JP2009172996A - Flexible copper clad laminated board and its manufacturing method - Google Patents

Flexible copper clad laminated board and its manufacturing method Download PDF

Info

Publication number
JP2009172996A
JP2009172996A JP2008090484A JP2008090484A JP2009172996A JP 2009172996 A JP2009172996 A JP 2009172996A JP 2008090484 A JP2008090484 A JP 2008090484A JP 2008090484 A JP2008090484 A JP 2008090484A JP 2009172996 A JP2009172996 A JP 2009172996A
Authority
JP
Japan
Prior art keywords
polyimide
copper
clad laminate
adhesive layer
flexible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008090484A
Other languages
Japanese (ja)
Inventor
Takeshi Ogino
剛 荻野
Jun Asazuma
隼 浅妻
Masahiro Usu
雅浩 薄
Tadashi Amano
正 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2008090484A priority Critical patent/JP2009172996A/en
Publication of JP2009172996A publication Critical patent/JP2009172996A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high flexible copper clad laminate having a resistance increasing rate of not higher than 10% at 300,000 times of bending, and its manufacturing method. <P>SOLUTION: The flexible copper clad laminate is comprised of a polyimide type resin layer made of a polyimide film and a polyimide adhesive layer formed on one side or both sides of the polyimide film and a copper foil laminated on one side or both sides of the polyimide resin layer through the polyimide resin adhesive layer. A manufacturing method of the flexible copper clad laminate is also disclosed. The copper foil has a tensile strength of 100 MPa-300 MPa after heat treatment by a heat treatment process when the flexible copper clad laminate is manufactured and the polyimide type resin layer has an elastic modulus at 20 °C of 3 GPa-8 GPa. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、フレキシブルプリント基板に使用されるフレキシブル銅張積層板、及びその製造方法に関する。   The present invention relates to a flexible copper clad laminate used for a flexible printed circuit board and a method for producing the same.

電子機器の小型化、薄化により、電子機器内の屈曲稼動部に使用されるフレキシブルプリント基板には高い屈曲特性が求められている。すなわち、フレキシブルプリント基板には、該基板の屈曲半径がより小さくなる場合でも、破断せず、抵抗上昇率が低く、良好な屈曲特性が必要となり、これに使用されるフレキシブル銅張積層板も同様の特性が必要である。   Due to the miniaturization and thinning of electronic devices, flexible printed circuit boards used in bending operation parts in electronic devices are required to have high bending characteristics. That is, the flexible printed circuit board does not break even when the bending radius of the substrate is smaller, the resistance increase rate is low, and good bending characteristics are required. The flexible copper-clad laminate used for this is also the same The characteristics are necessary.

フレキシブル銅張積層板は通常、銅箔とポリイミド系樹脂層からなり、薄く、屈曲性や柔軟性を有することが特徴である。この銅張積層板は、小型で高機能な電子機器のフレキシブルプリント基板に使用されている。   A flexible copper clad laminate is usually composed of a copper foil and a polyimide resin layer, and is characterized by being thin and having flexibility and flexibility. This copper clad laminate is used for a flexible printed circuit board of a small and highly functional electronic device.

フレキシブル銅張積層板には、
1)銅箔上にポリイミド樹脂の溶液又はポリイミド樹脂の前駆体樹脂の溶液、例えばポリアミック酸溶液、を塗布し、乾燥し、硬化してポリイミド層とする銅張積層板、いわゆるキャスト法による銅張積層板、
2)ポリイミドフィルム上に直接銅合金または銅をスパッタしてメッキすることで銅層を形成する銅張積層板、即ち、メッキ法による銅張積層板、及び
3)ポリイミドフィルムと銅箔を貼り合わせるラミネート法による銅張積層板、
がある。
For flexible copper clad laminates,
1) A copper-clad laminate by applying a polyimide resin solution or a polyimide resin precursor resin solution, such as a polyamic acid solution, onto a copper foil, drying and curing to form a polyimide layer, so-called cast copper-clad Laminated board,
2) A copper-clad laminate that forms a copper layer by sputtering and plating copper alloy or copper directly on the polyimide film, that is, a copper-clad laminate by plating, and 3) bonding the polyimide film and copper foil together Copper-clad laminate by lamination method,
There is.

1)のキャスト法による銅張積層板は、ポリイミド層にいわゆるコシがなく、ポリイミド層は厚さ20μm以上ないと、回路形成後の屈曲特性が劣る。また、硬化後のポリイミド層の厚みを20μm以上とするためには、数回の塗布を必要としており、この場合、ポリイミド層の厚み方向と面方向ともに不連続な層となりやすく、屈曲特性は満足いくものではなかった。   The copper-clad laminate produced by the casting method 1) does not have a so-called stiffness in the polyimide layer, and if the polyimide layer has a thickness of 20 μm or more, the bending properties after circuit formation are inferior. In addition, in order to make the thickness of the cured polyimide layer 20 μm or more, it is necessary to apply several times. In this case, the polyimide layer tends to be discontinuous in both the thickness direction and the surface direction, and the bending characteristics are satisfactory. It wasn't going.

2)のメッキ法による銅張積層板は、装置が高価で、処理条件管理が厳密で、製造歩留りが低い。スパッタで、ピンホールが発生し易く、メッキ不良となり易く、均一なメッキ層形成も難しく、従って剥離強度が低下する。また、銅層自体の強度不足により屈曲特性に問題が生じる場合が多い。   The copper-clad laminate by the plating method 2) is expensive in equipment, strictly managed in processing conditions, and has a low production yield. Sputtering tends to cause pinholes, poor plating, and formation of a uniform plating layer is difficult, and the peel strength is thus reduced. Also, there are many cases where problems arise in the bending characteristics due to insufficient strength of the copper layer itself.

これ対し、3)のラミネート法による銅張積層板は、従来から屈曲特性に優れることが知られている。この銅張積層板として、例えば、銅箔上にポリアミック酸溶液を塗工乾燥し、半乾燥状態とした接着層に、ポリイミドフィルムを加熱ロールにてラミネートした後に、更に加熱して、該接着層の溶剤乾燥とポリアミック酸のイミド化をするラミネート法により製造する片面銅張積層板が知られている。また、熱圧着性ポリイミド層を備えたポリイミドフィルムの両面に銅箔を張り合わせるラミネート法による両面銅張積層板も知られている。両方の銅張積層板とも、ポリイミドフィルムを有する銅張積層板であるので、ポリイミドフィルムの有する優れた特性(耐熱性、寸法安定性、屈曲特性)を十分に反映したフレキシブル銅張積層板である。   On the other hand, it is known that the copper-clad laminate by the laminating method of 3) has excellent bending characteristics. As this copper-clad laminate, for example, a polyamic acid solution is applied and dried on a copper foil, a polyimide film is laminated to a semi-dried adhesive layer with a heating roll, and further heated, the adhesive layer A single-sided copper-clad laminate produced by a laminating method in which a solvent is dried and a polyamic acid is imidized is known. Also known is a double-sided copper-clad laminate by a laminating method in which a copper foil is laminated on both sides of a polyimide film having a thermocompression bonding polyimide layer. Since both copper clad laminates are copper clad laminates having a polyimide film, they are flexible copper clad laminates that sufficiently reflect the excellent properties (heat resistance, dimensional stability, bending properties) of polyimide films. .

