法やスプレー法などを用いて銅箔にコーティングし、乾燥させるだけで、高温加熱による反応を必要とせず、容易に接着剤層付き銅箔を作製することができるという利点がある。また必要に応じて乾燥条件を変更するだけで、高耐熱フィルムとの張り合わせに適した残存溶剤量を設定することができ、また、必要に応じて作製するポリイミド層の厚みも自由に変更することが出来る。塗工面に凹凸のない均一な接着剤層を形成するためには、厚み0.5μm〜20μmが好ましい。溶剤可溶性のポリイミドとしては、例えば、Q−AD−XA100KT((株)PI技術研究所製)、ポリイミドシリカハイブリットタイプ(荒川化学(株)製)、”リカコート”SN−20、PN−20、EN−20(新日本理化(株)製)等が挙げられる。
【0017】
本発明でいう耐熱性フィルムとは、200℃以上のガラス転移温度または分解温度を有する厚さ5〜200μmのフィルムのことであり、芳香族ポリイミドフィルム、アラミドフィルム、液晶フィルム等が好ましい。また、これらの表面に接着剤が塗布されていてもかまわない。接着剤の種類としては特に限定されないが、溶剤可溶型ポリイミド系組成物、シリコーンジアミン含有ポリイミド系組成物、熱圧着性ポリイミド系組成物等のポリイミド系接着剤組成物や、ポリアミドイミド系組成物、エポキシ系組成物あるいはそれらを混合させたハイブリッド系組成物などが例示できる。また接着剤層は複数層から構成されていてもよく、少なくとも1層の熱圧着性ポリイミド層を含む多層ポリイミド層等が例示される。さらに、高耐熱性フィルムの表面には、加水分解、コロナ放電、低温プラズマ、物理的粗面化、易接着コーティング処理等の表面処理を施すことができる。
【0018】
本発明の接着剤層付き銅箔と耐熱性フィルムを積層する加熱加圧装置とは、温度150℃〜450℃、圧力10N/mm〜200N/mm程度で連続ラミネートできれば特に限定されないが、ロールラミネートあるいはダブルベルトプレス等が好ましい。連続ラミネートとは、ラミネート速度0.1m/分以上で材料を連続供給し積層する製法のことを指し、熱ロールやダブルベルトプレスの前後に、材料をロールで供給し 積層体をロールで巻き取る装置が付与された形式が好ましい。
【0019】
ロールラミネートとは、少なくとも一対の高温加熱圧着可能なロールが保持された装置のことであり、ダブルベルトプレスとは、互いに対向する1対のエンドレスベルトの対向部分のベルト軌道内側に該ベルトを挟持加圧する加圧部が設けられ、装置の流れ方向に対して該加圧部が複数の異なる温度(加熱部及び冷却部)に領域を分割して調整可能な装置のことをいう。ダブルベルトプレス及びロールラミネート装置の加熱方法については、所定の温度で加熱することができるものであれば特に限定されないが、熱媒循環方式、誘導加熱方式、熱風加熱方式等が挙げられる。一方ダブルベルトプレス機の冷却装置は、所定の温度に冷却できれば特に限定されないが、冷媒循環方式、冷風冷却方式等が挙げられる。またダブルベルトプレス機の加圧方式としては、プレスロール加圧方式(線圧方式)、空気加圧方式(面圧方式)、オイル加圧方式(面圧方式)等が挙げられる。
【0020】
加圧部での最高加熱温度は、接着剤層のガラス転移温度(Tg)以上にすれば良いが、Tg+(20〜180℃)の温度がラミネートを良好に行わせる上で好ましい。また加圧部出口では、被積層体のしわの発生を防ぐために除冷することが好ましくTg−(50〜150℃)がより好ましい。
【0021】
また接着剤層付き銅箔は、少なくとも1層の熱圧着性ポリイミド層を含む多層ポリイミド層から構成されていてもかまわない。この発明における熱圧着性ポリイミドとは、200℃〜400℃程度の温度でラミネートできる熱可塑性ポリイミドであれば何でもよい。
【0022】
多層ポリイミド層とは、それぞれ組成や性能の異なる複数層のポリイミドから構成されるものをいう。層と層の界面は明確であっても、薄い混合層があってもかまわないが、境界部分で簡単に剥離することなく、強固に結合したものである。多層ポリイミド層付き銅箔は、イミド化反応が完了した熱可塑性の芳香族ポリイミドまたはその溶液と、ポリアミドイミドを含む高耐熱性の熱可塑性芳香族ポリイミドまたはその溶液を、2層以上の押出成型用ダイスを有する押出成型機へ同時に供給して、前記ダイスの吐出口から両溶液を少なくとも2層の薄膜状体として、銅箔の粗面化面上に連続的に押出して多層ポリイミド付き銅箔を作製する。その後、乾燥し溶媒を充分除去した後、高耐熱性フィルムとの張り合わせに使用することができる。また、多層ポリイミド層を有するフレキシブル金属積層体を作成するには、例えば本発明の多層ポリイミド層付き銅箔を用いれば、ポリイミド系接着剤付き高耐熱性フィルムと加熱加圧装置を用いて連続的に積層することによっても、さらに容易に多層ポリイミド層を形成することができる。すなわち、銅箔に予め付与されたポリイミド層及び高耐熱製フィルム側に付与されたポリイミド系接着剤層をそれぞれ複数層とすることで、目的に応じた自由な層数の設計が可能である。
【0023】
また、銅箔表面に予め接着剤層が形成された接着剤層付き銅箔と高耐熱性ポリイミドフィルムとを、加熱加圧装置を用いて連続的に積層する際に、該装置の加圧面と銅箔表面に予め接着剤層が形成された接着剤層付き銅箔との間に保護層を用いることが好ましい。すなわち、銅箔表面の酸化やしわの発生を防ぐことができる。保護層は特に限定されないが、ラミネート時の加工時の温度に耐えうる耐熱フィルム、金属箔などが好ましく、ラミネート時のしわ形成を抑制する目的から、厚み10μm〜150μmが好ましい。また、保護材料の表面には、被積層材料と軽く密着させたり、逆に剥離性を向上するような表面処理を施してもかまわない。
【0024】
本発明の製造方法は、これまで両立することが難しかった高性能でかつ高速でフレキシブル金属積層体を製造し提供することができる。すなわち、これまでの積層方法である接着剤層付き高耐熱フィルムと銅箔を積層する方法によると、積層後の高密着力、高半田耐熱性を達成するために、銅箔のマット面に存在する凹凸に、高耐熱フィルム側の接着剤層を埋まり込ませる必要があるために、高温高圧条件でかつ1m/分前後の低速でしかラミネートすることができなかった。すなわち、あえて2m/分より高速でラミネートを行うと、高耐熱フィルム側の接着剤層の銅箔のマット面への埋まり込み不足から、内在する空気が原因となり半田耐熱性が低下したり、十分な接着力が得られなくなる。しかしながら、銅箔表面に予め接着剤層が形成された接着剤付き銅箔と高耐熱性フィルムとを、加熱加圧装置を用いて連続的に積層すれば、銅箔のマット面に存在する凹凸に、高温高圧・低速条件で接着剤層を埋まり込ませる必要がなくなるという利点がある。すなわち、溶剤可溶性ポリイミド等を、一般的なコンマコーター、リバースロールコーターなどを用いて銅箔にコーティングし、乾燥させるだけで、銅箔のマット面の凹凸に容易にポリイミド層を十分に埋まり込ませることができるため、ポリイミド層付き銅箔と高耐熱性フィルムのラミネートは、ポリイミド層付き高耐熱フィルムと銅箔の場合に比べてきわめて容易に積層することができる。その結果、〜20m/分までの増速ラミネートを達成することが可能となる。また、接着剤層付き銅箔と接着剤層付き高耐熱フィルムとを積層する場合には、より低温低圧・高速条件での積層が可能となり、製造効率をより高めることができ、好ましい。
