JP5215631B2 - Surface treated copper foil - Google Patents
Surface treated copper foil Download PDFInfo
- Publication number
- JP5215631B2 JP5215631B2 JP2007276784A JP2007276784A JP5215631B2 JP 5215631 B2 JP5215631 B2 JP 5215631B2 JP 2007276784 A JP2007276784 A JP 2007276784A JP 2007276784 A JP2007276784 A JP 2007276784A JP 5215631 B2 JP5215631 B2 JP 5215631B2
- Authority
- JP
- Japan
- Prior art keywords
- copper foil
- layer
- treated copper
- polyimide
- area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims description 175
- 239000011889 copper foil Substances 0.000 title claims description 165
- 229920001721 polyimide Polymers 0.000 claims description 102
- 238000011282 treatment Methods 0.000 claims description 57
- 239000002245 particle Substances 0.000 claims description 50
- 239000004642 Polyimide Substances 0.000 claims description 44
- 238000007788 roughening Methods 0.000 claims description 37
- 239000000853 adhesive Substances 0.000 claims description 36
- 230000001070 adhesive effect Effects 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 36
- 239000009719 polyimide resin Substances 0.000 claims description 34
- 230000003746 surface roughness Effects 0.000 claims description 34
- 229910052802 copper Inorganic materials 0.000 claims description 28
- 239000010949 copper Substances 0.000 claims description 28
- 239000000463 material Substances 0.000 claims description 28
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 21
- 239000011651 chromium Substances 0.000 claims description 20
- 229910052804 chromium Inorganic materials 0.000 claims description 20
- 239000000758 substrate Substances 0.000 claims description 19
- QELJHCBNGDEXLD-UHFFFAOYSA-N nickel zinc Chemical compound [Ni].[Zn] QELJHCBNGDEXLD-UHFFFAOYSA-N 0.000 claims description 18
- 229910001297 Zn alloy Inorganic materials 0.000 claims description 15
- 238000004381 surface treatment Methods 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 238000009713 electroplating Methods 0.000 claims description 6
- 238000011156 evaluation Methods 0.000 description 44
- 239000011347 resin Substances 0.000 description 36
- 229920005989 resin Polymers 0.000 description 36
- 230000000052 comparative effect Effects 0.000 description 32
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 30
- 238000005259 measurement Methods 0.000 description 22
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 21
- 238000005530 etching Methods 0.000 description 15
- 229910052759 nickel Inorganic materials 0.000 description 15
- 239000000243 solution Substances 0.000 description 15
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 13
- 229910052725 zinc Inorganic materials 0.000 description 13
- 239000011701 zinc Substances 0.000 description 13
- 239000006087 Silane Coupling Agent Substances 0.000 description 12
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 12
- 230000002265 prevention Effects 0.000 description 12
- 230000008569 process Effects 0.000 description 10
- 238000001556 precipitation Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 239000011362 coarse particle Substances 0.000 description 6
- 238000007747 plating Methods 0.000 description 6
- 239000002966 varnish Substances 0.000 description 6
- 238000000151 deposition Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000011049 filling Methods 0.000 description 5
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 229910000990 Ni alloy Inorganic materials 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 230000003449 preventive effect Effects 0.000 description 4
- 238000005476 soldering Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 229920005575 poly(amic acid) Polymers 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 2