上記の通りラミネート法によるポリイミドフィルムを有するフレキシブル銅張積層板は屈曲特性に優れている。しかしながら、近年、電子機器はますます小型化・薄型化しており、これに使用されるフレキシブルプリント基板は、より小さな屈曲半径で、断線せずに抵抗上昇率も低いことが必要となっている。このような小さな屈曲半径では、従来のラミネート法によるフレキシブル銅張積層板品といえども、繰り返し曲げによる銅箔の延性疲労で、断裂部分が増えて抵抗上昇率が大きくなり、ひどい場合には断線してしまうことがある。従って、より電気的信頼性のある、より高屈曲特性が求められる。   As described above, a flexible copper-clad laminate having a polyimide film by a laminating method has excellent bending properties. However, in recent years, electronic devices are becoming smaller and thinner, and a flexible printed circuit board used therefor needs to have a smaller bending radius and a low resistance increase rate without disconnection. With such a small bend radius, even in the case of flexible copper clad laminates made by the conventional laminating method, the ductile fatigue of the copper foil due to repeated bending increases the number of fractures and increases the resistance rise rate. May end up. Therefore, a higher bending property with higher electrical reliability is required.

屈曲性を高めたフレキシブル銅張積層板としては、電解銅箔上に、ポリアミック酸を塗布乾燥して樹脂層を形成し、数時間の熱処理を施して、この樹脂層を硬化させてポリイミド層とするとともに、銅箔に対して熱処理を施して得られるフレキシブル銅張積層板がある(特許文献1)。この銅張積層板では、銅箔の熱処理により抗張力を低下させており、柔軟性および耐折性が良好である。しかしながら、この特許文献の製造方法は、ポリイミド層が銅箔上に直接形成される方法で、前述したキャスト法である。たとえ、銅箔の耐折性が向上して、フレキシブル銅張積層版の耐折性も良好となるとしても、屈曲稼動部が広範囲となる実際の電子部品と同じように、屈曲部分が広範囲となるIPC屈曲特性試験では、抵抗上昇率が30%以上となり、特にフレキシブルプリント基板の屈曲半径がより小さい場合は、破断してしまうという問題がある。またこの特許文献では、ポリイミド層の弾性率については何ら言及されていない。従って、ポリイミド層の弾性率が特定の範囲にない場合には、屈曲特性に劣るという問題があった。   As a flexible copper-clad laminate with improved flexibility, a polyamic acid is applied and dried on an electrolytic copper foil to form a resin layer, heat-treated for several hours, and the resin layer is cured to form a polyimide layer. In addition, there is a flexible copper-clad laminate obtained by subjecting a copper foil to heat treatment (Patent Document 1). In this copper clad laminate, the tensile strength is lowered by heat treatment of the copper foil, and the flexibility and folding resistance are good. However, the manufacturing method of this patent document is a method in which a polyimide layer is directly formed on a copper foil, and is the above-described casting method. Even if the folding resistance of the copper foil is improved and the folding resistance of the flexible copper-clad laminate is improved, the bending portion has a wide range as in the case of an actual electronic component having a wide bending operation portion. In the IPC bending characteristic test, the rate of increase in resistance is 30% or more. In particular, when the bending radius of the flexible printed circuit board is smaller, there is a problem that it breaks. In this patent document, no mention is made of the elastic modulus of the polyimide layer. Therefore, when the elastic modulus of the polyimide layer is not in a specific range, there is a problem that the bending property is inferior.

このように、これまで、屈曲半径が小さい場合でも高屈曲特性を備えたフレキシブル銅張積層板はなかった。   As described above, there has been no flexible copper-clad laminate having high bending characteristics even when the bending radius is small.

特開2004−237596JP2004-237596

本発明は、上記事情に鑑みてなされたもので、優れた屈曲特性を有するポリイミドフィルムの特性を十分に生かした、屈曲性が向上したフレキシブル銅張積層板、及びその製造方法を提供することを目的とする。特に、実際の電子機器稼動部における広範囲屈曲稼動で、常温、屈曲半径0.65mm、屈曲速度100回/min.のIPC屈曲性試験において、屈曲回数30万回での抵抗上昇率が10%以下である高屈曲特性フレキシブル銅張積層板、及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a flexible copper-clad laminate having improved flexibility and a method for producing the same, making full use of the properties of a polyimide film having excellent bending properties. Objective. In particular, in a wide range of bending operation in the actual operating part of the electronic equipment, the resistance increase rate at 300,000 times of bending is 10% or less in the IPC bending test at normal temperature, bending radius of 0.65 mm, bending speed of 100 times / min. An object of the present invention is to provide a flexible copper-clad laminate having a high bending property and a method for manufacturing the same.

本発明者らは、屈曲半径R=0.65mmにおけるIPC屈曲試験を行った場合でも、非常に優れた屈曲特性を持つフレキシブル銅張積層板を得ることを鋭意研究検討した結果、銅箔としてフレキシブル銅張積層板の製造時の熱処理工程による熱後の抗張力が特定の値にあるものを使用し、且つポリイミド系樹脂層として特定範囲の弾性率を有するものを使用した場合に、優れた屈曲特性を有するポリイミドフィルムの特性を十分に生かし、更に屈曲特性が向上したフレキシブル銅張積層板となることを見出し、本発明を成すに至った。   As a result of intensive studies and studies to obtain a flexible copper-clad laminate having very excellent bending characteristics even when performing an IPC bending test at a bending radius R = 0.65 mm, the present inventors have found that flexible copper as a copper foil. Excellent bending properties when using a material that has a specific value for the tensile strength after heating in the heat treatment process during the manufacture of the tension laminate and a polyimide resin layer having a specific range of elastic modulus It has been found that a flexible copper-clad laminate having fully improved characteristics of the polyimide film it has and further improved in bending properties has been achieved.

即ち、本願第1の発明は、ポリイミドフィルム及び該ポリイミドフィルムの片面若しくは両面に設けられたポリイミド接着層から成るポリイミド系樹脂層と、該ポリイミド系樹脂層の該ポリイミド接着層が設けられた片面または両面に該ポリイミド接着層を介して銅箔を積層したフレキシブル銅張積層板であって、該銅箔は、フレキシブル銅張積層板の製造時の熱処理工程による熱後の抗張力が100MPa〜300MPaであり、且つ該ポリイミド系樹脂層は20℃での弾性率が3GPa〜8GPaであることを特徴とするフレキシブル銅張積層板である。   That is, the first invention of the present application is a polyimide resin layer composed of a polyimide film and a polyimide adhesive layer provided on one side or both sides of the polyimide film, and one side of the polyimide resin layer provided with the polyimide adhesive layer or A flexible copper-clad laminate in which copper foil is laminated on both sides via the polyimide adhesive layer, and the copper foil has a tensile strength after heating by a heat treatment step in the production of the flexible copper-clad laminate of 100 MPa to 300 MPa. The polyimide resin layer is a flexible copper-clad laminate having an elastic modulus at 20 ° C. of 3 GPa to 8 GPa.

