JP4774162B2 - Manufacturing method of heat-resistant flexible - Google Patents

Manufacturing method of heat-resistant flexible Download PDF

Info

Publication number
JP4774162B2
JP4774162B2 JP2001133681A JP2001133681A JP4774162B2 JP 4774162 B2 JP4774162 B2 JP 4774162B2 JP 2001133681 A JP2001133681 A JP 2001133681A JP 2001133681 A JP2001133681 A JP 2001133681A JP 4774162 B2 JP4774162 B2 JP 4774162B2
Authority
JP
Japan
Prior art keywords
heat
adhesive film
film
laminate
metal foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001133681A
Other languages
Japanese (ja)
Other versions
JP2002326280A (en
Inventor
直樹 長谷
孝介 片岡
八洲男 伏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2001133681A priority Critical patent/JP4774162B2/en
Publication of JP2002326280A publication Critical patent/JP2002326280A/en
Application granted granted Critical
Publication of JP4774162B2 publication Critical patent/JP4774162B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Description

【0001】
【発明の属する技術分野】
本発明は、加圧加熱成形装置で製造される積層板の製造方法に関する。より詳細には、電子電気機器などに用いられる耐熱性フレキシブル積層板の製造方法に関する。
【0002】
【従来の技術】
近年、電子電気機器の軽量化、小型化、高密度化にともない、プリント基板、特に、絶縁性フィルム上に銅箔回路が形成されたフレキシブル積層板の需要が伸びている。一般に、フレキシブル積層板は、ポリイミドフィルムなどの絶縁性フィルムに金属箔を加熱状態の熱硬化性接着剤(エポキシ樹脂、アクリル樹脂など)で貼り合わせ、さらに温度を上げて樹脂を硬化させた後、金属箔をエッチングして回路を形成する方法(熱硬化型積層板の製造方法)、あるいは、予め耐熱性の熱可塑性接着層を形成した絶縁性フィルム(以下本明細書では接着フィルムという)に金属箔を加熱状態で貼り合わせた後、金属箔をエッチングして回路を形成する方法(熱融着型積層板の製造方法)で製造されている。
【0003】
熱硬化型積層板の製造方法は、従来から種々研究されており、樹脂含有紙または樹脂含浸ガラス布などと金属箔とを、多段プレスまたは真空プレスを用いてプレスした後、高温で数時間の処理で樹脂を熱硬化させてリジッド積層板を得る方法、ロール状の被積層材料を1対の加熱ロールに挟んで積層(ラミネート)した後、高温で数時間の処理で樹脂を熱硬化させてフレキシブル積層板を得る方法、加熱ロールの代わりにダブルベルトプレス装置を用いて熱ラミネートする方法などが実施されている。
【0004】
熱硬化型積層板の製造方法では、熱硬化性樹脂の軟化温度は比較的低いので、100℃程度の温度で金属箔を絶縁フィルムに貼合せて積層することが可能である。そのため、被積層材料が積層時に受ける熱応力は比較的小さく、シワが発生するなど、積層にともなうトラブルも少ない。
【0005】
その一方、熱融着型積層板の製造方法では、一般に使用される熱可塑性樹脂のガラス転移温度(Tg)以上の温度で金属箔と接着フィルムの熱融着を行う必要がある。また、電子電気機器に用いられる場合、フレキシブル積層板は、電子電気機器の部品実装の過程で高温加熱を受けるので、少なくとも約180℃以上のTgを持つ接着層を備える必要があり、通常、約200℃以上の温度で熱融着される。このような高温における熱融着では、被積層材料の熱膨張および熱収縮が大きく、得られる積層板にシワなどの外観不良を生じやすい。
【0006】
さらに、熱融着型積層板の製造において、熱ラミネート直前の接着フィルムの張力が低い場合、金属材料と接着フィルムとが直前まで重ならずに熱ラミネートされると、接着フィルムが、熱ラミネートされる直前に雰囲気温度で熱膨張し、フィルムの幅方向(TD方向)に動く結果、ラミネートされた積層体に微小なシワなどの外観不良を生じやすい。特開平8−244168は、熱可塑性のポリイミドフィルムと金属箔とを積層するために1対の熱ロールを使用し、ラミネート直前に熱可塑性ポリイミドフィルムと金属箔とを直接重ねて積層する方法を記載している。しかし、この方法では、ポリイミドフィルムが絶乾状態でない場合(フィルムが僅かでも吸湿している場合)、熱ラミネート直前の雰囲気温度によってフィルム中に吸湿された水分が蒸発する。蒸発した水分は、フィルム表面および裏面とも金属箔で覆われているため逃げ道を失い、得られた積層体の金属箔表面に、蒸発した水分に起因する凸凹模様が発生し、外観不良になるという問題があった。
【0007】
【発明が解決しようとする課題】
本発明は、上記従来の問題点を解決するものであって、熱ラミネートの際に生じるシワなどの外観不良がないフレキシブル基板を得るための材料として好適な積層板の製造方法を提供する。
【0008】
【課題を解決するための手段】
本発明者らは、ラミネート前に接着フィルム中の水分を除去する目的で予め接着フィルムを乾燥しその状態で熱ラミネートすることで、積層板表面に凸凹模様が発生しないことを見出し本発明を完成するに至った。本発明者らは、さらに熱ラミネートする前に接着フィルムと金属箔とを重ねることで、接着フィルムの繰出張力が低い場合でも、熱ラミネート前に接着フィルムが蛇行することなく安定した接着フィルムの繰出しを行え、かつラミネート後の積層板表面に微小なシワが発生しないことを見出し本発明を完成するに至った。
【0009】
本発明は、金属箔と耐熱性接着フィルムとを備える外観に優れた耐熱性フレキシブル積層板の製造方法に関し、この方法は、耐熱性接着フィルムから水分を除去する工程;金属箔と耐熱性接着フィルムとを、少なくとも1対の金属ロールの間に保護材料を配置して熱融着する工程;および得られた積層体から保護材料を剥離する工程を包含する。
【0010】
本発明はまた、金属箔と耐熱性接着フィルムとを備える外観に優れた耐熱性フレキシブル積層板の製造方法に関し、この方法は、耐熱性接着フィルムから水分を除去する工程;金属箔と耐熱性接着フィルムとを、少なくとも1対の金属ロールの間に保護材料を配置して熱融着し、該保護材料が密着した積層体を得る工程;該積層体を冷却する工程および得られた積層体から保護材料を剥離する工程を包含する。
【0011】
この好ましくは、この方法は、前記水分を除去する工程と、前記熱融着する工程との間に、前記金属箔と前記耐熱性接着フィルムとを重ねる工程をさらに包含する。
【0012】
前記耐熱性接着フィルムは、熱可塑性ポリイミド樹脂を50重量%以上含有する。
【0013】
前記金属箔は、厚さ50μm以下の銅箔であり得る。
【0014】
前記保護材料は、ポリイミドフィルムであり得る。
【0015】
好ましくは、前記耐熱性接着フィルムの張力は3N/mm2以下である。
【0016】
好ましくは、前記熱融着する工程は200℃以上の温度で行われる。
【0017】
【発明の実施の形態】
以下、本発明の詳細について説明する。
【0018】
本発明の製造方法で得られる積層板は、主として電子電気用のフレキシブル積層板として用いられるが、それに制限されるものではない。
【0019】
本発明の製造方法では、接着フィルムとして、熱融着性を有する樹脂を含む単層フィルム;熱融着性を有さないコア層の両側に熱融着性を有する樹脂層を備えた複数層フィルム;および、紙、ガラスクロスなどの基材に熱融着性を有する樹脂を含浸したシートなどを用い得る。フレキシブル積層板用の接着フィルムとしては、ガラスクロスなどの剛性のある基材を使用すると屈曲性が劣るので、熱融着性を有する樹脂を含む単層フィルム、熱融着性を有さないコア層の両側に熱融着性を有する樹脂層を備える複数層フィルムが好適に用いられる。これら単層フィルムおよび複数層フィルムとして、通常、耐熱性を有するものが用いられ、熱融着性を有する接着成分が、熱可塑性ポリイミド系成分であるもの、例えば、熱可塑性ポリアミドイミド、熱可塑性ポリエーテルイミド、熱可塑性ポリエステルイミドなどが好適に用いられ得る。これらの耐熱性の熱可塑性樹脂を、接着成分中の50%以上含有する接着フィルムが本発明の製造方法で好適に用いられる。これら耐熱性の熱可塑性樹脂に加え、エポキシ樹脂、アクリル樹脂のような熱硬化性樹脂などを配合した接着フィルムもまた、好適に使用され得る。さらに必要に応じて、各種特性の向上のために、当業者に公知である種々の添加剤もまた、接着フィルムに配合され得る。
【0020】
接着フィルムの構成は、耐熱性の接着層を外面に有するものであれば、熱融着性の接着成分のみからなる単層でも構わないが、寸法特性などの観点から、熱融着性を有さないコア層の両面に熱融着性の接着層を有する3層構造のフィルムが好適に用いられる。熱融着性を有さないコア層として、好ましくは、非熱可塑性のポリイミドフィルムが用いられるが、耐熱性があれば特に限定されないで、任意の材質のフィルムを用い得る。
【0021】
接着フィルムの作製方法もまた、特に限定されない。接着層が、接着剤層単層からなる場合、ベルトキャスト法、押出法などにより製膜することができる。また、接着フィルムの構成が接着層/熱融着性を有さないコア層/接着層という3層からなる場合、熱融着性を有さないコア層(例えば、耐熱性フィルム)の両面に、接着剤を片面ずつまたは両面に同時に塗布して3層の接着フィルムを作製する方法、耐熱性フィルムの両面に接着成分のみからなる単層の接着フィルムを配置して貼り合わせ、3層の接着フィルムとする方法などで作製される。
【0022】
接着剤を塗布して3層の接着フィルムを作製する方法は、特にポリイミド系の接着剤を使用する場合、ポリイミド系の接着剤をポリアミック酸の状態で耐熱性フィルムに塗布し、次いで乾燥させながらイミド化を行う方法、そのまま可溶性ポリイミド樹脂を耐熱性フィルムに塗布し乾燥させる方法、接着層/耐熱融着性を有さないコア層/接着層のそれぞれの樹脂を共押出して、一度に耐熱性接着フィルムを製膜する方法などがあるが、接着剤層を形成する方法は特に制限されるものではない。
【0023】
本発明の製造方法に用いられる金属箔は、特に限定されないが、電子電気機器用に用いられる積層板の場合、導電性およびコストの点から銅箔が好適に用いられる。また、金属箔の厚みについては、銅箔の厚みが薄いほど回路パターンの線幅を細線化できることから、50μm以下の銅箔が好ましい。特に35μm以下の銅箔はそれ以上の厚みの銅箔に比べてコシがなく、熱ラミネートする際にシワを生じやすいため、35μm以下の銅箔について、本発明は顕著な効果を発揮する。銅箔の種類としては圧延銅箔、電解銅箔、HTE銅箔などを用い得、特に制限はなく、これらの表面に接着剤が塗布されていても構わない。
【0024】
熱ロールラミネート装置については、被積層材料を加熱して圧力を加えてラミネートする装置であれば特に制限されずに用いられ得る。加熱方法についても特に制限されずに、所定の温度で加熱することができるものであればその方式に拘らず用いられ得る。加熱方式として、例えば、熱媒循環方式、熱風加熱方式、誘電加熱方式などを採用し得る。加熱温度は200℃以上であることが好ましいが、電子部品実装のために、積層板が、雰囲気温度240℃の半田リフロー炉を通過する用途に供される場合には、それに応じたTgを有する熱融着フィルムを使用するために、通常、240℃以上で加熱され得る。熱ロールラミネート装置のプレスロールの材質は、ゴム、金属など、特に限定されないが、ラミネート温度が280℃以上の高温になると、ゴムロールは劣化するため使用できず、金属ロールが好適に用いられる。熱ロールラミネート装置の加圧方式についても、所定の圧力を加えることができるものであれば特に制限されずに用いられ、例えば、油圧方式、空気圧方式、ギャップ間圧力方式などの加圧方式が用いられ得る。圧力条件は目的に応じて適宜選択され得る。
【0025】
本発明で用いられる保護材料としては、ラミネートした製品のシワ発生など、外観不良の発生を防ぐ目的を達成するいずれの材料も用いられ得る。ただし、加工時の温度に耐え得る材料でなければならず、例えば、250℃で加工する場合は、それ以上の耐熱性を有するポリイミドフィルムが有効に用いられ得る。保護材料の厚みは特に限定されないが、ラミネート後の積層板のシワ形成を抑制する目的から、50μm以上の厚みが好適である。保護材料の厚みが75μm以上であればシワ形成をほぼ完全に抑制できるため、さらに好ましい。
【0026】
また、保護材料は、被積層材料と軽く密着するものであれば、特に表面処理などの処理を施す必要がない。逆に保護材料が被積層材料と密着しないものである場合、保護材料側に軽く密着するような表面処理を施したり、銅箔側に同様な表面処理を施したり、保護材料、銅箔の両方に表面処理を施し得る。また、銅箔表面の酸化を防ぐ目的で施された防錆処理など、他の目的で施した表面処理であっても、保護材料と被積層材料が軽く密着するような表面処理もまた利用可能である。
【0027】