- FYYYKXFEKMGYLZ-UHFFFAOYSA-N 4-(1,3-dioxo-2-benzofuran-5-yl)-2-benzofuran-1,3-dione Chemical compound C=1C=C2C(=O)OC(=O)C2=CC=1C1=CC=CC2=C1C(=O)OC2=O FYYYKXFEKMGYLZ-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- WKDNYTOXBCRNPV-UHFFFAOYSA-N bpda Chemical compound C1=C2C(=O)OC(=O)C2=CC(C=2C=C3C(=O)OC(C3=CC=2)=O)=C1 WKDNYTOXBCRNPV-UHFFFAOYSA-N 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 238000002203 pretreatment Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- RYCLIXPGLDDLTM-UHFFFAOYSA-J tetrapotassium;phosphonato phosphate Chemical compound [K+].[K+].[K+].[K+].[O-]P([O-])(=O)OP([O-])([O-])=O RYCLIXPGLDDLTM-UHFFFAOYSA-J 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- HSSJULAPNNGXFW-UHFFFAOYSA-N [Co].[Zn] Chemical compound [Co].[Zn] HSSJULAPNNGXFW-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- -1 aminophenoxy Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 229940005657 pyrophosphoric acid Drugs 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 125000003396 thiol group Chemical class [H]S* 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- OMSYGYSPFZQFFP-UHFFFAOYSA-J zinc pyrophosphate Chemical compound [Zn+2].[Zn+2].[O-]P([O-])(=O)OP([O-])([O-])=O OMSYGYSPFZQFFP-UHFFFAOYSA-J 0.000 description 1
Landscapes
- Parts Printed On Printed Circuit Boards (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Description
本件発明は、表面処理銅箔に関する。特には、異方性導電膜を用いて電子部品を実装するプリント配線板の製造に用いる2層ポリイミド銅張積層板用の表面処理銅箔に関する。 The present invention relates to a surface-treated copper foil. In particular, the present invention relates to a surface-treated copper foil for a two-layer polyimide copper-clad laminate used for manufacturing a printed wiring board on which an electronic component is mounted using an anisotropic conductive film.
表面処理銅箔は、銅箔の表面に、銅張積層板を構成する絶縁樹脂基材との接着強度等の向上を目的とした粗化処理や防錆処理等の表面処理を施したものである。表面処理銅箔は、その粗化処理面側を絶縁樹脂基材と張り合わせ、銅張積層板に加工される。そして、この銅張積層板の表面処理銅箔をエッチングして配線パターンを形成し、プリント配線板とする。このプリント配線板には電子部品を実装し、回路基板とする。このとき、電子部品と配線とを接続する手法として、ハンダ付けやワイヤボンディングを用いることが多いが、これらに代わるものとして「異方性導電膜」(Anisotropic Conductive Film:以下、「ACF」と称する。)を用いる場合もある。 Surface-treated copper foil is a surface of copper foil that has been subjected to surface treatments such as roughening treatment and rust prevention treatment for the purpose of improving the adhesive strength with the insulating resin base material constituting the copper-clad laminate. is there. The surface-treated copper foil is processed into a copper-clad laminate by bonding its roughened surface side to an insulating resin substrate. Then, the surface-treated copper foil of this copper-clad laminate is etched to form a wiring pattern to obtain a printed wiring board. Electronic components are mounted on this printed wiring board to form a circuit board. At this time, soldering or wire bonding is often used as a method for connecting the electronic component and the wiring, but an “anisotropic conductive film” (hereinafter referred to as “ACF”) is used as an alternative. .) May be used.
そして、上記回路基板に実装する電子部品は、その使用中にプリント配線板から脱落しない程度の実装強度を備えるように、配線と接続されなければならない。この実装強度は、ハンダ付けの場合にはハンダ付け面積で、ワイヤボンディング方式では最終的に施す樹脂封止で担保している。ところが、ACFを用いた実装方式では、樹脂成分と導電性粒子とで構成されるACFを用いて、電子部品と配線とを電気的に接続する。しかし、ACFが含む導電性粒子には密着力がない。そのため、導電性粒子の存在に起因して、ACFと電子部品及び配線との接触部においては、密着力が得られていない部分が存在することになる。従って、ACFを用いて電子部品を実装した回路基板では、電子部品の実装強度は、「表面処理銅箔がエッチングで除去された絶縁樹脂基材の表面」(以下、「基材樹脂表面」と称する。)とACFとの密着力による影響を受ける。 The electronic component to be mounted on the circuit board must be connected to the wiring so as to have a mounting strength that does not drop off the printed wiring board during use. This mounting strength is secured by the soldering area in the case of soldering, and finally by resin sealing applied in the wire bonding method. However, in the mounting method using the ACF, the electronic component and the wiring are electrically connected using the ACF composed of a resin component and conductive particles. However, the conductive particles contained in the ACF have no adhesion. Therefore, due to the presence of the conductive particles, there is a portion where the adhesion force is not obtained in the contact portion between the ACF, the electronic component, and the wiring. Therefore, in a circuit board on which electronic components are mounted using ACF, the mounting strength of the electronic components is “the surface of the insulating resin base material from which the surface-treated copper foil is removed by etching” (hereinafter referred to as “base resin surface”). It is influenced by the adhesion between ACF and ACF.
