JP5804830B2 - Method for producing metal-clad laminate - Google Patents

Method for producing metal-clad laminate Download PDF

Info

Publication number
JP5804830B2
JP5804830B2 JP2011167413A JP2011167413A JP5804830B2 JP 5804830 B2 JP5804830 B2 JP 5804830B2 JP 2011167413 A JP2011167413 A JP 2011167413A JP 2011167413 A JP2011167413 A JP 2011167413A JP 5804830 B2 JP5804830 B2 JP 5804830B2
Authority
JP
Japan
Prior art keywords
thermoplastic polyimide
polyimide
metal
clad laminate
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011167413A
Other languages
Japanese (ja)
Other versions
JP2013028146A (en
Inventor
康孝 近藤
康孝 近藤
金城 永泰
永泰 金城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2011167413A priority Critical patent/JP5804830B2/en
Publication of JP2013028146A publication Critical patent/JP2013028146A/en
Application granted granted Critical
Publication of JP5804830B2 publication Critical patent/JP5804830B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

本発明は、フレキシブルプリント配線板等に好適に用いられる金属張積層板の製造方法に関する。更に詳しくは、少なくとも導体と複数のポリイミド層からなる、金属張積層板の製造方法に関する。   The present invention relates to a method for producing a metal-clad laminate suitably used for a flexible printed wiring board and the like. More specifically, the present invention relates to a method for producing a metal-clad laminate comprising at least a conductor and a plurality of polyimide layers.

電子機器の高性能化、高機能化、小型化が急速に進んでおり、これに伴って電子機器に用いられる電子部品に対しても小型化、軽量化の要請が高まっている。上記要請を受け、半導体素子パッケージ方法やそれらを実装する配線板にも、より高密度、高機能、かつ高性能なものが求められるようになっている。   The performance, functionality, and miniaturization of electronic devices are rapidly progressing, and accordingly, there is an increasing demand for miniaturization and weight reduction of electronic components used in electronic devices. In response to the above requirements, semiconductor device packaging methods and wiring boards on which they are mounted are required to have higher density, higher functionality, and higher performance.

近年は、絶縁性フィルムに直接金属層を設けたFPCや、接着層に熱可塑性ポリイミドを使用したFPCが提案されている。このようなFPCは、絶縁性の基板に直接金属層を形成している状態にあるため、2層FPCとも呼ばれる。この2層FPCは、接着層としてエポキシ樹脂系やアクリル樹脂系等の熱硬化性接着剤を使用している3層FPCより優れた特性を有し、上記各種特性に対する要求にも十分対応可能であることから、今後需要が伸びていくことが期待される。   In recent years, FPCs in which a metal layer is directly provided on an insulating film and FPCs in which thermoplastic polyimide is used for an adhesive layer have been proposed. Such an FPC is also called a two-layer FPC because a metal layer is directly formed on an insulating substrate. This two-layer FPC has superior characteristics to a three-layer FPC that uses an epoxy resin-based or acrylic resin-based thermosetting adhesive as the adhesive layer, and can fully meet the requirements for the various characteristics described above. Therefore, demand is expected to grow in the future.

上記2層FPCは、基板に金属箔を積層した構造を有する金属張積層板を用いて製造される。この金属張積層板の作製方法としては、導体上にポリイミドの前駆体であるポリアミド酸を流延、塗布した後イミド化するキャスト法、スパッタ、メッキによりポリイミドフィルム上に直接金属層を設けるメタライジング法、熱可塑性ポリイミドを介してポリイミドフィルムと金属箔とを貼り合わせるラミネート法が挙げられる。   The two-layer FPC is manufactured using a metal-clad laminate having a structure in which a metal foil is laminated on a substrate. The metal-clad laminate can be produced by casting a polyamic acid, which is a polyimide precursor, on a conductor, casting it, then imidizing it, and metalizing a metal layer directly on the polyimide film by sputtering or plating. And a laminating method in which a polyimide film and a metal foil are bonded via a thermoplastic polyimide.

これらのうち、キャスト法は、最も生産性に優れており、従って最もローコストで金属張積層板を製造可能な方法である。キャスト法では、接着性と寸法安定性の両方を付与するため、複数層のポリイミド樹脂層を導体上に設けることが一般的に行われている。複数層のポリイミド樹脂層を導体上に作製する方法としては、1つのポリイミド前駆体溶液を導体上にキャストし乾燥した後、次のポリイミド前駆体溶液をその上にキャストする、逐次キャスト法(例えば特許文献1参照)や、複数のポリイミド前駆体溶液を、共押出ダイを使用して導体上に同時にキャストする、共押出法(例えば特許文献2参照)が知られている。このうち共押出法は、逐次キャスト法と比較して生産性に優れていることや、工程が少ないことから異物混入などの欠陥要因が少ないことから、より優位な方法である。   Of these, the casting method is the most productive, and is therefore the most cost effective method for producing metal-clad laminates. In the casting method, in order to provide both adhesiveness and dimensional stability, it is generally performed to provide a plurality of polyimide resin layers on a conductor. As a method of producing a plurality of polyimide resin layers on a conductor, one polyimide precursor solution is cast on a conductor and dried, and then the next polyimide precursor solution is cast thereon (for example, a sequential casting method (for example, Patent Document 1) and a co-extrusion method (for example, see Patent Document 2) in which a plurality of polyimide precursor solutions are simultaneously cast on a conductor using a co-extrusion die are known. Among these, the co-extrusion method is more advantageous than the sequential casting method because it is superior in productivity and because there are fewer steps of defects such as contamination due to fewer steps.

一方、ポリイミド材料を用いる場合の欠点としては、ポリイミドの性質に基づく吸水率の高さが挙げられる。これは、2層FPCにおいても当てはまる問題である。FPCの吸水率が高い場合、半田を用いた部品実装時に悪影響を及ぼす場合がある。具体的には、大気中から材料内に取り込まれた水分が、部品実装時の加熱によって急激に系外に放出されることにより、結果としてFPCに膨れや白化が生じ、FPCにおける各材料間の接着性や電気特性に問題が生じる場合がある。このような吸湿半田耐熱性に係る問題を回避するため、例えば、実装工程前にFPCを予備乾燥して水分を除去する対策を講じることもできる。しかしながら、工程数が増えてしまうため、生産性の面で問題がある。   On the other hand, a drawback in using a polyimide material is a high water absorption rate based on the properties of polyimide. This is a problem that also applies to the two-layer FPC. When the water absorption rate of the FPC is high, it may adversely affect the mounting of components using solder. Specifically, moisture taken into the material from the atmosphere is suddenly released out of the system by heating at the time of component mounting, resulting in swelling and whitening of the FPC, and between the materials in the FPC There may be problems with adhesion and electrical properties. In order to avoid such problems related to heat resistance of the hygroscopic solder, for example, it is possible to take measures to remove moisture by predrying the FPC before the mounting process. However, since the number of processes increases, there is a problem in terms of productivity.

上記課題を解決するために、接着層に用いる熱可塑性ポリイミドの特性を制御した接着フィルムが提案されている。具体的には、耐熱性ベースフィルムの片面又は両面に設けられる接着層に含まれる熱可塑性ポリイミドのガラス転移温度を上げることで、接着層の耐熱性を向上させ、吸水率を下げることにより、接着フィルム中に取り込まれる水分量を減らしている(例えば特許文献3もしくは特許文献4参照)。また、接着フィルムと金属箔を貼り合わせる際に、接着フィルムを予備乾燥することで水分を除去するといった、加工面での対策も提案されている(例えば特許文献5参照)。   In order to solve the above problems, an adhesive film in which the properties of thermoplastic polyimide used for the adhesive layer are controlled has been proposed. Specifically, by increasing the glass transition temperature of the thermoplastic polyimide contained in the adhesive layer provided on one side or both sides of the heat-resistant base film, improving the heat resistance of the adhesive layer and lowering the water absorption rate, The amount of moisture taken into the film is reduced (see, for example, Patent Document 3 or Patent Document 4). Moreover, when bonding an adhesive film and metal foil, the countermeasure in the process surface of removing a water | moisture content by pre-drying an adhesive film is also proposed (for example, refer patent document 5).

これらの方法により、ポリイミド材料を用いた際の欠点であった吸湿半田耐熱性は改善される。しかしながら、近年の環境に対する意識の高まりにより、半導体実装時に鉛フリー半田が採用される例が増えてきている。鉛フリー半田は現在使用されている共晶半田よりも融点が40℃程度高いことから、実装工程において使用される材料にかかる温度は必然的に上昇することになる。そのため、従来に比較し、材料に要求される吸湿半田耐熱性もより厳しくなっているのが現状である。また、多層FPC用途として使用する際には、多層化により材料内部に水分が閉じ込められやすいため、単層FPCの場合と比較して低い半田温度で不良が発生しやすくなる傾向があるため、これらに使用される材料にはより厳しい吸湿半田耐熱性が要求されている。   By these methods, moisture-absorbing solder heat resistance, which has been a drawback when using a polyimide material, is improved. However, with the recent increase in awareness of the environment, there are an increasing number of cases where lead-free solder is used in semiconductor mounting. Since lead-free solder has a melting point of about 40 ° C. higher than eutectic solder currently used, the temperature applied to the material used in the mounting process inevitably rises. For this reason, the current situation is that the moisture-absorbing solder heat resistance required for the material is stricter than before. In addition, when used as a multilayer FPC application, moisture tends to be trapped inside the material due to multilayering, and therefore, defects tend to occur at a lower solder temperature than in the case of a single layer FPC. The materials used in the above are required to have stricter moisture-absorbing solder heat resistance.

特開平10−323935号公報Japanese Patent Laid-Open No. 10-323935 特公平4−79713号公報Japanese Patent Publication No. 4-79713 特開2000−129228号公報JP 2000-129228 A 特開2001−260272号公報JP 2001-260272 A 特開2001−270037号公報JP 2001-270037 A

本発明は、上記の課題に鑑みてなされたものであって、その目的は、接着剤として使用する熱可塑性ポリイミドの特性を制御することにより、吸湿半田耐熱性に優れた金属張積層板を提供することにある。   The present invention has been made in view of the above problems, and its object is to provide a metal-clad laminate having excellent moisture-absorbing solder heat resistance by controlling the properties of thermoplastic polyimide used as an adhesive. There is to do.

通常、熱可塑性ポリイミドのイミド化温度は、イミド化と焼成後フィルムに溶剤成分を残さない観点からできるだけ高温で実施することが有効であることが知られている。しかしながら、高温でイミド化した場合には、充分な吸湿半田耐熱性が得られないポリイミドも存在する。   In general, it is known that the imidization temperature of the thermoplastic polyimide is effective as high as possible from the viewpoint of leaving no solvent component in the film after imidization and baking. However, there are polyimides that cannot obtain sufficient moisture-absorbing solder heat resistance when imidized at high temperatures.

本発明者は、上記の課題に鑑み鋭意検討した結果、接着層に使用する熱可塑性ポリイミド組成に特定のモノマーを特定のモル比で使用し、特定の温度範囲でイミド化することにより、接着フィルムおよびそれを用いて得られるフレキシブル金属張積層板の吸湿半田耐熱性を向上できることを見出し、本発明を完成させるに至った。   As a result of intensive studies in view of the above-mentioned problems, the present inventor uses a specific monomer in a specific molar ratio for the thermoplastic polyimide composition used in the adhesive layer, and imidizes in a specific temperature range to thereby form an adhesive film. And it discovered that the moisture absorption solder heat resistance of the flexible metal-clad laminate obtained by using it could be improved, and came to complete this invention.

即ち、本発明は、導体上に少なくとも2種以上のポリイミド層を有する金属張積層板の製造方法であって、少なくとも該2種以上のポリイミド層の導体と接触している側の層が熱可塑性ポリイミド層であって、該熱可塑性ポリイミドが、下記(A)と(B)を満足し、ポリイミド樹脂の前駆体を含む溶液2種以上を共押出によって導体上に流延して2層以上の複数層を形成する工程を含み、前記共押出に用いる溶液の少なくとも1つの溶液には化学脱水剤及び触媒が含有されており、ポリイミド前駆体を310〜410℃の温度でイミド化することを特徴とする金属張積層板の製造方法である。
(A)該熱可塑性ポリイミドが、ピロメリット酸二無水物と2,2−ビス−[4−(4−アミノフェノキシ)フェニル]プロパンを主成分とするものであり、ピロメリット酸二無水物以外の酸二無水物をテトラカルボン酸二無水物成分100モル%中、10〜50モル%含有し、および/または2,2−ビス−[4−(4−アミノフェノキシ)フェニル]プロパン以外のジアミンをジアミン成分100モル%中、5〜30モル%含有し、
(B)ピロメリット酸二無水物以外の酸二無水物と2,2−ビス−[4−(4−アミノフェノキシ)フェニル]プロパン以外のジアミンとの合計モル数が酸二無水物成分100モル%とジアミン成分100モル%の合計200モル%中、5〜50モル%である。
That is, the present invention is a method for producing a metal-clad laminate having at least two or more types of polyimide layers on a conductor, wherein at least the two or more types of polyimide layers in contact with the conductor are thermoplastic. It is a polyimide layer, and the thermoplastic polyimide satisfies the following (A) and (B), and two or more solutions containing a polyimide resin precursor are cast on a conductor by coextrusion to form two or more layers. Including a step of forming a plurality of layers, wherein at least one of the solutions used in the coextrusion contains a chemical dehydrating agent and a catalyst, and imidizes the polyimide precursor at a temperature of 310 to 410 ° C. This is a method for producing a metal-clad laminate.
(A) The thermoplastic polyimide is mainly composed of pyromellitic dianhydride and 2,2-bis- [4- (4-aminophenoxy) phenyl] propane, and other than pyromellitic dianhydride Diamine other than 2,2-bis- [4- (4-aminophenoxy) phenyl] propane and / or a diamine other than 2,2-bis- [4- (4-aminophenoxy) phenyl] propane In 100 mol% of the diamine component, 5 to 30 mol%,
(B) The total number of moles of acid dianhydride other than pyromellitic dianhydride and diamine other than 2,2-bis- [4- (4-aminophenoxy) phenyl] propane is 100 moles of acid dianhydride component. % And 100 mol% of the diamine component in a total of 200 mol% is 5 to 50 mol%.

熱可塑性ポリイミド層以外のポリイミド層が、少なくとも耐熱性ポリイミド層を含むことが好ましい。   It is preferable that a polyimide layer other than the thermoplastic polyimide layer includes at least a heat-resistant polyimide layer.

ポリイミド層が、耐熱性ポリイミド層の両面に熱可塑性ポリイミド層を設けてなることが好ましい。   The polyimide layer is preferably formed by providing a thermoplastic polyimide layer on both sides of the heat-resistant polyimide layer.

導体上に、熱可塑性ポリイミド前駆体溶液−耐熱性ポリイミド前駆体溶液−熱可塑性ポリイミド前駆体溶液を前記順で共押出によって導体上に流延した後に、乾燥・焼成せしめ、導体−熱可塑性ポリイミド層−耐熱性ポリイミド層−熱可塑性ポリイミド層からなる積層体を作製した後、当該積層体の導体と接触していない側の熱可塑性ポリイミド層と、第二導体を熱ラミネートすることが好ましい。   On the conductor, a thermoplastic polyimide precursor solution-a heat-resistant polyimide precursor solution-a thermoplastic polyimide precursor solution is cast on the conductor by coextrusion in the order described above, and then dried and fired to obtain a conductor-thermoplastic polyimide layer. -After preparing the laminated body which consists of-heat resistant polyimide layer-thermoplastic polyimide layer, it is preferable to thermally laminate the thermoplastic polyimide layer and the 2nd conductor which are not in contact with the conductor of the said laminated body.