保護材料を剥離する際の積層板の温度は、熱可塑性樹脂を被積層材料として使用する場合には、そのTg以下の温度が好ましい。より好ましくはTgよりも50℃以上低い温度、さらに好ましくはTgよりも100℃以上低い温度で剥離される。最も好ましくは、室温まで冷却された時点で、保護材料が積層板から剥離される。室温まで冷却する方法として、自然冷却でも構わないが、冷風を当てる、冷却ロールに抱かせるなどの方法で強制的に冷却するほうがより効果的である。
【0028】
接着フィルムを乾燥する方法としては特に規定しないが、次のようなものが考えられる。接着フィルムの原反ロールを乾燥機で乾燥させた後、接着フィルムが吸湿しないうちに熱ロールラミネート機の繰出装置にセットし、そのまま熱ラミネートを行う方法、接着フィルムの原反ロールを乾燥させない状態で、熱ロールラミネート機の繰出装置にセットし、接着フィルムを繰出しながら、ラミネート手前で乾燥装置により接着フィルムを乾燥させ、次いでラミネートを行う方法などが考えられる。また、乾燥装置に関しても接着フィルムを乾燥させる機構を備えた装置であれば特に限定されず、例えば、熱風循環式のオーブン、IRヒーター、電熱式ヒーターなどを用い得る。また、熱ロールに接着フィルムを抱かせて、水分を乾燥させる方法も考えられる。乾燥温度は、接着フィルム中の水分が蒸発する温度であれば良いが、接着フィルムの接着剤成分の分解温度を越えると、接着力が落ちるため好ましくない。具体的な温度範囲は、接着フィルムの表面温度が100℃以上、接着剤成分の分解温度以下の範囲になるようにするのが好ましい。接着剤成分のTg以下であることがさらに好ましい。
【0029】
また、一般的に、ラミネート前に接着フィルムの張力が高いと、接着フィルムが蛇行しにくく、また熱膨張によるTD方向の動きも規制されるため、金属箔とラミネートした際、金属箔表面にシワを生じにくい傾向にあるが、金属箔除去前後の積層体の寸法変化率が大きくなるため、接着フィルムの繰出張力をあまり高くするのは好ましくない。一方、接着フィルムの繰出張力が3N/mm2以下の場合、接着フィルムの蛇行や熱膨張による伸びが原因で考えられるラミネート時のシワが発生する傾向にある。これを防ぐためには、金属箔と接着フィルムをそれぞれ個別のパスラインで熱ロールまで搬送して一気にラミネートする(図1のd))よりも、接着フィルムと金属箔とを重ねることが好ましい(図1のa)、b)およびc))。
【0030】
接着フィルムと金属材料を重ねる機構としては、接着フィルムと金属材料とがラミネート前に重ねるのであれば特に限定されず、例えばロールを図1の(a)〜(c)のように配置してラミネート直前に密着させることが考えられる。図中のロールは接着フィルムおよび金属箔を搬送できるものであれば金属ロールでもゴムロールでも構わず、また、フリーロールでも駆動ロールでも特に限定されない。
【0031】
下実施例を記載して本発明をより詳細に説明する。
【0032】
【実施例】
以下の実施例に記載される、ポリイミドフィルムのガラス転移温度(Tg)は、島津製作所 DSC CELL SCC−41(示差走査熱量計)を用い、試料を、窒素気流下、昇温速度10℃/分にて、室温から400℃までの温度範囲に配置して測定した。
【0033】
寸法変化率は、JIS C6471(6.11寸法安定性)に準じて測定した。
【0034】
なお、以下の実施例に記載される電解銅箔は三井金属製のNDP−3、そして圧延銅箔はジャパンエナジー製のBHY−22B−Tを使用した。
【0035】
(実施例1)
Tg190℃の25μmの熱可塑性ポリイミドフィルム(鐘淵化学工業株式会社製 PIXEO TP−T)の両側に18μmの電解銅箔を配置し、さらにその両側に保護フィルムとして125μmのポリイミドフィルム(鐘淵化学工業株式会社製 アピカル125AH)を配置して、図1(a)に示すようなパスラインの熱ロールラミネート機により、温度350℃、L/S2.0m/分、線圧200N/cmの条件でラミネートした後、保護フィルムとラミネートされたフレキシブル積層板が軽く密着した状態で常温まで冷却し、冷却後、フレキシブル積層板から保護フィルムを剥離してフレキシブル積層板を作製した。
【0036】
その結果、外観にシワなどの不良のないフレキシブル積層板を得た。
【0037】
なお、熱可塑性ポリイミドフィルムは、ラミネートする前に、東海高熱社製の板状セラミックヒーターを使用して、フィルム表面温度が150℃になるように調節した。
【0038】
(実施例2)
実施例1で用いた電解銅箔よりシワが発生しやすい18μmの圧延銅箔を配置したことを除いて実施例1と同様にして、フレキシブル積層板を作製した。
【0039】
その結果、外観にシワなどの不良のないフレキシブル積層板を得た。
【0040】
(実施例3)
非熱可塑性ポリイミドフィルム両面にTg190℃の熱可塑性ポリイミド樹脂成分を有する、厚さ25μmの三層構造の接着フィルム(鐘淵化学工業株式会社製 PIXEO BP)の両側に、実施例1と同様の18μmの電解銅箔を配置し、さらにその両側に、実施例1と同様に、保護フィルムとして125μmのポリイミドフィルム(鐘淵化学工業株式会社製 アピカル125AH)を配置して、実施例1と同様に、フレキシブル積層板を作製した。
【0041】
その結果、外観にシワなどの不良のないフレキシブル積層板を得た。
【0042】
(実施例4)
実施例3で用いた3層構造の接着フィルムの両側に、実施例2と同様に18μmの圧延銅箔を配置したことを除いて、実施例3と同様にしてフレキシブル積層板を作製した。
【0043】
その結果、外観にシワなどの不良のないフレキシブル積層板を得た。
【0044】
(実施例5)
図1の(b)に示すようなパスラインの熱ロールラミネート機によりラミネートしたことを除いて、実施例4と同様にしてフレキシブル積層板を作製した。
【0045】
その結果、外観にシワなどの不良のないフレキシブル積層板を得た。
【0046】
(実施例6)
図1の(c)に示すようなパスラインの熱ロールラミネート機によりラミネートしたことを除いて、実施例4と同様にしてフレキシブル積層板を作製した。
【0047】
その結果、外観にシワなどの不良のないフレキシブル積層板を得た。
【0048】
参考例7)
図1の(d)に示すようなパスラインの熱ロールラミネート機によりラミネートしたことを除いて、実施例4と同様にしてフレキシブル積層板を作製した。
【0049】
その結果、ラミネート進行方向に薄っすらとしてシワがあるフレキシブル積層板が得られた。
【0050】
(比較例1)
図2の(a)に示すようなのパスラインの熱ロールラミネート機によりラミネートしたことを除いて、実施例2と同様にしてフレキシブル積層板を得た。
【0051】
ただし、ラミネートする前に熱可塑性ポリイミドフィルムを板状セラミックヒーターで乾燥する処理は行わなかった。
【0052】
その結果、フレキシブル積層板表面に接着フィルムの揮発水分による発泡模様が発生し、外観不良となった。
【0053】
(比較例2)
図2の(a)に示すようなパスラインの熱ロールラミネート機によりラミネートしたことを除いて、実施例4と同様にしてフレキシブル積層板を得た。
【0054】
ただし、ラミネートする前に熱可塑性ポリイミドフィルムを板状セラミックヒーターで乾燥する処理は行わなかった。
【0055】
その結果、フレキシブル積層板表面に接着フィルムの揮発水分による発泡模様が発生し、外観不良となった。
【0056】
(比較例3)
接着フィルムの繰出張力を5N/mm2にし、図2の(a)に示すようなパスラインの熱ロールラミネート機によりラミネートしたことを除いて、実施例4と同様にしてフレキシブル積層板を得た。
【0057】
ただし、ラミネートする前に熱可塑性ポリイミドフィルムを板状セラミックヒーターで乾燥する処理は行わなかった。
【0058】
その結果、フレキシブル積層板表面に接着フィルムの揮発水分による発泡模様が発生し、外観不良となり、寸法変化率がMD方向(フィルムの進行方向)で−0.24%、TD方向(フィルムの幅方向)で+0.25%と大きいものになった。
【0059】
(比較例4)
図2の(b)に示すようなパスラインの熱ロールラミネート機によりラミネートしたことを除いて、実施例4と同様にしてフレキシブル積層板を得た。
【0060】
ただし、ラミネートする前に熱可塑性ポリイミドフィルムを板状セラミックヒーターで乾燥する処理は行わなかった。
【0061】
その結果、フレキシブル積層板表面に接着フィルムの揮発水分による発泡模様が発生し、外観不良となった。
【0062】
以上の実施例1〜7および比較例1〜4の結果を、被積層材料、接着フィルム張力、ラミネート条件、ラミネートに用いたパスライン、ならびに得られた積層板の外観および寸法変化率とともに、まとめて表1に示す。なお、表1中、ラミ速度とは、被積層体を熱融着する際の、金属ロール周縁つまり金属ロールの加圧面の線速度である。
【0063】
【表1】
【0064】
表1に示すように、耐熱性接着フィルムを乾燥した実施例1〜7では、いずれも、耐熱性接着フィルムの張力が小さい状態でラミネートしても、得られた積層体の表面に凸凹模様はなく、それと同時に、ラミネート直前に銅箔と接着フィルムを密着させるパスラインを通過させて得た積層板には、積層板表面の微小なシワも認められなかった。また、得られた積層板の銅箔エッチング前後の寸法変化率はいずれも小さかった。
【0065】
【発明の効果】
電子電気機器用の耐熱性フレキシブル積層板として好適な、シワなどの外観不良のない積層板を得る方法が提供される。本発明によれば、繰出張力が低い状態で積層板を得るので、寸法安定性に優れた積層板を得ることができる。
【図面の簡単な説明】
【図1】熱ロールラミネート機のパスラインの概略を示す図。
【図2】熱ロールラミネート機のパスラインの概略を示す図。
【符号の説明】
1 金属箔
2 接着フィルム
3 保護フィルム
4 熱ロール
5 保護フィルム巻取装置
6 製品巻取装置
7 予熱装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a laminated plate manufactured by a pressure heating molding apparatus. More specifically, the present invention relates to a method for manufacturing a heat-resistant flexible laminate used for electronic and electrical equipment.
[0002]
[Prior art]
In recent years, with the reduction in weight, size, and density of electronic and electrical equipment, there has been an increasing demand for flexible laminates in which a copper foil circuit is formed on a printed circuit board, particularly an insulating film. Generally, a flexible laminate is made by bonding a metal foil to an insulating film such as a polyimide film with a thermosetting adhesive in a heated state (epoxy resin, acrylic resin, etc.), and further curing the resin by raising the temperature. Metal is applied to a method of forming a circuit by etching a metal foil (a method of manufacturing a thermosetting laminate) or an insulating film (hereinafter referred to as an adhesive film in this specification) in which a heat-resistant thermoplastic adhesive layer is formed in advance. After the foils are bonded together in a heated state, the metal foil is etched to form a circuit (a method for producing a heat-fusing laminate).
[0003]
Various methods for producing a thermosetting laminate have been studied in the past. After pressing a resin-containing paper or a resin-impregnated glass cloth and a metal foil using a multi-stage press or a vacuum press, the temperature is increased for several hours. A method of obtaining a rigid laminate by thermally curing a resin by treatment, and laminating (lamination) a roll-shaped laminated material between a pair of heating rolls, and then thermally curing the resin by treatment for several hours at a high temperature. A method of obtaining a flexible laminate, a method of heat laminating using a double belt press device instead of a heating roll, and the like have been implemented.
