JP4389337B2 - Flexible metal foil laminate and manufacturing method thereof - Google Patents

Flexible metal foil laminate and manufacturing method thereof Download PDF

Info

Publication number
JP4389337B2
JP4389337B2 JP2000088274A JP2000088274A JP4389337B2 JP 4389337 B2 JP4389337 B2 JP 4389337B2 JP 2000088274 A JP2000088274 A JP 2000088274A JP 2000088274 A JP2000088274 A JP 2000088274A JP 4389337 B2 JP4389337 B2 JP 4389337B2
Authority
JP
Japan
Prior art keywords
metal foil
thermocompression
flexible metal
polyimide
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000088274A
Other languages
Japanese (ja)
Other versions
JP2001270037A (en
Inventor
智彦 山本
勝三 加藤
敏徳 細馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2000088274A priority Critical patent/JP4389337B2/en
Publication of JP2001270037A publication Critical patent/JP2001270037A/en
Application granted granted Critical
Publication of JP4389337B2 publication Critical patent/JP4389337B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
この発明は、連続ラミネ−ト装置によって積層されてなるフレキシブル金属箔積層体およびその製造法に関するものであり、さらに詳しくは高耐熱性の芳香族ポリイミド層の少なくとも片面に熱圧着性の芳香族ポリイミド層を有する熱圧着性多層ポリイミドフィルムと金属箔とが積層されてなる、高い半田耐熱性を有するフレキシブル金属箔積層体およびその製造法に関するものである。
【0002】
【従来の技術】
カメラ、パソコン、液晶ディスプレイなどの電子機器類への用途として芳香族ポリイミドフィルムは広く使用されている。
芳香族ポリイミドフィルムをフレキシブルプリント板(FPC)やテ−プ・オ−トメイティッド・ボンディング(TAB)などの基板材料として使用するためには、エポキシ樹脂などの接着剤を用いて銅箔を張り合わせる方法が採用されている。
【0003】
芳香族ポリイミドフィルムは耐熱性、機械的強度、電気的特性などが優れているが、接着剤の耐熱性等が劣るため、本来のポリイミドの特性を損なうことが指摘されている。
このような問題を解決するために、接着剤を使用しないでポリイミドフィルムに銅を電気メッキしたり、銅箔にポリアミック酸溶液を塗布し、乾燥、イミド化したり、熱可塑性ポリイミドを熱圧着させたオ−ルポリイミド基材も開発されている。
【0004】
また、真空プレス機などを用いてポリイミドフィルムと金属箔との間にポリイミド接着剤をサンドイッチ状に接合したポリイミドラミネ−トが知られている(米国特許第4543295号)。
しかし、このポリイミドラミネ−トでは、長尺状のものが得られずしかも低熱線膨張のビフェニルテトラカルボン酸系ポリイミドフィルムについては接着強度が小さく使用できないという問題がある。
【0005】
また、ロ−ルラミネ−ト法によって耐熱性ポリイミド層と熱圧着性ポリイミド層との熱圧着性多層ポリイミドフィルムと金属箔とを加熱圧着したフレキシブルフレキシブル金属箔積層体が提案されているが、圧着温度が高い場合に製品外観が良好なものを得ることは困難であった。
このため、ロ−ルの材質として特定の硬度を有する金属を使用するとか、熱圧着性のポリイミドとして特定の芳香族ジアミンによって得られたものを使用する試みがなされている。しかし、ポリイミドに含有されている水分によりラミネ−ト後の積層体に発泡による外観不良が発生したり、電子回路形成時に半田浴浸漬して発泡が生じるため半田耐熱性は280℃未満であり、鉛フリ−半田の基板材料として使用することが難しく、製品収率も悪化する。
【0006】
このため、ポリイミド接着シ−トを一旦別工程(アウトライン)で余熱処理して防湿保管の後、金属箔とポリイミド接着シ−トとをラミネ−トしたフレキシブル金属箔積層体が提案されている。しかし、このアウトラインで余熱処理を行う方法は品質管理が困難であり、しかもポリイミド接着シ−トを加熱圧着するまでの間に再度吸湿するため、得られるフレキシブル金属箔積層体の発泡による外観不良を完全には解消できず高い半田耐熱性を達成することが困難である。
【0007】
【発明が解決しようとする課題】
この発明の目的は、基体層としての耐熱性ポリイミと熱圧着性ポリイミドとの熱圧着性多層ポリイミドフィルムおよび金属箔が積層した、高半田耐熱性で長尺の、従って連続ラミネ−ト装置によって積層されてなるフレキシブル金属箔積層体およびその製造法を提供することである。
【0008】
【課題を解決するための手段】
すなわち、この発明は、高耐熱性の芳香族ポリイミド層の少なくとも片面に金属箔が熱圧着性のポリイミド層を介し、連続ラミネ−ト装置によって積層されてなる、280℃以上の半田耐熱性を有し積層時の発泡による外観不良がないフレキシブル金属箔積層体に関する。
また、この発明は、高耐熱性の芳香族ポリイミド層の少なくとも片面に熱圧着性のポリイミド層が積層一体化された熱圧着性多層ポリイミドフィルムを連続ラミネ−ト装置に導入する直前のインラインで予熱して、金属箔と熱圧着性多層ポリイミドフィルムとを加熱圧着して張り合わせる前記のフレキシブル金属箔積層体の製造法に関する。
【0009】
【発明の実施の形態】
以下にこの発明の好ましい態様を列記ずる。
1)高耐熱性の芳香族ポリイミド層の両面に金属箔が熱圧着性のポリイミド層を介して積層されてなる前記のフレキシブル金属箔積層体。
2)金属箔が、電解銅箔、圧延銅箔、アルミニウム箔あるいはステンレス箔である前記のフレキシブル金属箔積層体。
3)金属箔が、厚み3μm〜35μmの金属箔である前記のフレキシブル金属箔積層体。
4)ポリイミド層の全体厚みが7〜50μmである前記のフレキシブル金属箔積層体。
5)300℃以上の半田耐熱性を有する前記のフレキシブル金属箔積層体。
6)熱圧着性多層ポリイミドフィルムが、高耐熱性の芳香族ポリイミド層の少なくとも片面、好ましくは両面に熱圧着性の芳香族ポリイミド層を共押出−流延製膜成形法で積層一体化して得られるものである前記のフレキシブル金属箔積層体の製造法。
【0010】
この発明のフレキシブル金属箔積層体の構成としては、例えば次の各種の組み合わせが挙げられる。次の記載でTPI−Fは熱圧着性多層ポリイミドフィルムを、TPIは熱圧着性の芳香族ポリイミド層を、PIは高耐熱性の芳香族ポリイミド層を各々示し、[ ]中の記載は熱圧着性多層ポリイミドフィルムの構成を示す。
▲1▼金属箔/TPI−F[TPI/PI]
▲2▼金属箔/TPI−F[TPI/PI/TPI]
▲3▼金属箔/TPI−F[TPI/PI/TPI]/金属箔
この発明においては、前記の熱圧着性多層ポリイミドフィルムと金属箔とを連続ラミネ−ト装置によって積層する。
【0011】
この発明における熱圧着性多層ポリイミドフィルムは、例えば高耐熱性の芳香族ポリイミドの前駆体溶液乾燥膜の片面あるいは両面に熱圧着性の芳香族ポリイミドの前駆体溶液を積層した後、あるいはより好ましくは、共押出し−流延製膜法によって高耐熱性の芳香族ポリイミドの前駆体溶液の片面あるいは両面に熱圧着性の芳香族ポリイミドまたはその前駆体溶液を積層した後、乾燥、イミド化して熱圧着性多層ポリイミドフィルムを得る方法によって得ることができる。
【0012】
前記の熱圧着性多層ポリイミドフィルムの高耐熱性の芳香族ポリイミドは、好適には3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(以下単にs−BPDAと略記することもある。)とパラ−フェニレンジアミン(以下単にPPDと略記することもある。)と場合によりさらに4,4’−ジアミノジフェニルエ−テル(以下単にDADEと略記することもある。)および/またはピロメリット酸二無水物(以下単にPMDAと略記することもある。)とから製造される。この場合PPD/DADE(モル比)は100/0〜85/15であることが好ましい。また、s−BPDA/PMDAは100:0〜50/50であることが好ましい。
また、高耐熱性の芳香族ポリイミドは、ピロメリット酸二無水物とパラフェニレンジアミンおよび4,4’−ジアミノジフェニルエ−テルとから製造される。この場合DADE/PPD(モル比)は90/10〜10/90であることが好ましい。
さらに、高耐熱性の芳香族ポリイミドは、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(BTDA)およびピロメリット酸二無水物(PMDA)とパラフェニレンジアミン(PPD)および4,4’−ジアミノジフェニルエ−テル(DADE)とから製造される。この場合、酸二無水物中BTDAが20〜90モル%、PMDAが10〜80モル%、ジアミン中PPDが30〜90モル%、DADEが10〜70モル%であることが好ましい。
前記の高耐熱性の芳香族ポリイミドの物性を損なわない範囲で、他の種類の芳香族テトラカルボン酸二無水物や芳香族ジアミン、例えば4,4’−ジアミノジフェニルメタン等を使用してもよい。
また、前記の芳香族テトラカルボン酸二無水物や芳香族ジアミンの芳香環にフッ素基、水酸基、メチル基あるいはメトキシ基などの置換基を導入してもよい。
【0013】
上記の高耐熱性の芳香族ポリイミドとしては、単層のポリイミドフィルムの場合にガラス転移温度が350℃未満の温度では確認不可能であるものが好ましく、特に線膨張係数(50〜200℃)(MD、TDおよびこれらの平均のいずれも)が5×10-6〜25×10-6cm/cm/℃であるものが好ましい。
この高耐熱性の芳香族ポリイミドの合成は、最終的に各成分の割合が前記範囲内であればランダム重合、ブロック重合、ブレンドあるいはあらかじめ2種類以上のポリアミック酸溶液を合成しておき各ポリアミック酸溶液を混合してポリアミック酸の再結合によって共重合体を得る、いずれの方法によっても達成される。
【0014】
この発明における熱圧着性ポリイミドとしては、300〜400℃程度の温度で熱圧着できる熱可塑性ポリイミドであれば何でも良い。好適には1,3−ビス(4−アミノフェノキシベンゼン)(以下、TPERと略記することもある。)と2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(以下、a−BPDAと略記することもある。)とから製造される。
また、前記の熱圧着性ポリイミドとしては、1,3−ビス(4−アミノフェノキシ)−2,2−ジメチルプロパン(DANPG)と4,4’−オキシジフタル酸二無水物(ODPA)とから製造される。
あるいは、4,4’−オキシジフタル酸二無水物(ODPA)およびピロメリット酸二無水物と1,3−ビス(4−アミノフェノキシベンゼン)とから製造される。