熱可塑性ポリイミドに含有されるピロメリット酸二無水物以外の酸二無水物が、3,3’、4,4’−ビフェニルテトラカルボン酸二無水物であることが好ましい。   The acid dianhydride other than pyromellitic dianhydride contained in the thermoplastic polyimide is preferably 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride.

熱可塑性ポリイミドに含有される2,2−ビス−[4−(4−アミノフェノキシ)フェニル]プロパン以外のジアミンが、4,4’−オキシジアニリンであることが好ましい。   The diamine other than 2,2-bis- [4- (4-aminophenoxy) phenyl] propane contained in the thermoplastic polyimide is preferably 4,4'-oxydianiline.

金属箔引き剥がし強度が180度方向剥離で10N/cm以上であることが好ましい。   The metal foil peeling strength is preferably 10 N / cm or more when peeled in the 180 ° direction.

前記熱可塑性ポリイミドが280℃における貯蔵弾性率1×10Pa以上、350℃での貯蔵弾性率1×10Pa未満であることが好ましい。 The thermoplastic polyimide preferably has a storage elastic modulus of 1 × 10 8 Pa or more at 280 ° C. and a storage elastic modulus of less than 1 × 10 8 Pa at 350 ° C.

前記耐熱性ポリイミドフィルムが、熱可塑性ポリイミドのブロック成分をポリイミド全体の20〜60モル%含有することが好ましい。   It is preferable that the heat-resistant polyimide film contains a thermoplastic polyimide block component in an amount of 20 to 60 mol% of the whole polyimide.

前記熱可塑性ポリイミドのブロック成分の繰り返し単位nが3〜99であることが好ましい。   The repeating unit n of the block component of the thermoplastic polyimide is preferably 3 to 99.

本発明により得られる金属張積層板は、優れた接着性を維持しながら、吸湿半田耐熱性に優れる。   The metal-clad laminate obtained by the present invention is excellent in moisture absorption solder heat resistance while maintaining excellent adhesion.

以下、本発明にかかる金属張積層板の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。   Hereinafter, preferred embodiments of the metal-clad laminate according to the present invention will be described in detail. However, the present invention is not limited to the following embodiments.

本発明は、導体上に少なくとも2種以上のポリイミド層を有する金属張積層板の製造方法であって、共押出法である必要がある。本発明に係る、共押出法とは、ポリイミド樹脂の前駆体を含む溶液2種以上を共押出によって導体上に流延して2層以上の複数層を形成する工程を含むフィルムの製造方法である。2層以上の複数層は、2層以上の多層ダイを有する押出成形機へポリイミド樹脂の前駆体を含む溶液2種以上を同時に供給して、前記多層ダイの吐出口から溶液を少なくとも2層の薄膜状体として押出すことで得られる。一般的に用いられる方法について説明すると、2層以上の多層ダイから押出された前記の両溶液を、バックアップロールに抱かせた導体上に連続的に押し出し、次いで、前記支持体上の多層の薄膜状体の溶媒の少なくとも一部を揮散せしめ、さらに高温で充分に加熱処理することによって、溶媒を実質的に除去すると共にイミド化を進行させることで、目的の金属張積層板が得られる。また、接着層の溶融流動性を改善する目的で、意図的にイミド化率を低くする及び/又は溶媒を残留させてもよい。   The present invention is a method for producing a metal-clad laminate having at least two or more polyimide layers on a conductor and needs to be a coextrusion method. The coextrusion method according to the present invention is a film production method including a step of casting two or more solutions containing a polyimide resin precursor on a conductor by coextrusion to form two or more layers. is there. The two or more layers are simultaneously supplied with two or more solutions containing a polyimide resin precursor to an extruder having two or more multilayer dies, and at least two layers of the solution are discharged from the outlet of the multilayer die. It is obtained by extruding as a thin film. To describe a commonly used method, both the solutions extruded from two or more multilayer dies are continuously extruded onto a conductor held in a backup roll, and then a multilayer thin film on the support. The desired metal-clad laminate is obtained by volatilizing at least a portion of the solvent of the solid body and sufficiently heat-treating it at a high temperature to substantially remove the solvent and advance imidization. Further, for the purpose of improving the melt fluidity of the adhesive layer, the imidization rate may be intentionally lowered and / or the solvent may be left.

上記の2層以上の多層ダイとしては各種構造のものが使用できるが、例えば複数層用フィルム作製用のTダイス等が使用できる。また、従来既知のあらゆる構造のものを好適に使用可能であるが、特に好適に使用可能なものとして、フィードブロックTダイやマルチマニホールドTダイが例示される。   As the above-mentioned multilayer die having two or more layers, those having various structures can be used. For example, a T-die for producing a multi-layer film can be used. In addition, any conventionally known structure can be suitably used, and feed block T dies and multi-manifold T dies are exemplified as particularly suitable ones.

本発明にかかる導体とは、金属箔であればその種別を問わないが、銅箔、特に5〜20μmの厚みの銅箔、もしくはキャリア銅箔付きの極薄銅箔であることが好ましい。前記銅箔は、圧延銅箔、電解銅箔の何れでも好適に使用可能であり、また、銅箔の表面処理も、公知の如何なる処理も使用可能である。   The conductor according to the present invention is not particularly limited as long as it is a metal foil, but is preferably a copper foil, particularly a copper foil having a thickness of 5 to 20 μm, or an ultrathin copper foil with a carrier copper foil. As the copper foil, either a rolled copper foil or an electrolytic copper foil can be suitably used, and any known treatment can be used for the surface treatment of the copper foil.

導体上に形成される2種以上のポリイミド層は、導体と接触している側の層が熱可塑性ポリイミドである必要がある。更に好適には、寸法安定性を付与するために、熱可塑性ポリイミド層以外のポリイミド層が、少なくとも耐熱性ポリイミド層を含むことが好ましい。   In the two or more types of polyimide layers formed on the conductor, the layer in contact with the conductor needs to be a thermoplastic polyimide. More preferably, in order to impart dimensional stability, it is preferable that the polyimide layer other than the thermoplastic polyimide layer includes at least a heat-resistant polyimide layer.

一般的にポリイミドは、ポリイミドの前駆体、即ちポリアミド酸からの脱水転化反応により得られ、当該転化反応を行う方法としては、熱によってのみ行う熱キュア法と、化学硬化剤を使用する化学キュア法の2法が最も広く知られている。しかしながら、本発明では、化学キュア法の採用が必須であり、前記共押出に用いる溶液の少なくとも1つの溶液には化学脱水剤及び触媒が含有される。   In general, polyimide is obtained by a dehydration conversion reaction from a polyimide precursor, that is, a polyamic acid. As a method for performing the conversion reaction, a thermal curing method performed only by heat and a chemical curing method using a chemical curing agent are used. The two methods are most widely known. However, in the present invention, it is essential to employ a chemical curing method, and at least one solution used for the coextrusion contains a chemical dehydrating agent and a catalyst.

ここで、化学硬化剤とは、化学脱水剤及び触媒を含むものである。ここでいう化学脱水剤とは、ポリアミド酸に対する脱水閉環剤であり、その主成分として、脂肪族酸無水物、芳香族酸無水物、N,N′−ジアルキルカルボジイミド、低級脂肪族ハロゲン化物、ハロゲン化低級脂肪族酸無水物、アリールスルホン酸ジハロゲン化物、チオニルハロゲン化物またはそれら2種以上の混合物を好ましく用いることができる。その中でも特に、脂肪族酸無水物及び芳香族酸無水物が良好に作用する。化学脱水剤の好適な導入量は、化学脱水剤を含有せしめる溶液に含まれるポリアミド酸中のアミド酸ユニット1モルに対して0.5〜4.0モル、好ましくは0.7〜4.0モル、特に好ましくは1.0〜4.0モルである。前記範囲を超えると、導体が腐食することがある。また、前記範囲を下回ると、硬化速度が充分でなく、本発明の効果を発揮できないことがある。   Here, the chemical curing agent includes a chemical dehydrating agent and a catalyst. The chemical dehydrating agent here is a dehydrating ring-closing agent for polyamic acid, and as its main component, aliphatic acid anhydride, aromatic acid anhydride, N, N'-dialkylcarbodiimide, lower aliphatic halide, halogen A lower aliphatic acid anhydride, an arylsulfonic acid dihalide, a thionyl halide, or a mixture of two or more thereof can be preferably used. Of these, aliphatic acid anhydrides and aromatic acid anhydrides work particularly well. A suitable introduction amount of the chemical dehydrating agent is 0.5 to 4.0 mol, preferably 0.7 to 4.0, relative to 1 mol of the amic acid unit in the polyamic acid contained in the solution containing the chemical dehydrating agent. Mol, particularly preferably 1.0 to 4.0 mol. If the above range is exceeded, the conductor may corrode. On the other hand, below the above range, the curing rate is not sufficient and the effects of the present invention may not be exhibited.

また、触媒とは硬化剤のポリアミド酸に対する脱水閉環作用を促進する効果を有する成分であるが、例えば、脂肪族3級アミン、芳香族3級アミン、複素環式3級アミンを用いることができる。そのうち、イミダゾ−ル、ベンズイミダゾ−ル、イソキノリン、キノリン、またはβ−ピコリンなどの含窒素複素環化合物であることが好ましい。さらに、化学脱水剤及び触媒からなる溶液中に、有機極性溶媒を導入することも適宜選択されうる。触媒の好適な導入量は、触媒を含有せしめる溶液に含まれるポリアミド酸中のアミド酸ユニット1モルに対して0.05〜2.0モル、好ましくは0.1〜2.0モル、特に好ましくは0.2〜2.0モルである。前記範囲を超えると、ポリイミド層に触媒が残存し、長期耐熱性に劣る場合がある。また、前記範囲を下回ると、硬化速度が充分でなく、本発明の効果を発揮できないことがある。   The catalyst is a component having an effect of promoting the dehydration ring-closing action of the curing agent on the polyamic acid. For example, an aliphatic tertiary amine, an aromatic tertiary amine, or a heterocyclic tertiary amine can be used. . Of these, nitrogen-containing heterocyclic compounds such as imidazole, benzimidazole, isoquinoline, quinoline, or β-picoline are preferred. Furthermore, introduction of an organic polar solvent into a solution composed of a chemical dehydrating agent and a catalyst can be appropriately selected. A suitable introduction amount of the catalyst is 0.05 to 2.0 mol, preferably 0.1 to 2.0 mol, particularly preferably 0.1 mol to 1 mol of amic acid unit in the polyamic acid contained in the solution containing the catalyst. Is 0.2 to 2.0 mol. When the above range is exceeded, the catalyst may remain in the polyimide layer and may be inferior in long-term heat resistance. On the other hand, below the above range, the curing rate is not sufficient and the effects of the present invention may not be exhibited.

化学硬化剤を導入するポリイミド前駆体は、何れの層を構成するものであっても本発明の効果を好適に発現しうるが、耐熱性ポリイミド層のみに化学硬化剤を導入する方法が、装置の簡略化、導体の腐食の防止、ポリイミド層の物性に関して最も好ましい結果を享受可能である。   The polyimide precursor for introducing the chemical curing agent can suitably exhibit the effect of the present invention regardless of the layer constituting the layer, but the method of introducing the chemical curing agent only to the heat-resistant polyimide layer is an apparatus. The most favorable results can be obtained with regard to simplification of the conductor, prevention of corrosion of the conductor, and physical properties of the polyimide layer.

2層以上の多層ダイから押出された耐熱性ポリイミドの前駆体溶液と、熱可塑性ポリイミドを含有する溶液若しくは熱可塑性ポリイミドの前駆体を含有する溶液中の溶媒の揮散方法に関しては特に限定されないが、加熱かつ/または送風による方法が最も簡易な方法である。上記加熱の際の温度は、高すぎると溶媒が急激に揮散し、当該揮散の痕が最終的に得られる多層フィルム中に微小欠陥を形成せしめる要因となるため、用いる溶媒の沸点+50℃未満であることが好ましい。   There is no particular limitation regarding the method of volatilization of the solvent in the precursor solution of the heat-resistant polyimide extruded from the multilayer die of two or more layers and the solution containing the thermoplastic polyimide or the precursor of the thermoplastic polyimide, The method by heating and / or blowing is the simplest method. If the temperature at the time of heating is too high, the solvent is volatilized rapidly, and the trace of the volatilization becomes a factor for forming minute defects in the finally obtained multilayer film. Preferably there is.

イミド化時間に関しては、実質的にイミド化および乾燥が完結するのに十分な時間を取ればよく、一義的に限定されるものではないが、一般的には1〜600秒程度の範囲で適宜設定される。この時、最終的に310〜410℃の温度で加熱す必要がある。また、320〜400℃の範囲で加熱することが好ましい。また、330〜390℃の範囲で加熱することが更に好ましい。この温度より高いと熱可塑性ポリイミドの熱劣化が起こり問題が生じることがある。逆にこの温度より低いと所定の効果が発現しないことがある。例えば、300℃以下で加熱すると吸湿半田耐熱性悪化や吸湿後の銅箔との密着強度低下といった問題が生じる。420℃以上で加熱すると銅箔との密着強度低下といった問題が生じる。   As for the imidization time, it is sufficient to take a time sufficient for the imidization and drying to be substantially completed, and it is not limited uniquely, but generally it is appropriately in the range of about 1 to 600 seconds. Is set. At this time, it is necessary to finally heat at a temperature of 310 to 410 ° C. Moreover, it is preferable to heat in the range of 320-400 degreeC. Moreover, it is more preferable to heat in the range of 330-390 degreeC. If the temperature is higher than this temperature, the thermoplastic polyimide may be thermally deteriorated to cause a problem. Conversely, if the temperature is lower than this temperature, the predetermined effect may not be exhibited. For example, heating at 300 ° C. or lower causes problems such as deterioration in heat resistance of moisture-absorbing solder and reduction in adhesion strength with the copper foil after moisture absorption. When heated at 420 ° C. or higher, there arises a problem that the adhesion strength with the copper foil is lowered.

また、得られた金属張積層板の導体と接触していない側の熱可塑性ポリイミド層と、第二導体を熱ラミネートすることで、ポリイミド層の両面に導体を設けることも好ましく選択されうる。本発明に係る第二導体とは、前記導体同様金属箔であればその種別を問わないが、銅箔、特に5〜20μmの厚みの銅箔、もしくはキャリア銅箔付きの極薄銅箔であることが好ましい。前記銅箔は、圧延銅箔、電解銅箔の何れでも好適に使用可能であり、また、銅箔の表面処理も、公知の如何なる処理も使用可能である。   Moreover, it can also be preferably selected to provide a conductor on both sides of the polyimide layer by thermally laminating the second conductor with the thermoplastic polyimide layer on the side not in contact with the conductor of the obtained metal-clad laminate. The second conductor according to the present invention is not limited as long as it is a metal foil like the conductor, but is a copper foil, particularly a copper foil with a thickness of 5 to 20 μm, or an ultrathin copper foil with a carrier copper foil. It is preferable. As the copper foil, either a rolled copper foil or an electrolytic copper foil can be suitably used, and any known treatment can be used for the surface treatment of the copper foil.

熱ラミネートの方法も特に限定されず、ダブルベルト法や1対の熱ロールで加圧する熱ロール法などが例示される。また、熱ロール法においても、熱ロールと金属張積層板の間に保護フィルムを挟む方法や、熱ロールをブースで囲い、当該ブース内を不活性ガスで充満させる方法などが挙げられる。   The method of thermal lamination is not particularly limited, and examples thereof include a double belt method and a hot roll method in which pressure is applied with a pair of hot rolls. Also in the hot roll method, a method of sandwiching a protective film between the hot roll and the metal-clad laminate, a method of surrounding the hot roll with a booth, and filling the inside of the booth with an inert gas can be mentioned.