[0004]
In the method for producing a thermosetting laminate, since the softening temperature of the thermosetting resin is relatively low, it is possible to laminate the metal foil on the insulating film at a temperature of about 100 ° C. Therefore, the thermal stress that the material to be laminated receives during lamination is relatively small, and there are few troubles associated with lamination such as generation of wrinkles.
[0005]
On the other hand, in the method for producing a heat-fusible laminate, it is necessary to heat-fuse the metal foil and the adhesive film at a temperature equal to or higher than the glass transition temperature (Tg) of a commonly used thermoplastic resin. Further, when used in electronic and electrical equipment, the flexible laminate is subjected to high-temperature heating in the process of component mounting of the electronic and electrical equipment, so it is necessary to provide an adhesive layer having a Tg of at least about 180 ° C. It is heat-sealed at a temperature of 200 ° C. or higher. In heat fusion at such a high temperature, the thermal expansion and thermal contraction of the material to be laminated are large, and the resulting laminated board is liable to cause appearance defects such as wrinkles.
[0006]
Furthermore, in the production of heat-fusing type laminates, if the tension of the adhesive film immediately before thermal lamination is low, if the metal material and the adhesive film are thermally laminated without overlapping until just before, the adhesive film is thermally laminated. As a result of thermal expansion at ambient temperature immediately before moving and moving in the width direction (TD direction) of the film, appearance defects such as minute wrinkles are likely to occur in the laminated laminate. JP-A-8-244168 describes a method in which a pair of heat rolls are used to laminate a thermoplastic polyimide film and a metal foil, and the thermoplastic polyimide film and the metal foil are directly laminated immediately before lamination. is doing. However, in this method, when the polyimide film is not in an absolutely dry state (when the film absorbs even a slight amount of moisture), moisture absorbed in the film evaporates due to the ambient temperature immediately before the thermal lamination. Since the evaporated water is covered with metal foil on both the film surface and the back surface, the escape route is lost, and the surface of the metal foil of the resulting laminate is uneven, resulting in poor appearance due to the evaporated water. There was a problem.
[0007]
[Problems to be solved by the invention]
The present invention solves the above-described conventional problems, and provides a method for producing a laminated board suitable as a material for obtaining a flexible substrate free from appearance defects such as wrinkles generated during thermal lamination.
[0008]
[Means for Solving the Problems]
The present inventors have found that an uneven pattern is not generated on the surface of a laminated board by drying the adhesive film in advance for the purpose of removing moisture in the adhesive film before laminating and heat laminating in that state, thereby completing the present invention. It came to do. The present inventors have further laminated the adhesive film and the metal foil before heat laminating, so that even when the feeding tension of the adhesive film is low, the adhesive film can be fed stably without meandering before the heat laminating. The present invention was completed by finding that fine wrinkles are not generated on the surface of the laminated plate after lamination.
[0009]
The present invention relates to a method for producing a heat-resistant flexible laminate comprising a metal foil and a heat-resistant adhesive film, which is excellent in appearance, the method comprising removing moisture from the heat-resistant adhesive film; metal foil and heat-resistant adhesive film And a step of disposing the protective material between at least one pair of metal rolls and heat-sealing; and a step of peeling the protective material from the obtained laminate.
[0010]
The present invention also relates to a method for producing a heat-resistant flexible laminate comprising a metal foil and a heat-resistant adhesive film, which is excellent in appearance, the method comprising removing moisture from the heat-resistant adhesive film; A step of arranging a protective material between at least one pair of metal rolls and heat-sealing the film to obtain a laminated body in which the protective material is adhered; a step of cooling the laminated body, and an obtained laminated body A step of peeling the protective material.
[0011]
Preferably, this method further includes a step of overlapping the metal foil and the heat-resistant adhesive film between the step of removing the moisture and the step of heat-sealing.
[0012]
The heat resistant adhesive film contains 50% by weight or more of a thermoplastic polyimide resin.
[0013]
The metal foil may be a copper foil having a thickness of 50 μm or less.
[0014]
The protective material may be a polyimide film.
[0015]
Preferably, the tension of the heat resistant adhesive film is 3 N / mm 2 or less.
[0016]
Preferably, the heat sealing step is performed at a temperature of 200 ° C. or higher.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Details of the present invention will be described below.
[0018]
The laminate obtained by the production method of the present invention is mainly used as a flexible laminate for electronic electricity, but is not limited thereto.
[0019]