また、1,3−ビス(3−アミノフェノキシ)ベンゼンと3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物とから、あるいは3,3’−ジアミノベンゾフェノンおよび1,3−ビス(3−アミノフェノキシ)ベンゼンと3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物とから製造される。
【0015】
この熱圧着性ポリイミドの物性を損なわない範囲で他のテトラカルボン酸二無水物、例えば3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,2−ビス(3、4−ジカルボキシフェニル)プロパン二無水物などで置き換えられてもよい。
また、熱圧着性ポリイミドの物性を損なわない範囲で他のジアミン、例えば4,4’−ジアミノジフェニルエ−テル、4,4’−ジアミノベンゾフェノン、4,4’−ジアミノジフェニルメタン、2,2−ビス(4−アミノフェニル)プロパン、1,4−ビス(4−アミノフェノキシ)ベンゼン、4,4’−ビス(4−アミノフェニル)ジフェニルエ−テル、4,4’−ビス(4−アミノフェニル)ジフェニルメタン、4,4’−ビス(4−アミノフェノキシ)ジフェニルエ−テル、4,4’−ビス(4−アミノフェノキシ)ジフェニルメタン、2,2−ビス〔4−(アミノフェノキシ)フェニル〕プロパン、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕ヘキサフルオロプロパンなどの複数のベンゼン環を有する柔軟な芳香族ジアミン、1,4−ジアミノブタン、1,6−ジアミノヘキサン、1,8−ジアミノオクタン、1,10−ジアミノデカン、1,12−ジアミノドデカンなどの脂肪族ジアミン、ビス(3−アミノプロピル)テトラメチルジシロキサンなどのジアミノジシロキサンによって置き換えられてもよい。
前記の熱圧着性の芳香族ポリイミドのアミン末端を封止するためにジカルボン酸類、例えば、フタル酸およびその置換体、ヘキサヒドロフタル酸およびその置換体、コハク酸およびその置換体やそれらの誘導体など、特に、フタル酸を使用してもよい。
【0016】
前記の熱圧着性のポリイミドは、前記各成分と、さらに場合により他のテトラカルボン酸二無水物および他のジアミンとを、有機溶媒中、約100℃以下、特に20〜60℃の温度で反応させてポリアミック酸の溶液とし、このポリアミック酸の溶液をド−プ液として使用できる。
この発明における熱圧着性のポリイミドを得るためには、前記の有機溶媒中、酸の全モル数(テトラカルボン酸二無水物とジカルボン酸の総モルとして)の使用量がジアミン(モル数として)に対する比として、好ましくは0.92〜1.1、特に0.98〜1.1、そのなかでも特に0.99〜1.1であり、ジカルボン酸の使用量がテトラカルボン酸二無水物のモル量に対する比として、好ましくは0.00〜0.1、特に0.02〜0.06であるような割合が好ましい。
【0017】
また、ポリアミック酸のゲル化を制限する目的でリン系安定剤、例えば亜リン酸トリフェニル、リン酸トリフェニル等をポリアミック酸重合時に固形分(ポリマ−)濃度に対して0.01〜1%の範囲で添加することができる。また、イミド化促進の目的で、ド−プ液中に塩基性有機化合物系触媒を添加することができる。例えば、イミダゾ−ル、2−イミダゾ−ル、1,2−ジメチルイミダゾ−ル、2−フェニルイミダゾ−ルなどをポリアミック酸(固形分)に対して0.01〜20重量%、特に0.5〜10重量%の割合で使用することができる。これらは比較的低温でポリイミドフィルムを形成するため、イミド化が不十分となることを避けるために使用する。
また、接着強度の安定化の目的で、熱圧着性の芳香族ポリイミド原料ド−プに有機アルミニウム化合物、無機アルミニウム化合物または有機錫化合物を添加してもよい。例えば水酸化アルミニウム、アルミニウムトリアセチルアセトナ−トなどをポリアミック酸(固形分)に対してアルミニウム金属として1ppm以上、特に1〜1000ppmの割合で添加することができる。
【0018】
前記のポリアミック酸製造に使用する有機溶媒は、高耐熱性の芳香族ポリイミドおよび熱圧着性の芳香族ポリイミドのいずれに対しても、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルアミド、N−メチルカプロラクタム、クレゾ−ル類などが挙げられる。これらの有機溶媒は単独で用いてもよく、2種以上を併用してもよい。
【0019】
この発明における熱圧着性多層ポリイミドフィルムの製造においては、好適には共押出し−流延製膜法、例えば上記の高耐熱性の芳香族ポリイミドのポリアミック酸溶液の片面あるいは両面に熱圧着性の芳香族ポリイミドまたはその前駆体の溶液を共押出して、これをステンレス鏡面、ベルト面等の支持体面上に流延塗布し、100〜200℃で半硬化状態またはそれ以前の乾燥状態とする方法が採用できる。200℃を越えた高い温度で流延フィルムを処理すると、熱圧着性多層ポリイミドフィルムの製造において、接着性の低下などの欠陥を来す傾向にある。この半硬化状態またはそれ以前の状態とは、加熱および/または化学イミド化によって自己支持性の状態にあることを意味する。
【0020】
前記高耐熱性の芳香族ポリイミドを与えるポリアミック酸の溶液と熱圧着性の芳香族ポリイミドを与えるポリアミック酸の溶液との共押出しは、例えば特開平3−180343号公報(特公平7−102661号公報)に記載の共押出法によって二層あるいは三層の押出し成形用ダイスに供給し、支持体上にキャストしておこなうことができる。
前記の高耐熱性の芳香族ポリイミドを与える押出し物層の片面あるいは両面に、熱圧着性の芳香族ポリイミドを与えるポリアミック酸溶液を積層して多層フィルム状物を形成して乾燥後、熱圧着性の芳香族ポリイミドのガラス転移温度(Tg)以上で劣化が生じる温度以下の温度、好適には300〜500℃の温度(表面温度計で測定した表面温度)まで加熱して(好適にはこの温度で1〜60分間加熱して)乾燥およびイミド化して、高耐熱性(基体層)の芳香族ポリイミドの片面あるいは両面に熱圧着性の芳香族ポリイミドを有する熱圧着性多層ポリイミドフィルムを製造することができる。
【0021】
この発明における熱圧着性の芳香族ポリイミドは、前記の酸成分とジアミン成分とを使用することによって、ガラス転移温度が180〜275℃、特に200〜275℃であって、好適には前記の条件で乾燥・イミド化して熱圧着性ポリイミドのゲル化を実質的に起こさせないことによって得られる、ガラス転移温度以上で300℃以下の範囲内の温度で液状化せず、かつ弾性率が、通常275℃での弾性率が室温付近の温度(50℃)での弾性率の0.0002〜0.2倍程度を保持しているものが好ましい。
【0022】
この発明において、高耐熱性の(基体層)ポリイミド層の厚さは5〜120μm、特に5〜40μmであることが好ましい。5μm未満では作成した熱圧着性多層ポリイミドフィルムの機械的強度、寸法安定性に問題が生じる。また120μmより厚くなると溶媒の除去、イミド化に難点が生じる。
また、この発明において、熱圧着性の芳香族ポリイミド層の厚みは各々2〜10μm、特に2〜8μm程度が好ましい。2μm未満では接着性能が低下し、10μmを超えても使用可能であるがとくに効果はなく、むしろフレキシブル金属箔積層体の耐熱性が低下する。
また、熱圧着性の多層ポリイミドフィルムは厚みが7〜125μm、特に7〜50μmであることが好ましい。7μm未満では作成したフィルムの取り扱いが難しく、125μmより厚くなると溶媒の除去、イミド化に難点が生じる。
【0023】
前記の共押出し−流延製膜法によれば、高耐熱性ポリイミド層とその片面あるいは両面の熱圧着性ポリイミドとを比較的低温度でキュアして熱圧着性ポリイミドの劣化を来すことなく、自己支持性フィルムのイミド化、乾燥を完了させた熱圧着性多層ポリイミドフィルムを得ることができる。
【0024】
この発明において使用される金属箔としては、銅、アルミニウム、鉄、金などの金属箔あるいはこれら金属の合金箔など各種金属箔が挙げられるが、好適には圧延銅箔、電解銅箔などがあげられる。金属箔として、表面粗度の余り大きくなくかつ余り小さくない、好適にはRzが7μm以下、特にRzが5μm以下、特に0.5〜5μmであるものが好ましい。このような金属箔、例えば銅箔はVLP、LP(またはHTE)として知られている。
金属箔の厚さは特に制限はないが、75μm以下、特に3〜35μmであることが好ましい。
また、Rzが小さい場合には、金属箔表面を表面処理したものを使用してもよい。
【0025】
この発明においては、前記の熱圧着性多層ポリイミドフィルムと金属箔とを、ロ−ルラミネ−トあるいはダブルベルトプレスなどの連続ラミネ−ト装置であって、熱圧着性多層ポリイミドフィルムのみあるいは熱圧着性多層ポリイミドフィルムと金属箔を導入する直前のインラインで150〜250℃程度、特に150℃より高く250℃以下の温度で2〜120秒間程度予熱できるように熱風供給装置や赤外線加熱機などの予熱器を用いて予熱して、加熱圧着して張り合わせることによって、フレキシブル金属箔積層体を得ることができる。
前記のインラインとは原材料の繰り出し装置と連続ラミネ−ト装置の圧着部との間に予熱装置を設置し、直後に圧着できる装置配置になったものをいう。
【0026】
そして、インラインで予熱しないと、大気から吸水してポリイミドに含有されている水分によりラミネ−ト後の積層体に発泡による外観不良が発生したり、電子回路形成時の半田浴浸漬時に発泡が生じ、製品収率が悪化する。また、ラミネ−ト装置全体を炉の中に設置する方法も考えられるが、ラミネ−ト装置がコンパクトなものに実質限定され、フレキシブル金属箔積層体の形状に制限を受け実用的ではない。あるいは、アウトラインで予熱処理しても、積層するまでに再度吸湿してしまい前記の発泡による外観不良や半田耐熱性の低下は避けられない。
前記のダブルベルトプレスは、加圧下に高温加熱−冷却を行うことができるものであって、熱媒を用いた液圧式のものが好ましい。
【0027】
この発明のフレキシブル金属箔積層体は、好適にはロ−ルラミネ−トまたはダブルベルトプレスの加熱圧着ゾ−ンの温度が熱圧着性ポリイミドのガラス転移温度より20℃以上高く400℃以下の温度、特にガラス転移温度より30℃以上高く400℃以下の温度で加圧下に熱圧着し、特にダブルベルトプレスの場合には引き続いて冷却ゾ−ンで加圧下に冷却して、好適には熱圧着性ポリイミドのガラス転移温度より20℃以上低い温度、特に30℃以上低い温度まで冷却して、積層することによって製造することができる。
前記の方法において、製品が片面金属箔のフレキシブル金属箔積層体である場合には、剥離容易な高耐熱性フィルム、例えば前記のRzが2μm未満の高耐熱性フィルムまたは金属箔、好適にはポリイミドフィルム(宇部興産社製、ユ−ピレックスS)やフッ素樹脂フィルムなどの高耐熱性樹脂フィルムや圧延銅箔などであって表面粗さが小さく表面平滑性の良好な金属箔を保護材として、熱圧着性ポリイミド層と他の金属面との間に介在させてもよい。この保護材は積層後、積層体から除いて巻き取ってもよく、保護材を積層したままで巻き取って使用時に取り除いてもよい。
【0028】
この発明においては、特にダブルベルトプレスを用いて加圧下に熱圧着−冷却して積層することによって、好適には引き取り速度1m/分以上とすることができ、得られるフレキシブル金属箔積層体は、長尺で幅が約400mm以上、特に約500mm以上の幅広の、接着強度が大きく(90°ピ−ル強度:0.7kg/cm以上、特に1kg/cm以上)、金属箔表面に皺が実質的に認めれられない程外観が良好なフレキシブル金属箔積層体を得ることができる。