本願第2の発明は、フレキシブル銅張積層板の製造前の抗張力が330MPa〜530MPaである銅箔上に、ポリイミド前駆体の溶液又はポリイミド溶液を塗工乾燥して半乾燥状態の接着層を形成し、該接着層にポリイミドフィルムを加熱ロールにてラミネートした後に、更に加熱して、ポリイミド前駆体の溶液を塗布した場合は該接着層の溶剤乾燥とイミド化を行い、ポリイミド溶液を塗布した場合は溶剤乾燥を行うことを特徴とする、フレキシブル銅張積層板の製造時の熱処理工程による熱後の銅箔の抗張力が100MPa〜300MPaであり、且つ該ポリイミド系樹脂層の20℃での弾性率が3GPa〜8GPaであるフレキシブル片面銅張積層板の製造方法である。   In the second invention of the present application, a polyimide precursor solution or a polyimide solution is applied and dried on a copper foil having a tensile strength before production of a flexible copper-clad laminate of 330 MPa to 530 MPa to form a semi-dry adhesive layer. And after laminating a polyimide film on the adhesive layer with a heating roll, further heating and applying a solution of the polyimide precursor, solvent drying and imidization of the adhesive layer, and applying a polyimide solution Is characterized by performing solvent drying, and the tensile strength of the copper foil after heating in the heat treatment step during the production of the flexible copper clad laminate is 100 MPa to 300 MPa, and the modulus of elasticity of the polyimide resin layer at 20 ° C. Is a method for producing a flexible single-sided copper-clad laminate with 3 GPa to 8 GPa.

本願第3の発明は、片面若しくは両面に熱圧着性ポリイミド接着層を備えたポリイミドフィルムから成り、20℃での弾性率が3GPa〜8GPaであるポリイミド系樹脂層の該熱圧着性ポリイミド接着層上に、フレキシブル銅張積層板の製造前の抗張力が330MPa〜530MPaである銅箔を加熱圧着することを特徴とする、フレキシブル銅張積層板の製造時の熱処理工程による熱後の銅箔の抗張力が100MPa〜300MPaであり、且つ該ポリイミド系樹脂層の20℃での弾性率が3GPa〜8GPaであるフレキシブル片面又は両面銅張積層板の製造方法である。   3rd invention of this application consists of a polyimide film provided with a thermocompression bonding polyimide adhesive layer on one side or both sides, and on the thermocompression bonding adhesive layer of a polyimide resin layer having an elastic modulus at 20 ° C. of 3 GPa to 8 GPa. The strength of the copper foil after heating by the heat treatment process during the production of the flexible copper clad laminate is characterized in that the copper foil having a tensile strength before production of the flexible copper clad laminate of 330 MPa to 530 MPa is thermocompression bonded. This is a method for producing a flexible single-sided or double-sided copper-clad laminate in which the elastic modulus at 20 ° C. of the polyimide-based resin layer is 3 GPa to 8 GPa.

本発明のフレキシブル銅張積層板は、常温、屈曲半径R=0.65mm、屈曲速度100回/min.ののIPC屈曲試験において、屈曲回数30万回での抵抗上昇率が10%以下となるような高屈曲特性を有する。   The flexible copper-clad laminate of the present invention has a resistance increase rate of 10% or less after 300,000 bendings in an IPC bending test at normal temperature, a bending radius R = 0.65 mm, and a bending speed of 100 times / min. High bending properties.

<フレキシブル銅張積層板>
本発明のフレキシブル銅張積層板は、ポリイミド系樹脂層の片面または両面に、該ポリイミド系樹脂層の接着剤層を介して、ラミネート法により銅箔を積層させた片面または両面銅張積層板である。
<Flexible copper-clad laminate>
The flexible copper-clad laminate of the present invention is a single-sided or double-sided copper-clad laminate in which a copper foil is laminated by a laminating method on one or both sides of a polyimide-based resin layer via an adhesive layer of the polyimide-based resin layer. is there.

<銅箔>
本発明のフレキシブル銅張積層板に使用される銅箔は、フレキシブル銅張積層板の製造時の熱処理工程による熱後の抗張力、即ち、JIS C 5016に規定された抗張力が100MPa〜300MPaであることが必須であり、好ましくは150MPa〜250MPaである。熱後の抗張力が100MPa未満の場合、強度が小さく、銅箔層が破断しやすい。また、得られる銅張積層板に反りが発生しやすく、回路形成が困難となる。熱後の抗張力が300MPaを超える場合、銅箔は剛直過ぎて、得られる銅張積層板に柔軟性がなく、屈曲性能に劣る。
<Copper foil>
The copper foil used in the flexible copper-clad laminate of the present invention has a tensile strength after heating due to a heat treatment process during the production of the flexible copper-clad laminate, that is, a tensile strength specified in JIS C 5016 is 100 MPa to 300 MPa. Is essential, and preferably 150 MPa to 250 MPa. When the tensile strength after heating is less than 100 MPa, the strength is small and the copper foil layer is easily broken. In addition, the obtained copper-clad laminate tends to warp, making circuit formation difficult. When the tensile strength after heating exceeds 300 MPa, the copper foil is too rigid and the resulting copper-clad laminate is not flexible and has poor bending performance.

フレキシブル銅張積層板の製造時の熱処理工程による熱後の抗張力が100MPa〜300MPaとなる銅箔として使用可能な銅箔としては、フレキシブル銅張積層板の製造前の抗張力が330MPa〜530MPaである銅箔を使用し得、市販の圧延銅箔又は電解銅箔を用いることができる。例えば、日鉱金属社製のBHY-T箔(商品名)及びBHY−HA箔(商品名)、三井金属鉱業製のSuper-HTE箔(商品名)及びDFF箔(商品名)、マイクロハード社製のVSRD箔(商品名)などが挙げられる。   Copper foil that can be used as a copper foil with a post-heat tensile strength of 100 MPa to 300 MPa due to a heat treatment process during the production of a flexible copper clad laminate is copper with a tensile strength before production of the flexible copper clad laminate of 330 MPa to 530 MPa. A foil can be used, and a commercially available rolled copper foil or electrolytic copper foil can be used. For example, BHY-T foil (trade name) and BHY-HA foil (trade name) manufactured by Nikko Metal Co., Ltd. Super-HTE foil (trade name) and DFF foil (trade name) manufactured by Mitsui Metal Mining Co., Ltd., manufactured by Microhardware VSRD foil (trade name).

銅箔層の厚みは、3μm〜20μmが好ましく、特に10μm〜18μmが好ましい。銅箔が厚いと、剛直となり屈曲特性に劣り、薄すぎると、ラミネート時に銅箔切れを起こす場合がある。   The thickness of the copper foil layer is preferably 3 μm to 20 μm, particularly preferably 10 μm to 18 μm. If the copper foil is thick, it becomes rigid and inferior in bending properties. If it is too thin, the copper foil may be cut during lamination.