In the production method of the present invention, as the adhesive film, a single-layer film containing a resin having a heat-fusible property; a plurality of layers each having a resin layer having a heat-fusible property on both sides of a core layer having no heat-fusible property A film; and a sheet in which a base material such as paper or glass cloth is impregnated with a resin having heat-fusibility can be used. As an adhesive film for a flexible laminate, a flexible base material such as glass cloth is inferior in flexibility, so a single-layer film containing a resin having heat-fusibility, a core having no heat-fusibility A multilayer film provided with a resin layer having heat-fusibility on both sides of the layer is preferably used. As these single-layer film and multi-layer film, those having heat resistance are usually used, and the adhesive component having heat-fusibility is a thermoplastic polyimide-based component, for example, thermoplastic polyamideimide, thermoplastic polymer Ether imides, thermoplastic polyester imides and the like can be suitably used. An adhesive film containing 50% or more of these heat-resistant thermoplastic resins in the adhesive component is suitably used in the production method of the present invention. In addition to these heat-resistant thermoplastic resins, an adhesive film containing a thermosetting resin such as an epoxy resin or an acrylic resin can also be suitably used. Furthermore, if necessary, various additives known to those skilled in the art can also be added to the adhesive film in order to improve various properties.
[0020]
The structure of the adhesive film may be a single layer composed of only a heat-fusible adhesive component as long as it has a heat-resistant adhesive layer on the outer surface, but it has heat-fusibility from the viewpoint of dimensional characteristics. A film having a three-layer structure having a heat-fusible adhesive layer on both sides of the core layer not used is preferably used. A non-thermoplastic polyimide film is preferably used as the core layer having no heat-fusibility, but any film can be used without any particular limitation as long as it has heat resistance.
[0021]
The method for producing the adhesive film is also not particularly limited. When the adhesive layer is composed of a single adhesive layer, it can be formed by a belt casting method, an extrusion method, or the like. Further, when the adhesive film is composed of three layers of adhesive layer / core layer / heat-bonding layer having no heat-fusibility, both sides of the core layer (eg heat-resistant film) having no heat-fusibility are used. , A method of producing a three-layer adhesive film by applying an adhesive to each side or both sides simultaneously, and laminating and bonding a single-layer adhesive film consisting only of an adhesive component on both sides of a heat-resistant film It is produced by a method of forming a film.
[0022]
The method for producing a three-layer adhesive film by applying an adhesive is to apply a polyimide-based adhesive to a heat-resistant film in the state of polyamic acid, and then to dry, particularly when using a polyimide-based adhesive. A method of imidization, a method of directly applying a soluble polyimide resin to a heat-resistant film and drying, and a co-extrusion of each resin of the adhesive layer / core layer / adhesive layer not having heat-resistant fusing property, and heat resistance at a time There are methods for forming an adhesive film, but the method for forming the adhesive layer is not particularly limited.
[0023]
Although the metal foil used for the manufacturing method of this invention is not specifically limited, In the case of the laminated board used for an electronic electrical apparatus, a copper foil is used suitably from the point of electroconductivity and cost. Moreover, about the thickness of metal foil, since the line | wire width of a circuit pattern can be thinned, so that the thickness of copper foil is thin, copper foil of 50 micrometers or less is preferable. In particular, a copper foil having a thickness of 35 μm or less is less stiff than a copper foil having a thickness larger than that, and is likely to be wrinkled when thermally laminated. Therefore, the present invention exerts a remarkable effect on a copper foil having a thickness of 35 μm or less. As a kind of copper foil, rolled copper foil, electrolytic copper foil, HTE copper foil or the like can be used, and there is no particular limitation, and an adhesive may be applied to these surfaces.
[0024]
About a hot roll laminating apparatus, if it is an apparatus which heats a to-be-laminated material and applies a pressure and laminates, it can be used without a restriction | limiting in particular. The heating method is not particularly limited, and any heating method can be used as long as it can be heated at a predetermined temperature. As the heating method, for example, a heat medium circulation method, a hot air heating method, a dielectric heating method, or the like can be adopted. The heating temperature is preferably 200 ° C. or higher. However, when the laminate is used for passing through a solder reflow furnace having an atmospheric temperature of 240 ° C. for mounting electronic components, it has a Tg corresponding thereto. In order to use a heat-sealing film, it can usually be heated at 240 ° C. or higher. The material of the press roll of the hot roll laminating apparatus is not particularly limited, such as rubber and metal. However, when the laminating temperature reaches a high temperature of 280 ° C. or higher, the rubber roll cannot be used because it deteriorates, and a metal roll is preferably used. The pressurization method of the hot roll laminating apparatus is not particularly limited as long as a predetermined pressure can be applied. For example, a pressurization method such as a hydraulic method, a pneumatic method, or a gap pressure method is used. Can be. The pressure condition can be appropriately selected according to the purpose.
[0025]
As the protective material used in the present invention, any material that achieves the purpose of preventing appearance defects such as wrinkling of laminated products can be used. However, the material must be able to withstand the processing temperature. For example, when processing at 250 ° C., a polyimide film having higher heat resistance can be used effectively. The thickness of the protective material is not particularly limited, but a thickness of 50 μm or more is suitable for the purpose of suppressing wrinkle formation of the laminated board after lamination. If the thickness of the protective material is 75 μm or more, wrinkle formation can be suppressed almost completely, which is more preferable.