【0025】
接着剤層付き銅箔と接着剤層付き高耐熱フィルムの各接着剤層の厚みは、2〜20m/分程度の高速で積層が可能であれば、特に限定されないが、0.5μm〜20μmが好ましい。
【0026】
次に、本発明のフレキシブル金属積層体構造の同定方法を例示して説明する。ポリイミドの層構成及び厚みの同定はTOF−SIMSが好適であり、例えばTFS−2000(Physical Electronics製)により、69Ga を一次イオンとして、正・負2次イオンの高分解能測定により明らかにすることができる。次にポリイミドの成分分析方法の例として、試料をアルカリ加水分解しクロロホルム抽出を行った後、GC測定、GC/MS測定、H−NMR等で分析する等が例示される。
【0027】
本発明のフレキシブル金属積層体とは、片側のみに銅箔が存在する片面CCL及び両側に銅箔が存在する両面CCLのことを指しており、例えば銅箔/少なくとも芳香族ポリイミドを含むポリイミド系接着剤層/ポリイミドフィルム、または銅箔/少なくとも芳香族ポリイミドを含むポリイミド系接着剤層/ポリイミドフィルム/少なくとも芳香族ポリイミドを含むポリイミド系接着剤層/銅箔等の構成のCCLが挙げられる。また同構成のフレキシブル金属積層体または異なる構成のフレキシブル金属積層体を2つ以上同時に積層してもかまわない。
【0028】
本発明のフレキシブル金属積層体の用途は、例えばカバーレイフィルムなどと合わせて使用されるFPCだけでなく、それら複数のFPCを接着剤シートを用いて重ね合わせた多層FPCや、リジッド積層板とFPCを接着剤シート等を用いて積層し混合形態としたフレックスリジッド回路基板、さらにはTAB用基板、各種パーケージ用途(CSP、BGA)などに用いられる。
【0029】
【実施例】
以下に実施例を挙げて本発明を説明するが、本発明はこれらの実施例に限定されるものではない。実施例の説明に入る前に各特性の評価方法及び接着剤層付き銅箔、接着剤層付きポリイミドフィルムの作成方法について述べる。
【0030】
各特性の評価方法
A.剥離強度(ピール)
エッチングにより2mm幅の銅箔パターンを作成し、テンシロン(オリエンテック(株)製、UTM−11−5HR型)を用いて2mm幅の銅箔を90度方向に引き剥がした場合の強度を測定する(引張速度:50mm/分)。
【0031】
B.半田耐熱性
JIS−C6481に準拠した方法で行なった。銅張ポリイミドフィルム評価サンプルを20mm角にカットし、40℃、90%RHの雰囲気下で24時間調湿した後、すみやかに所定の温度の半田浴上に30秒間浮かべ、ポリイミドフィルムの膨れおよび剥がれのない最高温度を測定した。
【0032】
接着剤層付き銅箔及び接着剤層付きポリイミドフィルムの作成方法
作成方法1
圧延銅箔(BHY−22B−T、ジャパンエナジー(株)製)のマット面(粗面化面)に、溶剤可溶型ポリイミド系組成物(Q−AD−XA100KT、(株)PI技術研究所製)を乾燥後の厚みが3μmになるように、コンマコーターを用いて銅箔にコーティングし、150℃×1分乾燥後、ロールとして巻き取った。その後、サンプルを軟巻きした後、オーブンに投入し、180℃×3時間乾燥し残存溶剤の調整を行った。
【0033】
作成方法2
圧延銅箔(BHY−22B−T、ジャパンエナジー(株)製)のマット面(粗面化面)に、溶剤可溶型ポリイミド系組成物(リカコートPN20(商品名、新日本理化(株)製)を乾燥後の厚みが2μmになるように、グラビアコーターを用いて銅箔にコーティングし、150℃×1分乾燥後、ロールとして巻き取った。その後、サンプルを軟巻きした後、オーブンに投入し、180℃×3時間乾燥し残存溶剤の調整を行った。
【0034】
作成方法3
ポリイミドフィルム(カプトン100VP、商品名、東レデュポン(株)製)のプラズマ処理面に、溶剤可溶性ポリイミド系組成物(Q−AD−XA100KT、(株)PI技術研究所製)を乾燥後の厚みが5μmになるように、コンマコーターを用いてコーティングし、150℃×1分乾燥後、ロールとして巻き取った。その後、サンプルを軟巻きした後、オーブンに投入し、180℃×3時間乾燥し残存溶剤の調整を行った。
【0035】
次に、本発明のフレキシブル金属積層体の製造方法を例示して説明する。
【0036】
実施例1
作成方法1に基づいて作成した接着剤層付き銅箔及びポリイミドフィルム(カプトン100VP、商品名、東レデュポン(株)製)を、ダブルベルトプレスの入口ドラムに沿わせて、250℃で30秒間の予熱工程を経て、加熱ゾーン温度350℃、圧力10MPa、冷却ゾーン温度100℃、速度8m/分で連続的に加圧熱圧着して積層し、両面フレキシブル金属積層体(両面CCL)250mm幅×300mを巻き取りロールに巻き取った。得られたCCLの接着力は20N/cm及び半田耐熱性は270℃と良好であった。
【0037】
実施例2
作成方法2に基づいて作成した接着剤層付き銅箔及びポリイミドフィルム(カプトン100VP、商品名、東レデュポン(株)製)を、一対の金属製圧着ロールからなる高温ラミネートロールを使用し、ラミネート温度350℃、ラミネート圧力50N/mm、速度8m/分で高温圧着し、両面フレキシブル金属積層体(両面CCL)250mm幅×300mを巻き取りロールに巻き取った。操作はすべて空気環境下で行い、冷却は自然冷却で行った。尚、加圧面と被積層材料との間には”カプトン”500Vを保護層として介在させ、保護層が高温ラミネートロールに挿入する前に高温ラミネートロールに沿わせて予熱し、巻き取りはフレキシブル銅箔積層体といっしょに巻き取った。その結果、外観にしわ等のない良好なCCLを得た。尚、各材料の張力は、保護層100N/250mm幅、銅箔160N/250mm幅、ポリイミドフィルム2N/250mm幅で行った。得られたCCLの接着力は17N/cm及び半田耐熱性は280℃と良好であった。
【0038】
実施例3