両面金属張積層板を作製する場合、ポリイミド層の最外層の両面が熱可塑性ポリイミドであることが好ましく、前記2種以上のポリイミド層が、耐熱性ポリイミド層の両面に熱可塑性ポリイミド層を設けてなることが好ましい。   When producing a double-sided metal-clad laminate, it is preferable that both sides of the outermost layer of the polyimide layer are thermoplastic polyimide, and the two or more types of polyimide layers are provided with a thermoplastic polyimide layer on both sides of the heat-resistant polyimide layer. It is preferable to become.

導体上に、熱可塑性ポリイミドの前駆体溶液−耐熱性ポリイミドの前駆体溶液−熱可塑性ポリイミドの前駆体溶液を前記順で共押出によって導体上に流延した後に、乾燥・焼成せしめ、導体−熱可塑性ポリイミド層−耐熱性ポリイミド層−熱可塑性ポリイミド層からなる積層体を作製した後、当該積層体の導体と接触していない側の熱可塑性ポリイミド層と、第二導体を熱ラミネートすることで両面金属張積層板を得ることが好ましい。   On the conductor, a precursor solution of thermoplastic polyimide-a precursor solution of a heat-resistant polyimide-a precursor solution of a thermoplastic polyimide is cast on the conductor by coextrusion in the above order, and then dried and fired. After producing a laminate composed of a plastic polyimide layer-a heat-resistant polyimide layer-a thermoplastic polyimide layer, both sides of the laminate are thermally laminated with a thermoplastic polyimide layer that is not in contact with a conductor of the laminate and a second conductor. It is preferable to obtain a metal-clad laminate.

<熱可塑性ポリイミド>
本発明に係る熱可塑性ポリイミドとは、ガラス転移温度を有し、且つ圧縮モード(プローブ径3mmφ、荷重5g)の熱機械分析装置(TMA)において、10〜400℃(昇温速度:10℃/min)の温度範囲で永久圧縮変形を起こすものをいう。また、既存の装置でラミネートが可能であり、且つ得られる金属張積層板の耐熱性を損なわないという点から考えると、本発明にかかる熱可塑性ポリイミドは、150〜310℃の範囲にガラス転移温度(以下、「Tg」ともいう)を有していることが好ましい。なお、Tgは、動的粘弾性測定装置(DMA)により測定した貯蔵弾性率の変曲点の値によりもとめることができる。
<Thermoplastic polyimide>
The thermoplastic polyimide according to the present invention has a glass transition temperature and is 10 to 400 ° C. (temperature increase rate: 10 ° C./temperature) in a compression mode (probe diameter 3 mmφ, load 5 g) in a thermomechanical analyzer (TMA). Min) which causes permanent compression deformation in the temperature range. In view of the fact that lamination with an existing apparatus is possible and the heat resistance of the resulting metal-clad laminate is not impaired, the thermoplastic polyimide according to the present invention has a glass transition temperature in the range of 150 to 310 ° C. (Hereinafter also referred to as “Tg”). Tg can be obtained from the value of the inflection point of the storage elastic modulus measured by a dynamic viscoelasticity measuring device (DMA).

本発明に係る熱可塑性ポリイミドは、半田耐熱性を高めるため、下記(A)と(B)を満足する必要がある。
(A)該熱可塑性ポリイミドが、ピロメリット酸二無水物と2,2−ビス−[4−(4−アミノフェノキシ)フェニル]プロパンを主成分とするものであり、ピロメリット酸二無水物以外の酸二無水物をテトラカルボン酸二無水物成分100モル%中、10〜50モル%含有し、および/または2,2−ビス−[4−(4−アミノフェノキシ)フェニル]プロパン以外のジアミンをジアミン成分100モル%中、5〜30モル%含有し、
(B)ピロメリット酸二無水物以外の酸二無水物と2,2−ビス−[4−(4−アミノフェノキシ)フェニル]プロパン以外のジアミンとの合計モル数が酸二無水物成分100モル%とジアミン成分100モル%の合計200モル%中、5〜50モル%である。
The thermoplastic polyimide according to the present invention must satisfy the following (A) and (B) in order to improve solder heat resistance.
(A) The thermoplastic polyimide is mainly composed of pyromellitic dianhydride and 2,2-bis- [4- (4-aminophenoxy) phenyl] propane, and other than pyromellitic dianhydride Diamine other than 2,2-bis- [4- (4-aminophenoxy) phenyl] propane and / or a diamine other than 2,2-bis- [4- (4-aminophenoxy) phenyl] propane In 100 mol% of the diamine component, 5 to 30 mol%,
(B) The total number of moles of acid dianhydride other than pyromellitic dianhydride and diamine other than 2,2-bis- [4- (4-aminophenoxy) phenyl] propane is 100 moles of acid dianhydride component. % And 100 mol% of the diamine component in a total of 200 mol% is 5 to 50 mol%.

なお、本明細書中において、主成分とは50%以上であることを意味する。   In the present specification, the main component means 50% or more.

上記(A)(B)を満足しない場合、熱可塑性ポリイミドの所定の効果が発現しないことがある。例えば、ピロメリット酸二無水物以外の酸二無水物をテトラカルボン酸二無水物成分100モル%中、10モル%未満含有する場合、銅箔との密着強度低下といった問題が生じる場合がある。逆に、ピロメリット酸二無水物以外の酸二無水物をテトラカルボン酸二無水物成分100モル%中、50モル%より多く含有する場合、吸湿半田耐熱性悪化といった問題が生じる場合がある。2,2−ビス−[4−(4−アミノフェノキシ)フェニル]プロパン以外のジアミンをジアミン成分100モル%中、5モル%未満含有する場合、銅箔との密着強度低下といった問題が生じる場合がある。逆に、2,2−ビス−[4−(4−アミノフェノキシ)フェニル]プロパン以外のジアミンをジアミン成分100モル%中、50モル%より多く含有する場合、吸湿半田耐熱性悪化といった問題が生じる場合がある。   When the above (A) and (B) are not satisfied, the predetermined effect of the thermoplastic polyimide may not be exhibited. For example, when an acid dianhydride other than pyromellitic dianhydride is contained in an amount of less than 10 mol% in 100 mol% of the tetracarboxylic dianhydride component, a problem such as a decrease in adhesion strength with the copper foil may occur. On the other hand, when an acid dianhydride other than pyromellitic dianhydride is contained in an amount of more than 50 mol% in 100 mol% of the tetracarboxylic dianhydride component, a problem such as deterioration of heat resistance of the hygroscopic solder may occur. When a diamine other than 2,2-bis- [4- (4-aminophenoxy) phenyl] propane is contained in less than 5 mol% in 100 mol% of the diamine component, a problem such as a decrease in adhesion strength with copper foil may occur. is there. On the contrary, when diamine other than 2,2-bis- [4- (4-aminophenoxy) phenyl] propane is contained in an amount of more than 50 mol% in 100 mol% of the diamine component, there arises a problem that the heat resistance of the hygroscopic solder is deteriorated. There is a case.

テトラカルボン酸二無水物成分が上記主成分以外の成分を含んでもよく、ジアミン成分が上記主成分以外の成分を含んでもよく、テトラカルボン酸二無水物成分及びジアミン成分のどちらもが上記主成分以外の成分を含んでもよい。   The tetracarboxylic dianhydride component may contain a component other than the main component, the diamine component may contain a component other than the main component, and both the tetracarboxylic dianhydride component and the diamine component are the main components. Other components may be included.

ピロメリット酸二無水物以外の酸二無水物が、3,3’、4,4’−ビフェニルテトラカルボン酸二無水物であることが、良好な吸湿半田耐熱性及び良好な銅箔との密着強度を得るためには好ましい。2,2−ビス−[4−(4−アミノフェノキシ)フェニル]プロパン以外のジアミンが、4,4’−オキシジアニリンであることが、良好な吸湿半田耐熱性及び良好な銅箔との密着強度を得るためには好ましい。   The acid dianhydride other than pyromellitic dianhydride is 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, so that it has good moisture-absorbing solder heat resistance and good adhesion to copper foil. It is preferable for obtaining strength. The diamine other than 2,2-bis- [4- (4-aminophenoxy) phenyl] propane is 4,4′-oxydianiline, so that good moisture-absorbing solder heat resistance and good adhesion to copper foil It is preferable for obtaining strength.

更に、本発明にかかる熱可塑性ポリイミドの280℃における貯蔵弾性率が1×10Pa以上であることが良好な吸湿半田耐熱性発現のために好ましい。熱可塑性ポリイミドの半田試験温度での貯蔵弾性率が低い場合、多層ポリイミド中の水分が接着層を介して急激に系外に放出されてしまい、結果として多層ポリイミドやフレキシブル金属張積層板における白化や膨れの原因となりうる。また、フレキシブル金属張積層板を製造する際に多層ポリイミドと金属箔とを貼り合わせる温度では、接着性を発現するために熱可塑性ポリイミドは十分に軟化している必要があり、本発明に係る熱可塑性ポリイミドは、350℃での貯蔵弾性率が1×10Pa未満であることが好ましい。更には、熱可塑性ポリイミドが300℃における貯蔵弾性率が1×10Pa以上、340℃での貯蔵弾性率が1×10Pa未満であることが好ましく、更には、接着層に含有される熱可塑性ポリイミドが300℃における貯蔵弾性率が3×10Pa以上、340℃での貯蔵弾性率が8×10Pa未満であることが好ましい。また、金属箔と貼り合わせる温度において貯蔵弾性率が大きい場合、銅箔密着強度が低下し、得られた銅張積層板を加工する際に銅箔剥がれ等の問題が生じるため好ましくない。なお、金属箔と貼り合わせる温度において貯蔵弾性率が小さいことは、銅箔密着強度が良好であることに対する必要条件であり、貯蔵弾性率が小さくても銅箔とのマッチング不良のために密着強度が低い場合もある。 Furthermore, it is preferable that the storage elastic modulus at 280 ° C. of the thermoplastic polyimide according to the present invention is 1 × 10 8 Pa or more in order to exhibit good moisture-absorbing solder heat resistance. When the storage modulus of thermoplastic polyimide at the solder test temperature is low, the moisture in the multilayer polyimide is suddenly released outside the system through the adhesive layer, resulting in whitening or the like in the multilayer polyimide or flexible metal-clad laminate. Can cause blistering. Further, at the temperature at which the multi-layer polyimide and the metal foil are bonded when the flexible metal-clad laminate is manufactured, the thermoplastic polyimide needs to be sufficiently softened in order to exhibit adhesiveness. The plastic polyimide preferably has a storage elastic modulus at 350 ° C. of less than 1 × 10 8 Pa. Furthermore, it is preferable that the thermoplastic polyimide has a storage elastic modulus at 300 ° C. of 1 × 10 7 Pa or more and a storage elastic modulus at 340 ° C. of less than 1 × 10 8 Pa, and is further contained in the adhesive layer. The thermoplastic polyimide preferably has a storage elastic modulus at 300 ° C. of 3 × 10 7 Pa or more and a storage elastic modulus at 340 ° C. of less than 8 × 10 7 Pa. Moreover, when the storage elastic modulus is large at the temperature to be bonded to the metal foil, the copper foil adhesion strength is lowered, and problems such as peeling of the copper foil occur when the obtained copper clad laminate is processed. In addition, the low storage elastic modulus at the temperature to be bonded to the metal foil is a necessary condition for the good adhesion strength of the copper foil, and even if the storage elastic modulus is small, the adhesion strength is due to poor matching with the copper foil. May be low.

また、摺動性、熱伝導性、導電性、耐コロナ性、ループスティフネス等のフィルムの諸特性を改善する目的でフィラーを添加することもできる。フィラーとしてはいかなるものを用いても良いが、好ましい例としてはシリカ、酸化チタン、アルミナ、窒化珪素、窒化ホウ素、リン酸水素カルシウム、リン酸カルシウム、雲母などが挙げられる。   In addition, a filler can be added for the purpose of improving various film properties such as slidability, thermal conductivity, conductivity, corona resistance, and loop stiffness. Any filler may be used, but preferred examples include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, mica and the like.

フィラーの粒子径は改質すべきフィルム特性と添加するフィラーの種類によって決定されるため、特に限定されるものではないが、一般的には平均粒径が0.05〜100μm、好ましくは0.1〜75μm、更に好ましくは0.1〜50μm、特に好ましくは0.1〜25μmである。粒子径がこの範囲を下回ると改質効果が現れにくくなり、この範囲を上回ると表面性を大きく損なったり、機械的特性が大きく低下したりする可能性がある。また、フィラーの添加部数についても改質すべきフィルム特性やフィラー粒子径などにより決定されるため特に限定されるものではない。一般的にフィラーの添加量はポリイミド100重量部に対して0.01〜100重量部、好ましくは0.01〜90重量部、更に好ましくは0.02〜80重量部である。フィラー添加量がこの範囲を下回るとフィラーによる改質効果が現れにくく、この範囲を上回るとフィルムの機械的特性が大きく損なわれる可能性がある。フィラーの添加は、
1.重合前または途中に重合反応液に添加する方法
2.重合完了後、3本ロールなどを用いてフィラーを混錬する方法
3.フィラーを含む分散液を用意し、これをポリアミド酸有機溶媒溶液に混合する方法
などいかなる方法を用いてもよいが、フィラーを含む分散液をポリアミド酸溶液に混合する方法、特に製膜直前に混合する方法が製造ラインのフィラーによる汚染が最も少なくすむため、好ましい。フィラーを含む分散液を用意する場合、ポリアミド酸の重合溶媒と同じ溶媒を用いるのが好ましい。また、フィラーを良好に分散させ、また分散状態を安定化させるために分散剤、増粘剤等をフィルム物性に影響を及ぼさない範囲内で用いることもできる。
The particle size of the filler is not particularly limited because it is determined by the film characteristics to be modified and the kind of filler to be added, but generally the average particle size is 0.05 to 100 μm, preferably 0.1. It is -75 micrometers, More preferably, it is 0.1-50 micrometers, Most preferably, it is 0.1-25 micrometers. If the particle size is below this range, the modification effect is less likely to appear. If the particle size is above this range, the surface properties may be greatly impaired or the mechanical properties may be greatly deteriorated. Further, the number of added parts of the filler is not particularly limited because it is determined by the film properties to be modified, the filler particle diameter, and the like. Generally, the addition amount of the filler is 0.01 to 100 parts by weight, preferably 0.01 to 90 parts by weight, and more preferably 0.02 to 80 parts by weight with respect to 100 parts by weight of the polyimide. If the amount of filler added is less than this range, the effect of modification by the filler hardly appears, and if it exceeds this range, the mechanical properties of the film may be greatly impaired. Addition of filler
1. 1. A method of adding to a polymerization reaction solution before or during polymerization 2. A method of kneading fillers using three rolls after the completion of polymerization. Any method such as preparing a dispersion containing filler and mixing it with a polyamic acid organic solvent solution may be used, but a method of mixing a dispersion containing filler with a polyamic acid solution, particularly immediately before film formation. This method is preferable because the contamination by the filler in the production line is minimized. When preparing a dispersion containing a filler, it is preferable to use the same solvent as the polymerization solvent for the polyamic acid. Further, in order to disperse the filler satisfactorily and stabilize the dispersion state, a dispersant, a thickener and the like can be used within a range not affecting the film physical properties.