また、ダブルベルトプレスを用いた場合、フレキシブル金属箔積層体は、好適には寸法変化率が、各幅方向のL、CおよびR(フィルムの巻き出し方向の左端、中心、右端)の平均で、MD、TDともに室温(エッチング後乾燥のみ)および150℃(エッチング後加熱処理)で|±0.20|%以下となり、寸法変化の均一性が高くなる。
【0029】
この発明において、フレキシブル金属箔積層体は、熱圧着性多層ポリイミドフィルムおよび金属箔がロ−ル巻きの状態でロ−ルラミネ−トまたはダブルベルトプレスにそれぞれ供給され、金属箔積層フィルムをロ−ル巻きの状態で得ることができる。
【0030】
この発明によって得られるフレキシブル金属箔積層体は、ロ−ル巻き、エッチング、および場合によりカ−ル戻し等の各処理を行った後、所定の大きさに切断して、電子部品用基板として使用できる。
例えば、FPC、TAB、多層FPC、フレックスリジッド基板の基板として好適に使用することができる。
特に、金属箔の厚みが3〜35μmで熱圧着性多層ポリイミドフィルム層の厚みが7〜50μmである片面銅箔積層体(全体厚みが15〜85μm)あるいは両面銅箔積層体(全体厚みが25〜120μm)から、エポキシ系接着剤あるいは熱可塑性ポリイミドや熱可塑性ポリアミドイミドあるいはポリイミドシロキサン−エポキシ系などの耐熱性ポリイミド系接着剤から選ばれる耐熱性接着剤(厚み5〜50μm、好ましくは5〜15μm、特に7〜12μm)で複数の銅箔積層体を接着することによって銅箔積層体が2〜10層で、高耐熱性・低吸水・低誘電率・高電気特性を満足する多層基板を好適に得ることができる。
この発明のフレキシブル金属箔積層体には、前記の長尺状のものだけでなく前記のように長尺状のものを所定の大きさに切断したものも含まれる。
【0031】
【実施例】
以下、この発明を実施例によりさらに詳細に説明する。
以下の各例において、部は重量部を意味する。
以下の各例において、物性評価およびフレキシブル金属箔積層体の接着強度は以下の方法に従って測定した。
【0032】
寸法変化率:JIS C−6471の「フレキシブルプリント配線板用銅張積層板試験方法」により測定。
熱線膨張係数:50−200℃、5℃/分で測定(TD、MDの平均値)、cm/cm/℃
ガラス転移温度(Tg):粘弾性より測定。
接着強度:90°剥離強度を測定した。
製品外観:積層後の製品外観について、発泡による膨れの有無を目視判定して評価。
○は発泡無しで良好、△は一部に発泡有り、×全面に発泡が発生
半田耐熱性:280℃または300℃で1分間浸漬し、発泡による異常の有無を目視判定し評価した
○は発泡無しで良好、△は一部に発泡有り、×全面に発泡が発生
【0033】
高耐熱性の芳香族ポリイミド製造用ド−プの合成例1
攪拌機、窒素導入管を備えた反応容器に、N−メチル−2−ピロリドンを加え、さらに、パラフェニレンジアミン(PPD)と3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(s−BPDA)とを1000:998のモル比でモノマ−濃度が18%(重量%、以下同じ)になるように加えた。添加終了後50℃を保ったまま3時間反応を続けた。得られたポリアミック酸溶液は褐色粘調液体であり、25℃における溶液粘度は約1500ポイズであった。この溶液をド−プとして使用した。
【0034】
熱圧着性の芳香族ポリイミド製造用ド−プの合成−1
攪拌機、窒素導入管を備えた反応容器に、N−メチル−2−ピロリドンを加え、さらに、1,3−ビス(4−アミノフェノキシ)ベンゼン(TPE−R)と2,3,3’,4’−ビフェニルテトラカルボン酸二無水物(a−BPDA)とを1000:1000のモル比でモノマ−濃度が22%になるように、またトリフェニルホスフェ−トをモノマ−重量に対して0.1%加えた。添加終了後25℃を保ったまま1時間反応を続けた。このポリアミック酸溶液は、25℃における溶液粘度が約2000ポイズであった。この溶液をド−プとして使用した。
【0035】
参考例1〜3
上記の高耐熱性の芳香族ポリイミド用ド−プと熱圧着性の芳香族ポリイミド製造用ド−プとを三層押出し成形用ダイス(マルチマニホ−ルド型ダイス)を設けた製膜装置を使用し、前記ポリアミック酸溶液を三層押出ダイスの厚みを変えて金属製支持体上に流延し、140℃の熱風で連続的に乾燥し、固化フィルムを形成した。この固化フィルムを支持体から剥離した後加熱炉で200℃から320℃まで徐々に昇温して溶媒の除去、イミド化を行い3種類の長尺状の三層押出しポリイミドフィルムを巻き取りロ−ルに巻き取った。
得られた三層押出しポリイミドフィルムは、次のような物性を示した。
【0036】
熱圧着性多層ポリイミドフィルム−1
厚み構成:4μm/17μm/4μm(合計25μm)
熱圧着性の芳香族ポリイミドのTg:250℃(以下同じ)
熱圧着性の芳香族ポリイミドの275℃での弾性率は50℃での弾性率の約0.002倍(以下同じ)
フィルムの吸水率:0.8重量%(以下同じ)
熱圧着性多層ポリイミドフィルム−2
厚み構成:3μm/9μm/3μm(合計15μm)
熱圧着性多層ポリイミドフィルム−3
厚み構成:2μm/6μm/2μm(合計10μm)
【0037】
比較例1
前記の熱圧着性多層ポリイミドフィルム−1と、2つのロ−ル巻きした電解銅箔(三井金属鉱業社製、3EC−VLP、Rzが3.8μm、厚さ18μm)とを、金属製の圧着ロ−ルと弾性ロ−ルとからなるラミネ−トロ−ルを使用し、予熱なしで連続的に金属側:380℃、弾性側:200℃で加熱下に圧着して、フレキシブル銅箔積層体(幅:約320mm)を巻き取りロ−ルに巻き取った。なお、操作はすべて空気中で行い、冷却は自然冷却で行った。
得られたフレキシブル銅箔積層体についての評価結果を次にに示す。
製品外観:×
90°ピ−ル強度(平均:1.3kg/cm)
ハンダ耐熱性:280℃で×
【0038】
比較例2
アウトラインで200℃に予熱した後、デシケ−タ−で保管した熱圧着性多層ポリイミドフィルム−1を使用した他は比較例1と同様にして、フレキシブル銅箔積層体を巻き取りロ−ルに巻き取った。
得られたフレキシブル銅箔積層体についての評価結果を次にに示す。
製品外観:△
ハンダ耐熱性:280℃で△
【0039】
実施例1
熱圧着性多層ポリイミドフィルム−1および銅箔を、ラミネ−トロ−ル直前のインラインで200℃の熱風で30秒間加熱して予熱した他は比較例1と同様にして、両面銅箔のフレキシブル銅箔積層体を巻き取りロ−ルに巻き取った。
得られたフレキシブル銅箔積層体についての評価結果を次にに示す。
製品外観:○
耐ハンダ耐熱性:300℃で○
【0040】
比較例3
ダブルベルトプレスに、熱圧着性多層ポリイミドフィルム−1およびその両側から厚み18μmの電解銅箔(三井金属鉱業社製)を連続的に供給し、予熱なしで加熱ゾ−ンの温度(最高加熱温度)381℃、冷却ゾ−ンの温度(最低冷却温度)117℃)で、連続的に加圧下に熱圧着−冷却して積層して、フレキシブル銅派箔積層体(幅:約530mm、以下同じ)のロ−ル巻状物を得た。
得られたフレキシブル銅箔積層体についての評価結果を次に示す。
製品外観:△
ハンダ耐熱性:280℃で△
【0041】
比較例4
アウトラインで200℃に予熱し、デシケ−タ−で保管した熱圧着性多層ポリイミドフィルム−1を使用した他は比較例3と同様にして、連続的に加圧下に熱圧着−冷却して積層して、ロ−ル巻状物フレキシブル銅箔積層体を巻き取りロ−ルに巻き取った。
得られたフレキシブル銅箔積層体についての評価結果を次にに示す。
製品外観:○
ハンダ耐熱性:280℃で△
【0042】
実施例2
熱圧着性多層ポリイミドフィルム−1および銅箔を、ダブルベルトプレス直前のインラインで200℃の熱風で30秒間加熱して予熱した他は比較例3と同様にして、連続的に加圧下に熱圧着−冷却して積層して、ロ−ル巻状両面銅箔のフレキシブル銅箔積層体を巻き取りロ−ルに巻き取った。
得られたフレキシブル銅箔積層体についての評価結果を次にに示す。
製品外観:○
ハンダ耐熱性:300℃で○
【0043】
実施例3
片面銅張り積層体[保護材:ポリイミドフィルム(宇部興産社製、ユピレックス−S 25μm)使用]とした他は実施例2と同様にして、ダブルベルトプレスで連続的に加圧下に熱圧着−冷却して積層して、ロ−ル巻状片面銅箔のフレキシブル銅箔積層体を巻き取りロ−ルに巻き取った。
得られたフレキシブル銅箔積層体についての評価結果を次にに示す。
製品外観:○
ハンダ耐熱性:300℃で○
【0044】
実施例4〜5
熱圧着性多層ポリイミドフィルム−2および厚み12μmの電解銅箔(三井金属鉱業社製)を使用するか、熱圧着性多層ポリイミドフィルム−3および厚み9μmの電解銅箔(三井金属鉱業社製)を使用した他は実施例2と同様にして、連続的に加圧下に熱圧着−冷却して積層して、ロ−ル巻状両面銅箔のフレキシブル銅箔積層体を巻き取りロ−ルに巻き取った。
得られたフレキシブル銅箔積層体についての評価結果は実施例2と同等で良好な結果を示した。
また、実施例1〜5で得られたフレキシブル銅箔積層体は比較例1のものと同等以上の90°ピ−ル強度を示した。
【0045】
【発明の効果】
この発明によれば、以上のような構成を有しているため、次のような効果を奏する。
【0046】
この発明によれば、長尺で幅広の、外観および半田耐熱性が良好なフレキシブル金属箔積層体、特にフレキシブル金属箔積層体を得ることができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flexible metal foil laminate laminated by a continuous laminating apparatus and a method for producing the same, and more specifically, a thermocompression-bonding aromatic polyimide on at least one surface of a highly heat-resistant aromatic polyimide layer. The present invention relates to a flexible metal foil laminate having high solder heat resistance, which is obtained by laminating a thermocompression-bonding multilayer polyimide film having a layer and a metal foil, and a method for producing the same.
[0002]
[Prior art]
Aromatic polyimide films are widely used as applications for electronic devices such as cameras, personal computers, and liquid crystal displays.
In order to use an aromatic polyimide film as a substrate material such as a flexible printed board (FPC) or tape-automated bonding (TAB), a copper foil is bonded using an adhesive such as an epoxy resin. The method is adopted.
[0003]