そこで、特許文献1には、ACFなどにより電気的接続を行なった場合においても、ACFとの密着性、更に電気的、物理的な接続性にも優れた銅張積層板及びフレキシブルプリント配線板の提供を目的として、可とう性を有する絶縁層に接合された銅箔よりなる導電層を備え、銅箔の前記絶縁層と接合される面には、0.1〜10原子%のニッケルを有するものを用いることが開示されている。そして、このフレキシブル配線板は、絶縁層が露出している部分に、ニッケルが残るように銅箔を選択エッチングしている。具体的に言えば、この特許文献1の実施例には、接着面の表面粗さRaが1.0μmの12μm厚さの表面処理銅箔を用いた2層フレキシブルプリント配線板において、当該銅箔の接着面に、XPSで分析したときのニッケル量が0.1〜10原子%存在すれば、防錆性、エッチング性、レーザービアホールの接続性とACF密着強度とを満たすことが出来る旨が開示されている。 Therefore, Patent Document 1 discloses a copper-clad laminate and a flexible printed wiring board that are excellent in adhesion to ACF, and also in electrical and physical connectivity even when electrical connection is performed using ACF or the like. For the purpose of providing, a conductive layer made of a copper foil bonded to a flexible insulating layer is provided, and the surface of the copper foil bonded to the insulating layer has 0.1 to 10 atomic% of nickel. It is disclosed to use one. In this flexible wiring board, the copper foil is selectively etched so that nickel remains in the portion where the insulating layer is exposed. Specifically, in the example of this Patent Document 1, in a two-layer flexible printed wiring board using a 12 μm-thick surface-treated copper foil having a surface roughness Ra of 1.0 μm, the copper foil It is disclosed that if 0.1 to 10 atomic% of nickel when analyzed by XPS is present on the adhesive surface, the antirust property, etching property, laser via hole connectivity and ACF adhesion strength can be satisfied. Has been.
上述のように、特許文献1に開示の技術は、銅箔をエッチング除去したポリイミドフィルム表面にニッケルを残留させ、化学的密着力を用いてACF密着強度を改善している。そして、実施例では、ライン幅/スペース幅が50μm/50μm(配線ピッチ:100μm)のプリント配線板を作成し、良好な特性が得られたとしている。しかし、一般的技術常識として、プリント配線板の配線スペースに金属成分が残留していると、耐マイグレーション特性が低下する。また、この現象は、配線のスペースが狭くなるほど顕著になることが明らかである。即ち、特許文献1に開示の技術を用いると、実施例に開示している以上に配線スペースの狭いファインピッチプリント配線板を作成することは、現実的に困難と言える。 As described above, in the technique disclosed in Patent Document 1, nickel is left on the surface of the polyimide film from which the copper foil has been removed by etching, and the ACF adhesion strength is improved by using chemical adhesion. In the example, a printed wiring board having a line width / space width of 50 μm / 50 μm (wiring pitch: 100 μm) was created, and good characteristics were obtained. However, as a general technical common sense, if a metal component remains in the wiring space of the printed wiring board, the migration resistance is deteriorated. It is clear that this phenomenon becomes more prominent as the wiring space becomes narrower. That is, using the technique disclosed in Patent Document 1, it can be said that it is practically difficult to produce a fine pitch printed wiring board having a smaller wiring space than that disclosed in the embodiment.