本発明に係る多層ポリイミドにおける熱可塑性ポリイミド層の厚みは限定されるものではないが、多層ポリイミド全体の厚みや、接着対象である金属箔の表面粗度等を考慮して適宜選択されうるが、1〜12μmの範囲が好ましく、更には1.3〜10μmの範囲が好ましく、更には1.5〜8μmの範囲がより好ましい。上記範囲より接着層を厚くしても、接着強度が比例して向上するわけではなく、逆に、多層ポリイミドとしての線膨張係数を制御するのが困難になるといった不具合が生じる場合がある。上記範囲より接着層を薄くすると、金属箔表面の凹凸に接着層が十分にかみ込まず、接着不良を生じる場合がある。   The thickness of the thermoplastic polyimide layer in the multilayer polyimide according to the present invention is not limited, but may be appropriately selected in consideration of the thickness of the entire multilayer polyimide, the surface roughness of the metal foil to be bonded, The range of 1-12 micrometers is preferable, Furthermore, the range of 1.3-10 micrometers is preferable, Furthermore, the range of 1.5-8 micrometers is more preferable. Even if the adhesive layer is made thicker than the above range, the adhesive strength does not improve proportionally, and conversely, it may be difficult to control the linear expansion coefficient of the multilayer polyimide. If the adhesive layer is thinner than the above range, the adhesive layer may not sufficiently bite into the irregularities on the surface of the metal foil, resulting in poor adhesion.

また、本発明の熱可塑性ポリイミドは、使用する原料比を限定することにより諸特性を制御することができる。   Moreover, the thermoplastic polyimide of this invention can control various characteristics by limiting the raw material ratio to be used.

<金属張積層板>
本発明にかかる金属張積層板は、吸湿半田耐熱性(例えば、85℃、85%R.H.の加湿条件下で24時間吸湿させた後、300℃の半田浴に10秒間浸漬しても、膨れ、白化等の外観異常が生じないレベル)を改善することができる。
<Metal-clad laminate>
The metal-clad laminate according to the present invention is moisture-absorbing solder heat resistant (for example, after absorbing moisture for 24 hours under a humidified condition of 85 ° C. and 85% RH, and then dipping in a solder bath at 300 ° C. for 10 seconds. , A level at which appearance abnormality such as swelling and whitening does not occur) can be improved.

本発明の金属張積層板は、金属箔引き剥がし強度が180度方向剥離で10N/cm以上であることが好ましい。金属箔引き剥がし強度が10N/cm未満であると、得られた銅張積層板を加工する際に銅箔剥がれ等の問題が生じるため好ましくない。   The metal-clad laminate of the present invention preferably has a metal foil peeling strength of 10 N / cm or more when peeled in the 180 ° direction. When the metal foil peeling strength is less than 10 N / cm, problems such as peeling of the copper foil occur when the obtained copper-clad laminate is processed.

<耐熱性ポリイミド>
ここで、本発明における耐熱性ポリイミドフィルムとは、その高分子量体のフィルムが350℃〜500℃程度に加熱した際に熔融し、フィルムの形状を保持するものを指す。より具体的な耐熱性ポリイミドフィルムの判定方法としては、用いるジアミンと酸二無水物のモル比率を、仮想的に100:97〜97:100となるよう適切な溶媒中に添加してポリアミド酸溶液を調製し、次いで、当該ポリアミド酸溶液を平滑な支持体上に、最終厚み10〜30μm、1辺の長さ25cm以上になるよう塗布する。前記平滑な支持体の具体例としては、PETフィルム、アルミ箔、銅箔が挙げられる。最終厚みを10〜30μmになるよう塗布する方法としては、バーコーター、コンマコーター、ドクターブレードなどの方法が挙げられる。さらに、支持体上に塗布したポリアミド酸溶液の塗布膜が自己支持性を発現するまで乾燥させて支持体上から剥離し、金属製の枠に固定してイミド化と乾燥を実質的に終了させてポリイミドの単層シートを作製する。上記の乾燥及びイミド化の方法としては、熱風、遠赤外線などの方法が挙げられ、その温度条件は、溶媒種、ポリアミド酸の分子構造によって適宜選択される。このようにして得られたポリイミドの単層シートを、内辺が各20cmの正方形の金属枠に、ポリイミドの単層シートと金属枠の中心がほぼ一致するよう固定して、350℃〜500℃の雰囲気中に、フィルムが略水平になるよう5分以上封入する。その際、フィルム中央の熱変形が鉛直下方向に1cm未満であった場合、当該ポリイミドからなるフィルムは、耐熱性であると判定する。
<Heat resistant polyimide>
Here, the heat-resistant polyimide film in the present invention refers to a film that melts and maintains the shape of the film when the high molecular weight film is heated to about 350 ° C to 500 ° C. As a more specific method for determining a heat-resistant polyimide film, a polyamic acid solution is prepared by adding a molar ratio of a diamine to be used and an acid dianhydride to an appropriate solvent so that the molar ratio is virtually 100: 97 to 97: 100. Then, the polyamic acid solution is applied onto a smooth support so that the final thickness is 10 to 30 μm and the length of one side is 25 cm or more. Specific examples of the smooth support include PET film, aluminum foil, and copper foil. Examples of the method for applying the final thickness to 10 to 30 μm include a bar coater, a comma coater, and a doctor blade. Furthermore, the coating film of the polyamic acid solution coated on the support is dried until it is self-supporting, peeled off from the support, fixed to a metal frame, and imidization and drying are substantially terminated. To produce a single layer sheet of polyimide. Examples of the drying and imidization methods include hot air and far infrared rays, and the temperature conditions are appropriately selected depending on the solvent species and the molecular structure of the polyamic acid. The polyimide single-layer sheet thus obtained was fixed to a square metal frame having an inner side of 20 cm each so that the center of the polyimide single-layer sheet and the metal frame substantially coincided, and 350 ° C. to 500 ° C. In the atmosphere of 5 minutes or more so that the film is substantially horizontal. At that time, if the thermal deformation at the center of the film is less than 1 cm in the vertically downward direction, the film made of the polyimide is determined to be heat resistant.

本発明にかかる耐熱性ポリイミドフィルムは、ポリアミド酸を前駆体として用いて製造される。ポリアミド酸の製造方法としては公知のあらゆる方法を用いることができ、通常、芳香族酸二無水物と芳香族ジアミンを、実質的等モル量を有機溶媒中に溶解させて、得られたポリアミド酸有機溶媒溶液を、制御された温度条件下で、上記酸二無水物とジアミンの重合が完了するまで攪拌することによって製造される。これらのポリアミド酸溶液は通常5〜35重量%、好ましくは10〜30重量%の濃度で得られる。この範囲の濃度である場合に適当な分子量と溶液粘度を得る。   The heat-resistant polyimide film according to the present invention is produced using polyamic acid as a precursor. Any known method can be used as a method for producing the polyamic acid. Usually, the polyamic acid obtained by dissolving a substantially equimolar amount of an aromatic dianhydride and an aromatic diamine in an organic solvent is obtained. The organic solvent solution is produced by stirring under controlled temperature conditions until the polymerization of the acid dianhydride and the diamine is completed. These polyamic acid solutions are usually obtained at a concentration of 5 to 35% by weight, preferably 10 to 30% by weight. When the concentration is in this range, an appropriate molecular weight and solution viscosity are obtained.

重合方法としてはあらゆる公知の方法およびそれらを組み合わせた方法を用いることができる。ポリアミド酸の重合における重合方法の特徴はそのモノマーの添加順序にあり、このモノマー添加順序を制御することにより得られるポリイミドの諸物性を制御することができる。従い、本発明においてポリアミド酸の重合にはいかなるモノマーの添加方法を用いても良い。代表的な重合方法として次のような方法が挙げられる。すなわち、
1)芳香族ジアミンを有機極性溶媒中に溶解し、これと実質的に等モルの芳香族テトラカルボン酸二無水物を反応させて重合する方法、
2)芳香族テトラカルボン酸二無水物とこれに対し過小モル量の芳香族ジアミン化合物とを有機極性溶媒中で反応させ、両末端に酸無水物基を有するプレポリマーを得る。続いて、全工程において芳香族テトラカルボン酸二無水物と芳香族ジアミン化合物が実質的に等モルとなるように芳香族ジアミン化合物を用いて重合させる方法、
3)芳香族テトラカルボン酸二無水物とこれに対し過剰モル量の芳香族ジアミン化合物とを有機極性溶媒中で反応させ、両末端にアミノ基を有するプレポリマーを得る。続いてここに芳香族ジアミン化合物を追加添加後、全工程において芳香族テトラカルボン酸二無水物と芳香族ジアミン化合物が実質的に等モルとなるように芳香族テトラカルボン酸二無水物を用いて重合する方法、
4)芳香族テトラカルボン酸二無水物を有機極性溶媒中に溶解及び/または分散させた後、実質的に等モルとなるように芳香族ジアミン化合物を用いて重合させる方法、
5)実質的に等モルの芳香族テトラカルボン酸二無水物と芳香族ジアミンの混合物を有機極性溶媒中で反応させて重合する方法、
などのような方法である。これら方法を単独で用いても良いし、部分的に組み合わせて用いることもできる。
As the polymerization method, any known method and a combination thereof can be used. The characteristic of the polymerization method in the polymerization of polyamic acid is the order of addition of the monomers, and the physical properties of the polyimide obtained can be controlled by controlling the order of addition of the monomers. Therefore, in the present invention, any method of adding monomers may be used for the polymerization of polyamic acid. The following method is mentioned as a typical polymerization method. That is,
1) A method in which an aromatic diamine is dissolved in an organic polar solvent, and this is reacted with a substantially equimolar aromatic tetracarboxylic dianhydride for polymerization.
2) An aromatic tetracarboxylic dianhydride is reacted with a small molar amount of an aromatic diamine compound in an organic polar solvent to obtain a prepolymer having acid anhydride groups at both ends. Subsequently, a method of polymerizing with an aromatic diamine compound so that the aromatic tetracarboxylic dianhydride and the aromatic diamine compound are substantially equimolar in all steps,
3) An aromatic tetracarboxylic dianhydride and an excess molar amount of the aromatic diamine compound are reacted in an organic polar solvent to obtain a prepolymer having amino groups at both ends. Subsequently, after adding an aromatic diamine compound here, using the aromatic tetracarboxylic dianhydride so that the aromatic tetracarboxylic dianhydride and the aromatic diamine compound are substantially equimolar in all steps. How to polymerize,
4) A method in which an aromatic tetracarboxylic dianhydride is dissolved and / or dispersed in an organic polar solvent and then polymerized using an aromatic diamine compound so as to be substantially equimolar,
5) A method of polymerizing by reacting a mixture of substantially equimolar aromatic tetracarboxylic dianhydride and aromatic diamine in an organic polar solvent,
And so on. These methods may be used singly or in combination.

本発明の耐熱性ポリイミドフィルムは、その分子中に熱可塑性ポリイミドブロック成分をポリイミド全体の20〜60モル%含有することが好ましい。この範囲の耐熱性フィルムを用いることで、吸湿半田耐熱性を向上させることが可能となる。その理由は未だ解明してはいないが、以下のように推察している。吸湿半田耐熱性試験での不良、即ち白化や発泡は、ポリイミド層に吸収された水分が、加熱された半田浴に浸漬されることにより、金属箔とポリイミド層の界面で急激に膨張することにより発生する現象である。耐熱性ポリイミド層に熱可塑性ポリイミド層のブロック成分を導入することにより、水蒸気透過速度が著しく向上し、それにより、金属箔とポリイミド層界面での水分の急激な膨張が避けられていると考えている。またさらに熱可塑性ポリイミドブロック成分は、ポリイミド全体の20〜60mol%、好ましくは25〜55mol%、特に好ましくは30〜50mol%含有される。熱可塑性ポリイミドブロック成分がこの範囲を下回ると本発明の優れた接着性を発現することが困難となり、この範囲を上回ると最終的に耐熱性ポリイミドフィルムとすることが困難となる。理想的にブロック成分を形成する目的で熱可塑性ポリイミド前駆体のブロック成分を形成した後、残りのジアミン及び/又は酸二無水物を用いて非熱可塑性ポリイミド前駆体を形成する方法を用いるのが好ましい。この際、前記1)〜5)の方法を部分的に組み合わせて用いることが好ましい。   The heat-resistant polyimide film of the present invention preferably contains 20 to 60 mol% of a thermoplastic polyimide block component in the molecule. By using a heat-resistant film in this range, it becomes possible to improve moisture-absorbing solder heat resistance. The reason for this has not been clarified yet, but is presumed as follows. Defects in the moisture absorption solder heat resistance test, that is, whitening and foaming, are caused by rapid expansion at the interface between the metal foil and the polyimide layer when the moisture absorbed in the polyimide layer is immersed in a heated solder bath. This is a phenomenon that occurs. By introducing the block component of the thermoplastic polyimide layer into the heat-resistant polyimide layer, the water vapor transmission rate is remarkably improved, which prevents the rapid expansion of moisture at the metal foil / polyimide layer interface. Yes. Furthermore, the thermoplastic polyimide block component is contained in an amount of 20 to 60 mol%, preferably 25 to 55 mol%, particularly preferably 30 to 50 mol% of the whole polyimide. If the thermoplastic polyimide block component is below this range, it will be difficult to develop the excellent adhesiveness of the present invention, and if it exceeds this range, it will be difficult to finally form a heat-resistant polyimide film. For the purpose of ideally forming the block component, after forming the block component of the thermoplastic polyimide precursor, the method of forming the non-thermoplastic polyimide precursor using the remaining diamine and / or acid dianhydride is used. preferable. Under the present circumstances, it is preferable to use combining the method of said 1) -5) partially.

本発明において熱可塑性ポリイミドブロック成分とは、その高分子量体のフィルムが350℃〜500℃程度に加熱した際に熔融し、フィルムの形状を保持しないようなものを指す。より具体的な熱可塑性ポリイミドブロック成分の判定方法としては、用いるジアミンと酸二無水物のモル比率を、仮想的に100:97〜97:100となるよう適切な溶媒中に添加してポリアミド酸溶液を調製し、次いで、当該ポリアミド酸溶液を平滑な支持体上に、最終厚み10〜30μm、1辺の長さ25cm以上になるよう塗布する。前記平滑な支持体の具体例としては、PETフィルム、アルミ箔、銅箔が挙げられる。最終厚みを10〜30μmになるよう塗布する方法としては、バーコーター、コンマコーター、ドクターブレードなどの方法が挙げられる。さらに、支持体上に塗布したポリアミド酸溶液の塗布膜が自己支持性を発現するまで乾燥させて支持体上から剥離し、金属製の枠に固定してイミド化と乾燥を実質的に終了させてポリイミドの単層シートを作製する。上記の乾燥及びイミド化の方法としては、熱風、遠赤外線などの方法が挙げられ、その温度条件は、溶媒種、ポリアミド酸の分子構造によって適宜選択される。このようにして得られたポリイミドの単層シートを、内辺が各20cmの正方形の金属枠に、ポリイミドの単層シートと金属枠の中心がほぼ一致するよう固定して、350℃〜500℃の雰囲気中に、フィルムが略水平になるよう5分以上封入する。その際、フィルム中央が鉛直下方向に1cm以上熱変形していた場合、当該ポリイミドからなるブロック成分は、熱可塑性であると判定する。   In the present invention, the thermoplastic polyimide block component refers to a component that melts when the high molecular weight film is heated to about 350 ° C. to 500 ° C. and does not retain the shape of the film. As a more specific determination method for the thermoplastic polyimide block component, the molar ratio of the diamine to be used and the acid dianhydride is added to an appropriate solvent so that the molar ratio is virtually 100: 97 to 97: 100. A solution is prepared, and then the polyamic acid solution is coated on a smooth support so that the final thickness is 10 to 30 μm and the length of one side is 25 cm or more. Specific examples of the smooth support include PET film, aluminum foil, and copper foil. Examples of the method for applying the final thickness to 10 to 30 μm include a bar coater, a comma coater, and a doctor blade. Furthermore, the coating film of the polyamic acid solution coated on the support is dried until it is self-supporting, peeled off from the support, fixed to a metal frame, and imidization and drying are substantially terminated. To produce a single layer sheet of polyimide. Examples of the drying and imidization methods include hot air and far infrared rays, and the temperature conditions are appropriately selected depending on the solvent species and the molecular structure of the polyamic acid. The polyimide single-layer sheet thus obtained was fixed to a square metal frame having an inner side of 20 cm each so that the center of the polyimide single-layer sheet and the metal frame substantially coincided, and 350 ° C. to 500 ° C. In the atmosphere of 5 minutes or more so that the film is substantially horizontal. At that time, if the center of the film is thermally deformed by 1 cm or more vertically downward, the block component made of the polyimide is determined to be thermoplastic.