作成方法1に基づいて作成した接着剤層付き銅箔及び作成方法3に基づいて作成した接着剤層付きポリイミドフィルムを、ダブルベルトプレスの入口ドラムに沿わせて、250℃で30秒間の予熱工程を経て、加熱ゾーン温度350℃、圧力10MPa 、冷却ゾーン温度125℃、速度12m/分で連続的に加圧熱圧着して積層し、両面フレキシブル金属積層体(両面CCL)250mm幅×300mを巻き取りロールに巻き取った。得られたCCLの接着力は19N/cm及び半田耐熱性は280℃と良好であった。
【0039】
実施例4
作成方法2に基づいて作成した接着剤層付き銅箔及び作成方法3に基づいて作成した接着剤層付きポリイミドフィルムを、一対の金属製圧着ロールからなる高温ラミネートロールを使用し、ラミネート温度350℃、ラミネート圧力50N/mm、速度10m/分で高温圧着し、両面フレキシブル金属積層体(両面CCL)250mm幅×300mを巻き取りロールに巻き取った。操作はすべて空気環境下で行い、冷却は自然冷却で行った。尚、加圧面と被積層材料との間には”カプトン”500Vを保護層として介在させ、保護層が高温ラミネートロールに挿入する前に高温ラミネートロールに沿わせて予熱し、巻き取りはフレキシブル銅箔積層体といっしょに巻き取った。その結果、外観にしわ等のない良好なCCLを得た。尚、各材料の張力は保護層100N/250mm幅、銅箔160N/250mm幅、接着剤層付きポリイミドフィルム2N/250mm幅で行った。得られたCCLの接着力は16N/cm及び半田耐熱性は270℃と良好であった。
【0040】
実施例5
作成方法1に基づいて作成した接着剤層付き銅箔及びユーピレックスVT25(宇部興産(株)製)のそれぞれ接着剤面を向かい合わせて、ダブルベルトプレスの入口ドラムに沿わせて、250℃で30秒間の予熱工程を経て、加熱ゾーン温度350℃、圧力10MPa、冷却ゾーン温度100℃、速度8m/分で連続的に加圧熱圧着して積層し、両面フレキシブル金属積層体(両面CCL)250mm幅×300mを巻き取りロールに巻き取った。得られたCCLの接着力は20N/cm及び半田耐熱性は280℃と良好であった。
【0041】
実施例6
作成方法2に基づいて作成した接着剤層付き銅箔及びユーピレックスVT25(宇部興産(株)製)のそれぞれ接着剤面を向かい合わせて、一対の金属製圧着ロールからなる高温ラミネートロールを使用し、ラミネート温度350℃、ラミネート圧力50N/mm、速度8m/分で高温圧着し、両面フレキシブル金属積層体(両面CCL)250mm幅×300mを巻き取りロールに巻き取った。操作はすべて空気環境下で行い、冷却は自然冷却で行った。尚、加圧面と被積層材料との間には”カプトン”500Vを保護層として介在させ、保護層が高温ラミネートロールに挿入する前に高温ラミネートロールに沿わせて予熱し、巻き取りはフレキシブル銅箔積層体といっしょに巻き取った。その結果、外観にしわ等のない良好なCCLを得た。尚、各材料の張力は、保護層100N/250mm幅、銅箔160N/250mm幅、”ユーピレックス”VT25、2N/250mm幅で行った。得られたCCLの接着力は17N/cm及び半田耐熱性は280℃と良好であった。
【0042】
比較例1
圧延銅箔(BHY−22B−T、ジャパンエナジー(株)製)及び作成方法3に基づいて作成した接着剤層付きポリイミドフィルムを、ダブルベルトプレスの入口ドラムに沿わせて、250℃で30秒間の予熱工程を経て、加熱ゾーン温度350℃、圧力10MPa 、冷却ゾーンの温度125℃、速度3m/分で連続的に加圧熱圧着して積層し、両面フレキシブル金属積層体(両面CCL)250mm幅×300mを巻き取りロールに巻き取った。得られたCCLの接着力は3N/cm及び半田耐熱性は230℃ときわめて悪かった。
【0043】
比較例2
圧延銅箔(BHY−22B−T、ジャパンエナジー(株)製)及び作成方法3に基づいて作成した接着剤層付きポリイミドフィルムを、一対の金属製圧着ロールからなる高温ラミネートロールを使用し、ラミネート温度350℃、ラミネート圧力50N/mm、速度3m/分で高温圧着し、両面フレキシブル金属積層体を巻き取りロールに巻き取った。操作はすべて空気環境下で行い、冷却は自然冷却で行った。尚、加圧面と被積層材料との間には”カプトン”500Vを保護層として介在させ、保護層が高温ラミネートロールに挿入する前に高温ラミネートロールに沿わせて予熱し、巻き取りはフレキシブル銅箔積層体といっしょに巻き取った。その結果、各材料の張力は保護層100N/250mm幅、銅箔160N/250mm幅、接着剤層付きポリイミドフィルム2N/250mm幅で行った。得られたCCLの接着力は3N/cm及び半田耐熱性は230℃ときわめて悪かった。
【0044】
比較例3
圧延銅箔(BHY−22B−T、ジャパンエナジー(株)製)及びユーピレックスVT25(宇部興産(株)製)のそれぞれ接着剤面を向かい合わせて、ダブルベルトプレスの入口ドラムに沿わせて、250℃で30秒間の予熱工程を経て、加熱ゾーン温度350℃、圧力10MPa、冷却ゾーン温度100℃で、速度5m/分で連続的に加圧熱圧着して積層し、両面フレキシブル金属積層体(両面CCL)250mm幅×300mを巻き取りロールに巻き取った。得られたCCLの接着力は2N/cm未満及び半田耐熱性は220℃未満ときわめて悪かった。
【0045】
比較例4
圧延銅箔(BHY−22B−T、ジャパンエナジー(株)製)及びユーピレックスVT25(宇部興産(株)製)のそれぞれ接着剤面を向かい合わせて、一対の金属製圧着ロールからなる高温ラミネートロールを使用し、ラミネート温度350℃、ラミネート圧力50N/mm、速度5m/分で高温圧着し、両面フレキシブル金属積層体(両面CCL)250mm幅×300mを巻き取りロールに巻き取った。操作はすべて空気環境下で行い、冷却は自然冷却で行った。尚、加圧面と被積層材料との間にはカプトン500Vを保護層として介在させ、保護層が高温ラミネートロールに挿入する前に高温ラミネートロールに沿わせて予熱し、巻き取りはフレキシブル銅箔積層体といっしょに巻き取った。その結果、各材料の張力は、保護層100N/250mm幅、銅箔160N/250mm幅、ユーピレックスVT25、2N/250mm幅で行った。得られたCCLの接着力は2N/cm及び半田耐熱性は220℃未満ときわめて悪かった。
【0046】
【発明の効果】
フレキシブル金属積層体を、加熱加圧装置を用いて連続的に高速で積層するフレキシブル金属積層体の製造方法であり、これまで両立することが難しかった高性能フレキシブル金属積層体を効率よく製造し提供できる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flexible metal laminate and a method for producing the same.