Aromatic polyimide films are excellent in heat resistance, mechanical strength, electrical characteristics, etc., but it has been pointed out that the heat resistance of adhesives is inferior so that the characteristics of the original polyimide are impaired.
In order to solve such problems, copper was electroplated on a polyimide film without using an adhesive, a polyamic acid solution was applied to a copper foil, dried and imidized, and a thermoplastic polyimide was thermocompression bonded. An all-polyimide substrate has also been developed.
[0004]
Further, there is known a polyimide laminate in which a polyimide adhesive is bonded in a sandwich between a polyimide film and a metal foil using a vacuum press machine (US Pat. No. 4,543,295).
However, in this polyimide laminate, there is a problem that a long one cannot be obtained, and a low heat linear expansion biphenyltetracarboxylic acid type polyimide film has a low adhesive strength and cannot be used.
[0005]
In addition, a flexible flexible metal foil laminate in which a thermocompression-bonding multilayer polyimide film of a heat-resistant polyimide layer and a thermocompression-bondable polyimide layer and a metal foil are thermocompression-bonded by a roll laminating method has been proposed. It was difficult to obtain a product with a good appearance when the value was high.
For this reason, attempts have been made to use a metal having a specific hardness as the material of the roll, or to use a material obtained from a specific aromatic diamine as a thermocompression bonding polyimide. However, due to the moisture contained in the polyimide, poor appearance due to foaming occurs in the laminated body after lamination, or the solder heat resistance is less than 280 ° C. because the foaming is caused by immersion in the solder bath when forming the electronic circuit. It is difficult to use as a lead-free solder substrate material, and the product yield also deteriorates.
[0006]
For this reason, a flexible metal foil laminate has been proposed in which a polyimide adhesive sheet is preheated in a separate process (outline), and after moisture-proof storage, a metal foil and a polyimide adhesive sheet are laminated. However, the method of performing the heat treatment in this outline is difficult to control the quality, and further absorbs moisture before the polyimide adhesive sheet is heat-bonded, so that the appearance of the flexible metal foil laminate is poor due to foaming. It cannot be completely eliminated and it is difficult to achieve high solder heat resistance.
[0007]
[Problems to be solved by the invention]
The object of the present invention is to laminate a heat-resistant multilayer polyimide film of a heat-resistant polyimide as a base layer and a thermo-compression-bonding polyimide film and a metal foil, and have a high solder heat resistance and a long length, and therefore a continuous laminating apparatus. It is providing the flexible metal foil laminated body formed, and its manufacturing method.
[0008]
[Means for Solving the Problems]
That is, the present invention has a solder heat resistance of 280 ° C. or higher, in which a metal foil is laminated on at least one surface of a highly heat-resistant aromatic polyimide layer via a thermocompression bonding polyimide layer by a continuous laminating apparatus. The present invention relates to a flexible metal foil laminate having no appearance defect due to foaming during lamination.
In addition, the present invention preheats in-line immediately before introducing a thermocompression-bonding multilayer polyimide film in which a thermocompression-bonding polyimide layer is laminated and integrated on at least one surface of a high heat-resistant aromatic polyimide layer into a continuous laminating apparatus. And it is related with the manufacturing method of the said flexible metal foil laminated body which heat-presses and bonds a metal foil and a thermocompression-bonding multilayer polyimide film.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The preferred embodiments of the present invention are listed below.
1) The said flexible metal foil laminated body by which metal foil is laminated | stacked through the thermocompression-bonding polyimide layer on both surfaces of the highly heat-resistant aromatic polyimide layer.
2) The said flexible metal foil laminated body whose metal foil is electrolytic copper foil, rolled copper foil, aluminum foil, or stainless steel foil.
3) The flexible metal foil laminate described above, wherein the metal foil is a metal foil having a thickness of 3 μm to 35 μm.
4) The said flexible metal foil laminated body whose whole thickness of a polyimide layer is 7-50 micrometers.
5) Said flexible metal foil laminated body which has solder heat resistance of 300 degreeC or more.
6) A thermocompression-bonding multilayer polyimide film is obtained by laminating and integrating a thermocompression-bonding aromatic polyimide layer on at least one surface, preferably both surfaces of a highly heat-resistant aromatic polyimide layer by a coextrusion-casting film forming method. A method for producing the flexible metal foil laminate as described above.