[0026]
Further, the protective material is not particularly required to be subjected to a treatment such as a surface treatment as long as it is lightly adhered to the material to be laminated. Conversely, if the protective material is not in close contact with the material to be laminated, a surface treatment that makes it lightly adhere to the protective material side, a similar surface treatment on the copper foil side, or both protective material and copper foil A surface treatment may be applied to the surface. In addition, surface treatments that allow the protective material and the material to be laminated to adhere lightly can also be used for surface treatments for other purposes, such as rust prevention treatments for the purpose of preventing oxidation of the copper foil surface. It is.
[0027]
When the thermoplastic resin is used as the material to be laminated, the temperature of the laminate when peeling the protective material is preferably a temperature equal to or lower than the Tg. More preferably, the peeling is performed at a temperature lower by 50 ° C. or more than Tg, and more preferably at a temperature lower by 100 ° C. or more than Tg. Most preferably, the protective material is peeled from the laminate when cooled to room temperature. As a method of cooling to room temperature, natural cooling may be used, but it is more effective to forcibly cool by a method such as applying cold air or holding it on a cooling roll.
[0028]
Although it does not prescribe | regulate especially as a method of drying an adhesive film, the following can be considered. After drying the original roll of adhesive film with a drier, set it on the feeding device of the hot roll laminator before the adhesive film absorbs moisture and heat laminate as it is, the state where the original roll of adhesive film is not dried Thus, a method may be considered in which the adhesive film is set in a feeding device of a hot roll laminating machine, the adhesive film is dried by a drying device before laminating, and then laminated. The drying device is not particularly limited as long as it is a device having a mechanism for drying the adhesive film. For example, a hot air circulation oven, an IR heater, an electrothermal heater, or the like can be used. Further, a method of drying the moisture by holding an adhesive film on a hot roll is also conceivable. The drying temperature may be any temperature at which moisture in the adhesive film evaporates, but if the temperature exceeds the decomposition temperature of the adhesive component of the adhesive film, it is not preferable because the adhesive strength decreases. The specific temperature range is preferably such that the surface temperature of the adhesive film is not lower than 100 ° C. and not higher than the decomposition temperature of the adhesive component. More preferably, it is Tg or less of the adhesive component.
[0029]
Also, generally, if the tension of the adhesive film is high before lamination, the adhesive film is difficult to meander and movement in the TD direction due to thermal expansion is also restricted. However, since the dimensional change rate of the laminate before and after the removal of the metal foil increases, it is not preferable to increase the feeding tension of the adhesive film too much. On the other hand, when the feeding tension of the adhesive film is 3 N / mm 2 or less, wrinkles at the time of lamination that are considered to be caused by meandering of the adhesive film or elongation due to thermal expansion tend to occur. In order to prevent this, it is preferable to stack the adhesive film and the metal foil rather than transporting the metal foil and the adhesive film to the hot rolls by individual pass lines and laminating at once (FIG. 1d). 1) a), b) and c)).
[0030]
The mechanism for stacking the adhesive film and the metal material is not particularly limited as long as the adhesive film and the metal material are stacked before lamination. For example, a roll is disposed as shown in FIGS. It is conceivable that they are brought into close contact immediately before. The roll in the figure may be a metal roll or a rubber roll as long as it can transport the adhesive film and the metal foil, and is not particularly limited to a free roll or a drive roll.
[0031]
The following examples are provided to illustrate the invention in more detail.
[0032]
【Example】
The glass transition temperature (Tg) of the polyimide film described in the following examples is Shimadzu DSC CELL SCC-41 (differential scanning calorimeter), and the sample is heated at a rate of 10 ° C./min in a nitrogen stream. The measurement was performed at a temperature range from room temperature to 400 ° C.
[0033]
The rate of dimensional change was measured according to JIS C6471 (6.11 dimensional stability).
[0034]
In addition, NDP-3 made from Mitsui Metals was used for the electrolytic copper foil described in the following examples, and BHY-22B-T made from Japan Energy was used for the rolled copper foil.
[0035]
Example 1
An 18 μm electrolytic copper foil is placed on both sides of a 25 μm thermoplastic polyimide film (PIXEO TP-T manufactured by Kaneka Chemical Co., Ltd.) having a Tg of 190 ° C., and a 125 μm polyimide film (Kanebuchi Chemical Industry Co., Ltd.) as a protective film on both sides. (Apical 125AH manufactured by Co., Ltd.) is placed and laminated under the conditions of a temperature 350 ° C., L / S 2.0 m / min, and linear pressure 200 N / cm using a hot roll laminator with a pass line as shown in FIG. Then, the protective film and the laminated flexible laminate were cooled to room temperature in a lightly adhered state, and after cooling, the protective film was peeled from the flexible laminate to produce a flexible laminate.
[0036]
As a result, a flexible laminate having no defects such as wrinkles was obtained.
[0037]
In addition, the thermoplastic polyimide film was adjusted so that the film surface temperature might be 150 degreeC using the plate-shaped ceramic heater by Tokai High Heat Co., Ltd. before laminating.