<ポリイミド系樹脂層>
ポリイミド系樹脂層は、ポリイミドフィルムと、該ポリイミドフィルムの片面若しくは両面に設けられたポリイミド接着層とから成る。ポリイミド系樹脂層は、20℃での弾性率が3GPa〜8GPa、好ましくは4GPa〜6GPaである。3GPa未満の場合、柔らかすぎて、ラミネート時にシワや折れなどの外観不良となりやすく、フィルムが破断することもある。8GPaを超える場合、剛直で、屈曲性能に劣る。
なお、ポリイミド系樹脂とは、イミド基を有する樹脂を云い、ポリイミド、ポリアミドイミド、ポリエステルイミド等が挙げられる。
<Polyimide resin layer>
The polyimide resin layer is composed of a polyimide film and a polyimide adhesive layer provided on one side or both sides of the polyimide film. The polyimide resin layer has an elastic modulus at 20 ° C. of 3 GPa to 8 GPa, preferably 4 GPa to 6 GPa. If it is less than 3 GPa, it is too soft, and it tends to be poor in appearance such as wrinkles or creases during lamination, and the film may break. If it exceeds 8 GPa, it is rigid and inferior in bending performance.
The polyimide resin refers to a resin having an imide group, and examples thereof include polyimide, polyamideimide, and polyesterimide.

ポリイミド系樹脂層の全厚み(ポリイミドフィルムと接着層)は、10μm〜30μmが好ましい。10μm未満の場合、搬送中やラミネート時にシワとなりやすく、また切れやすい。30μmを超えると、屈曲性能に劣る。   The total thickness of the polyimide resin layer (polyimide film and adhesive layer) is preferably 10 μm to 30 μm. If it is less than 10μm, it tends to wrinkle during transportation and lamination, and it is easy to cut. When it exceeds 30 μm, the bending performance is inferior.

該ポリイミド系樹脂層として、ポリイミドフィルムの片面若しくは両面、好ましくは両面に熱圧着性ポリイミド接着層が形成されている熱圧着性ポリイミドフィルムを使用することができる。熱圧着性ポリイミドフィルムは、ガラス転移温度が350℃以上であるポリイミドフィルムの片面若しくは両面、好ましくは両面にガラス転移温度が300℃以下である熱圧着性ポリイミド接着層を備えたポリイミドフィルムである。ポリイミドフィルム両面に熱圧着性ポリイミド接着層が形成されている熱圧着性ポリイミドフィルムとしては、特に限定されないが、例えば、宇部興産製ユーピレックスVT(商品名)、(株)カネカ製ピクシオ(商品名)などがある。
或いはポリイミド系樹脂層は、下記のように、ポリイミド前駆体、例えばポリアミック酸、の溶液又はポリイミド溶液を銅箔上に塗布して該銅箔上にポリイミド接着層を形成し、該銅箔上のポリイミド接着層にポリイミドフィルムが重なるようにして該銅箔とポリイミドフィルムとを張り合わせて熱処理することにより、ポリイミドフィルムとポリイミド接着層から成るポリイミド系樹脂層を形成しても良い。
As the polyimide resin layer, a thermocompression bonding polyimide film having a thermocompression bonding adhesive layer formed on one side or both sides, preferably both sides, of a polyimide film can be used. The thermocompression bonding polyimide film is a polyimide film provided with a thermocompression bonding adhesive layer having a glass transition temperature of 300 ° C. or lower on one or both sides, preferably both surfaces of a polyimide film having a glass transition temperature of 350 ° C. or higher. The thermocompression bonding polyimide film having a thermocompression bonding polyimide adhesive layer formed on both sides of the polyimide film is not particularly limited. For example, Upilex VT (trade name) manufactured by Ube Industries, Pixio (trade name) manufactured by Kaneka Corporation and so on.
Alternatively, the polyimide-based resin layer is formed by applying a polyimide precursor, for example, a polyamic acid solution or a polyimide solution on a copper foil to form a polyimide adhesive layer on the copper foil as described below. A polyimide resin layer composed of a polyimide film and a polyimide adhesive layer may be formed by laminating the copper foil and the polyimide film so that the polyimide film overlaps the polyimide adhesive layer and heat-treating.

使用可能な前記ポリイミドフィルムとしては、市販のものが使用できる。例えば、(株)カネカ製のアピカルNPI(商品名)及びアピカルAH(商品名)、東レデュポン社製のカプトンEN(商品名)、カプトンH(商品名)及びカプトンV(商品名)などが挙げられる。
ポリイミドフィルムの厚みは、10μm〜25μmが好ましい。
ポリイミドフィルムは、接着層を設ける面にプラズマ処理やエッチング処理を施しても良い。
A commercially available polyimide film can be used as the usable polyimide film. Examples include Apical NPI (trade name) and Apical AH (trade name) manufactured by Kaneka Corporation, Kapton EN (trade name), Kapton H (trade name), and Kapton V (trade name) manufactured by Toray DuPont. It is done.
The thickness of the polyimide film is preferably 10 μm to 25 μm.
The polyimide film may be subjected to plasma treatment or etching treatment on the surface on which the adhesive layer is provided.

前記ポリイミド接着層は、前記熱圧着性ポリイミドフィルム中に含まれる熱圧着性ポリイミド接着層であるか、或いは、前記のようにして銅箔上に形成されたポリイミド接着層であってもよい。該接着層の厚さは10μm以下であるのが好ましく、銅箔上に形成されたポリイミド接着層である場合は1〜10μmであるのが好ましい。厚さが10μm以下であると、銅箔の熱変形の影響を受けず、従って外観異常(シワ、カール)は発生せず、薄い為に厚みむらも問題にならない。   The polyimide adhesive layer may be a thermocompression bonding polyimide adhesive layer included in the thermocompression bonding polyimide film, or may be a polyimide adhesive layer formed on a copper foil as described above. The thickness of the adhesive layer is preferably 10 μm or less, and in the case of a polyimide adhesive layer formed on a copper foil, it is preferably 1 to 10 μm. When the thickness is 10 μm or less, it is not affected by thermal deformation of the copper foil, and therefore, appearance abnormality (wrinkle, curl) does not occur, and thickness unevenness does not cause a problem because it is thin.

<製造方法>
本発明のフレキシブル銅張積層板の製造方法は、特に限定されないが、銅箔上にポリイミド接着層を形成し、ポリイミドフィルムと貼り合わせる片面銅張積層板の製造方法、及びポリイミドフィルムの片面若しくは両面にポリイミド接着層が形成されている熱圧着性ポリイミドフィルムと、銅箔を貼り合わせる片面若しくは両面銅張積層板の製造方法が挙げられる。
<Manufacturing method>
Although the manufacturing method of the flexible copper clad laminated board of this invention is not specifically limited, The polyimide adhesive layer is formed on copper foil, The manufacturing method of the single-sided copper clad laminated board bonded with a polyimide film, and the single side | surface or both sides of a polyimide film And a method for producing a single-sided or double-sided copper-clad laminate in which a polyimide film is bonded to a thermocompression-bondable polyimide film and a copper foil.