[0010]
As a structure of the flexible metal foil laminated body of this invention, the following various combinations are mentioned, for example. In the following description, TPI-F indicates a thermocompression-bonding multilayer polyimide film, TPI indicates a thermocompression-bonding aromatic polyimide layer, PI indicates a high heat-resistant aromatic polyimide layer, and the description in [] indicates thermocompression-bonding. The structure of a conductive multilayer polyimide film is shown.
(1) Metal foil / TPI-F [TPI / PI]
(2) Metal foil / TPI-F [TPI / PI / TPI]
(3) Metal foil / TPI-F [TPI / PI / TPI] / Metal foil In the present invention, the thermocompression-bonding multilayer polyimide film and the metal foil are laminated by a continuous laminating apparatus.
[0011]
The thermocompression-bonding multilayer polyimide film of the present invention is preferably, for example, after laminating a thermocompression-bonding aromatic polyimide precursor solution on one or both sides of a highly heat-resistant aromatic polyimide precursor solution dry film, or more preferably. The thermocompression-bonding aromatic polyimide or its precursor solution is laminated on one or both sides of the highly heat-resistant aromatic polyimide precursor solution by the coextrusion-casting film forming method, and then dried, imidized and thermocompression bonded. It can obtain by the method of obtaining a conductive multilayer polyimide film.
[0012]
The high heat-resistant aromatic polyimide of the thermocompression-bonding multilayer polyimide film is preferably 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (hereinafter sometimes simply referred to as s-BPDA). ) And para-phenylenediamine (hereinafter sometimes abbreviated as PPD) and optionally 4,4′-diaminodiphenyl ether (hereinafter also abbreviated as DADE) and / or pyromerit. It is produced from acid dianhydride (hereinafter sometimes abbreviated simply as PMDA). In this case, the PPD / DADE (molar ratio) is preferably 100/0 to 85/15. Moreover, it is preferable that s-BPDA / PMDA is 100: 0-50 / 50.
High-heat-resistant aromatic polyimide is produced from pyromellitic dianhydride, paraphenylenediamine, and 4,4′-diaminodiphenyl ether. In this case, the DADE / PPD (molar ratio) is preferably 90/10 to 10/90.
Furthermore, high heat-resistant aromatic polyimides include 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (BTDA), pyromellitic dianhydride (PMDA), paraphenylenediamine (PPD) and 4 , 4'-diaminodiphenyl ether (DADE). In this case, it is preferable that BTDA in acid dianhydride is 20 to 90 mol%, PMDA is 10 to 80 mol%, PPD in diamine is 30 to 90 mol%, and DADE is 10 to 70 mol%.
Other types of aromatic tetracarboxylic dianhydrides and aromatic diamines such as 4,4′-diaminodiphenylmethane may be used as long as the physical properties of the high heat-resistant aromatic polyimide are not impaired.
Moreover, you may introduce | transduce substituents, such as a fluorine group, a hydroxyl group, a methyl group, or a methoxy group, into the aromatic ring of the said aromatic tetracarboxylic dianhydride or aromatic diamine.
[0013]
As the above-mentioned high heat-resistant aromatic polyimide, in the case of a single-layer polyimide film, those that cannot be confirmed at a glass transition temperature of less than 350 ° C. are preferable, and in particular, the linear expansion coefficient (50 to 200 ° C.) ( MD, TD, and the average of these are all preferably 5 × 10 −6 to 25 × 10 −6 cm / cm / ° C.
The synthesis of this highly heat-resistant aromatic polyimide can be accomplished by randomly polymerizing, polymerizing, blending or preliminarily synthesizing two or more types of polyamic acid solutions as long as the ratio of each component is within the above range. This can be achieved by any method in which the solution is mixed to obtain a copolymer by recombination of the polyamic acid.
[0014]
As the thermocompression bonding polyimide in the present invention, any thermoplastic polyimide that can be thermocompression bonded at a temperature of about 300 to 400 ° C. may be used. Preferably, 1,3-bis (4-aminophenoxybenzene) (hereinafter sometimes abbreviated as TPER) and 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride (hereinafter referred to as a- And may be abbreviated as BPDA).
The thermocompression bonding polyimide is manufactured from 1,3-bis (4-aminophenoxy) -2,2-dimethylpropane (DANPG) and 4,4′-oxydiphthalic dianhydride (ODPA). The
Alternatively, it is produced from 4,4′-oxydiphthalic dianhydride (ODPA) and pyromellitic dianhydride and 1,3-bis (4-aminophenoxybenzene).
Also, from 1,3-bis (3-aminophenoxy) benzene and 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, or from 3,3′-diaminobenzophenone and 1,3-bis ( 3-aminophenoxy) benzene and 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride.
[0015]
Other tetracarboxylic dianhydrides such as 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2-bis (3,4- It may be replaced with dicarboxyphenyl) propane dianhydride or the like.
Further, other diamines such as 4,4′-diaminodiphenyl ether, 4,4′-diaminobenzophenone, 4,4′-diaminodiphenylmethane, 2,2-bis, as long as the physical properties of the thermocompression bonding polyimide are not impaired. (4-aminophenyl) propane, 1,4-bis (4-aminophenoxy) benzene, 4,4′-bis (4-aminophenyl) diphenyl ether, 4,4′-bis (4-aminophenyl) Diphenylmethane, 4,4′-bis (4-aminophenoxy) diphenyl ether, 4,4′-bis (4-aminophenoxy) diphenylmethane, 2,2-bis [4- (aminophenoxy) phenyl] propane, 2, , A flexible aromatic diamine having a plurality of benzene rings such as 2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane; , 4-diaminobutane, 1,6-diaminohexane, 1,8-diaminooctane, 1,10-diaminodecane, 1,12-diaminododecane and other aliphatic diamines, bis (3-aminopropyl) tetramethyldisiloxane And may be replaced by diaminodisiloxane.
Dicarboxylic acids such as phthalic acid and its substituted products, hexahydrophthalic acid and its substituted products, succinic acid and its substituted products and derivatives thereof for sealing the amine terminal of the thermocompression-bonding aromatic polyimide In particular, phthalic acid may be used.
[0016]
The thermocompression bonding polyimide reacts with each of the above components, and optionally other tetracarboxylic dianhydrides and other diamines in an organic solvent at a temperature of about 100 ° C. or less, particularly 20 to 60 ° C. Thus, a polyamic acid solution can be used, and this polyamic acid solution can be used as a dope solution.
In order to obtain the thermocompression-bondable polyimide in the present invention, the total amount of acids (as the total moles of tetracarboxylic dianhydride and dicarboxylic acid) used in the organic solvent is diamine (as the number of moles). Is preferably 0.92 to 1.1, particularly 0.98 to 1.1, and especially 0.99 to 1.1, and the amount of dicarboxylic acid used is tetracarboxylic dianhydride The ratio to the molar amount is preferably 0.00 to 0.1, particularly preferably 0.02 to 0.06.
[0017]
Further, for the purpose of limiting the gelation of polyamic acid, phosphorus stabilizers such as triphenyl phosphite and triphenyl phosphate are 0.01 to 1% based on the solid content (polymer) concentration during polyamic acid polymerization. It can be added in the range of. For the purpose of promoting imidization, a basic organic compound-based catalyst can be added to the dope solution. For example, imidazole, 2-imidazole, 1,2-dimethylimidazole, 2-phenylimidazole and the like are 0.01 to 20% by weight, particularly 0.5% with respect to the polyamic acid (solid content). It can be used at a ratio of -10% by weight. Since these form a polyimide film at a relatively low temperature, they are used to avoid imidation becoming insufficient.
For the purpose of stabilizing the adhesive strength, an organoaluminum compound, an inorganic aluminum compound or an organotin compound may be added to the thermocompression bonding aromatic polyimide raw material dope. For example, aluminum hydroxide, aluminum triacetylacetonate, or the like can be added in an amount of 1 ppm or more, particularly 1 to 1000 ppm as an aluminum metal with respect to polyamic acid (solid content).
[0018]
The organic solvent used for the production of the polyamic acid is N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, for both high heat-resistant aromatic polyimide and thermocompression aromatic polyimide. , N-dimethylacetamide, N, N-diethylacetamide, dimethylsulfoxide, hexamethylphosphoramide, N-methylcaprolactam, cresols and the like. These organic solvents may be used alone or in combination of two or more.
[0019]
In the production of the thermocompression-bonding multilayer polyimide film in the present invention, a coextrusion-casting film forming method, for example, a thermocompression-bonding fragrance on one side or both sides of the polyamic acid solution of the above-mentioned high heat-resistant aromatic polyimide, is preferable. Coextruded solution of group polyimide or its precursor, casted onto a support surface such as a stainless steel mirror surface or belt surface, and made into a semi-cured or dried state at 100-200 ° C. it can. When a cast film is processed at a high temperature exceeding 200 ° C., defects such as a decrease in adhesiveness tend to occur in the production of a thermocompression-bonding multilayer polyimide film. This semi-cured state or an earlier state means that it is in a self-supporting state by heating and / or chemical imidization.
[0020]
The coextrusion of the polyamic acid solution that gives the high heat-resistant aromatic polyimide and the polyamic acid solution that gives the thermocompression-bonding aromatic polyimide can be performed by, for example, JP-A-3-180343 (Japanese Patent Publication No. 7-102661). ) Can be fed to a two-layer or three-layer extrusion die and cast on a support.