[0002]
[Prior art]
A typical example of a laminate used for an electronic / electrical device printed circuit board is a flexible printed circuit (hereinafter abbreviated as FPC). A copper-clad polyimide film (hereinafter abbreviated as CCL), which is a flexible metal laminate used for flexible printed wiring boards, is made of three materials: copper foil, polyimide base film, and epoxy thermosetting adhesive. Three-layer type, two-layer type having no adhesive layer, and three-layer type (hereinafter referred to as pseudo-two-layer) having a polyimide adhesive of the same quality as the polyimide base film.
[0003]
The two-layer type and the pseudo two-layer type can be manufactured by directly plating copper on a polyimide film without using an adhesive (plating two-layer CCL), applying polyamic acid to a copper foil, drying and imidizing. A polyimide layer is formed without using a polyimide film (cast two-layer CCL), or a polyimide film having a thermocompression-bonding polyimide layer formed on the surface is laminated with a copper foil (laminate two-layer CCL (pseudo two-layer type)) It is known to be performed by such as.
[0004]
There have been proposed several methods for producing a laminate of two-layer CCL. For example, there is a method of bonding a polyimide adhesive between a polyimide film and a metal foil in a sandwich shape using a vacuum press machine disclosed in Patent Document 1, but it is not possible to obtain a long product by this method. There is a problem that depending on the type of polyimide film, the adhesive strength is low and the target performance cannot be obtained. On the other hand, the method described in Patent Literature 2, Patent Literature 3, Patent Literature 4 and the like for laminating using a hot roll laminator, and the method described in Patent Literature 5 and Patent Literature 6 for laminating using a double belt press device. Has been developed, but there is a problem that it can be produced only at an extremely low speed of 0.5 m / min to 2 m / min.
[0005]
[Problems to be solved by the invention]
Therefore, the objective of this invention is providing the manufacturing method of the flexible metal laminated body which laminates | stacks continuously at high speed irrespective of the kind of heat resistant film.
[0006]
[Patent Document 1]
US Pat. No. 4,543,295 specification
[Patent Document 2]
JP-A-4-33947 Publication
[Patent Document 3]
JP-A-4-33848
[Patent Document 4]
Japanese Patent Laid-Open No. 2003-1753
[Patent Document 5]
JP 2001-129919 A
[Patent Document 6]
JP 2000-103010 A
[Means for Solving the Problems]
That is, this invention is a manufacturing method of the flexible metal laminated body which adhere | attaches continuously the copper foil with an adhesive layer by which the adhesive bond layer was previously formed on the copper foil surface, and a heat resistant film using a heating-pressing apparatus. is there.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The production method of the present invention is a method of continuously bonding a copper foil with an adhesive layer in which an adhesive layer is previously formed on the surface of the copper foil and a heat resistant film using a heating and pressing apparatus.
[0014]
The copper foil used for the copper foil with an adhesive layer used in the present invention is generally a rolled copper foil, an electrolytic copper foil, a special electrolytic copper foil, a copper foil of a type having a small rough surface profile, or the like. A thickness of 5 μm to 70 μm can be used. Moreover, in order to achieve the high-speed lamination at the high temperature which is one object of the present invention, 11 μm to 70 μm is more preferable. When the thickness is 10 μm or less, defects such as undulation and wrinkle increase when high-speed lamination is performed at 250 ° C. or more.
The copper foil with an adhesive layer is not particularly limited as the type of adhesive on the matte surface (roughened surface) of the copper foil, but is a solvent-soluble polyimide composition, a silicone diamine-containing polyimide composition, A polyimide composition such as a thermocompression bonding polyimide composition, a polyamideimide composition, an epoxy composition, or a hybrid composition obtained by mixing them is previously formed as a layer in a casting / film forming method or a coating method. A copper foil that is formed and integrated. The adhesive layer formed on the matte surface (roughened surface) of the copper foil is preferably a polyimide-based adhesive layer containing at least aromatic polyimide from the viewpoint of heat resistance and dimensional stability of the product after lamination. .
[0015]
In addition, the casting / film-forming method means that thermocompression-bonding aromatic polyimide or a precursor solution thereof is applied and dried by a coater, and imidization proceeds by heat treatment at a high temperature as necessary. Can be exemplified. Moreover, you may produce the copper foil with an adhesive layer by bonding together the adhesive sheet produced previously to copper foil. Examples of the adhesive sheet include a thermocompression-bonding aromatic polyimide sheet or a sheet obtained by drying a precursor solution thereof.
[0016]
Moreover, when producing copper foil with a polyimide-type adhesive layer containing an aromatic polyimide at least, a solvent-soluble polyimide-type adhesive composition is particularly preferable. The solvent-soluble polyimide is a polyimide that has already undergone an imidization reaction and is in a state of being dissolved in an organic solvent such as N-methylpyrrolidone (NMP). When solvent-soluble polyimide is used, a general comma coater, reverse roll coater, knife coater, impregnation coater, gravure coater or even a screen printing method or spray method is used to coat the copper foil and dry it at a high temperature. There is an advantage that a copper foil with an adhesive layer can be easily produced without requiring a reaction by heating. In addition, it is possible to set the amount of residual solvent suitable for lamination with a high heat-resistant film just by changing the drying conditions as necessary, and also to freely change the thickness of the polyimide layer to be produced as needed I can do it. In order to form a uniform adhesive layer without unevenness on the coated surface, a thickness of 0.5 μm to 20 μm is preferable. Examples of the solvent-soluble polyimide include, for example, Q-AD-XA100KT (manufactured by PI Research Laboratory Co., Ltd.), polyimide silica hybrid type (manufactured by Arakawa Chemical Co., Ltd.), “Rika Coat” SN-20, PN-20, EN -20 (manufactured by Shin Nippon Rika Co., Ltd.).