ここで、熱可塑性ポリイミドブロック成分のmol%、すなわち、本発明における熱可塑性ポリイミドブロック成分の含有量とは、該熱可塑性ポリイミドブロック成分が、ジアミンを酸成分に対して過剰に用いて合成された場合は下記の計算式(1)により、酸成分をジアミン成分に対して過剰に用いて合成された場合は下記計算式(2)に従って、それぞれ計算される。
(熱可塑性ポリイミドブロック成分含有量) = a/b×100 計算式(1)
a:熱可塑性ポリイミドブロック成分に含まれるジアミン量(mol)
b:全ジアミン量(mol)
(熱可塑性ポリイミドブロック成分含有量) = a/b×100 計算式(2)
a:熱可塑性ポリイミドブロック成分に含まれる酸成分量(mol)
b:全酸成分量(mol)
またさらに熱可塑性ポリイミドブロック成分の繰り返し単位nは3〜99が好ましく、4〜90がより好ましい。繰り返し単位nがこの範囲を下回ると優れた接着性が発現しにくく、且つ吸湿膨張係数が大きくなりやすい。また、繰り返し単位nがこの範囲を上回るとポリイミド前駆体溶液の貯蔵安定性が悪くなる傾向にあり、かつ重合の再現性が低下する傾向にあり好ましくない。
Here, the mol% of the thermoplastic polyimide block component, that is, the content of the thermoplastic polyimide block component in the present invention was synthesized by using the thermoplastic polyimide block component excessively with respect to the acid component. In the case of synthesis by the following calculation formula (1), the acid component is calculated according to the following calculation formula (2) when synthesized in excess with respect to the diamine component.
(Thermoplastic polyimide block component content) = a / b × 100 Formula (1)
a: Amount of diamine contained in thermoplastic polyimide block component (mol)
b: Total diamine amount (mol)
(Thermoplastic polyimide block component content) = a / b × 100 Formula (2)
a: Amount of acid component contained in thermoplastic polyimide block component (mol)
b: Total acid component amount (mol)
Further, the repeating unit n of the thermoplastic polyimide block component is preferably 3 to 99, more preferably 4 to 90. When the repeating unit n is less than this range, excellent adhesiveness is hardly exhibited and the hygroscopic expansion coefficient tends to be large. On the other hand, if the repeating unit n exceeds this range, the storage stability of the polyimide precursor solution tends to deteriorate, and the reproducibility of polymerization tends to decrease, such being undesirable.

本発明における熱可塑性ポリイミドブロック成分は、その高分子量体において150〜300℃の範囲にガラス転移温度(Tg)を有していることが好ましい。なお、Tgは動的粘弾性測定装置(DMA)により測定した貯蔵弾性率の変曲点の値等により求めることができる。   The thermoplastic polyimide block component in the present invention preferably has a glass transition temperature (Tg) in the range of 150 to 300 ° C. in the high molecular weight body. Tg can be obtained from the inflection point value of the storage elastic modulus measured by a dynamic viscoelasticity measuring device (DMA).

本発明の熱可塑性ポリイミドブロック成分を形成するモノマーについて説明する。
本発明の熱可塑性ポリイミドブロック成分を構成するジアミン主成分として好ましく用い得る例としては4,4’−ジアミノジフェニルプロパン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、4,4’−オキシジアニリン、3,3’−オキシジアニリン、3,4’−オキシジアニリン、4,4’−ジアミノジフェニルジエチルシラン、4,4’−ジアミノジフェニルシラン、4,4’−ジアミノジフェニルエチルホスフィンオキシド、4,4’−ジアミノジフェニルN−メチルアミン、4,4’−ジアミノジフェニル N−フェニルアミン、1,4−ジアミノベンゼン(p−フェニレンジアミン)、ビス{4−(4−アミノフェノキシ)フェニル}スルホン、ビス{4−(3−アミノフェノキシ)フェニル}スルホン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、3,3’−ジアミノベンゾフェノン、4,4'−ジアミノベンゾフェノン、2,2−ビス(4−アミノフェノキシフェニル)プロパン等が挙げられ、これらを単独または複数併用することができる。これらの例は主成分として好適に用いられる例であり、副成分としていかなるジアミンを用いることもできる。これらの中で特に好ましく用い得るジアミンの例として、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、2,2−ビス(4−アミノフェノキシフェニル)プロパンが挙げられる。
The monomer that forms the thermoplastic polyimide block component of the present invention will be described.
Examples that can be preferably used as the diamine main component constituting the thermoplastic polyimide block component of the present invention include 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl sulfide, 3,3. '-Diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 4,4'-oxydianiline, 3,3'-oxydianiline, 3,4'-oxydianiline, 4,4'-diaminodiphenyldiethyl Silane, 4,4′-diaminodiphenylsilane, 4,4′-diaminodiphenylethylphosphine oxide, 4,4′-diaminodiphenyl N-methylamine, 4,4′-diaminodiphenyl N-phenylamine, 1,4- Diaminobenzene (p-phenylenediamine), bis {4- (4-aminophenoxy) Enyl} sulfone, bis {4- (3-aminophenoxy) phenyl} sulfone, 4,4′-bis (4-aminophenoxy) biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, 1,3- Bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 3, Examples include 3′-diaminobenzophenone, 4,4′-diaminobenzophenone, 2,2-bis (4-aminophenoxyphenyl) propane, and these can be used alone or in combination. These examples are examples that are suitably used as the main component, and any diamine can be used as the accessory component. Examples of diamines that can be particularly preferably used among these are 4,4′-bis (4-aminophenoxy) biphenyl, 4,4′-bis (3-aminophenoxy) biphenyl, 1,3-bis (3-amino). Phenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 2,2-bis (4 -Aminophenoxyphenyl) propane.

これらの中でも、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物を用いた場合、接着性を好適な範囲に制御しやすいことから特に好ましい。   Among these, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride is particularly preferable because the adhesiveness can be easily controlled within a suitable range.

また、熱可塑性ポリイミドブロック成分を構成する酸成分として好適に用い得る例としてはピロメリット酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、4,4’−オキシジフタル酸二無水物などが挙げられ、これらを単独または複数併用することができる。本発明においては、少なくとも3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物及び4,4’−オキシジフタル酸二無水物からなる群から選ばれる少なくとも1種の酸二無水物を必須成分として用いることが好ましい。これら酸二無水物を用いることで本発明の効果である接着性ポリイミド層との高い密着性が得られやすくなる。   Examples that can be suitably used as the acid component constituting the thermoplastic polyimide block component include pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 4,4′-oxydiphthalic dianhydride and the like can be mentioned, and these can be used alone or in combination. In the present invention, at least 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and 4,4′-oxydiphthalic acid It is preferable to use at least one acid dianhydride selected from the group consisting of anhydrides as an essential component. By using these acid dianhydrides, high adhesion to the adhesive polyimide layer, which is the effect of the present invention, can be easily obtained.

本発明において、熱可塑性ポリイミドブロック成分(この段階では、熱可塑性ポリイミド前駆体ブロック成分)と反応させて耐熱性ポリイミド前駆体を製造する際に用いられるジアミンと酸二無水物の好適な例を挙げる。ジアミンと酸二無水物の組み合わせにより種々特性が変化するため一概に規定することはできないが、最終的には、耐熱性ポリイミドとなるようなジアミン、酸を使用する。このようなジアミンとしては剛直な成分、例えばパラフェニレンジアミンおよびその誘導体、ベンジジン及びその誘導体を主成分として用いるのが好ましい。これら剛直構造を有するジアミンを用いることにより非熱可塑性とし、且つ高い弾性率を達成しやすくなる。また酸成分としてはピロメリット酸二無水物を主成分として用いることが好ましい。ピロメリット酸二無水物はよく知られているようにその構造の剛直性から耐熱性ポリイミドを与えやすい傾向にある。   In this invention, the suitable example of the diamine and acid dianhydride which are used when making it react with a thermoplastic polyimide block component (at this stage, a thermoplastic polyimide precursor block component) and manufacturing a heat resistant polyimide precursor is given. . Although various characteristics change depending on the combination of diamine and acid dianhydride, it cannot be specified unconditionally, but ultimately, a diamine or an acid that becomes a heat-resistant polyimide is used. As such a diamine, it is preferable to use a rigid component such as paraphenylenediamine and a derivative thereof, benzidine and a derivative thereof as a main component. By using these diamines having a rigid structure, it becomes non-thermoplastic and it is easy to achieve a high elastic modulus. Moreover, it is preferable to use pyromellitic dianhydride as a main component as an acid component. As is well known, pyromellitic dianhydride tends to give heat-resistant polyimide because of its rigid structure.

本発明においては、重合制御のしやすさや装置の利便性から、まず熱可塑性ポリイミド前駆体ブロック成分を合成した後、さらに適宜設計されたモル分率でジアミン及び酸二無水物を加えて耐熱性ポリイミド前駆体とする重合方法を用いることが好ましい。   In the present invention, from the viewpoint of ease of polymerization control and convenience of the apparatus, after first synthesizing a thermoplastic polyimide precursor block component, diamine and acid dianhydride are further added at an appropriately designed molar fraction to provide heat resistance. It is preferable to use a polymerization method using a polyimide precursor.

ポリイミド前駆体(以下ポリアミド酸という)を合成するための好ましい溶媒は、ポリアミド酸を溶解する溶媒であればいかなるものも用いることができるが、アミド系溶媒すなわちN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドンなどであり、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドが特に好ましく用い得る。   As a preferred solvent for synthesizing a polyimide precursor (hereinafter referred to as polyamic acid), any solvent that dissolves polyamic acid can be used, but amide solvents, that is, N, N-dimethylformamide, N, N -Dimethylacetamide, N-methyl-2-pyrrolidone and the like, and N, N-dimethylformamide and N, N-dimethylacetamide can be particularly preferably used.

以下、実施例及び比較例に基づき、本発明について更に具体的に説明する。なお、本発明は下記実施例に限定されるものではない。   Hereinafter, based on an Example and a comparative example, it demonstrates still more concretely about this invention. In addition, this invention is not limited to the following Example.

〔フレキシブル金属張積層板の吸湿半田耐熱性〕
実施例ならびに比較例で得られた両面フレキシブル金属張積層板について、3.5cm角に切り出し、片面(便宜的にA面とする)は2.5cm角の銅箔層がサンプル中央に残るように、反対面(便宜的にB面とする)は銅箔層が全面に残るように、エッチング処理で余分な銅箔層を除去してサンプルを五つ作製した。得られたサンプルを40℃、90%R.H.の加湿条件下で、96時間放置し、吸湿処理を行った。吸湿処理後、サンプルを260℃又は280℃又は300℃の半田浴に10秒間浸漬させた。半田浸漬後のサンプルについて、B面の銅箔層をエッチングにより完全に除去し、銅箔が重なっていた部分の外観に変化が無い場合は○(良)、多層ポリイミド層の白化、膨れ、銅箔層の剥離のいずれかが確認された場合は×(悪)とした。
[Hygroscopic solder heat resistance of flexible metal-clad laminate]
The double-sided flexible metal-clad laminates obtained in the examples and comparative examples were cut into 3.5 cm squares, and one side (for convenience, the A side) had a 2.5 cm square copper foil layer left in the center of the sample. On the opposite side (for convenience, B side), five samples were prepared by removing the excess copper foil layer by etching treatment so that the copper foil layer remained on the entire surface. The obtained sample was 40 ° C., 90% R.D. H. The sample was left for 96 hours under the humidification conditions, and a moisture absorption treatment was performed. After the moisture absorption treatment, the sample was immersed in a solder bath at 260 ° C., 280 ° C., or 300 ° C. for 10 seconds. For the sample after solder immersion, the copper foil layer on the B side is completely removed by etching, and if the appearance of the part where the copper foil overlaps is not changed, ○ (good), whitening of the multilayer polyimide layer, swelling, copper When any peeling of the foil layer was confirmed, it was set as x (bad).

〔フレキシブル金属張積層板の金属箔引き剥がし強度〕
JISC6471の「6.5引きはがし強さ」に従って、サンプルを作製し、5mm幅の金属箔部分を、180度の剥離角度、50mm/分の条件で剥離し、その荷重を測定した。更に、高温高湿環境における密着力として、基材を、121℃、湿度95%、2気圧オーブンに96時間放置し、室温になるまで放置した後、90°ピール強度を評価することで行った。
[Metal foil peel strength of flexible metal-clad laminate]
A sample was prepared according to “6.5 peel strength” of JIS C6471, and a 5 mm wide metal foil part was peeled off at a peeling angle of 180 degrees and 50 mm / min, and the load was measured. Furthermore, as the adhesive strength in a high temperature and high humidity environment, the substrate was left to stand at 121 ° C., humidity 95%, 2 atm oven for 96 hours, allowed to reach room temperature, and then evaluated by 90 ° peel strength. .

〔接着層のみのポリイミドフィルムの貯蔵弾性率の測定〕
各合成例のポリイミド前駆体樹脂から得られたポリイミドフィルムをセイコー電子(株)社製のDMS6100を用いて(サンプルサイズ 幅:9mm、長さ:50mm)、周波数1、5、10Hzで昇温速度3℃/minで20〜400℃の温度範囲で測定し、280℃と350℃の貯蔵弾性率の値を読み取った。
[Measurement of storage modulus of polyimide film with adhesive layer only]
The polyimide film obtained from the polyimide precursor resin of each synthesis example was measured using a DMS6100 manufactured by Seiko Electronics Co., Ltd. (sample size width: 9 mm, length: 50 mm) at a frequency of 1, 5, and 10 Hz. Measurements were made at a temperature range of 20 to 400 ° C. at 3 ° C./min, and the storage elastic modulus values at 280 ° C. and 350 ° C. were read.

(合成例1;熱可塑性ポリイミド前駆体の合成)
容量2000mlのガラス製フラスコにN,N−ジメチルホルムアミド(以下、DMFともいう)を807.2g、2,2−ビス−[4−(4−アミノフェノキシ)フェニル]プロパン(以下、BAPPともいう)を111.0g加え、窒素雰囲気下で撹拌しながら無水ピロメリット酸二無水物(以下、PMDAともいう)を57.2g添加し、25℃で1時間撹拌した。1.8gのPMDAを22.8gのDMFに溶解させた溶液を別途調製し、これを上記反応溶液に、粘度に注意しながら徐々に添加、撹拌を行った。粘度が1000poiseに達したところで添加、撹拌をやめ、ポリアミド酸溶液(熱可塑性ポリイミド前駆体溶液)を得た。
(Synthesis Example 1; Synthesis of thermoplastic polyimide precursor)
807.2 g of N, N-dimethylformamide (hereinafter also referred to as DMF), 2,2-bis- [4- (4-aminophenoxy) phenyl] propane (hereinafter also referred to as BAPP) in a glass flask having a capacity of 2000 ml 111.0 g was added, and 57.2 g of pyromellitic dianhydride (hereinafter also referred to as PMDA) was added while stirring under a nitrogen atmosphere, followed by stirring at 25 ° C. for 1 hour. A solution in which 1.8 g of PMDA was dissolved in 22.8 g of DMF was separately prepared, and this was gradually added to the above reaction solution while paying attention to the viscosity and stirred. When the viscosity reached 1000 poise, addition and stirring were stopped to obtain a polyamic acid solution (thermoplastic polyimide precursor solution).