[0038]
(Example 2)
A flexible laminate was produced in the same manner as in Example 1 except that an 18 μm rolled copper foil that was more likely to be wrinkled than the electrolytic copper foil used in Example 1 was disposed.
[0039]
As a result, a flexible laminate having no defects such as wrinkles was obtained.
[0040]
(Example 3)
The same 18 μm as Example 1 on both sides of a 25 μm thick adhesive film (PIXEO BP manufactured by Kaneka Chemical Co., Ltd.) having a thermoplastic polyimide resin component of Tg 190 ° C. on both surfaces of the non-thermoplastic polyimide film. In the same manner as in Example 1, a 125 μm polyimide film (Apical 125AH manufactured by Kaneka Chemical Industry Co., Ltd.) is disposed on both sides of the electrolytic copper foil as in Example 1. A flexible laminate was prepared.
[0041]
As a result, a flexible laminate having no defects such as wrinkles was obtained.
[0042]
Example 4
A flexible laminate was prepared in the same manner as in Example 3 except that 18 μm rolled copper foil was disposed on both sides of the three-layered adhesive film used in Example 3.
[0043]
As a result, a flexible laminate having no defects such as wrinkles was obtained.
[0044]
(Example 5)
A flexible laminate was produced in the same manner as in Example 4 except that lamination was performed by a pass line hot roll laminator as shown in FIG.
[0045]
As a result, a flexible laminate having no defects such as wrinkles was obtained.
[0046]
(Example 6)
A flexible laminate was produced in the same manner as in Example 4 except that lamination was performed by a hot roll laminator having a pass line as shown in FIG.
[0047]
As a result, a flexible laminate having no defects such as wrinkles was obtained.
[0048]
( Reference Example 7)
A flexible laminate was produced in the same manner as in Example 4 except that lamination was performed by a hot roll laminator with a pass line as shown in FIG.
[0049]
As a result, a flexible laminate having wrinkles even in the laminating direction was obtained.
[0050]
(Comparative Example 1)
A flexible laminate was obtained in the same manner as in Example 2 except that the laminate was carried out by a hot roll laminator with a pass line as shown in FIG.
[0051]
However, the process which dries a thermoplastic polyimide film with a plate-shaped ceramic heater before laminating was not performed.
[0052]
As a result, a foamed pattern due to volatile moisture of the adhesive film was generated on the surface of the flexible laminate, resulting in poor appearance.
[0053]
(Comparative Example 2)
A flexible laminate was obtained in the same manner as in Example 4 except that lamination was performed by a hot roll laminator with a pass line as shown in FIG.
[0054]
However, the process which dries a thermoplastic polyimide film with a plate-shaped ceramic heater before laminating was not performed.
[0055]
As a result, a foamed pattern due to volatile moisture of the adhesive film was generated on the surface of the flexible laminate, resulting in poor appearance.
[0056]
(Comparative Example 3)
The flexible laminate was obtained in the same manner as in Example 4 except that the feeding tension of the adhesive film was 5 N / mm 2 and the laminate was laminated by a hot roll laminator with a pass line as shown in FIG. .
[0057]
However, the process which dries a thermoplastic polyimide film with a plate-shaped ceramic heater before laminating was not performed.
[0058]
As a result, a foamed pattern due to the volatile moisture of the adhesive film is generated on the surface of the flexible laminate, resulting in poor appearance, and the dimensional change rate is -0.24% in the MD direction (film traveling direction), TD direction (film width direction). ) + 0.25%.
[0059]
(Comparative Example 4)
A flexible laminate was obtained in the same manner as in Example 4 except that lamination was performed by a hot roll laminator with a pass line as shown in FIG.
[0060]
However, the process which dries a thermoplastic polyimide film with a plate-shaped ceramic heater before laminating was not performed.
[0061]
As a result, a foamed pattern due to volatile moisture of the adhesive film was generated on the surface of the flexible laminate, resulting in poor appearance.
[0062]
The results of Examples 1 to 7 and Comparative Examples 1 to 4 are summarized together with the material to be laminated, the adhesive film tension, the lamination conditions, the pass line used for the lamination, and the appearance and dimensional change rate of the obtained laminate. Table 1 shows. In Table 1, the laminating speed is the linear velocity of the peripheral edge of the metal roll, that is, the pressing surface of the metal roll when the laminated body is heat-sealed.
[0063]
[Table 1]
[0064]
As shown in Table 1, in Examples 1 to 7 where the heat-resistant adhesive film was dried, even when laminated with the heat-resistant adhesive film being in a low tension state, the uneven pattern was formed on the surface of the obtained laminate. At the same time, a fine wrinkle on the surface of the laminate was not observed in the laminate obtained by passing through a pass line for adhering the copper foil and the adhesive film immediately before lamination. Moreover, the dimensional change rate before and after the copper foil etching of the obtained laminate was small.
[0065]
【The invention's effect】
Provided is a method for obtaining a laminated board having no appearance defects such as wrinkles, which is suitable as a heat-resistant flexible laminated board for electronic and electrical equipment. According to the present invention, since a laminated board is obtained in a state where the feeding tension is low, a laminated board having excellent dimensional stability can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing an outline of a pass line of a hot roll laminating machine.
FIG. 2 is a diagram showing an outline of a pass line of a hot roll laminating machine.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Metal foil 2 Adhesive film 3 Protective film 4 Heat roll 5 Protective film winding device 6 Product winding device 7 Preheating device