[0017]
The heat resistant film referred to in the present invention is a film having a glass transition temperature or decomposition temperature of 200 ° C. or higher and a thickness of 5 to 200 μm, and an aromatic polyimide film, an aramid film, a liquid crystal film, and the like are preferable. Further, an adhesive may be applied to these surfaces. Although it does not specifically limit as a kind of adhesive agent, Polyimide-type adhesive compositions, such as a solvent-soluble polyimide-type composition, a silicone diamine containing polyimide-type composition, a thermocompression bonding polyimide-type composition, and a polyamideimide-type composition An epoxy composition or a hybrid composition obtained by mixing them can be exemplified. The adhesive layer may be composed of a plurality of layers, and examples thereof include a multilayer polyimide layer including at least one thermocompression bonding polyimide layer. Furthermore, surface treatments such as hydrolysis, corona discharge, low temperature plasma, physical roughening, and easy adhesion coating treatment can be applied to the surface of the high heat resistant film.
[0018]
The heating and pressing apparatus for laminating the copper foil with the adhesive layer and the heat resistant film of the present invention is not particularly limited as long as it can be continuously laminated at a temperature of 150 ° C. to 450 ° C. and a pressure of about 10 N / mm to 200 N / mm. Or a double belt press etc. are preferable. Continuous lamination refers to a production method in which materials are continuously fed and laminated at a laminating speed of 0.1 m / min or more. Before and after a hot roll or double belt press, the material is fed by a roll and the laminate is wound by a roll. The form provided with the device is preferred.
[0019]
A roll laminate is an apparatus in which at least a pair of high-temperature thermocompression-bondable rolls are held, and a double belt press is a belt sandwiched between belt end portions of a pair of endless belts facing each other. A pressurizing unit for pressurization is provided, and the pressurizing unit can be adjusted by dividing a region into a plurality of different temperatures (heating unit and cooling unit) with respect to the flow direction of the apparatus. The heating method of the double belt press and the roll laminating apparatus is not particularly limited as long as it can be heated at a predetermined temperature, and examples thereof include a heat medium circulation system, an induction heating system, and a hot air heating system. On the other hand, the cooling device of the double belt press machine is not particularly limited as long as it can be cooled to a predetermined temperature, and examples thereof include a refrigerant circulation system and a cold air cooling system. Examples of the pressurization method of the double belt press include a press roll pressurization method (linear pressure method), an air pressurization method (surface pressure method), and an oil pressurization method (surface pressure method).
[0020]
The maximum heating temperature in the pressurizing part may be set to be equal to or higher than the glass transition temperature (Tg) of the adhesive layer, but a temperature of Tg + (20 to 180 ° C.) is preferable for good lamination. Moreover, in order to prevent generation | occurrence | production of the wrinkle of a laminated body, it is preferable to cool at the pressurization part exit, and Tg- (50-150 degreeC) is more preferable.
[0021]
The copper foil with an adhesive layer may be composed of a multilayer polyimide layer including at least one thermocompression bonding polyimide layer. The thermocompression bonding polyimide in this invention may be any thermoplastic polyimide that can be laminated at a temperature of about 200 ° C. to 400 ° C.
[0022]
A multilayer polyimide layer means what is comprised from the polyimide of several layers from which a composition and performance differ, respectively. The interface between layers may be clear or a thin mixed layer may be present, but they are firmly bonded without being easily peeled off at the boundary. A copper foil with a multilayer polyimide layer is for extrusion molding of two or more layers of a thermoplastic aromatic polyimide or its solution that has undergone imidation reaction, and a highly heat-resistant thermoplastic aromatic polyimide or solution that contains polyamide-imide. A multi-layer polyimide-coated copper foil is simultaneously supplied to an extrusion molding machine having a die, and both solutions are continuously extruded on the roughened surface of the copper foil from the discharge port of the die as a thin film of at least two layers. Make it. Then, after drying and removing the solvent sufficiently, it can be used for pasting with a high heat resistant film. Moreover, in order to create the flexible metal laminated body which has a multilayer polyimide layer, if the copper foil with a multilayer polyimide layer of this invention is used, for example, it will be continuous using a high heat resistant film with a polyimide-based adhesive and a heating and pressing device. A multilayer polyimide layer can be formed more easily also by laminating them. That is, the polyimide layer previously provided to the copper foil and the polyimide-based adhesive layer provided to the high heat-resistant film side are each made into a plurality of layers, so that the number of layers can be designed according to the purpose.
[0023]
In addition, when the copper foil with an adhesive layer on which the adhesive layer has been formed on the surface of the copper foil and the high heat resistant polyimide film are continuously laminated using a heating and pressing apparatus, It is preferable to use a protective layer between the copper foil with the adhesive layer in which the adhesive layer is previously formed on the surface of the copper foil. That is, it is possible to prevent the copper foil surface from being oxidized or wrinkled. The protective layer is not particularly limited, but is preferably a heat-resistant film that can withstand the processing temperature during lamination, a metal foil, and the like, and preferably has a thickness of 10 μm to 150 μm for the purpose of suppressing wrinkle formation during lamination. In addition, the surface of the protective material may be lightly adhered to the material to be laminated, or may be subjected to a surface treatment that improves the peelability.
[0024]
The production method of the present invention can produce and provide a flexible metal laminate with high performance and high speed that has been difficult to achieve at the same time. That is, according to the method of laminating a copper foil with a high heat-resistant film with an adhesive layer, which is a conventional laminating method, it exists on the mat surface of the copper foil in order to achieve high adhesion and high solder heat resistance after lamination. Since it was necessary to embed the adhesive layer on the high heat-resistant film side in the unevenness, lamination was possible only under high temperature and high pressure conditions and at a low speed of about 1 m / min. In other words, if the lamination is performed at a speed higher than 2 m / min, the heat resistance of the solder layer may be lowered due to the presence of air due to insufficient embedding of the adhesive layer on the high heat resistant film side into the mat surface of the copper foil. Can not get a good adhesion. However, if the copper foil with adhesive having an adhesive layer previously formed on the surface of the copper foil and the high heat resistant film are continuously laminated using a heating and pressing device, the unevenness present on the mat surface of the copper foil Furthermore, there is an advantage that it is not necessary to embed the adhesive layer under high temperature, high pressure and low speed conditions. That is, a solvent-soluble polyimide or the like is coated on a copper foil using a general comma coater, reverse roll coater, etc., and the polyimide layer is easily embedded in the unevenness of the matte surface of the copper foil simply by drying. Therefore, the laminate of the copper foil with the polyimide layer and the high heat resistant film can be very easily laminated as compared with the case of the high heat resistant film with the polyimide layer and the copper foil. As a result, it is possible to achieve a speed-up laminate up to ˜20 m / min. Moreover, when laminating | stacking a copper foil with an adhesive layer and a high heat-resistant film with an adhesive layer, lamination | stacking on low temperature low pressure and high-speed conditions is attained, manufacturing efficiency can be improved more and it is preferable.
[0025]
The thickness of each adhesive layer of the copper foil with adhesive layer and the high heat resistant film with adhesive layer is not particularly limited as long as it can be laminated at a high speed of about 2 to 20 m / min, but 0.5 μm to 20 μm. preferable.