(合成例2;熱可塑性ポリイミド前駆体の合成)
容量2000mlのガラス製フラスコにDMFを807.3g、2,2−ビス−[4−(4−アミノフェノキシ)フェニル]プロパン(以下、BAPPともいう)を110.4g加え、窒素雰囲気下で撹拌しながら3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(以下、BPDAともいう。)を4.0g加え、窒素雰囲気下で撹拌しながら、PMDAを53.9g添加し、25℃で1時間撹拌した。1.8gのPMDAを22.7gのDMFに溶解させた溶液を別途調製し、これを上記反応溶液に、粘度に注意しながら徐々に添加、撹拌を行った。粘度が1000poiseに達したところで添加、撹拌をやめ、ポリアミド酸溶液(熱可塑性ポリイミド前駆体溶液)を得た。
(Synthesis Example 2: Synthesis of thermoplastic polyimide precursor)
Add 807.3 g of DMF and 110.4 g of 2,2-bis- [4- (4-aminophenoxy) phenyl] propane (hereinafter also referred to as BAPP) to a glass flask with a capacity of 2000 ml and stir in a nitrogen atmosphere. While adding 4.0 g of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (hereinafter also referred to as BPDA) and stirring under a nitrogen atmosphere, 53.9 g of PMDA was added, and 25 ° C. For 1 hour. A solution prepared by dissolving 1.8 g of PMDA in 22.7 g of DMF was separately prepared, and this was gradually added to the above reaction solution while paying attention to viscosity and stirred. When the viscosity reached 1000 poise, addition and stirring were stopped to obtain a polyamic acid solution (thermoplastic polyimide precursor solution).

(合成例3;熱可塑性ポリイミド前駆体の合成)
容量2000mlのガラス製フラスコにDMFを807.5g、2,2−ビス−[4−(4−アミノフェノキシ)フェニル]プロパン(以下、BAPPともいう)を109.7g加え、窒素雰囲気下で撹拌しながらBPDAを7.9g加え、窒素雰囲気下で撹拌しながら、PMDAを50.7g添加し、25℃で1時間撹拌した。1.7gのPMDAを22.5gのDMFに溶解させた溶液を別途調製し、これを上記反応溶液に、粘度に注意しながら徐々に添加、撹拌を行った。粘度が1000poiseに達したところで添加、撹拌をやめ、ポリアミド酸溶液(熱可塑性ポリイミド前駆体溶液)を得た。
(Synthesis Example 3; Synthesis of thermoplastic polyimide precursor)
Add 807.5 g of DMF and 109.7 g of 2,2-bis- [4- (4-aminophenoxy) phenyl] propane (hereinafter also referred to as BAPP) to a glass flask with a capacity of 2000 ml and stir in a nitrogen atmosphere. While adding 7.9 g of BPDA while stirring under a nitrogen atmosphere, 50.7 g of PMDA was added and stirred at 25 ° C. for 1 hour. A solution in which 1.7 g of PMDA was dissolved in 22.5 g of DMF was separately prepared, and this was gradually added to the reaction solution while being careful of the viscosity and stirred. When the viscosity reached 1000 poise, addition and stirring were stopped to obtain a polyamic acid solution (thermoplastic polyimide precursor solution).

(合成例4;熱可塑性ポリイミド前駆体の合成)
容量2000mlのガラス製フラスコにDMFを802.6g、2,2−ビス−[4−(4−アミノフェノキシ)フェニル]プロパン(以下、BAPPともいう)を107.9g加え、窒素雰囲気下で撹拌しながら3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(以下、BTDAともいう)を8.5g加え、窒素雰囲気下で撹拌しながらBPDAを7.7g加え、窒素雰囲気下で撹拌しながらPMDAを47.0g添加し、25℃で1時間撹拌した。1.8gのPMDAを23.3gのDMFに溶解させた溶液を別途調製し、これを上記反応溶液に、粘度に注意しながら徐々に添加、撹拌を行った。粘度が1000poiseに達したところで添加、撹拌をやめ、ポリアミド酸溶液(熱可塑性ポリイミド前駆体溶液)を得た。
(Synthesis Example 4; Synthesis of thermoplastic polyimide precursor)
Add 802.6 g of DMF and 107.9 g of 2,2-bis- [4- (4-aminophenoxy) phenyl] propane (hereinafter also referred to as BAPP) to a glass flask with a capacity of 2000 ml and stir in a nitrogen atmosphere. While adding 8.5 g of 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (hereinafter also referred to as BTDA), stirring 7.7 g of BPDA under a nitrogen atmosphere and stirring under a nitrogen atmosphere While adding 47.0 g of PMDA, the mixture was stirred at 25 ° C. for 1 hour. A solution prepared by dissolving 1.8 g of PMDA in 23.3 g of DMF was separately prepared, and this was gradually added to the above reaction solution while paying attention to viscosity and stirred. When the viscosity reached 1000 poise, addition and stirring were stopped to obtain a polyamic acid solution (thermoplastic polyimide precursor solution).

(合成例5;熱可塑性ポリイミド前駆体の合成)
容量2000mlのガラス製フラスコにDMFを807.6g、2,2−ビス−[4−(4−アミノフェノキシ)フェニル]プロパン(以下、BAPPともいう)を109.0g加え、窒素雰囲気下で撹拌しながらBPDAを11.7g加え、窒素雰囲気下で撹拌しながら、PMDAを47.5g添加し、25℃で1時間撹拌した。1.7gのPMDAを22.4gのDMFに溶解させた溶液を別途調製し、これを上記反応溶液に、粘度に注意しながら徐々に添加、撹拌を行った。粘度が1000poiseに達したところで添加、撹拌をやめ、ポリアミド酸溶液(熱可塑性ポリイミド前駆体溶液)を得た。
(Synthesis Example 5: Synthesis of thermoplastic polyimide precursor)
Add 807.6 g of DMF and 109.0 g of 2,2-bis- [4- (4-aminophenoxy) phenyl] propane (hereinafter also referred to as BAPP) to a glass flask with a capacity of 2000 ml, and stir in a nitrogen atmosphere. While adding 11.7 g of BPDA and stirring under a nitrogen atmosphere, 47.5 g of PMDA was added and stirred at 25 ° C. for 1 hour. A solution in which 1.7 g of PMDA was dissolved in 22.4 g of DMF was separately prepared, and this was gradually added to the reaction solution while being careful of the viscosity and stirred. When the viscosity reached 1000 poise, addition and stirring were stopped to obtain a polyamic acid solution (thermoplastic polyimide precursor solution).

(合成例6;熱可塑性ポリイミド前駆体の合成)
容量2000mlのガラス製フラスコにDMFを807.7g、2,2−ビス−[4−(4−アミノフェノキシ)フェニル]プロパン(以下、BAPPともいう)を108.4g加え、窒素雰囲気下で撹拌しながらBPDAを15.5g加え、窒素雰囲気下で撹拌しながら、PMDAを44.4g添加し、25℃で1時間撹拌した。1.7gのPMDAを22.3gのDMFに溶解させた溶液を別途調製し、これを上記反応溶液に、粘度に注意しながら徐々に添加、撹拌を行った。粘度が1000poiseに達したところで添加、撹拌をやめ、ポリアミド酸溶液(熱可塑性ポリイミド前駆体溶液)を得た。
(Synthesis Example 6; Synthesis of thermoplastic polyimide precursor)
Add 807.7 g of DMF and 108.4 g of 2,2-bis- [4- (4-aminophenoxy) phenyl] propane (hereinafter also referred to as BAPP) to a glass flask with a capacity of 2000 ml and stir in a nitrogen atmosphere. While adding 15.5 g of BPDA and stirring under a nitrogen atmosphere, 44.4 g of PMDA was added and stirred at 25 ° C. for 1 hour. A solution in which 1.7 g of PMDA was dissolved in 22.3 g of DMF was separately prepared, and this was gradually added to the reaction solution while being careful of the viscosity and stirred. When the viscosity reached 1000 poise, addition and stirring were stopped to obtain a polyamic acid solution (thermoplastic polyimide precursor solution).

(合成例7;熱可塑性ポリイミド前駆体の合成)
容量2000mlのガラス製フラスコにDMFを808.0g、2,2−ビス−[4−(4−アミノフェノキシ)フェニル]プロパン(以下、BAPPともいう)を107.1g加え、窒素雰囲気下で撹拌しながらBPDAを23.0g加え、窒素雰囲気下で撹拌しながら、PMDAを38.1g添加し、25℃で1時間撹拌した。1.7gのPMDAを22.0gのDMFに溶解させた溶液を別途調製し、これを上記反応溶液に、粘度に注意しながら徐々に添加、撹拌を行った。粘度が1000poiseに達したところで添加、撹拌をやめ、ポリアミド酸溶液(熱可塑性ポリイミド前駆体溶液)を得た。
(Synthesis Example 7; Synthesis of thermoplastic polyimide precursor)
Add 808.0 g of DMF and 107.1 g of 2,2-bis- [4- (4-aminophenoxy) phenyl] propane (hereinafter also referred to as BAPP) to a glass flask with a capacity of 2000 ml and stir in a nitrogen atmosphere. While adding 23.0 g of BPDA while stirring under a nitrogen atmosphere, 38.1 g of PMDA was added and stirred at 25 ° C. for 1 hour. A solution in which 1.7 g of PMDA was dissolved in 22.0 g of DMF was separately prepared, and this was gradually added to the reaction solution while being careful of the viscosity and stirred. When the viscosity reached 1000 poise, addition and stirring were stopped to obtain a polyamic acid solution (thermoplastic polyimide precursor solution).

(合成例8;熱可塑性ポリイミド前駆体の合成)
容量2000mlのガラス製フラスコにDMFを808.5g、2,2−ビス−[4−(4−アミノフェノキシ)フェニル]プロパン(以下、BAPPともいう)を104.7g加え、窒素雰囲気下で撹拌しながらBPDAを37.5g加え、窒素雰囲気下で撹拌しながら、PMDAを26.1g添加し、25℃で1時間撹拌した。1.7gのPMDAを21.5gのDMFに溶解させた溶液を別途調製し、これを上記反応溶液に、粘度に注意しながら徐々に添加、撹拌を行った。粘度が1000poiseに達したところで添加、撹拌をやめ、ポリアミド酸溶液(熱可塑性ポリイミド前駆体溶液)を得た。
(Synthesis Example 8; Synthesis of thermoplastic polyimide precursor)
Add 808.5 g of DMF and 104.7 g of 2,2-bis- [4- (4-aminophenoxy) phenyl] propane (hereinafter also referred to as BAPP) to a glass flask with a capacity of 2000 ml and stir in a nitrogen atmosphere. While adding 37.5 g of BPDA and stirring under a nitrogen atmosphere, 26.1 g of PMDA was added and stirred at 25 ° C. for 1 hour. A solution in which 1.7 g of PMDA was dissolved in 21.5 g of DMF was separately prepared, and this was gradually added to the reaction solution while being careful of the viscosity and stirred. When the viscosity reached 1000 poise, addition and stirring were stopped to obtain a polyamic acid solution (thermoplastic polyimide precursor solution).

(合成例9;熱可塑性ポリイミド前駆体の合成)
容量2000mlのガラス製フラスコにDMFを809.0g、2,2−ビス−[4−(4−アミノフェノキシ)フェニル]プロパン(以下、BAPPともいう)を102.3g加え、窒素雰囲気下で撹拌しながらBPDAを51.3g加え、窒素雰囲気下で撹拌しながら、PMDAを16.3g添加し、25℃で1時間撹拌した。1.6gのPMDAを21.0gのDMFに溶解させた溶液を別途調製し、これを上記反応溶液に、粘度に注意しながら徐々に添加、撹拌を行った。粘度が1000poiseに達したところで添加、撹拌をやめ、ポリアミド酸溶液(熱可塑性ポリイミド前駆体溶液)を得た。
(Synthesis Example 9: Synthesis of thermoplastic polyimide precursor)
Add 809.0 g of DMF and 102.3 g of 2,2-bis- [4- (4-aminophenoxy) phenyl] propane (hereinafter also referred to as BAPP) to a glass flask with a capacity of 2000 ml and stir in a nitrogen atmosphere. While adding 51.3 g of BPDA and stirring under a nitrogen atmosphere, 16.3 g of PMDA was added and stirred at 25 ° C. for 1 hour. A solution in which 1.6 g of PMDA was dissolved in 21.0 g of DMF was separately prepared, and this was gradually added to the above reaction solution while being careful of the viscosity and stirred. When the viscosity reached 1000 poise, addition and stirring were stopped to obtain a polyamic acid solution (thermoplastic polyimide precursor solution).

(合成例10;熱可塑性ポリイミド前駆体の合成)
容量2000mlのガラス製フラスコにDMFを806.8g、2,2−ビス−[4−(4−アミノフェノキシ)フェニル]プロパン(以下、BAPPともいう)を107.3g、加え、窒素雰囲気下で撹拌しながら4,4’−オキシジアニリン(以下、4,4‘−ODAともいう)を2.8g加え、窒素雰囲気下で撹拌しながら、PMDAを58.2g添加し、25℃で1時間撹拌した。1.8gのPMDAを22.7gのDMFに溶解させた溶液を別途調製し、これを上記反応溶液に、粘度に注意しながら徐々に添加、撹拌を行った。粘度が1000poiseに達したところで添加、撹拌をやめ、ポリアミド酸溶液(熱可塑性ポリイミド前駆体溶液)を得た。
(Synthesis Example 10; Synthesis of thermoplastic polyimide precursor)
Add 806.8 g of DMF and 107.3 g of 2,2-bis- [4- (4-aminophenoxy) phenyl] propane (hereinafter also referred to as BAPP) to a glass flask with a capacity of 2000 ml, and stir in a nitrogen atmosphere. While adding 2.8 g of 4,4′-oxydianiline (hereinafter also referred to as “4,4′-ODA”), stirring under a nitrogen atmosphere, adding 58.2 g of PMDA and stirring at 25 ° C. for 1 hour did. A solution prepared by dissolving 1.8 g of PMDA in 22.7 g of DMF was separately prepared, and this was gradually added to the above reaction solution while paying attention to viscosity and stirred. When the viscosity reached 1000 poise, addition and stirring were stopped to obtain a polyamic acid solution (thermoplastic polyimide precursor solution).

(合成例11;熱可塑性ポリイミド前駆体の合成)
容量2000mlのガラス製フラスコにDMFを806.4g、2,2−ビス−[4−(4−アミノフェノキシ)フェニル]プロパン(以下、BAPPともいう)を103.4g、加え、窒素雰囲気下で撹拌しながら4,4’−オキシジアニリン(以下、4,4‘−ODAともいう)を5.6g加え、窒素雰囲気下で撹拌しながら、PMDAを59.2g添加し、25℃で1時間撹拌した。1.8gのPMDAを23.6gのDMFに溶解させた溶液を別途調製し、これを上記反応溶液に、粘度に注意しながら徐々に添加、撹拌を行った。粘度が1000poiseに達したところで添加、撹拌をやめ、ポリアミド酸溶液(熱可塑性ポリイミド前駆体溶液)を得た。
(Synthesis Example 11; Synthesis of thermoplastic polyimide precursor)
Add 806.4 g of DMF and 103.4 g of 2,2-bis- [4- (4-aminophenoxy) phenyl] propane (hereinafter also referred to as BAPP) to a glass flask having a capacity of 2000 ml, and stir in a nitrogen atmosphere. While adding 5.6 g of 4,4′-oxydianiline (hereinafter also referred to as “4,4′-ODA”), while stirring under a nitrogen atmosphere, add 59.2 g of PMDA and stir at 25 ° C. for 1 hour. did. A solution prepared by dissolving 1.8 g of PMDA in 23.6 g of DMF was separately prepared, and this was gradually added to the above reaction solution while paying attention to viscosity and stirred. When the viscosity reached 1000 poise, addition and stirring were stopped to obtain a polyamic acid solution (thermoplastic polyimide precursor solution).