Claims (7)

金属箔と耐熱性接着フィルムとを備える外観に優れた耐熱性フレキシブル積層板の製造方法であって:
接着フィルムを繰出しながら、ラミネート手前で乾燥装置により接着フィルムを乾燥させ、耐熱性接着フィルムから水分を除去する工程;
金属箔と耐熱性接着フィルムとを、少なくとも1対の金属ロールの間であって、該金属箔と該金属ロールの間に保護材料を配置して熱融着する工程;および
得られた積層体から保護材料を剥離する工程、を包含し、
該水分を除去する工程と、該熱融着する工程との間に、該金属箔と該耐熱性接着フィルムとを重ねる工程をさらに包含する、方法。
A method for producing a heat-resistant flexible laminate having an excellent appearance comprising a metal foil and a heat-resistant adhesive film:
A step of removing moisture from the heat-resistant adhesive film by drying the adhesive film with a drying device before laminating while feeding the adhesive film;
A step of heat-bonding the metal foil and the heat-resistant adhesive film between at least one pair of metal rolls and disposing a protective material between the metal foil and the metal roll; and the obtained laminate comprising the step, of separating the protective material from,
A method further comprising the step of stacking the metal foil and the heat-resistant adhesive film between the step of removing moisture and the step of heat-sealing .
金属箔と耐熱性接着フィルムとを備える外観に優れた耐熱性フレキシブル積層板の製造方法であって:
接着フィルムを繰出しながら、ラミネート手前で乾燥装置により接着フィルムを乾燥させ、耐熱性接着フィルムから水分を除去する工程;
金属箔と耐熱性接着フィルムとを、少なくとも1対の金属ロールの間であって、該金属箔と該金属ロールの間に保護材料を配置して熱融着し、該保護材料が密着した積層体を得る工程;
該積層体を冷却する工程;および
得られた積層体から保護材料を剥離する工程、を包含し、
該水分を除去する工程と、該熱融着する工程との間に、該金属箔と該耐熱性接着フィルムとを重ねる工程をさらに包含する、方法。
A method for producing a heat-resistant flexible laminate having an excellent appearance comprising a metal foil and a heat-resistant adhesive film:
A step of removing moisture from the heat-resistant adhesive film by drying the adhesive film with a drying device before laminating while feeding the adhesive film;
A laminate in which a metal foil and a heat-resistant adhesive film are disposed between at least one pair of metal rolls, and a protective material is disposed between the metal foil and the metal roll and heat-sealed so that the protective material adheres. Obtaining a body;
Cooling the laminate; and peeling the protective material from the resulting laminate ,
A method further comprising the step of stacking the metal foil and the heat-resistant adhesive film between the step of removing moisture and the step of heat-sealing .
前記耐熱性接着フィルムが、熱可塑性ポリイミド樹脂を50重量%以上含有する、請求項1からのいずれかに記載の方法。The heat-resistant adhesive film, contains a thermoplastic polyimide resin over 50 wt% A method according to any of claims 1 to 2. 前記金属箔が、厚さ50μm以下の銅箔である、請求項1からのいずれかに記載の方法。Wherein the metal foil is a less copper foil thickness 50 [mu] m, method according to any one of claims 1 to 2. 前記保護材料が、ポリイミドフィルムである、請求項1からのいずれかに記載の方法。It said protective material is a polyimide film, The method according to any one of claims 1 to 2. 前記耐熱性接着フィルムの張力が3N/mm2以下である、請求項1からのいずれかに記載の方法。The tension of the heat-resistant adhesive film is 3N / mm 2 or less, The method according to any one of claims 1 to 2. 前記熱融着する工程が200℃以上の温度で行われる、請求項1からのいずれかに記載の方法。The heat-fusible to process is performed at 200 ° C. or higher, the method according to any one of claims 1 to 2.
JP2001133681A 2001-04-27 2001-04-27 Manufacturing method of heat-resistant flexible Expired - Lifetime JP4774162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001133681A JP4774162B2 (en) 2001-04-27 2001-04-27 Manufacturing method of heat-resistant flexible