[0026]
Next, the method for identifying the flexible metal laminate structure of the present invention will be described as an example. TOF-SIMS is suitable for identifying the layer structure and thickness of polyimide. For example, by TFS-2000 (manufactured by Physical Electronics), 69 Ga + is used as a primary ion, and it is clarified by high-resolution measurement of positive and negative secondary ions. be able to. Next, as an example of a component analysis method of polyimide, a sample is subjected to alkali hydrolysis and chloroform extraction, and then analyzed by GC measurement, GC / MS measurement, 1 H-NMR, or the like.
[0027]
The flexible metal laminate of the present invention refers to a single-sided CCL in which a copper foil is present only on one side and a double-sided CCL in which a copper foil is present on both sides. For example, copper-based polyimide / adhesive polyimide containing at least aromatic polyimide CCL having a constitution of agent layer / polyimide film, or copper foil / polyimide adhesive layer containing at least aromatic polyimide / polyimide film / polyimide adhesive layer containing at least aromatic polyimide / copper foil, and the like. Two or more flexible metal laminates having the same configuration or different flexible metal laminates may be laminated at the same time.
[0028]
Applications of the flexible metal laminate of the present invention include not only FPCs used in combination with, for example, coverlay films, but also multilayer FPCs in which a plurality of FPCs are overlapped using an adhesive sheet, rigid laminates, and FPCs. Is used for flexible rigid circuit boards that are laminated by using an adhesive sheet or the like to form a mixed form, TAB boards, various package applications (CSP, BGA), and the like.
[0029]
【Example】
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. Prior to the description of the examples, a method for evaluating each characteristic and a method for producing a copper foil with an adhesive layer and a polyimide film with an adhesive layer will be described.
[0030]
Evaluation method of each characteristic Peel strength (peel)
A copper foil pattern with a width of 2 mm is created by etching, and the strength when the copper foil with a width of 2 mm is peeled off in the direction of 90 degrees using Tensilon (Orientec Co., Ltd., UTM-11-5HR type) is measured. (Tensile speed: 50 mm / min).
[0031]
B. Solder heat resistance It was performed by a method based on JIS-C6481. A copper-clad polyimide film evaluation sample is cut into a 20 mm square, conditioned for 24 hours in an atmosphere of 40 ° C. and 90% RH, and then immediately floated on a solder bath at a predetermined temperature for 30 seconds to swell and peel off the polyimide film. The maximum temperature without any was measured.
[0032]
Method 1 for creating a copper foil with an adhesive layer and a polyimide film with an adhesive layer
On the matte surface (roughened surface) of rolled copper foil (BHY-22B-T, manufactured by Japan Energy Co., Ltd.), a solvent-soluble polyimide composition (Q-AD-XA100KT, PI Technical Laboratory Co., Ltd.) The product was coated on a copper foil using a comma coater so that the thickness after drying was 3 μm, dried at 150 ° C. for 1 minute, and then wound up as a roll. Then, after the sample was softly wound, it was put into an oven and dried at 180 ° C. for 3 hours to adjust the residual solvent.
[0033]
Creation method 2
On the matte surface (roughened surface) of rolled copper foil (BHY-22B-T, manufactured by Japan Energy Co., Ltd.), a solvent-soluble polyimide composition (Rika Coat PN20 (trade name, manufactured by Shin Nippon Rika Co., Ltd.) ) Was coated on a copper foil using a gravure coater so that the thickness after drying was 2 μm, dried at 150 ° C. for 1 minute, and then wound up as a roll. And dried at 180 ° C. for 3 hours to adjust the residual solvent.
[0034]
Creation method 3
The thickness after drying a solvent-soluble polyimide composition (Q-AD-XA100KT, manufactured by PI Engineering Laboratory Co., Ltd.) on the plasma treated surface of a polyimide film (Kapton 100VP, trade name, manufactured by Toray DuPont Co., Ltd.) It coated using a comma coater so that it might be set to 5 micrometers, and it wound up as a roll after drying at 150 degreeC x 1 minute. Then, after the sample was softly wound, it was put into an oven and dried at 180 ° C. for 3 hours to adjust the residual solvent.
[0035]
Next, the manufacturing method of the flexible metal laminated body of this invention is illustrated and demonstrated.
[0036]
Example 1
The copper foil with the adhesive layer and the polyimide film (Kapton 100VP, trade name, manufactured by Toray DuPont Co., Ltd.) created based on the production method 1 are placed at 250 ° C. for 30 seconds along the inlet drum of the double belt press. Through the preheating process, the laminate is formed by continuously applying pressure thermocompression bonding at a heating zone temperature of 350 ° C., a pressure of 10 MPa, a cooling zone temperature of 100 ° C., and a speed of 8 m / min, and a double-sided flexible metal laminate (double-sided CCL) 250 mm width × 300 m. Was wound on a winding roll. The obtained CCL had good adhesive strength of 20 N / cm and solder heat resistance of 270 ° C.
[0037]
Example 2
The copper foil with adhesive layer and the polyimide film (Kapton 100VP, trade name, manufactured by Toray DuPont Co., Ltd.) prepared based on the preparation method 2 are used, using a high-temperature laminating roll consisting of a pair of metal crimping rolls, and the laminating temperature High-temperature pressure bonding was performed at 350 ° C., a lamination pressure of 50 N / mm, and a speed of 8 m / min, and a double-sided flexible metal laminate (double-sided CCL) 250 mm wide × 300 m was wound up on a winding roll. All operations were performed in an air environment, and cooling was performed by natural cooling. In addition, "Kapton" 500V is interposed as a protective layer between the pressure surface and the material to be laminated, and the protective layer is preheated along the high temperature laminate roll before being inserted into the high temperature laminate roll. It was wound up with the foil laminate. As a result, a good CCL having no wrinkles on the appearance was obtained. In addition, the tension | tensile_strength of each material was performed by the protective layer 100N / 250mm width, the copper foil 160N / 250mm width, and the polyimide film 2N / 250mm width. The obtained CCL had good adhesive strength of 17 N / cm and solder heat resistance of 280 ° C.
[0038]
Example 3
Preheating process for 30 seconds at 250 ° C. with the copper foil with the adhesive layer prepared based on the production method 1 and the polyimide film with the adhesive layer created based on the production method 3 along the inlet drum of the double belt press Through, heating zone temperature 350 ° C., pressure 10 MPa Then, lamination was carried out by continuously applying pressure and thermocompression bonding at a cooling zone temperature of 125 ° C. and a speed of 12 m / min, and a double-sided flexible metal laminate (double-sided CCL) 250 mm wide × 300 m was taken up on a take-up roll. The obtained CCL had good adhesive strength of 19 N / cm and solder heat resistance of 280 ° C.