具体的にフレキシブル銅張積層板の製造方法としては、
1)銅箔上に、ポリイミド前駆体であるポリアミック酸の溶液又はポリイミド樹脂の溶液を塗布・加熱・乾燥してポリイミド接着層を形成し、得られた銅箔とポリイミドフィルムを、該接着剤層を介して張り合わせた後に、該ポリイミド接着層をさらに乾燥する、片面銅張積層板の製造方法、及び
2)ポリイミドフィルムの片面若しくは両面、好ましくは両面上に熱可塑性ポリイミド層の接着層を形成させた後に、片面若しくは両面、好ましくは両面の該接着層に銅箔を張り合わせる片面若しくは両面、好ましくは両面銅張積層板の製造方法、
が挙げられる。
Specifically as a manufacturing method of a flexible copper clad laminate,
1) A polyimide adhesive layer is formed by applying, heating, and drying a polyamic acid solution or a polyimide resin solution, which is a polyimide precursor, on a copper foil, and the resulting copper foil and polyimide film are bonded to the adhesive layer. The polyimide adhesive layer is further dried after being laminated, and 2) a method for producing a single-sided copper-clad laminate, and 2) an adhesive layer of a thermoplastic polyimide layer is formed on one or both sides, preferably both sides of a polyimide film After that, one side or both sides, preferably one side or both sides of the double-sided copper-clad laminate, preferably a double-sided copper-clad laminate,
Is mentioned.

銅箔の張り合わせ方法としては、例えば、
i)シート状の銅箔とポリイミドフィルムとを接着層を介して重ね合わせて、加熱ロールプレス機により熱圧着するロールプレス法、
ii)上下2本の加熱ロールに、銅箔と接着層を形成したポリイミドフィルムとを連続供給して、ロール間に挟みこむ連続ロールラミネート法、及び
iii)内側に加圧機構を持つ一組のエンドレスベルトにより銅箔とポリイミドフィルムとを接着層を介して加熱圧着するダブルベルトプレス法、
が挙げられる。
As a method of laminating copper foil, for example,
i) A roll press method in which a sheet-like copper foil and a polyimide film are superposed via an adhesive layer and thermocompression bonded by a heated roll press machine,
ii) A continuous roll laminating method in which copper foil and a polyimide film having an adhesive layer are continuously supplied to two upper and lower heating rolls and sandwiched between the rolls, and
iii) a double belt press method in which a copper foil and a polyimide film are heated and pressure-bonded through an adhesive layer by a pair of endless belts having a pressure mechanism inside;
Is mentioned.

上記1)の片面銅張積層板の製造方法としては、特に、銅箔上にポリアミック酸を好ましくは50質量%以上含有する溶液を塗布して、半乾燥後に加熱ロールプレスし、これとポリイミドフィルムをラミネートし、さらに溶剤乾燥し、そしてポリアミック酸のイミド化を行う方法が好ましい。
ポリアミック酸溶液を塗布する装置及び半乾燥を行う方法は、特に限定されないが、塗布は、コンマコーター、ダイコーター、ロールコーター、ナイフコーター、リバースコーター、リップコーターなどを使用すればよく、半乾燥は、イミド化率5%未満となるようにすれば良く、40℃〜120℃が好ましい。40℃未満ではラミネートされず、120℃を超えるとラミネート時に発泡してしまう。加熱ロールプレスでは、ロールをオイルやスチーム等で加熱し、カーボンスチール等の金属ロール、又は耐熱性のNBRゴム、フッ素ゴム若しくはシリコンゴムからなるゴムロールが使用される。ロールプレス条件については、特に限定されないが、通常、ロール温度は、半乾燥後のポリアミック酸の軟化点以上でかつ使用される溶剤のDMAc(ジメチルアセトアシド)の沸点以下である100〜150℃、線圧は5〜100kg/cmの範囲で行われる。溶剤乾燥は、溶剤の沸点以下の温度で溶剤がなくなるまで行う。すなわち、温度30℃〜200℃、乾燥時間3〜30時間行えばよい。溶剤除去後のポリアミック酸のイミド化は、銅箔が酸化しない酸素濃度で、減圧下または窒素雰囲気下、温度250℃〜400℃で、3〜20時間で行えば良い。溶剤乾燥とイミド化で、銅箔は熱処理を受ける。
As the method for producing a single-sided copper-clad laminate of 1) above, in particular, a solution containing polyamic acid, preferably 50% by mass or more, is applied onto a copper foil, heated and pressed after semi-drying, and a polyimide film. Is preferably used, followed by solvent drying and imidization of polyamic acid.
The apparatus for applying the polyamic acid solution and the method for semi-drying are not particularly limited, but the application may be performed using a comma coater, die coater, roll coater, knife coater, reverse coater, lip coater, etc. The imidation ratio may be less than 5%, preferably 40 ° C to 120 ° C. If it is less than 40 ° C, it will not be laminated, and if it exceeds 120 ° C, it will foam during lamination. In the heated roll press, the roll is heated with oil, steam, or the like, and a metal roll such as carbon steel, or a rubber roll made of heat-resistant NBR rubber, fluorine rubber, or silicon rubber is used. The roll press conditions are not particularly limited. Usually, the roll temperature is 100 to 150 ° C., which is not lower than the softening point of the polyamic acid after semi-drying and not higher than the boiling point of DMAc (dimethylacetoside) used as a solvent. The linear pressure is in the range of 5 to 100 kg / cm. The solvent is dried at a temperature below the boiling point of the solvent until the solvent runs out. That is, the temperature may be 30 ° C. to 200 ° C. and the drying time may be 3 to 30 hours. Imidation of the polyamic acid after removal of the solvent may be performed at an oxygen concentration that does not oxidize the copper foil at a temperature of 250 ° C. to 400 ° C. for 3 to 20 hours under reduced pressure or in a nitrogen atmosphere. The copper foil undergoes heat treatment by solvent drying and imidization.

上記2)の片面若しくは両面銅張積層板の製造方法としては、特に、両面に熱圧着性ポリイミド接着層を備えたポリイミドフィルムの片面若しくは両面に銅箔を配置して、加熱プレスする方法が好ましい。加熱プレスする方法としては、特に限定されないが、プレス板間、内側に加圧機構を持つ一組のエンドレスベルト間、又は一組以上の金属ロール間などに挟むようにすればよい。加熱プレス時の温度はとしては、熱圧着性ポリイミド層のガラス転移温度より15℃以上高い温度で、400℃以下が好ましい。ガラス転移温度より15℃以上高い温度より低い場合は、接着せず、400℃より高い場合は、シワや発泡などの外観不良となる。加熱プレスでは、ヒーター等の伝導加熱、遠赤外等の輻射加熱、誘導加熱等が使用される。プレス時の圧力は通常、線圧50N/cm〜150N/cmである。加熱プレスは、銅箔が酸化しない酸素濃度で行われ、通常減圧下または窒素雰囲気下で行われる。   As the method for producing a single-sided or double-sided copper-clad laminate of 2) above, a method in which a copper foil is disposed on one side or both sides of a polyimide film provided with a thermocompression-bonding polyimide adhesive layer on both sides and heat-pressed is particularly preferable. . The method for heat pressing is not particularly limited, and may be sandwiched between press plates, between a pair of endless belts having a pressure mechanism inside, or between one or more metal rolls. The temperature at the time of hot pressing is a temperature that is 15 ° C. or more higher than the glass transition temperature of the thermocompression bonding polyimide layer, and preferably 400 ° C. or less. When the temperature is lower than the glass transition temperature by 15 ° C. or more, it does not adhere to the glass transition temperature. In the heating press, conductive heating such as a heater, radiation heating such as far infrared, induction heating, or the like is used. The pressure during pressing is usually a linear pressure of 50 N / cm to 150 N / cm. The hot pressing is performed at an oxygen concentration that does not oxidize the copper foil, and is usually performed under reduced pressure or in a nitrogen atmosphere.