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001133681A JP4774162B2 (en) 2001-04-27 2001-04-27 Manufacturing method of heat-resistant flexible

Publications (2)

Publication Number Publication Date
JP2002326280A JP2002326280A (en) 2002-11-12
JP4774162B2 true JP4774162B2 (en) 2011-09-14

Family

ID=18981494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001133681A Expired - Lifetime JP4774162B2 (en) 2001-04-27 2001-04-27 Manufacturing method of heat-resistant flexible

Country Status (1)

Country Link
JP (1) JP4774162B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060015333A (en) * 2003-06-02 2006-02-16 신닛테츠가가쿠 가부시키가이샤 Method for producing laminate
JP4663976B2 (en) * 2003-12-01 2011-04-06 株式会社カネカ Method for producing flexible metal-clad laminate with improved dimensional stability
CN1894087A (en) * 2003-12-26 2007-01-10 株式会社钟化 Method of producing flexible laminate sheet
JP4551094B2 (en) * 2004-01-23 2010-09-22 株式会社カネカ Adhesive film, flexible metal-clad laminate with improved dimensional stability obtained therefrom, and method for producing the same
US7858200B2 (en) 2004-07-27 2010-12-28 Kaneka Corporation Adhesive film and use thereof
US8426548B2 (en) 2004-09-24 2013-04-23 Kaneka Corporation Polyimide film and adhesive film and flexible metal-clad laminate both obtained with the same
JP4838509B2 (en) * 2004-11-12 2011-12-14 株式会社カネカ Method for producing flexible metal-clad laminate
WO2006115258A1 (en) 2005-04-25 2006-11-02 Kaneka Corporation Novel polyimide film and use thereof
JP2007036047A (en) * 2005-07-28 2007-02-08 Kaneka Corp Manufacturing method of thin flexible metal plated laminate of good appearance
JP4692758B2 (en) * 2006-02-24 2011-06-01 信越化学工業株式会社 Flexible laminate and method for manufacturing the same
JP6231259B2 (en) * 2012-02-23 2017-11-15 トヨタ自動車株式会社 Method of manufacturing membrane electrode assembly for fuel cell

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57181857A (en) * 1981-05-06 1982-11-09 Ube Industries Polyimide laminated material and its manufacture
JPS60109835A (en) * 1983-11-19 1985-06-15 松下電工株式会社 Manufacture of metallic foil lined laminated board
JPS61143433A (en) * 1984-12-15 1986-07-01 Nitto Electric Ind Co Ltd Moisture-resistant polyimide
JPH04345843A (en) * 1991-05-23 1992-12-01 Hitachi Chem Co Ltd Roll laminator
JP3030959B2 (en) * 1991-09-09 2000-04-10 三菱化学株式会社 Continuous production method of metal / resin composite board
JP2866779B2 (en) * 1993-01-05 1999-03-08 三井化学株式会社 Heat resistant adhesive sheet
JP3067128B2 (en) * 1995-03-09 2000-07-17 宇部興産株式会社 Manufacturing method of metal foil laminated polyimide film
JPH10315411A (en) * 1997-05-23 1998-12-02 Sumitomo Bakelite Co Ltd Polyimide adhesive film laminate and its manufacture
JPH11298114A (en) * 1998-04-14 1999-10-29 Mitsui Chem Inc Manufacture of polyimide-metal laminate
JP2000119607A (en) * 1998-10-12 2000-04-25 Kanegafuchi Chem Ind Co Ltd Preparation of bonding sheet and flexible copper-covered laminate using same
JP4389337B2 (en) * 2000-03-28 2009-12-24 宇部興産株式会社 Flexible metal foil laminate and manufacturing method thereof
JP4345187B2 (en) * 2000-03-28 2009-10-14 宇部興産株式会社 Method for producing flexible metal foil laminate

Also Published As

Publication number Publication date
JP2002326280A (en) 2002-11-12

Similar Documents

Publication Publication Date Title
JP4774162B2 (en) Manufacturing method of heat-resistant flexible
JP4500682B2 (en) Method for producing heat-resistant flexible laminate
JP4205889B2 (en) Method for producing heat-resistant flexible laminate
JP4231227B2 (en) Method for producing heat-resistant flexible laminate
JP4144660B2 (en) Manufacturing method of heat-resistant flexible substrate
TW200523102A (en) Method for producing flexible laminate
JP4305799B2 (en) Laminate production method
JP3989145B2 (en) Laminate production method
JP2009066911A (en) Manufacturing method of flexible metal laminate
JP2006255920A (en) Method and apparatus for manufacturing heat-resistant flexible laminated sheet
JP3954831B2 (en) Method for producing heat-resistant flexible laminate
JP2003001753A (en) Method for manufacturing heat-resistant flexible laminated sheet
JP4643861B2 (en) Method for producing flexible laminate
JP2002192615A (en) Laminated sheet manufacturing method
JP2002052614A (en) Method for manufacturing laminated sheet
JP6123463B2 (en) Method for producing metal laminate
JP2002361744A (en) Method for manufacturing heat-resistant flexible laminated sheet
JP3574092B2 (en) Manufacturing method of heat resistant flexible laminate
JP2007223052A (en) Method for manufacturing heat-resistant flexible metal laminate
JP2005044880A (en) Flexible metal lamination and its manufacturing method
JP2002064259A (en) Method of manufacturing heat-resistant flexible board
JP2002096392A (en) Method for manufacturing laminate
JP4498498B2 (en) Method for producing double-sided metal-clad laminate
JP2003001750A (en) Method for manufacturing heat-resistant flexible laminated sheet
JP2005306040A (en) Manufacturing process of heat-resistant flexible substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110602

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110627

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4774162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term