A polyamic acid solution that gives a thermocompression-bonding aromatic polyimide is laminated on one or both sides of the extrudate layer that gives the high heat-resistant aromatic polyimide to form a multilayered film-like product, and is dried, followed by thermocompression bonding. Heat to a temperature below the temperature at which deterioration occurs above the glass transition temperature (Tg) of the aromatic polyimide, preferably 300 to 500 ° C. (surface temperature measured with a surface thermometer) (preferably this temperature). Drying for 1 to 60 minutes) and drying and imidizing to produce a thermocompression-bonding multilayer polyimide film having a thermocompression-bonding aromatic polyimide on one or both sides of a highly heat-resistant (substrate layer) aromatic polyimide. Can do.
[0021]
The thermocompression-bondable aromatic polyimide according to the present invention has a glass transition temperature of 180 to 275 ° C., particularly 200 to 275 ° C. by using the acid component and the diamine component. Is not liquefied at a temperature not lower than the glass transition temperature and not higher than 300 ° C., and the elastic modulus is usually 275. It is preferable that the elastic modulus at 0 ° C. holds about 0.0002 to 0.2 times the elastic modulus at a temperature near room temperature (50 ° C.).
[0022]
In the present invention, the thickness of the high heat resistant (base layer) polyimide layer is preferably 5 to 120 μm, particularly preferably 5 to 40 μm. If the thickness is less than 5 μm, problems arise in the mechanical strength and dimensional stability of the thermocompression-bondable multilayer polyimide film produced. On the other hand, when the thickness is more than 120 μm, there are difficulties in removing the solvent and imidization.
In the present invention, the thickness of the thermocompression-bondable aromatic polyimide layer is preferably 2 to 10 μm, particularly about 2 to 8 μm. If it is less than 2 μm, the adhesive performance is lowered, and even if it exceeds 10 μm, it can be used, but it is not particularly effective, but rather the heat resistance of the flexible metal foil laminate is lowered.
The thermocompression-bonding multilayer polyimide film preferably has a thickness of 7 to 125 μm, particularly 7 to 50 μm. When the thickness is less than 7 μm, it is difficult to handle the prepared film. When the thickness is greater than 125 μm, there are difficulties in removing the solvent and imidization.
[0023]
According to the coextrusion-casting film forming method, the high heat-resistant polyimide layer and the thermocompression bonding polyimide on one or both sides thereof are cured at a relatively low temperature without causing deterioration of the thermocompression bonding polyimide. A thermocompression-bonding multilayer polyimide film in which imidization and drying of the self-supporting film are completed can be obtained.
[0024]
Examples of the metal foil used in the present invention include metal foils such as copper, aluminum, iron, and gold, or various metal foils such as alloy foils of these metals, preferably rolled copper foil and electrolytic copper foil. It is done. As the metal foil, one having a surface roughness which is not so large and not too small, preferably Rz is 7 μm or less, particularly Rz is 5 μm or less, particularly 0.5 to 5 μm is preferable. Such metal foils, such as copper foils, are known as VLP, LP (or HTE).
The thickness of the metal foil is not particularly limited, but is preferably 75 μm or less, particularly preferably 3 to 35 μm.
Moreover, when Rz is small, you may use what surface-treated the metal foil surface.
[0025]
In the present invention, the thermocompression-bonding multilayer polyimide film and the metal foil are continuous laminating devices such as a roll laminator or a double belt press, and only the thermocompression-bonding multilayer polyimide film or thermocompression bonding is possible. A preheater such as a hot-air supply device or an infrared heater so that it can be preheated at about 150 to 250 ° C., particularly at a temperature higher than 150 ° C. and lower than 250 ° C. for about 2 to 120 seconds, just before the introduction of the multilayer polyimide film and the metal foil A flexible metal foil laminate can be obtained by preheating using, and thermocompression bonding.
The in-line means a device arrangement in which a preheating device is installed between a raw material feeding device and a crimping portion of a continuous laminating device and can be crimped immediately thereafter.
[0026]
And if it is not preheated in-line, it will absorb water from the atmosphere and the moisture contained in the polyimide will cause poor appearance due to foaming in the laminate after lamination, or foaming will occur during immersion in the solder bath when forming electronic circuits The product yield deteriorates. A method of installing the entire laminating apparatus in a furnace is also conceivable, but the laminating apparatus is practically limited to a compact one and is not practical due to limitations on the shape of the flexible metal foil laminate. Alternatively, even if pre-heat treatment is performed in the outline, moisture is absorbed again by the time of stacking, and appearance defects and a decrease in solder heat resistance due to the foaming cannot be avoided.
The double belt press is capable of performing high-temperature heating and cooling under pressure, and is preferably a hydraulic type using a heat medium.
[0027]
The flexible metal foil laminate of the present invention preferably has a temperature of a heat laminating zone of a roll laminate or double belt press of 20 ° C. or higher and 400 ° C. or lower than the glass transition temperature of the thermocompression bonding polyimide, In particular, it is thermocompression bonded under pressure at a temperature of 30 ° C. or higher and 400 ° C. or lower than the glass transition temperature. Especially in the case of a double belt press, it is subsequently cooled under pressure with a cooling zone, preferably thermocompression bonding. It can be manufactured by cooling and laminating to a temperature 20 ° C. or more lower than the glass transition temperature of polyimide, particularly 30 ° C. or more.
In the above method, when the product is a flexible metal foil laminate of a single-sided metal foil, a highly heat-resistant film that can be easily peeled, such as a high-heat-resistant film or metal foil having a Rz of less than 2 μm, preferably polyimide A heat-resistant resin film such as a film (Ube Industries, Upilex S) or a fluororesin film, or a rolled copper foil, which has a small surface roughness and good surface smoothness, is used as a protective material. You may interpose between a pressure-sensitive adhesive polyimide layer and another metal surface. After the lamination, the protective material may be removed from the laminate and wound up, or the protective material may be taken up while being laminated and removed during use.
[0028]
In the present invention, particularly by using a double belt press to laminate by thermocompression-cooling under pressure, the take-up speed can be preferably 1 m / min or more, and the obtained flexible metal foil laminate is: Long and wide, about 400 mm or more, especially about 500 mm or more, high adhesion strength (90 ° peel strength: 0.7 kg / cm or more, especially 1 kg / cm or more), and the surface of the metal foil is substantially wrinkled It is possible to obtain a flexible metal foil laminate having a good appearance that is not recognized.
Moreover, when a double belt press is used, the flexible metal foil laminate preferably has an average dimensional change rate of L, C, and R (left end, center, right end in the film unwinding direction) in each width direction. , MD, and TD are | ± 0.20 |% or less at room temperature (only after drying after etching) and 150 ° C. (heat treatment after etching), and the uniformity of dimensional change becomes high.
[0029]
In this invention, the flexible metal foil laminate is supplied to a roll laminate or a double belt press in a state in which the thermocompression-bonding multilayer polyimide film and the metal foil are rolled, and the metal foil laminate film is rolled. It can be obtained in a wound state.
[0030]
The flexible metal foil laminate obtained by the present invention is used as an electronic component substrate after being rolled, etched, and optionally subjected to curl return, etc., and then cut into a predetermined size. it can.
For example, it can be suitably used as a substrate of FPC, TAB, multilayer FPC, or flex-rigid substrate.
In particular, a single-sided copper foil laminate (overall thickness of 15 to 85 μm) or a double-sided copper foil laminate (overall thickness of 25 μm) having a metal foil thickness of 3 to 35 μm and a thermocompression-bonding multilayer polyimide film layer thickness of 7 to 50 μm. To 120 μm), a heat-resistant adhesive (thickness 5 to 50 μm, preferably 5 to 15 μm) selected from epoxy adhesives, heat-resistant polyimide adhesives such as thermoplastic polyimide, thermoplastic polyamideimide, or polyimidesiloxane-epoxy. In particular, 7 to 12 μm), by bonding a plurality of copper foil laminates, 2 to 10 copper foil laminates are preferable, and a multilayer substrate that satisfies high heat resistance, low water absorption, low dielectric constant, and high electrical characteristics is suitable Can get to.
The flexible metal foil laminate of the present invention includes not only the above-mentioned elongated shape but also those obtained by cutting the elongated shape as described above into a predetermined size.
[0031]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
In each of the following examples, “part” means “part by weight”.
In each of the following examples, the physical property evaluation and the adhesive strength of the flexible metal foil laminate were measured according to the following methods.
[0032]
Dimensional change rate: Measured according to “Test method for copper-clad laminate for flexible printed wiring board” of JIS C-6471.
Thermal expansion coefficient: 50-200 ° C., measured at 5 ° C./min (average value of TD, MD), cm / cm / ° C.
Glass transition temperature (Tg): measured from viscoelasticity.
Adhesive strength: 90 ° peel strength was measured.
Product appearance: The appearance of the product after lamination is evaluated by visually judging whether or not there is swelling due to foaming.
○ is good without foaming, △ is partly foamed, × foaming occurs on the entire surface Solder heat resistance: Immersion at 280 ° C or 300 ° C for 1 minute, and evaluated by visually judging whether there is any abnormality due to foaming ○ is foaming No, good, △ partly foamed, × foamed over the entire surface.
Synthesis example 1 of a dope for producing highly heat-resistant aromatic polyimide
N-methyl-2-pyrrolidone is added to a reaction vessel equipped with a stirrer and a nitrogen introduction tube, and further, paraphenylenediamine (PPD) and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s -BPDA) at a molar ratio of 1000: 998 so that the monomer concentration was 18% (wt%, hereinafter the same). After completion of the addition, the reaction was continued for 3 hours while maintaining 50 ° C. The obtained polyamic acid solution was a brown viscous liquid, and the solution viscosity at 25 ° C. was about 1500 poise. This solution was used as a dope.