[0039]
Example 4
Using a copper foil with an adhesive layer created based on the production method 2 and a polyimide film with an adhesive layer produced based on the production method 3, a high-temperature laminating roll comprising a pair of metal crimping rolls is used, and a laminating temperature of 350 ° C. Then, high-temperature pressure bonding was performed at a lamination pressure of 50 N / mm and a speed of 10 m / min, and a double-sided flexible metal laminate (double-sided CCL) 250 mm wide × 300 m was wound up on a winding roll. All operations were performed in an air environment, and cooling was performed by natural cooling. In addition, "Kapton" 500V is interposed as a protective layer between the pressure surface and the material to be laminated, and the protective layer is preheated along the high temperature laminate roll before being inserted into the high temperature laminate roll. It was wound up with the foil laminate. As a result, a good CCL having no wrinkles on the appearance was obtained. In addition, the tension | tensile_strength of each material was performed by the protective layer 100N / 250mm width, the copper foil 160N / 250mm width, and the polyimide film 2N / 250mm width with an adhesive layer. The obtained CCL had good adhesive strength of 16 N / cm and solder heat resistance of 270 ° C.
[0040]
Example 5
Adhesive surfaces of the copper foil with the adhesive layer and Upilex VT25 (manufactured by Ube Industries) made according to the production method 1 face each other, and along the inlet drum of the double belt press, 30 at 250 ° C. Through a preheating process for 2 seconds, heating zone temperature is 350 ° C, pressure is 10MPa, cooling zone temperature is 100 ° C, and it is laminated by pressing and thermocompression bonding at a rate of 8m / min. Double-sided flexible metal laminate (double-sided CCL) 250mm width X300 m was wound up on a winding roll. The obtained CCL had good adhesive strength of 20 N / cm and solder heat resistance of 280 ° C.
[0041]
Example 6
Using the high-temperature laminating roll consisting of a pair of metal pressure-bonding rolls, facing the adhesive surfaces of the copper foil with the adhesive layer and Upilex VT25 (manufactured by Ube Industries, Ltd.) created based on creation method 2, A high temperature pressure bonding was performed at a laminating temperature of 350 ° C., a laminating pressure of 50 N / mm, and a speed of 8 m / min, and a double-sided flexible metal laminate (double-sided CCL) 250 mm wide × 300 m was wound on a winding roll. All operations were performed in an air environment, and cooling was performed by natural cooling. In addition, "Kapton" 500V is interposed as a protective layer between the pressure surface and the material to be laminated, and the protective layer is preheated along the high temperature laminate roll before being inserted into the high temperature laminate roll. It was wound up with the foil laminate. As a result, a good CCL having no wrinkles on the appearance was obtained. In addition, the tension | tensile_strength of each material was performed by the protective layer 100N / 250mm width, the copper foil 160N / 250mm width, "UPILEX" VT25, and 2N / 250mm width. The obtained CCL had good adhesive strength of 17 N / cm and solder heat resistance of 280 ° C.
[0042]
Comparative Example 1
Rolled copper foil (BHY-22B-T, manufactured by Japan Energy Co., Ltd.) and a polyimide film with an adhesive layer prepared on the basis of preparation method 3 are placed at 250 ° C. for 30 seconds along the inlet drum of a double belt press. Through the preheating step, heating zone temperature 350 ° C., pressure 10 MPa Then, lamination was performed by continuously pressing and thermocompression bonding at a cooling zone temperature of 125 ° C. and a speed of 3 m / min, and a double-sided flexible metal laminate (double-sided CCL) 250 mm wide × 300 m was taken up on a take-up roll. The obtained CCL had an extremely low adhesive strength of 3 N / cm and solder heat resistance of 230 ° C.
[0043]
Comparative Example 2
Rolled copper foil (BHY-22B-T, manufactured by Japan Energy Co., Ltd.) and a polyimide film with an adhesive layer prepared based on Preparation Method 3 are laminated using a high-temperature laminating roll consisting of a pair of metal crimping rolls. High-temperature pressure bonding was performed at a temperature of 350 ° C., a lamination pressure of 50 N / mm, and a speed of 3 m / min, and the double-sided flexible metal laminate was wound up on a winding roll. All operations were performed in an air environment, and cooling was performed by natural cooling. In addition, "Kapton" 500V is interposed as a protective layer between the pressure surface and the material to be laminated, and the protective layer is preheated along the high temperature laminate roll before being inserted into the high temperature laminate roll. It was wound up with the foil laminate. As a result, the tension | tensile_strength of each material was performed by the protective layer 100N / 250mm width, the copper foil 160N / 250mm width, and the polyimide film 2N / 250mm width with an adhesive layer. The obtained CCL had an extremely low adhesive strength of 3 N / cm and solder heat resistance of 230 ° C.
[0044]
Comparative Example 3
Rolled copper foil (BHY-22B-T, manufactured by Japan Energy Co., Ltd.) and Upilex VT25 (manufactured by Ube Industries, Ltd.) face each other and face the double belt press inlet drum, 250 After a 30-second preheating step at 50 ° C., lamination is performed by continuously pressing and thermocompression bonding at a heating zone temperature of 350 ° C., a pressure of 10 MPa, a cooling zone temperature of 100 ° C. at a speed of 5 m / min. CCL) 250 mm wide × 300 m was wound on a winding roll. The obtained CCL had extremely poor adhesive strength of less than 2 N / cm and solder heat resistance of less than 220 ° C.
[0045]
Comparative Example 4
A high-temperature laminating roll comprising a pair of metal pressure-bonding rolls with the adhesive surfaces of the rolled copper foil (BHY-22B-T, manufactured by Japan Energy Co., Ltd.) and Upilex VT25 (manufactured by Ube Industries, Ltd.) facing each other. It was used, and high-temperature press-bonded at a laminating temperature of 350 ° C., a laminating pressure of 50 N / mm, and a speed of 5 m / min, and a double-sided flexible metal laminate (double-sided CCL) 250 mm wide × 300 m was wound on a winding roll. All operations were performed in an air environment, and cooling was performed by natural cooling. In addition, Kapton 500V is interposed as a protective layer between the pressure surface and the material to be laminated, and the protective layer is preheated along the high temperature laminate roll before being inserted into the high temperature laminate roll. I rolled it up with my body. As a result, the tension | tensile_strength of each material was performed by the protective layer 100N / 250mm width, the copper foil 160N / 250mm width, Iupilex VT25, and 2N / 250mm width. The obtained CCL had extremely poor adhesive strength of 2 N / cm and solder heat resistance of less than 220 ° C.
[0046]
【The invention's effect】
This is a method for producing a flexible metal laminate in which a flexible metal laminate is continuously laminated at high speed using a heating and pressurizing apparatus, and a high-performance flexible metal laminate that has been difficult to achieve is efficiently produced and provided. it can.