(合成例12;熱可塑性ポリイミド前駆体の合成)
容量2000mlのガラス製フラスコにDMFを804.7g、2,2−ビス−[4−(4−アミノフェノキシ)フェニル]プロパン(以下、BAPPともいう)を86.4g、加え、窒素雰囲気下で撹拌しながら4,4’−オキシジアニリン(以下、4,4‘−ODAともいう。)を18.1g加え、窒素雰囲気下で撹拌しながら、PMDAを63.6g添加し、25℃で1時間撹拌した。2.0gのPMDAを25.4gのDMFに溶解させた溶液を別途調製し、これを上記反応溶液に、粘度に注意しながら徐々に添加、撹拌を行った。粘度が1000poiseに達したところで添加、撹拌をやめ、ポリアミド酸溶液(熱可塑性ポリイミド前駆体溶液)を得た。
(Synthesis Example 12; Synthesis of thermoplastic polyimide precursor)
Add 804.7 g of DMF and 86.4 g of 2,2-bis- [4- (4-aminophenoxy) phenyl] propane (hereinafter also referred to as BAPP) to a glass flask with a capacity of 2000 ml, and stir in a nitrogen atmosphere. While adding 18.1 g of 4,4′-oxydianiline (hereinafter also referred to as “4,4′-ODA”) and stirring under a nitrogen atmosphere, 63.6 g of PMDA was added and the mixture was heated at 25 ° C. for 1 hour. Stir. A solution in which 2.0 g of PMDA was dissolved in 25.4 g of DMF was separately prepared, and this was gradually added to the above reaction solution while paying attention to the viscosity and stirred. When the viscosity reached 1000 poise, addition and stirring were stopped to obtain a polyamic acid solution (thermoplastic polyimide precursor solution).

(合成例13;熱可塑性ポリイミド前駆体の合成)
容量2000mlのガラス製フラスコにDMFを802.6g、2,2−ビス−[4−(4−アミノフェノキシ)フェニル]プロパン(以下、BAPPともいう)を66.7g、加え、窒素雰囲気下で撹拌しながら4,4’−オキシジアニリン(以下、4,4‘−ODAともいう)を32.5g加え、窒素雰囲気下で撹拌しながら、PMDAを68.7g添加し、25℃で1時間撹拌した。2.0gのPMDAを25.4gのDMFに溶解させた溶液を別途調製し、これを上記反応溶液に、粘度に注意しながら徐々に添加、撹拌を行った。粘度が1000poiseに達したところで添加、撹拌をやめ、ポリアミド酸溶液(熱可塑性ポリイミド前駆体溶液)を得た。
(Synthesis Example 13; Synthesis of thermoplastic polyimide precursor)
Add 802.6 g of DMF and 66.7 g of 2,2-bis- [4- (4-aminophenoxy) phenyl] propane (hereinafter also referred to as BAPP) to a glass flask with a capacity of 2000 ml, and stir in a nitrogen atmosphere. While adding 32.5 g of 4,4′-oxydianiline (hereinafter also referred to as “4,4′-ODA”), stirring under a nitrogen atmosphere, adding 68.7 g of PMDA and stirring at 25 ° C. for 1 hour did. A solution in which 2.0 g of PMDA was dissolved in 25.4 g of DMF was separately prepared, and this was gradually added to the above reaction solution while paying attention to the viscosity and stirred. When the viscosity reached 1000 poise, addition and stirring were stopped to obtain a polyamic acid solution (thermoplastic polyimide precursor solution).

(合成例14;熱可塑性ポリイミド前駆体の合成)
容量2000mlのガラス製フラスコにDMFを807.0g、2,2−ビス−[4−(4−アミノフェノキシ)フェニル]プロパン(以下、BAPPともいう)を106.6g加え、窒素雰囲気下で撹拌しながら4,4’−オキシジアニリン(以下、4,4‘−ODAともいう)を2.7g加え、窒素雰囲気下で撹拌しながらBPDAを4.0g加え、窒素雰囲気下で撹拌しながら、PMDAを54.9g添加し、25℃で1時間撹拌した。1.8gのPMDAを23.1gのDMFに溶解させた溶液を別途調製し、これを上記反応溶液に、粘度に注意しながら徐々に添加、撹拌を行った。粘度が1000poiseに達したところで添加、撹拌をやめ、ポリアミド酸溶液(熱可塑性ポリイミド前駆体溶液)を得た。
(Synthesis Example 14; Synthesis of thermoplastic polyimide precursor)
Add 807.0 g of DMF and 106.6 g of 2,2-bis- [4- (4-aminophenoxy) phenyl] propane (hereinafter also referred to as BAPP) to a glass flask with a capacity of 2000 ml and stir in a nitrogen atmosphere. While adding 2.7 g of 4,4′-oxydianiline (hereinafter, also referred to as 4,4′-ODA), adding 4.0 g of BPDA while stirring under a nitrogen atmosphere, and stirring with PMDA, Was added and stirred at 25 ° C. for 1 hour. A solution in which 1.8 g of PMDA was dissolved in 23.1 g of DMF was separately prepared, and this was gradually added to the above reaction solution while paying attention to the viscosity and stirred. When the viscosity reached 1000 poise, addition and stirring were stopped to obtain a polyamic acid solution (thermoplastic polyimide precursor solution).

(合成例15;熱可塑性ポリイミド前駆体の合成)
容量2000mlのガラス製フラスコにDMFを807.1g、2,2−ビス−[4−(4−アミノフェノキシ)フェニル]プロパン(以下、BAPPともいう)を106.0g加え、窒素雰囲気下で撹拌しながら4,4’−オキシジアニリン(以下、4,4‘−ODAともいう)を2.7g加え、窒素雰囲気下で撹拌しながらBPDAを8.0g加え、窒素雰囲気下で撹拌しながら、PMDAを51.6g添加し、25℃で1時間撹拌した。1.8gのPMDAを22.9gのDMFに溶解させた溶液を別途調製し、これを上記反応溶液に、粘度に注意しながら徐々に添加、撹拌を行った。粘度が1000poiseに達したところで添加、撹拌をやめ、ポリアミド酸溶液(熱可塑性ポリイミド前駆体溶液)を得た。
(Synthesis Example 15: Synthesis of thermoplastic polyimide precursor)
Add 807.1 g of DMF and 106.0 g of 2,2-bis- [4- (4-aminophenoxy) phenyl] propane (hereinafter also referred to as BAPP) to a glass flask with a capacity of 2000 ml and stir in a nitrogen atmosphere. While adding 2.7 g of 4,4′-oxydianiline (hereinafter also referred to as 4,4′-ODA), adding 8.0 g of BPDA while stirring in a nitrogen atmosphere, and stirring with PMDA 51.6 g was added and stirred at 25 ° C. for 1 hour. A solution in which 1.8 g of PMDA was dissolved in 22.9 g of DMF was separately prepared, and this was gradually added to the above reaction solution while paying attention to the viscosity and stirred. When the viscosity reached 1000 poise, addition and stirring were stopped to obtain a polyamic acid solution (thermoplastic polyimide precursor solution).

(合成例16;熱可塑性ポリイミド前駆体の合成)
容量2000mlのガラス製フラスコにDMFを805.4g、2,2−ビス−[4−(4−アミノフェノキシ)フェニル]プロパン(以下、BAPPともいう)を89.7g加え、窒素雰囲気下で撹拌しながら4,4’−オキシジアニリン(以下、4,4‘−ODAともいう)を14.6g加え、窒素雰囲気下で撹拌しながらBPDAを8.6g加え、窒素雰囲気下で撹拌しながら、PMDAを55.3g添加し、25℃で1時間撹拌した。1.9gのPMDAを24.6gのDMFに溶解させた溶液を別途調製し、これを上記反応溶液に、粘度に注意しながら徐々に添加、撹拌を行った。粘度が1000poiseに達したところで添加、撹拌をやめ、ポリアミド酸溶液(熱可塑性ポリイミド前駆体溶液)を得た。
(Synthesis Example 16; Synthesis of thermoplastic polyimide precursor)
Add 805.4 g of DMF and 89.7 g of 2,2-bis- [4- (4-aminophenoxy) phenyl] propane (hereinafter also referred to as BAPP) to a glass flask with a capacity of 2000 ml and stir in a nitrogen atmosphere. While adding 14.6 g of 4,4′-oxydianiline (hereinafter also referred to as “4,4′-ODA”), adding 8.6 g of BPDA while stirring under a nitrogen atmosphere, stirring PMDA under a nitrogen atmosphere, Was added and stirred at 25 ° C. for 1 hour. A solution prepared by dissolving 1.9 g of PMDA in 24.6 g of DMF was separately prepared, and this was gradually added to the above reaction solution while paying attention to the viscosity and stirred. When the viscosity reached 1000 poise, addition and stirring were stopped to obtain a polyamic acid solution (thermoplastic polyimide precursor solution).

(合成例17;耐熱性ポリイミド前駆体の合成)
容量3000mlのガラス製フラスコに717.0gに4,4’−オキシジアニリン(以下、4,4‘−ODAともいう)20.7g、p−フェニレンジアミン(以下、p−PDAともいう)18.6g、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕プロパン(以下、BAPPともいう)28.2gを溶解した後、ピロメリット酸二無水物(以下、PMDAともいう)31.2gを添加し1時間撹拌して溶解させた。ここに、ベンゾフェノンテトラカルボン酸二無水物(以下、BTDAともいう)60.9gを添加し1時間撹拌させて溶解させた。
(Synthesis Example 17; Synthesis of heat-resistant polyimide precursor)
17. In a glass flask having a capacity of 3000 ml, 710.7 g, 4,4′-oxydianiline (hereinafter also referred to as 4,4′-ODA) 20.7 g, p-phenylenediamine (hereinafter also referred to as p-PDA) 18. 6 g of 2,2-bis [4- (4-aminophenoxy) phenyl] propane (hereinafter also referred to as BAPP) 28.2 g was dissolved and pyromellitic dianhydride (hereinafter also referred to as PMDA) 31.2 g Was added and stirred for 1 hour to dissolve. To this, 60.9 g of benzophenone tetracarboxylic dianhydride (hereinafter also referred to as BTDA) was added and stirred for 1 hour to dissolve.

別途調製しておいたPMDAのDMF溶液(PMDA:DMF=2.7g:21.0g)を上記反応液に徐々に添加し、粘度が3500ポイズ程度に達したところで添加を止めた。1時間撹拌を行って固形分濃度18重量%、23℃での回転粘度が3500poiseのポリアミド酸溶液(耐熱性ポリイミド前駆体溶液)を得た。   A separately prepared DMF solution of PMDA (PMDA: DMF = 2.7 g: 21.0 g) was gradually added to the reaction solution, and the addition was stopped when the viscosity reached about 3500 poise. Stirring was performed for 1 hour to obtain a polyamic acid solution (heat-resistant polyimide precursor solution) having a solid content concentration of 18% by weight and a rotational viscosity at 23 ° C. of 3500 poise.

参考例1)
合成例17で得られた耐熱性ポリイミド前駆体溶液に、以下の化学脱水剤及び触媒を含有せしめた。
化学脱水剤:無水酢酸を耐熱性ポリイミド前駆体のアミド酸ユニット1モルに対して2.0モル
触媒:イソキノリンを耐熱性ポリイミド前駆体のアミド酸ユニット1モルに対して0.5モル
次いで、リップ幅520mmのマルチマニホールド式の3層共押出多層ダイから、両外層が合成例3で得られた熱可塑性ポリイミド前駆体溶液、内層が上記で調製した耐熱性ポリイミド前駆体溶液となる順番で形成された3層構造の多層膜を連続的に押出して、当該Tダイスの下50mmを走行している銅箔のマット面上に、銅箔と熱可塑性ポリイミド前駆体溶液が接するように流延した。前記銅箔としては、12μ厚の日本電解社製銅箔HLBを用いた。次いで、多層膜付きの銅箔を140℃×100秒で乾燥せしめ、次いでテンター炉で250℃×20秒、300℃×20秒、330℃で30秒加熱してイミド化を完了させ、各熱可塑性ポリイミド層2μm、高耐熱性ポリイミド層10μmの良好な形状の金属張積層板を得た。外層に用いた熱可塑性ポリイミド前駆体の原料モル比を表1に示す。
( Reference Example 1)
The following chemical dehydrating agent and catalyst were added to the heat-resistant polyimide precursor solution obtained in Synthesis Example 17.
Chemical dehydrating agent: 2.0 moles of acetic anhydride with 1 mole of amic acid unit of heat-resistant polyimide precursor Catalyst: 0.5 mole of isoquinoline with respect to 1 mole of amic acid unit of heat-resistant polyimide precursor From a multi-manifold three-layer coextrusion multilayer die with a width of 520 mm, both outer layers are formed in the order of the thermoplastic polyimide precursor solution obtained in Synthesis Example 3, and the inner layer is the heat-resistant polyimide precursor solution prepared above. The multilayer film having the three-layer structure was continuously extruded and cast so that the copper foil and the thermoplastic polyimide precursor solution were in contact with each other on the mat surface of the copper foil running 50 mm below the T die. As the copper foil, a copper foil HLB made by Nippon Electrolytic Co., Ltd. having a thickness of 12 μm was used. Next, the copper foil with the multilayer film was dried at 140 ° C. for 100 seconds, and then heated in a tenter furnace at 250 ° C. for 20 seconds, 300 ° C. for 20 seconds, and 330 ° C. for 30 seconds to complete imidization. A metal-clad laminate having a good shape with a plastic polyimide layer of 2 μm and a high heat-resistant polyimide layer of 10 μm was obtained. Table 1 shows the raw material molar ratio of the thermoplastic polyimide precursor used for the outer layer.

得られた金属張積層板の、銅箔が接着されていない側の熱可塑性ポリイミド層と12μ厚の日本電解社製銅箔HLBを、熱ロールを用いて加圧接着せしめた。加圧接着の条件は、熱ロールと金属張積層板の両側に保護材料(アピカル125NPI;株式会社カネカ製)を用い、ラミネート温度360℃、ラミネート圧力176N/cm(18kgf/cm)ラミネート速度1.0m/分とした。得られたフレキシブル金属張積層板の吸湿半田耐熱性、金属箔引き剥がし強度の測定を行った。結果を表1に示す。   The thermoplastic polyimide layer on the side of the obtained metal-clad laminate, to which the copper foil was not bonded, and a 12 μm thick copper foil HLB made by Nippon Electrolytic Co., Ltd. were pressure bonded using a hot roll. The pressure bonding conditions were as follows: protective material (Apical 125 NPI; manufactured by Kaneka Corporation) was used on both sides of the hot roll and the metal-clad laminate, laminating temperature 360 ° C., laminating pressure 176 N / cm (18 kgf / cm) laminating speed 1. It was 0 m / min. The obtained flexible metal-clad laminate was measured for moisture absorption solder heat resistance and metal foil peeling strength. The results are shown in Table 1.

続いて、外層に用いた熱可塑性ポリイミド前駆体をPETフィルムにコンマコーターを用いて塗布し、150℃で5分間乾燥した。塗布膜をPETフィルムから剥離し、金属製の枠に固定して250℃で5分、更に350℃で5分加熱し、接着層のポリイミドフィルムを得た。得られたポリイミドフィルムの貯蔵弾性率の測定を行った。結果を表2に示す。   Subsequently, the thermoplastic polyimide precursor used for the outer layer was applied to a PET film using a comma coater and dried at 150 ° C. for 5 minutes. The coating film was peeled from the PET film, fixed to a metal frame, and heated at 250 ° C. for 5 minutes and further at 350 ° C. for 5 minutes to obtain an adhesive layer polyimide film. The storage elastic modulus of the obtained polyimide film was measured. The results are shown in Table 2.