[0034]
Synthesis of Thermocompression Aromatic Polyimide Manufacturing Dope-1
N-methyl-2-pyrrolidone is added to a reaction vessel equipped with a stirrer and a nitrogen introduction tube, and 1,3-bis (4-aminophenoxy) benzene (TPE-R) and 2,3,3 ′, 4 are added. '-Biphenyltetracarboxylic dianhydride (a-BPDA) was added at a molar ratio of 1000: 1000 to a monomer concentration of 22%, and triphenyl phosphate was added to a monomer weight of 0.1%. 1% was added. After completion of the addition, the reaction was continued for 1 hour while maintaining 25 ° C. This polyamic acid solution had a solution viscosity at 25 ° C. of about 2000 poise. This solution was used as a dope.
[0035]
Reference Examples 1-3
Using a film-forming apparatus provided with a three-layer extrusion die (multi-manifold die) for the above-mentioned highly heat-resistant aromatic polyimide dope and thermocompression-bonding aromatic polyimide production dope. The polyamic acid solution was cast on a metal support while changing the thickness of the three-layer extrusion die and continuously dried with hot air at 140 ° C. to form a solidified film. After the solidified film is peeled off from the support, the temperature is gradually raised from 200 ° C. to 320 ° C. in a heating furnace to remove the solvent and imidize to take up three types of three-layer extruded polyimide films. Rolled up in a le.
The obtained three-layer extruded polyimide film exhibited the following physical properties.
[0036]
Thermocompression bonding polyimide film-1
Thickness configuration: 4 μm / 17 μm / 4 μm (total 25 μm)
Thermo-compressible aromatic polyimide Tg: 250 ° C. (the same applies hereinafter)
The elastic modulus at 275 ° C of the thermo-compressible aromatic polyimide is approximately 0.002 times the elastic modulus at 50 ° C (hereinafter the same)
Water absorption of film: 0.8% by weight (the same applies hereinafter)
Thermocompression-bonding multilayer polyimide film-2
Thickness configuration: 3 μm / 9 μm / 3 μm (15 μm in total)
Thermocompression-bonding multilayer polyimide film-3
Thickness configuration: 2 μm / 6 μm / 2 μm (total 10 μm)
[0037]
Comparative Example 1
The thermocompression-bonding multilayer polyimide film-1 and two roll-wrapped electrolytic copper foils (manufactured by Mitsui Kinzoku Mining Co., Ltd., 3EC-VLP, Rz 3.8 μm, thickness 18 μm) are bonded to metal. A flexible copper foil laminate using a laminar roll composed of a roll and an elastic roll and continuously crimped without heating at a metal side: 380 ° C. and an elastic side: 200 ° C. (Width: about 320 mm) was wound on a winding roll. All operations were performed in air, and cooling was performed by natural cooling.
The evaluation result about the obtained flexible copper foil laminated body is shown below.
Product appearance: ×
90 ° peel strength (average: 1.3 kg / cm)
Solder heat resistance: x at 280 ° C
[0038]
Comparative Example 2
After preheating to 200 ° C. in the outline, the flexible copper foil laminate was wound on a winding roll in the same manner as in Comparative Example 1 except that the thermocompression-bonding multilayer polyimide film-1 stored in a desiccator was used. I took it.
The evaluation result about the obtained flexible copper foil laminated body is shown below.
Product appearance: △
Solder heat resistance: △ at 280 ° C
[0039]
Example 1
The flexible copper of double-sided copper foil was the same as Comparative Example 1 except that the thermocompression-bonding multilayer polyimide film-1 and the copper foil were preheated by heating in hot air at 200 ° C. for 30 seconds in-line immediately before the laminating roll. The foil laminate was wound on a winding roll.
The evaluation result about the obtained flexible copper foil laminated body is shown below.
Product appearance: ○
Resistance to soldering heat: at 300 ° C
[0040]
Comparative Example 3
A double belt press is continuously supplied with thermocompression-bonding multilayer polyimide film-1 and an electrolytic copper foil (Mitsui Mining & Mining Co., Ltd.) having a thickness of 18 μm from both sides, and the temperature of the heating zone (maximum heating temperature) without preheating. ) 381 ° C., cooling zone temperature (minimum cooling temperature: 117 ° C.), and continuously laminated under heat pressure-cooling under pressure, flexible copper foil laminate (width: about 530 mm, the same shall apply hereinafter) ) To obtain a roll.
The evaluation result about the obtained flexible copper foil laminated body is shown next.
Product appearance: △
Solder heat resistance: △ at 280 ° C
[0041]
Comparative Example 4
In the same manner as in Comparative Example 3, except that the thermocompression-bonding multilayer polyimide film-1 preheated to 200 ° C. in outline and stored in a desiccator was used, the layers were continuously laminated under pressure and thermocompression under pressure. Then, the roll-wound flexible copper foil laminate was wound around the roll.
The evaluation result about the obtained flexible copper foil laminated body is shown below.
Product appearance: ○
Solder heat resistance: △ at 280 ° C
[0042]
Example 2
Thermocompression-bonding multilayer polyimide film-1 and copper foil were thermocompression bonded under pressure in the same manner as in Comparative Example 3 except that they were preheated by heating with 200 ° C hot air for 30 seconds in-line immediately before double belt pressing. -It cooled and laminated | stacked and wound up the flexible copper foil laminated body of a roll winding double-sided copper foil in the winding roll.
The evaluation result about the obtained flexible copper foil laminated body is shown below.
Product appearance: ○
Solder heat resistance: ○ at 300 ° C
[0043]
Example 3
Single-sided copper-clad laminate [protective material: polyimide film (Ube Industries, Upilex-S 25 μm) used] was used in the same manner as in Example 2 except that thermocompression-cooling was continuously performed under pressure with a double belt press. Then, a flexible copper foil laminate of roll-rolled single-sided copper foil was wound up on a take-up roll.
The evaluation result about the obtained flexible copper foil laminated body is shown below.
Product appearance: ○
Solder heat resistance: ○ at 300 ° C
[0044]
Examples 4-5
Use thermocompression-bonding multilayer polyimide film-2 and 12 μm thick electrolytic copper foil (manufactured by Mitsui Kinzoku Mining Co., Ltd.), or use thermocompression-bonding multilayer polyimide film-3 and 9 μm thick electrolytic copper foil (manufactured by Mitsui Kinzoku Mining Co., Ltd.) Except for the use, the same procedure as in Example 2 was followed by thermocompression-cooling and laminating under pressure, and laminating a flexible copper foil laminate of roll-wound double-sided copper foil onto the roll. I took it.
The evaluation result about the obtained flexible copper foil laminated body was equivalent to Example 2, and showed a favorable result.
Moreover, the flexible copper foil laminated body obtained in Examples 1-5 showed 90 degree peel strength equal to or higher than that of Comparative Example 1.
[0045]
【The invention's effect】
According to this invention, since it has the above-described configuration, the following effects can be obtained.
[0046]
According to the present invention, it is possible to obtain a flexible metal foil laminate, particularly a flexible metal foil laminate, having a long and wide appearance and good solder heat resistance.

Claims (11)

高耐熱性の芳香族ポリイミド層と金属箔とを熱圧着性のポリイミド層を介してダブルベルトプレスを用いて加熱圧着して張り合わせる少なくとも片面に金属箔を有するフレキシブル金属箔積層体の製造法であり、
金属箔の厚みが3μm〜35μmで、
高耐熱性の芳香族ポリイミド層は、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物とパラ−フェニレンジアミンとを含む成分より製造される芳香族ポリイミド、
3,3’,4,4’−ビフェニルテトラカルボン酸二無水物とピロメリット酸二無水物とパラ−フェニレンジアミンと4,4’−ジアミノジフェニルエ−テルとを含む成分より製造される芳香族ポリイミド、
或いはピロメリット酸二無水物とパラフェニレンジアミンおよび4,4’−ジアミノジフェニルエ−テルとを含む成分より製造される芳香族ポリイミドで、
熱圧着性のポリイミド層は、300〜400℃の温度で熱圧着できる熱可塑性のポリイミドで、
ポリイミド層の全体厚みが7〜50μmで、高耐熱性の芳香族ポリイミド層の厚さが5〜40μmで、熱圧着性のポリイミド層の厚さが2〜10μmである高耐熱性の芳香族ポリイミド層と熱圧着性のポリイミド層とを直接積層した熱圧着性多層ポリイミドフィルムを用い、
熱圧着性多層ポリイミドフィルム、或いは熱圧着性多層ポリイミドフィルムと金属箔とをダブルベルトプレスに導入する直前のインラインで150〜250℃の温度で2〜120秒間予熱した後、
高耐熱性の芳香族ポリイミド層と金属箔とを熱圧着性のポリイミド層を介してダブルベルトプレスの加熱圧着ゾ−ンの温度が熱圧着性のポリイミド層のガラス転移温度より20℃以上高く400℃以下の温度で加圧下に熱圧着し、引き続いて熱圧着性のポリイミド層のガラス転移温度より20℃以上低い温度まで冷却して、積層する、積層時の発泡による外観不良のないフレキシブル金属箔積層体の製造法。
In a method for producing a flexible metal foil laminate having a metal foil on at least one surface, a high heat resistant aromatic polyimide layer and a metal foil are bonded by thermocompression bonding using a double belt press through a thermocompression bonding polyimide layer. Yes,
The thickness of the metal foil is 3 μm to 35 μm,
The highly heat-resistant aromatic polyimide layer is an aromatic polyimide produced from a component containing 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and para-phenylenediamine,
Aromatics produced from components comprising 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, para-phenylenediamine and 4,4′-diaminodiphenyl ether Polyimide,
Alternatively, an aromatic polyimide produced from a component containing pyromellitic dianhydride, paraphenylenediamine and 4,4′-diaminodiphenyl ether,
The thermocompression bonding polyimide layer is a thermoplastic polyimide that can be thermocompression bonded at a temperature of 300 to 400 ° C.