加熱プレス時に銅箔は熱処理を受けるが、加熱プレス後に、100℃〜400℃の温度範囲で計20〜40分程加熱アニールすることも好ましい。   The copper foil is subjected to a heat treatment at the time of hot pressing, but after the hot pressing, it is also preferable to heat anneal for about 20 to 40 minutes in a temperature range of 100 ° C. to 400 ° C.

このようにして得られた本発明のフレキシブル銅張積層板は、常温、屈曲半径0.65mm、屈曲速度100回/min.のIPC屈曲性試験において、屈曲回数30万回での抵抗上昇率が10%以下である。   The thus obtained flexible copper-clad laminate of the present invention has an increase rate of resistance of 10 times at 300,000 bends in an IPC bendability test at normal temperature, a bend radius of 0.65 mm, and a bend speed of 100 times / min. % Or less.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

<実施例1>
厚さ12μmの日鉱金属製の圧延銅箔“BHY-HA箔”(商品名)上に、ポリアミック酸溶液を15μmとなるようにアプリケーターにより塗布し、オーブンにて120℃×2分間乾燥を行った。これに厚さ10μmの(株)カネカ製ポリイミドフィルム“アピカルNPI”(商品名)を重ねて、西村マシナリー製のテストロールラミネート機にて、120℃×15kfg/cm×4m/min.でラミネートした。これを、内圧100Paの真空オーブンを用いて、160℃×8時間、250℃×3時間、350℃×3時間連続的に加熱処理を行った。これにより、銅箔12μm、ポリイミド系樹脂層12μmの片面銅張積層板を得た。
<Example 1>
On a rolled copper foil “BHY-HA foil” (trade name) made of Nikko Metal with a thickness of 12 μm, a polyamic acid solution was applied to a thickness of 15 μm with an applicator and dried in an oven at 120 ° C. for 2 minutes. . A 10μm thick Kaneka Co., Ltd. polyimide film “Apical NPI” (trade name) was layered on this and laminated at a test roll laminator manufactured by Nishimura Machinery at 120 ° C x 15kfg / cm x 4m / min. . This was heat-treated continuously in a vacuum oven with an internal pressure of 100 Pa at 160 ° C. for 8 hours, 250 ° C. for 3 hours, and 350 ° C. for 3 hours. As a result, a single-sided copper-clad laminate having a copper foil of 12 μm and a polyimide resin layer of 12 μm was obtained.

<実施例2〜5>
表1に示した条件以外は実施例1と同様にして、片面銅張積層板を得た。
<Examples 2 to 5>
A single-sided copper-clad laminate was obtained in the same manner as in Example 1 except for the conditions shown in Table 1.

<比較例1〜2>
表3に示した条件以外は実施例1と同様にして、片面銅張積層板を得た。
<Comparative Examples 1-2>
A single-sided copper clad laminate was obtained in the same manner as in Example 1 except for the conditions shown in Table 3.

<実施例6>
厚さ14μmのカネカ製の熱圧着性ポリイミド接着層を備えたポリイミドフィルム“ピクシオBP”(商品名)の両面に、厚さ12μmの日鉱金属製の圧延銅箔“BHY−HA箔”(商品名)を重ねて、西村マシナリー製のテストロールラミネート機にて、300℃×20kfg/cm×5m/min.でラミネートした。これにより、両面銅張積層板を得た。
<Example 6>
Rolled copper foil “BHY-HA foil” (product name) 12 μm thick made of Nikko Metal on both sides of polyimide film “Pixio BP” (product name) with Kaneka thermocompression bonding polyimide adhesive layer 14 μm thick ) And laminated at 300 ° C. × 20 kfg / cm × 5 m / min. Using a test roll laminator manufactured by Nishimura Machinery. This obtained the double-sided copper clad laminated board.

<実施例7〜10>
表2に示した条件以外は実施例6と同様にして、両面銅張積層板を得た。
<Examples 7 to 10>
A double-sided copper clad laminate was obtained in the same manner as in Example 6 except for the conditions shown in Table 2.

<比較例3>
表3に示した条件以外は実施例6と同様にして、両面銅張積層板を得た。
<Comparative Example 3>
A double-sided copper clad laminate was obtained in the same manner as in Example 6 except for the conditions shown in Table 3.

実施例1〜10、及び比較例1〜3のフレキシブル銅張積層板を用いて、下記方法によりポリイミド系樹脂層の弾性率、銅箔の製造時の熱処理工程による熱後の抗張力、及びIPC屈曲性の測定を行った。結果を表1〜3に併記する。
<ポリイミド系樹脂層の弾性率の測定>
測定は、ASTM D882規格に従って行った。
Using the flexible copper-clad laminates of Examples 1 to 10 and Comparative Examples 1 to 3, the modulus of elasticity of the polyimide-based resin layer, the tensile strength after heat by the heat treatment process during the production of the copper foil, and the IPC bend The sex was measured. The results are shown in Tables 1-3.
<Measurement of elastic modulus of polyimide resin layer>
The measurement was performed according to ASTM D882 standard.

サンプルを、100mm×10mmに切り出したものを試験片とした。引張試験機((株)東洋精機製作所製、機種名:ストログラフV10D)を用い、引張速度50mm/分、チャック間距離40mmの条件で、MD方向及びTD方向のそれぞれについて、引張弾性率を測定し、平均してポリイミド系樹脂層の弾性率とした。   A sample cut out to 100 mm × 10 mm was used as a test piece. Using a tensile tester (manufactured by Toyo Seiki Seisakusho Co., Ltd., model name: Strograph V10D), the tensile modulus was measured in each of the MD and TD directions under the conditions of a tensile speed of 50 mm / min and a distance between chucks of 40 mm. Then, the elastic modulus of the polyimide resin layer was averaged.

<銅箔の製造時の熱処理工程による熱後の抗張力>
製造した銅張積層板中の銅箔を取り出し、JIS C 5016に従って抗張力を測定した。
<Tensile strength after heating by heat treatment process during copper foil production>
The copper foil in the produced copper clad laminate was taken out and the tensile strength was measured according to JIS C 5016.

<IPC屈曲特性試験評価>
銅張積層板の銅箔層に、IPC FC 241に定められた回路パターンを作製した。回路面にカバーレイをプレスした。プレス条件は、プレス温度:160℃、プレス圧力:4.9MPa、プレス時間:30分である。これにより、IPC屈曲性試験片とした。これを用いて、銅箔を外側にして、常温、屈曲半径0.65mm、屈曲速度100回/分、ストローク30mmで繰り返し屈曲を行ない、回路の抵抗値が10%を超えた回数または回路が破断した回数を屈曲回数とした。
<IPC flexural property test evaluation>
A circuit pattern defined in IPC FC 241 was produced on the copper foil layer of the copper clad laminate. A coverlay was pressed on the circuit surface. The press conditions are: press temperature: 160 ° C., press pressure: 4.9 MPa, press time: 30 minutes. Thus, an IPC flexibility test piece was obtained. Using this, with the copper foil facing outside, repeated bending at normal temperature, bending radius of 0.65 mm, bending speed of 100 times / minute, stroke of 30 mm, the number of times the circuit resistance value exceeded 10% or the circuit broke The number of times was defined as the number of bending times.