(実施例、12、14〜16、参考例1〜6、10、11、13)
外層に用いる熱可塑性ポリイミドの種類を表1に示すとおりに変更すること、及び参考例1においてイミド化を完了させる温度である330℃を表1に示すとおりの温度にすることを除き、他は参考例1と同様にして金属張積層板及び接着層のポリイミドフィルムを製造し、吸湿半田耐熱性、金属箔引き剥がし強度、貯蔵弾性率の測定を行った。結果を表1、表2に示す。
(Examples 7 to 9 , 12, 14 to 16, Reference Examples 1 to 6, 10, 11 , 13)
Except for changing the type of thermoplastic polyimide used for the outer layer as shown in Table 1 and changing the temperature for completing imidization in Reference Example 1 to 330 ° C. as shown in Table 1, In the same manner as in Reference Example 1, a metal-clad laminate and a polyimide film having an adhesive layer were produced, and moisture-absorbing solder heat resistance, metal foil peeling strength, and storage elastic modulus were measured. The results are shown in Tables 1 and 2.

(比較例1〜12)
外層に用いる熱可塑性ポリイミドの種類を表1に示すとおりに変更すること、及び参考例1においてイミド化を完了させる温度である330℃を表1に示すとおりの温度にすることを除き、他は参考例1と同様にして金属張積層板及び接着層のポリイミドフィルムを製造し、吸湿半田耐熱性、金属箔引き剥がし強度、貯蔵弾性率の測定を行った。
(Comparative Examples 1-12)
Except for changing the type of thermoplastic polyimide used for the outer layer as shown in Table 1 and changing the temperature for completing imidization in Reference Example 1 to 330 ° C. as shown in Table 1, In the same manner as in Reference Example 1, a metal-clad laminate and a polyimide film having an adhesive layer were produced, and moisture-absorbing solder heat resistance, metal foil peeling strength, and storage elastic modulus were measured.

Figure 0005804830
Figure 0005804830

Figure 0005804830
Figure 0005804830

Claims (10)

導体上に少なくとも2種以上のポリイミド層を有する金属張積層板の製造方法であって、少なくとも該2種以上のポリイミド層の導体と接触している側の層が熱可塑性ポリイミド層であって、該熱可塑性ポリイミドが、下記(A)と(B)を満足し、ポリイミド樹脂の前駆体を含む溶液2種以上を共押出によって導体上に流延して2層以上の複数層を形成する工程を含み、前記共押出に用いる溶液の少なくとも1つの溶液には化学脱水剤及び触媒が含有されており、ポリイミド前駆体を310〜360℃の温度でイミド化することを特徴とする金属張積層板の製造方法:
(A)該熱可塑性ポリイミドが、ピロメリット酸二無水物と2,2−ビス−[4−(4−アミノフェノキシ)フェニル]プロパンを主成分とするものであり、(i)ピロメリット酸二無水物以外の酸二無水物をテトラカルボン酸二無水物成分100モル%中、10〜50モル%含有し、および2,2−ビス−[4−(4−アミノフェノキシ)フェニル]プロパン以外のジアミンをジアミン成分100モル%中、5〜30モル%含有し、または、(ii)2,2−ビス−[4−(4−アミノフェノキシ)フェニル]プロパン以外のジアミンをジアミン成分100モル%中、5〜30モル%含有し、
(B)ピロメリット酸二無水物以外の酸二無水物と2,2−ビス−[4−(4−アミノフェノキシ)フェニル]プロパン以外のジアミンとの合計モル数が酸二無水物成分100モル%とジアミン成分100モル%の合計200モル%中、5〜50モル%である。
A method for producing a metal-clad laminate having at least two or more kinds of polyimide layers on a conductor, wherein at least the two or more kinds of polyimide layers in contact with the conductor are thermoplastic polyimide layers, The thermoplastic polyimide satisfies the following (A) and (B), and forms two or more layers by casting two or more solutions containing a polyimide resin precursor onto a conductor by coextrusion. A metal-clad laminate, wherein a chemical dehydrating agent and a catalyst are contained in at least one of the solutions used for the coextrusion, and the polyimide precursor is imidized at a temperature of 310 to 360 ° C. Manufacturing method:
(A) The thermoplastic polyimide is mainly composed of pyromellitic dianhydride and 2,2-bis- [4- (4-aminophenoxy) phenyl] propane; (i) pyromellitic acid 2 in anhydrous dianhydride other than was 100 mole% tetracarboxylic acid dianhydride component contains 10-50 mol%, and 2,2-bis - other than [4- (4-aminophenoxy) phenyl] propane 5 to 30 mol% of diamine component in 100 mol% of diamine, or (ii) diamine other than 2,2-bis- [4- (4-aminophenoxy) phenyl] propane is 100 mol% of diamine component Containing 5-30 mol%,
(B) The total number of moles of acid dianhydride other than pyromellitic dianhydride and diamine other than 2,2-bis- [4- (4-aminophenoxy) phenyl] propane is 100 moles of acid dianhydride component. % And 100 mol% of the diamine component in a total of 200 mol% is 5 to 50 mol%.
前記熱可塑性ポリイミド層以外のポリイミド層が、少なくとも耐熱性ポリイミド層を含み、
前記耐熱性ポリイミド層は、熱可塑性ポリイミドのブロック成分が導入されたものであることを特徴とする、請求項1に記載の金属張積層板の製造方法。
The polyimide layer other than the thermoplastic polyimide layer includes at least a heat-resistant polyimide layer,
2. The method for producing a metal-clad laminate according to claim 1, wherein the heat-resistant polyimide layer has a thermoplastic polyimide block component introduced therein.
前記ポリイミド層が、耐熱性ポリイミド層の両面に熱可塑性ポリイミド層を設けてなることを特徴とする、請求項1または2に記載の金属張積層板の製造方法。   The method for producing a metal-clad laminate according to claim 1 or 2, wherein the polyimide layer is formed by providing a thermoplastic polyimide layer on both sides of a heat-resistant polyimide layer. 導体上に、熱可塑性ポリイミド前駆体溶液−耐熱性ポリイミド前駆体溶液−熱可塑性ポリイミド前駆体溶液を前記順で共押出によって導体上に流延した後に、乾燥・焼成せしめ、導体−熱可塑性ポリイミド層−耐熱性ポリイミド層−熱可塑性ポリイミド層からなる積層体を作製した後、当該積層体の導体と接触していない側の熱可塑性ポリイミド層と、第二導体を熱ラミネートし、
前記耐熱性ポリイミド層は、熱可塑性ポリイミドのブロック成分が導入されたものであることを特徴とする、請求項1〜3のいずれか1項に記載の金属張積層板の製造方法。
On the conductor, a thermoplastic polyimide precursor solution-a heat-resistant polyimide precursor solution-a thermoplastic polyimide precursor solution is cast on the conductor by coextrusion in the order described above, and then dried and fired to obtain a conductor-thermoplastic polyimide layer. -After preparing the laminated body which consists of-heat resistant polyimide layer-thermoplastic polyimide layer, the thermoplastic polyimide layer and the 2nd conductor of the side which is not in contact with the conductor of the said laminated body are heat laminated,
The method for producing a metal-clad laminate according to any one of claims 1 to 3, wherein the heat-resistant polyimide layer has a block component of thermoplastic polyimide introduced therein.
前記熱可塑性ポリイミドに含有されるピロメリット酸二無水物以外の酸二無水物が、3,3’、4,4’−ビフェニルテトラカルボン酸二無水物であることを特徴とする請求項1〜4のいずれか1項に記載の金属張積層板の製造方法。   The acid dianhydride other than pyromellitic dianhydride contained in the thermoplastic polyimide is 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 5. The method for producing a metal-clad laminate according to claim 1. 前記熱可塑性ポリイミドに含有される2,2−ビス−[4−(4−アミノフェノキシ)フェニル]プロパン以外のジアミンが、4,4’−オキシジアニリンであることを特徴とする請求項1〜5のいずれか1項に記載の金属張積層板の製造方法。   The diamine other than 2,2-bis- [4- (4-aminophenoxy) phenyl] propane contained in the thermoplastic polyimide is 4,4′-oxydianiline. 6. The method for producing a metal-clad laminate according to claim 5. 前記金属張積層板の金属箔引き剥がし強度が180度方向剥離で10N/cm以上であることを特徴とする請求項1〜6のいずれか1項に記載の金属張積層板の製造方法。   The method for producing a metal-clad laminate according to any one of claims 1 to 6, wherein the metal-clad laminate has a metal foil peeling strength of 10 N / cm or more when peeled in the direction of 180 degrees. 前記熱可塑性ポリイミドが280℃における貯蔵弾性率1×10Pa以上、350℃での貯蔵弾性率1×10Pa未満であることを特徴とする請求項1〜7のいずれか1項に記載の金属張積層板の製造方法。 The said thermoplastic polyimide is the storage elastic modulus 1 * 10 < 8 > Pa or more in 280 degreeC, and the storage elastic modulus in 350 degreeC is less than 1 * 10 < 8 > Pa, The any one of Claims 1-7 characterized by the above-mentioned. Method for producing a metal-clad laminate. 前記耐熱性ポリイミドが、熱可塑性ポリイミドのブロック成分をポリイミド全体の20〜60モル%含有することを特徴とする請求項2または4に記載の金属張積層板の製造方法。   The method for producing a metal-clad laminate according to claim 2 or 4, wherein the heat-resistant polyimide contains a thermoplastic polyimide block component in an amount of 20 to 60 mol% of the total polyimide. 前記熱可塑性ポリイミドのブロック成分の繰り返し単位nが3〜99であることを特徴とする請求項2、4または9のいずれか1項に記載の金属張積層板の製造方法。
The method for producing a metal-clad laminate according to any one of claims 2, 4 and 9, wherein the repeating unit n of the block component of the thermoplastic polyimide is 3 to 99.
JP2011167413A 2011-07-29 2011-07-29 Method for producing metal-clad laminate Active JP5804830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011167413A JP5804830B2 (en) 2011-07-29 2011-07-29 Method for producing metal-clad laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011167413A JP5804830B2 (en) 2011-07-29 2011-07-29 Method for producing metal-clad laminate

Publications (2)

Publication Number Publication Date
JP2013028146A JP2013028146A (en) 2013-02-07
JP5804830B2 true JP5804830B2 (en) 2015-11-04

Family

ID=47785672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011167413A Active JP5804830B2 (en) 2011-07-29 2011-07-29 Method for producing metal-clad laminate

Country Status (1)

Country Link
JP (1) JP5804830B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6031396B2 (en) * 2013-03-29 2016-11-24 新日鉄住金化学株式会社 Manufacturing method of double-sided flexible metal-clad laminate
JP7122162B2 (en) * 2018-06-01 2022-08-19 株式会社カネカ Thermoplastic Polyimide Films, Multilayer Polyimide Films, and Flexible Metal-Clad Laminates
JP2020075483A (en) * 2018-09-28 2020-05-21 日鉄ケミカル&マテリアル株式会社 Manufacturing method of metal-clad laminate, and manufacturing method of circuit board
JP7120870B2 (en) * 2018-09-28 2022-08-17 日鉄ケミカル&マテリアル株式会社 Method for producing polyimide film and method for producing metal-clad laminate
CN112373150A (en) * 2020-11-12 2021-02-19 西安航天三沃化学有限公司 Preparation method of glue-free single-sided flexible copper-clad plate based on coating method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180679A (en) * 1988-12-29 1990-07-13 Nippon Steel Chem Co Ltd Preparation of flexible printed wiring board
JP3034838B2 (en) * 1998-02-09 2000-04-17 新日鐵化学株式会社 Method for producing double-sided conductor polyimide laminate
JP2000129228A (en) * 1998-10-30 2000-05-09 Kanegafuchi Chem Ind Co Ltd Heat-resistant bonding sheet and flexible copper-clad laminate made therefrom
JP4409024B2 (en) * 2000-02-01 2010-02-03 新日鐵化学株式会社 Adhesive conductor-polyimide laminate
JP2001260272A (en) * 2000-03-14 2001-09-25 Kanegafuchi Chem Ind Co Ltd Flexible metal foil-clad laminated sheet and its manufacturing method
JP4389337B2 (en) * 2000-03-28 2009-12-24 宇部興産株式会社 Flexible metal foil laminate and manufacturing method thereof
JP4486333B2 (en) * 2003-09-25 2010-06-23 株式会社カネカ Adhesive film and flexible metal-clad laminate with improved hygroscopic solder resistance obtained therefrom
JP5049784B2 (en) * 2005-08-04 2012-10-17 株式会社カネカ Metal-coated polyimide film
JP2007230019A (en) * 2006-02-28 2007-09-13 Kaneka Corp Manufacturing method of metal clad laminated sheet
JP2008007631A (en) * 2006-06-29 2008-01-17 Kaneka Corp Polyimide film
JP2008188954A (en) * 2007-02-07 2008-08-21 Kaneka Corp Base material for single-sided metal-clad laminated sheet and manufacturing method of single-sided metal-clad laminated sheet
CN105437656A (en) * 2010-01-18 2016-03-30 株式会社钟化 Multilayer polymide film and flexible metal laminated board using the same
JP5468913B2 (en) * 2010-01-18 2014-04-09 株式会社カネカ Multilayer polyimide film with resist and method for producing the same

Also Published As

Publication number Publication date
JP2013028146A (en) 2013-02-07

Similar Documents

Publication Publication Date Title
JP5766125B2 (en) Multilayer polyimide film and flexible metal-clad laminate using the same
JP4625458B2 (en) Adhesive film and use thereof
US8338560B2 (en) Polyimide film and use thereof
JPWO2005111165A1 (en) Method for producing adhesive film
US10375836B2 (en) Film and flexible metal-clad laminate
US20070178323A1 (en) Polyimide multilayer body and method for producing same
JP4996920B2 (en) Polyimide film having high adhesiveness and method for producing the same
JP5804830B2 (en) Method for producing metal-clad laminate
JP2008188954A (en) Base material for single-sided metal-clad laminated sheet and manufacturing method of single-sided metal-clad laminated sheet
JP2008188843A (en) Multilayer film of polyimide precursor solution, multilayer polyimide film, single sided metal-clad laminated sheet and manufacturing method of multilayer polyimide film
JP4901509B2 (en) Multilayer film of polyimide precursor solution, multilayer polyimide film, single-sided metal-clad laminate, and method for producing multilayer polyimide film
JP5546304B2 (en) Method for producing adhesive film and flexible metal-clad laminate
JP2007230019A (en) Manufacturing method of metal clad laminated sheet
KR101665060B1 (en) Method for preparing a multilayered polyimide film
JP4684601B2 (en) Manufacturing method of flexible laminated substrate
JP5069844B2 (en) Method for producing insulating film for printed wiring board, polyimide / copper laminate and printed wiring board
JP5839900B2 (en) Method for producing multilayer polyimide film
JP2006316232A (en) Adhesive film and its preparation process
JP2006199871A (en) Adhesive film
JP2001270037A (en) Flexible metal foil laminate and manufacturing method for the same
JP5985733B2 (en) Method for producing multilayer polyimide film
JP2007313854A (en) Copper-clad laminated sheet
JP5355993B2 (en) Adhesive film
JP2006159785A (en) Manufacturing method of adhesive film
JP2006160957A (en) Adhesive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150901

R150 Certificate of patent or registration of utility model

Ref document number: 5804830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250