Highly heat-resistant aromatic polyimide having a total polyimide layer thickness of 7 to 50 μm, a high heat-resistant aromatic polyimide layer thickness of 5 to 40 μm, and a thermocompression bonding polyimide layer thickness of 2 to 10 μm Using a thermocompression-bonding multilayer polyimide film in which a layer and a thermocompression-bonding polyimide layer are directly laminated,
After preheating for 2 to 120 seconds at a temperature of 150 to 250 ° C. in-line immediately before introducing the thermocompression-bonding multilayer polyimide film or the thermocompression-bonding multilayer polyimide film and the metal foil into the double belt press ,
The temperature of the thermocompression bonding zone of the double belt press is 20 ° C. or more higher than the glass transition temperature of the thermocompression bonding polyimide layer through the thermocompression bonding polyimide layer between the high heat resistant aromatic polyimide layer and the metal foil. Flexible metal foil that is thermocompression bonded under pressure at a temperature of ℃ or lower, and subsequently cooled to a temperature that is at least 20 ℃ lower than the glass transition temperature of the thermocompression-bondable polyimide layer. A method for manufacturing a laminate.
熱圧着性多層ポリイミドフィルム、或いは熱圧着性多層ポリイミドフィルムと金属箔とをダブルベルトプレスに導入する直前のインラインでの予熱が、予熱器を用いて行うことを特徴とする請求項1に記載のフレキシブル金属箔積層体の製造法。The in-line preheating immediately before introducing a thermocompression-bonding multilayer polyimide film or a thermocompression-bonding multilayer polyimide film and a metal foil into a double belt press is performed using a preheater. A method for producing a flexible metal foil laminate. 熱圧着性のポリイミド層は、1,3−ビス(4−アミノフェノキシベンゼン)と2,3,3’,4’−ビフェニルテトラカルボン酸二無水物とを含む成分より製造されるもの、1,3−ビス(4−アミノフェノキシ)−2,2−ジメチルプロパンと4,4’−オキシジフタル酸二無水物とを含む成分より製造されるもの、
4,4’−オキシジフタル酸二無水物およびピロメリット酸二無水物と1,3−ビス(4−アミノフェノキシベンゼン)とを含む成分より製造されるもの、
1,3−ビス(3−アミノフェノキシ)ベンゼンと3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物とを含む成分より製造されるもの
あるいは3,3’−ジアミノベンゾフェノンおよび1,3−ビス(3−アミノフェノキシ)ベンゼンと3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物とを含む成分より製造されるものであることを特徴とする請求項1又は請求項2に記載のフレキシブル金属箔積層体の製造法。
The thermocompression bonding polyimide layer is manufactured from a component containing 1,3-bis (4-aminophenoxybenzene) and 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, Produced from a component comprising 3-bis (4-aminophenoxy) -2,2-dimethylpropane and 4,4′-oxydiphthalic dianhydride,
Produced from a component comprising 4,4′-oxydiphthalic dianhydride and pyromellitic dianhydride and 1,3-bis (4-aminophenoxybenzene),
Manufactured from a component containing 1,3-bis (3-aminophenoxy) benzene and 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, or 3,3′-diaminobenzophenone and 1, 2. The method according to claim 1, wherein the product is produced from a component containing 3-bis (3-aminophenoxy) benzene and 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride. The manufacturing method of the flexible metal foil laminated body of 2.
フレキシブル金属箔積層体は、ロール巻状物であることを特徴とする請求項1〜3のいずれか1項に記載のフレキシブル金属箔積層体の製造法。  The method for producing a flexible metal foil laminate according to any one of claims 1 to 3, wherein the flexible metal foil laminate is a rolled product. フレキシブル金属箔積層体は、両面に金属箔が積層されたフレキシブル金属箔積層体であることを特徴とする請求項1〜4のいずれか1項に記載のフレキシブル金属箔積層体の製造法。  The method for producing a flexible metal foil laminate according to any one of claims 1 to 4, wherein the flexible metal foil laminate is a flexible metal foil laminate in which metal foils are laminated on both sides. ポリイミド層の全体厚みが7〜25μmである請求項1〜5のいずれか1項に記載のフレキシブル金属箔積層体の製造法。  The method for producing a flexible metal foil laminate according to any one of claims 1 to 5, wherein the total thickness of the polyimide layer is 7 to 25 µm. ポリイミド層の全体厚みが7〜15μmである請求項1〜5のいずれか1項に記載のフレキシブル金属箔積層体の製造法。
製造法。
The method for producing a flexible metal foil laminate according to any one of claims 1 to 5, wherein the total thickness of the polyimide layer is 7 to 15 µm.
Manufacturing method.
金属箔が、電解銅箔、圧延銅箔、アルミニウム箔あるいはステンレス箔である請求項1〜7のいずれか1項に記載のフレキシブル金属箔積層体の製造法。  The method for producing a flexible metal foil laminate according to any one of claims 1 to 7, wherein the metal foil is an electrolytic copper foil, a rolled copper foil, an aluminum foil, or a stainless steel foil. 予熱器は、熱風供給装置及び赤外線加熱機から選ばれることを特徴とする請求項2〜8のいずれか1項に記載のフレキシブル金属箔積層体の製造法。  The method for producing a flexible metal foil laminate according to any one of claims 2 to 8, wherein the preheater is selected from a hot air supply device and an infrared heater. フレキシブル金属箔積層体は、300℃以上の半田耐熱性を有することを特徴とする請求項1〜のいずれか1項に記載のフレキシブル金属箔積層体の製造法。The method for producing a flexible metal foil laminate according to any one of claims 1 to 9 , wherein the flexible metal foil laminate has a solder heat resistance of 300 ° C or higher. 請求項1〜10のいずれかに記載のフレキシブル金属箔積層体の製造法より製造されるフレキシブル金属箔積層体。The flexible metal foil laminated body manufactured from the manufacturing method of the flexible metal foil laminated body in any one of Claims 1-10 .
JP2000088274A 2000-03-28 2000-03-28 Flexible metal foil laminate and manufacturing method thereof Expired - Lifetime JP4389337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000088274A JP4389337B2 (en) 2000-03-28 2000-03-28 Flexible metal foil laminate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000088274A JP4389337B2 (en) 2000-03-28 2000-03-28 Flexible metal foil laminate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001270037A JP2001270037A (en) 2001-10-02
JP4389337B2 true JP4389337B2 (en) 2009-12-24

Family

ID=18604170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000088274A Expired - Lifetime JP4389337B2 (en) 2000-03-28 2000-03-28 Flexible metal foil laminate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4389337B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4774162B2 (en) * 2001-04-27 2011-09-14 株式会社カネカ Manufacturing method of heat-resistant flexible
JP2007152835A (en) * 2005-12-07 2007-06-21 Kaneka Corp Highly bendable and flexible metal-clad laminate
JP5574704B2 (en) 2007-03-20 2014-08-20 株式会社カネカ Film and flexible metal-clad laminate
JP5804830B2 (en) * 2011-07-29 2015-11-04 株式会社カネカ Method for producing metal-clad laminate

Also Published As

Publication number Publication date
JP2001270037A (en) 2001-10-02

Similar Documents

Publication Publication Date Title
JP4147639B2 (en) Flexible metal foil laminate
JP5035220B2 (en) Copper-clad laminate and manufacturing method thereof
JP4362917B2 (en) Metal foil laminate and its manufacturing method
JP2004098659A (en) Copper-clad laminate and its manufacturing process
JP4304854B2 (en) Multilayer polyimide film and laminate
WO2012133594A1 (en) Polyimide film and metal laminate using same
JP4457542B2 (en) Multi-layer polyimide film with thermocompression bonding, heat-resistant copper-clad board
JP2006188025A (en) Copper-clad laminate
JP4356184B2 (en) Flexible metal foil laminate
JP4692139B2 (en) Single-sided or double-sided metal foil laminated polyimide films and methods for producing them
JP3580128B2 (en) Manufacturing method of metal foil laminated film
JP4345188B2 (en) Flexible metal foil laminate and manufacturing method thereof
JP3938058B2 (en) POLYIMIDE FILM HAVING HEAT FUSION, LAMINATE USING SAME, AND METHOD FOR PRODUCING THEM
JP2001270036A (en) Flexible metal foil laminate
JP4389338B2 (en) Manufacturing method of flexible metal foil laminate
JP2002240195A (en) Polyimide/copper-clad panel
JP5040451B2 (en) Manufacturing method of laminate of release material and single-sided metal foil laminated resin film, single-sided metal foil laminated film
JP4389337B2 (en) Flexible metal foil laminate and manufacturing method thereof
JP2007216688A (en) Copper clad laminated sheet and its manufacturing method
JP4257587B2 (en) Flexible metal foil laminate
JP4345187B2 (en) Method for producing flexible metal foil laminate
JP4193461B2 (en) Heat-sealable polyimide and laminate using the polyimide
JP2001270035A (en) Flexible metal foil laminate
JP2001179911A (en) Heat-resistant resin board and method of manufacturing the same
JP4360025B2 (en) Polyimide piece area layer with reinforcing material and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4389337

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term