Figure 2009172996
Figure 2009172996

Figure 2009172996
Figure 2009172996

Figure 2009172996
Figure 2009172996

Claims (10)

ポリイミドフィルム及び該ポリイミドフィルムの片面若しくは両面に設けられたポリイミド接着層から成るポリイミド系樹脂層と、該ポリイミド系樹脂層の該ポリイミド接着層が設けられている片面若しくは両面に該ポリイミド接着層を介して銅箔を積層したフレキシブル銅張積層板であって、該銅箔は、フレキシブル銅張積層板の製造時の熱処理工程による熱後の抗張力が100MPa〜300MPaであり、且つ該ポリイミド系樹脂層は20℃での弾性率が3GPa〜8GPaであることを特徴とするフレキシブル銅張積層板。   A polyimide resin layer composed of a polyimide film and a polyimide adhesive layer provided on one or both sides of the polyimide film, and one or both surfaces of the polyimide resin layer provided with the polyimide adhesive layer via the polyimide adhesive layer The copper foil is a flexible copper clad laminate, and the copper foil has a tensile strength after heating in a heat treatment step during the production of the flexible copper clad laminate of 100 MPa to 300 MPa, and the polyimide resin layer is A flexible copper-clad laminate having an elastic modulus at 20 ° C. of 3 GPa to 8 GPa. 常温、屈曲半径0.65mm、屈曲速度100回/min.のIPC屈曲性試験において、屈曲回数30万回での抵抗上昇率が10%以下である請求項1に記載のフレキシブル銅張積層板。   The flexible copper-clad laminate according to claim 1, wherein, in an IPC bendability test at normal temperature, a bend radius of 0.65 mm, and a bend speed of 100 times / min., The rate of increase in resistance at a bend number of 300,000 is 10% or less. 前記銅箔が、厚み3μm〜20μmの圧延銅箔または電解銅箔である、請求項1又は2に記載のフレキシブル銅張積層板。   The flexible copper clad laminate according to claim 1, wherein the copper foil is a rolled copper foil or an electrolytic copper foil having a thickness of 3 μm to 20 μm. 前記ポリイミド系樹脂層の厚みが10μm〜30μmである請求項1〜3のいずれか1項に記載のフレキシブル銅張積層板。   The flexible copper clad laminate according to claim 1, wherein the polyimide resin layer has a thickness of 10 μm to 30 μm. 前記ポリイミド系樹脂層がポリイミドフィルムと、前記銅箔上にポリイミド前駆体の溶液又はポリイミド溶液を塗布し、そしてポリイミド前駆体の溶液を塗布した場合は加熱イミド化して形成した、又はポリイミド溶液を塗布した場合は加熱乾燥して形成したポリイミド接着層とから成り、前記銅張積層板が片面銅張積層板である、請求項1〜4のいずれか1項に記載のフレキシブル銅張積層板。   When the polyimide-based resin layer is coated with a polyimide film and a polyimide precursor solution or a polyimide solution on the copper foil, and a polyimide precursor solution is applied, it is formed by heating imidization or a polyimide solution is applied. The flexible copper-clad laminate according to any one of claims 1 to 4, comprising a polyimide adhesive layer formed by heating and drying, wherein the copper-clad laminate is a single-sided copper-clad laminate. 前記ポリイミド系樹脂層が、ポリイミドフィルムと、ポリアミック酸を50質量%以上含有するポリアミック酸溶液を塗布しそして加熱イミド化して形成したポリイミド接着層とから成る、請求項5に記載のフレキシブル銅張積層板。   The flexible copper-clad laminate according to claim 5, wherein the polyimide resin layer comprises a polyimide film and a polyimide adhesive layer formed by applying a polyamic acid solution containing 50% by mass or more of polyamic acid and heating imidization. Board. 前記ポリイミド系樹脂層が片面若しくは両面に熱圧着性ポリイミド接着層を備えたポリイミドフィルムからなる、請求項1〜4のいずれか1項に記載のフレキシブル銅張積層板。   The flexible copper clad laminated board of any one of Claims 1-4 which the said polyimide-type resin layer consists of a polyimide film provided with the thermocompression-bonding polyimide adhesion layer on the single side | surface or both surfaces. フレキシブル銅張積層板の製造前の抗張力が330MPa〜530MPaの銅箔上に、ポリイミド前駆体の溶液又はポリイミド溶液を塗工乾燥して半乾燥状態の接着層を形成し、該接着層にポリイミドフィルムを加熱ロールにてラミネートした後に、更に加熱して、ポリイミド前駆体の溶液を塗布した場合は該接着層の溶剤乾燥とイミド化を行い、ポリイミド溶液を塗布した場合は溶剤乾燥を行うことを特徴とする、請求項5又は6に記載のフレキシブル片面銅張積層板の製造方法。   A polyimide precursor solution or a polyimide solution is applied and dried on a copper foil having a tensile strength of 330 MPa to 530 MPa before production of a flexible copper-clad laminate to form a semi-dried adhesive layer, and a polyimide film is formed on the adhesive layer. After laminating with a heating roll, when further heated, when the polyimide precursor solution is applied, the adhesive layer is solvent-dried and imidized, and when the polyimide solution is applied, the solvent is dried. The manufacturing method of the flexible single-sided copper clad laminated board of Claim 5 or 6. 片面若しくは両面に熱圧着性ポリイミド接着層を備えたポリイミドフィルムから成り、20℃での弾性率が3GPa〜8GPaであるポリイミド系樹脂層の該熱圧着性ポリイミド接着層上に、フレキシブル銅張積層板の製造前の抗張力が330MPa〜530MPaである銅箔を加熱圧着することを特徴とする、請求項1〜4及び7のいずれか1項記載のフレキシブル片面若しくは両面銅張積層板の製造方法。   A flexible copper-clad laminate comprising a polyimide film having a thermocompression bonding adhesive layer on one or both sides, and a polyimide resin layer having an elastic modulus at 20 ° C. of 3 GPa to 8 GPa. The method for producing a flexible single-sided or double-sided copper-clad laminate according to any one of claims 1 to 4 and 7, wherein a copper foil having a tensile strength before the production of is from 330 MPa to 530 MPa. 両面に熱圧着性ポリイミド接着層を備えたポリイミドフィルムから成るポリイミド系樹脂層の両熱圧着性ポリイミド接着層上にそれぞれ、銅箔を加熱圧着したことを特徴とする、請求項9記載のフレキシブル両面銅張積層板の製造方法。   10. The flexible double-sided structure according to claim 9, wherein a copper foil is thermocompression-bonded on each thermocompression-bonding polyimide adhesive layer of a polyimide resin layer comprising a polyimide film provided with a thermocompression-bonding polyimide adhesive layer on both sides. A method for producing a copper clad laminate.
JP2008090484A 2007-12-26 2008-03-31 Flexible copper clad laminated board and its manufacturing method Pending JP2009172996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008090484A JP2009172996A (en) 2007-12-26 2008-03-31 Flexible copper clad laminated board and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007333556 2007-12-26
JP2008090484A JP2009172996A (en) 2007-12-26 2008-03-31 Flexible copper clad laminated board and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2009172996A true JP2009172996A (en) 2009-08-06