Claims (7)

銅箔表面に予め接着剤層が形成された接着剤層付き銅箔と耐熱性フィルムを、加熱加圧装置を用いて連続的に接着するフレキシブル金属積層体の製造方法。The manufacturing method of the flexible metal laminated body which adhere | attaches continuously the copper foil with an adhesive layer with which the adhesive bond layer was previously formed on the copper foil surface, and a heat resistant film using a heating-pressing apparatus. 耐熱性フィルムが、ポリイミドフィルムであり、接着剤層付き銅箔に形成された接着剤層が少なくとも芳香族ポリイミドを含むポリイミド系接着剤であることを特徴とする請求項1記載のフレキシブル金属積層体の製造方法。The flexible metal laminate according to claim 1, wherein the heat-resistant film is a polyimide film, and the adhesive layer formed on the copper foil with an adhesive layer is a polyimide-based adhesive containing at least an aromatic polyimide. Manufacturing method. 銅箔表面に予め形成された接着剤層が、溶剤可溶性のポリイミド系接着剤であることを特徴とする請求項1記載のフレキシブル金属積層体の製造方法。The method for producing a flexible metal laminate according to claim 1, wherein the adhesive layer formed in advance on the surface of the copper foil is a solvent-soluble polyimide-based adhesive. 銅箔表面に予め形成された接着剤層が、少なくとも1層の熱圧着性ポリイミド層を含む多層ポリイミド層から構成されるポリイミド系接着剤層であることを特徴とする請求項1記載のフレキシブル金属積層体の製造方法。2. The flexible metal according to claim 1, wherein the adhesive layer previously formed on the copper foil surface is a polyimide-based adhesive layer composed of a multilayer polyimide layer including at least one thermocompression bonding polyimide layer. A manufacturing method of a layered product. 加熱加圧装置として、熱ロールラミネート装置又はダブルベルトプレス装置を用いたことを特徴とする請求項1記載のフレキシブル金属積層体の製造方法。The method for producing a flexible metal laminate according to claim 1, wherein a hot roll laminator or a double belt press is used as the heating and pressurizing device. 加熱加圧装置の加圧面と銅箔表面に予め接着剤層が形成された接着剤層付き銅箔との間に保護層を介在させることを特徴とする請求項1記載のフレキシブル金属積層体の製造方法。The flexible metal laminate according to claim 1, wherein a protective layer is interposed between the pressing surface of the heating and pressing device and the copper foil with an adhesive layer in which an adhesive layer is previously formed on the surface of the copper foil. Production method. 請求項1〜6のいずれか記載のフレキシブル金属積層体の製造方法で作製されたフレキシブル金属積層体。The flexible metal laminated body produced with the manufacturing method of the flexible metal laminated body in any one of Claims 1-6.
JP2003200924A 2003-07-24 2003-07-24 Flexible metal lamination and its manufacturing method Pending JP2005044880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003200924A JP2005044880A (en) 2003-07-24 2003-07-24 Flexible metal lamination and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003200924A JP2005044880A (en) 2003-07-24 2003-07-24 Flexible metal lamination and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005044880A true JP2005044880A (en) 2005-02-17

Family

ID=34261153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003200924A Pending JP2005044880A (en) 2003-07-24 2003-07-24 Flexible metal lamination and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005044880A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007281361A (en) * 2006-04-11 2007-10-25 Asahi Kasei Corp Polyimide printed circuit board and polyimide printed wiring board
US8501279B2 (en) 2005-10-25 2013-08-06 Hitachi Chemical Company, Ltd. Flexible laminate board, process for manufacturing of the board, and flexible print wiring board
CN103851388A (en) * 2014-01-06 2014-06-11 深圳市瑞丰光电子股份有限公司 LED (light-emitting diode) lamp filament base plate and lighting device
JP2017189894A (en) * 2016-04-12 2017-10-19 宇部エクシモ株式会社 Metal laminate and metal molded body
CN111591002A (en) * 2020-06-04 2020-08-28 广东创辉鑫材科技股份有限公司 Novel aluminum-based copper-clad plate film-covering forming process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8501279B2 (en) 2005-10-25 2013-08-06 Hitachi Chemical Company, Ltd. Flexible laminate board, process for manufacturing of the board, and flexible print wiring board
JP2007281361A (en) * 2006-04-11 2007-10-25 Asahi Kasei Corp Polyimide printed circuit board and polyimide printed wiring board
CN103851388A (en) * 2014-01-06 2014-06-11 深圳市瑞丰光电子股份有限公司 LED (light-emitting diode) lamp filament base plate and lighting device
JP2017189894A (en) * 2016-04-12 2017-10-19 宇部エクシモ株式会社 Metal laminate and metal molded body
CN111591002A (en) * 2020-06-04 2020-08-28 广东创辉鑫材科技股份有限公司 Novel aluminum-based copper-clad plate film-covering forming process
CN111591002B (en) * 2020-06-04 2021-02-26 广东创辉鑫材科技股份有限公司 Novel aluminum-based copper-clad plate film-covering forming process

Similar Documents

Publication Publication Date Title
TWI450817B (en) Metal foil laminated polyimide resin substrate
JP2009172996A (en) Flexible copper clad laminated board and its manufacturing method
CN101322447A (en) Process for producing polyimide film with copper wiring
JPH1075053A (en) Method for manufacturing flexible metal foil laminated board
JP4774162B2 (en) Manufacturing method of heat-resistant flexible
JP2007055165A (en) Flexible copper-clad laminated sheet and its manufacturing method
JP2007203505A (en) Manufacturing method of double-sided metal sheet laminated plate
JP2005044880A (en) Flexible metal lamination and its manufacturing method
WO2004041517A1 (en) Heat-resistant flexible laminated board manufacturing method
JP4231227B2 (en) Method for producing heat-resistant flexible laminate
JP2003311882A (en) Manufacturing method for heat-resistant flexible laminated sheet
JP5217321B2 (en) Method for producing flexible metal laminate
JP2007109694A (en) Process for producing one-side flexible metal laminated plate
JP2008251941A (en) Manufacturing method of flexible copper-clad laminate using extra-thin copper foil with carrier copper foil
JP2002052614A (en) Method for manufacturing laminated sheet
JP2002326308A (en) Heat-resistant flexible laminated sheet and method for manufacturing the same
JP4389627B2 (en) Method for producing flexible metal laminate
JP2003001753A (en) Method for manufacturing heat-resistant flexible laminated sheet
JPH10209583A (en) Flexible metal foil polyimide laminate
JP2007223052A (en) Method for manufacturing heat-resistant flexible metal laminate
JP2002361744A (en) Method for manufacturing heat-resistant flexible laminated sheet
JP6123463B2 (en) Method for producing metal laminate
JP2008074037A (en) Manufacturing process of heat-resistant flexible metal laminate
JP3954831B2 (en) Method for producing heat-resistant flexible laminate
JP2007223053A (en) Method for manufacturing heat-resistant flexible metal laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060711

A977 Report on retrieval

Effective date: 20080414

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A02 Decision of refusal

Effective date: 20080819

Free format text: JAPANESE INTERMEDIATE CODE: A02