Family

ID=41028640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008090484A Pending JP2009172996A (en) 2007-12-26 2008-03-31 Flexible copper clad laminated board and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2009172996A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221586A (en) * 2009-03-24 2010-10-07 Asahi Kasei E-Materials Corp Metal foil polyimide laminate
CN102009506A (en) * 2010-07-16 2011-04-13 广东生益科技股份有限公司 Double-surface flexible copper-clad plate and manufacturing method thereof
WO2011129232A1 (en) * 2010-04-13 2011-10-20 宇部興産株式会社 Heat dissipation substrate for led
JP2011249574A (en) * 2010-05-27 2011-12-08 Nippon Mektron Ltd Flexible circuit board
WO2012033026A1 (en) * 2010-09-06 2012-03-15 Jx日鉱日石金属株式会社 Copper foil for printed wiring board
CN102602122A (en) * 2011-12-27 2012-07-25 广东生益科技股份有限公司 Manufacturing method of two-layer-process two-sided flexible copper-clad plate and manufactured two-layer-process two-sided flexible copper-clad plate
CN102806723A (en) * 2012-08-09 2012-12-05 广东生益科技股份有限公司 Double-sided flexible copper clad laminate and manufacturing method thereof
CN102825861A (en) * 2012-08-16 2012-12-19 新高电子材料(中山)有限公司 Heat-conductive two-sided flexible copper clad laminate and manufacturing method thereof
KR20130057674A (en) * 2011-11-24 2013-06-03 삼성전자주식회사 Mccl and method manufacturing the same
JP2018167586A (en) * 2018-06-25 2018-11-01 新日鉄住金化学株式会社 Method for manufacturing copper-clad laminate
WO2019146193A1 (en) * 2018-01-25 2019-08-01 宇部エクシモ株式会社 Metal laminate, female connector, male connector, and connector structure
CN110475909A (en) * 2017-03-30 2019-11-19 古河电气工业株式会社 Surface treatment copper foil and the copper clad laminate for using it

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221586A (en) * 2009-03-24 2010-10-07 Asahi Kasei E-Materials Corp Metal foil polyimide laminate
JPWO2011129232A1 (en) * 2010-04-13 2013-07-18 宇部興産株式会社 LED heat dissipation board
WO2011129232A1 (en) * 2010-04-13 2011-10-20 宇部興産株式会社 Heat dissipation substrate for led
JP5920213B2 (en) * 2010-04-13 2016-05-18 宇部興産株式会社 LED heat dissipation board
JP2011249574A (en) * 2010-05-27 2011-12-08 Nippon Mektron Ltd Flexible circuit board
US9089050B2 (en) 2010-05-27 2015-07-21 Nippon Mektron, Ltd. Flexible circuit board
EP2579692A4 (en) * 2010-05-27 2015-06-03 Nippon Mektron Kk Flexible circuit board
CN102009506A (en) * 2010-07-16 2011-04-13 广东生益科技股份有限公司 Double-surface flexible copper-clad plate and manufacturing method thereof
WO2012033026A1 (en) * 2010-09-06 2012-03-15 Jx日鉱日石金属株式会社 Copper foil for printed wiring board
JP2013111980A (en) * 2011-11-24 2013-06-10 Samsung Electronics Co Ltd Copper foil laminated plate, and method of manufacturing the same
KR20130057674A (en) * 2011-11-24 2013-06-03 삼성전자주식회사 Mccl and method manufacturing the same
CN102602122A (en) * 2011-12-27 2012-07-25 广东生益科技股份有限公司 Manufacturing method of two-layer-process two-sided flexible copper-clad plate and manufactured two-layer-process two-sided flexible copper-clad plate
CN102806723A (en) * 2012-08-09 2012-12-05 广东生益科技股份有限公司 Double-sided flexible copper clad laminate and manufacturing method thereof
CN102825861A (en) * 2012-08-16 2012-12-19 新高电子材料(中山)有限公司 Heat-conductive two-sided flexible copper clad laminate and manufacturing method thereof
CN102825861B (en) * 2012-08-16 2015-07-22 新高电子材料(中山)有限公司 Heat-conductive two-sided flexible copper clad laminate and manufacturing method thereof
CN110475909A (en) * 2017-03-30 2019-11-19 古河电气工业株式会社 Surface treatment copper foil and the copper clad laminate for using it
CN110475909B (en) * 2017-03-30 2021-12-24 古河电气工业株式会社 Surface-treated copper foil and copper-clad laminate using same
WO2019146193A1 (en) * 2018-01-25 2019-08-01 宇部エクシモ株式会社 Metal laminate, female connector, male connector, and connector structure
JP2018167586A (en) * 2018-06-25 2018-11-01 新日鉄住金化学株式会社 Method for manufacturing copper-clad laminate

Similar Documents

Publication Publication Date Title
JP2009172996A (en) Flexible copper clad laminated board and its manufacturing method
JP5661051B2 (en) Method for producing single-sided metal-clad laminate
JP6282230B2 (en) Flexible metal-clad laminate and manufacturing method thereof
JP6031352B2 (en) Method for producing double-sided metal-clad laminate
WO2007013330A1 (en) Process for producing wiring board covered with thermoplastic liquid crystal polymer film
JP2006123510A (en) Cushion material for press molding and its manufacturing method
JP4757645B2 (en) Method for producing double-sided metal-clad laminate
JP2003071984A (en) Polyimide copper-clad laminate and manufacturing method therefor
JP2007055165A (en) Flexible copper-clad laminated sheet and its manufacturing method
JP2007109694A (en) Process for producing one-side flexible metal laminated plate
JP4231511B2 (en) Polyimide film, polyimide metal laminate and method for producing the same
JP2003311840A (en) Method for manufacturing flexible metal laminate
JPWO2005063467A1 (en) Method for producing flexible laminate
JP5151938B2 (en) Method for producing metal foil laminated film
JP2008251941A (en) Manufacturing method of flexible copper-clad laminate using extra-thin copper foil with carrier copper foil
JPH10209583A (en) Flexible metal foil polyimide laminate
JP2005044880A (en) Flexible metal lamination and its manufacturing method
JP2003127276A (en) Polyimide metal foil laminated plate and its production method
JP2002052614A (en) Method for manufacturing laminated sheet
JP4389627B2 (en) Method for producing flexible metal laminate
JP2007069617A (en) Method for manufacturing flexible metal foil laminated plate
JP2003001753A (en) Method for manufacturing heat-resistant flexible laminated sheet
JP6123463B2 (en) Method for producing metal laminate
JP2008302696A (en) Method of manufacturing flexible metal foil laminated plate
JP3954831B2 (en) Method for producing heat-resistant flexible laminate