一方、市場では、ファインピッチ配線の形成に好適とされる2層ポリイミド銅張積層板(以下、「2層FCCL」と称する。)が、表面処理銅箔の接着面にポリアミック酸を塗布して熱硬化させたり、熱圧着性ポリイミド樹脂を介して表面処理銅箔をポリイミドフィルムと張り合わせるなどして製造されている。そして、既に50μmピッチ配線を更に上回るファインピッチ配線(例えば、40μmピッチの配線)を形成することが要求されている。このため、銅箔の接着面の表面粗さ(Rzjis)が2.5μm以下の表面処理銅箔が求められる。 On the other hand, in the market, a two-layer polyimide copper clad laminate (hereinafter referred to as “two-layer FCCL”) suitable for forming fine pitch wiring is obtained by applying polyamic acid to the adhesive surface of the surface-treated copper foil. It is manufactured by thermosetting or bonding a surface-treated copper foil with a polyimide film via a thermocompression bonding polyimide resin. Further, it is already required to form fine pitch wiring (for example, wiring with 40 μm pitch) that exceeds the 50 μm pitch wiring. For this reason, the surface-treated copper foil whose surface roughness (Rzjis) of the adhesion surface of copper foil is 2.5 micrometers or less is calculated | required.
以上のことから、ACFを用いて2層ポリイミドプリント配線板に電子部品の実装を行なう場合において、2層FCCLが備える銅箔層をエッチング加工して露出した、基材樹脂表面とACFとの密着力を従来以上に向上させ、且つ、接着面の表面粗さ(Rzjis)が2.5μm以下の、ファインピッチ配線の形成が可能な表面処理銅箔が求められる。 From the above, when electronic components are mounted on a two-layer polyimide printed wiring board using ACF, the adhesion between the base resin surface and the ACF exposed by etching the copper foil layer included in the two-layer FCCL There is a need for a surface-treated copper foil that is capable of forming fine pitch wiring with improved strength and a surface roughness (Rzjis) of an adhesive surface of 2.5 μm or less.
そこで、鋭意研究の結果、本件発明者等は、以下に述べる特性を備える2層FCCL用の表面処理銅箔を備える2層FCCLを用いて、2層ポリイミドプリント配線板を作成すれば、微細配線の形成が可能で、ACFを用いて電子部品を実装した際には、2層ポリイミドプリント配線板の基材樹脂表面とACFとの密着力が良好であることに想到したのである。 Therefore, as a result of diligent research, the inventors of the present invention created a fine wiring by creating a two-layer polyimide printed wiring board using a two-layer FCCL having a surface-treated copper foil for a two-layer FCCL having the characteristics described below. It was conceived that when ACF was used to mount an electronic component, the adhesion between the base resin surface of the two-layer polyimide printed wiring board and the ACF was good.
本件発明に係る表面処理銅箔: 本件発明に係る表面処理銅箔は、異方性導電膜を用いて電子部品を実装するプリント配線板の製造に用いる2層ポリイミド銅張積層板用の表面処理銅箔において、前記表面処理銅箔は、以下の条件1〜条件4を満たすことを特徴とする。 Surface-treated copper foil according to the present invention: The surface-treated copper foil according to the present invention is a surface treatment for a two-layer polyimide copper-clad laminate used for manufacturing a printed wiring board on which an electronic component is mounted using an anisotropic conductive film. In the copper foil, the surface-treated copper foil satisfies the following conditions 1 to 4 .
条件1: 当該表面処理銅箔のポリイミド樹脂基材との接着面は、表面粗さ(Rzjis)が1.0μm未満の表面を備える未処理電解銅箔を用いて得られたものであること。
条件2: 当該表面処理銅箔のポリイミド樹脂基材との接着面は、表面粗さ(Rzjis)が2.5μm以下、6550μm2の二次元領域をレーザー法で測定したときの表面積(三次元面積:Aμm2)と、二次元領域面積との比[(A)/(6550)]で算出される表面積比(B)の値が1.25〜2.50の範囲にあること。
条件3: 当該表面処理銅箔のポリイミド樹脂基材との接着面は、表面積が6550μm2の二次元領域をレーザー法で測定した場合の、粗化処理前の表面積(三次元面積:aμm2)と、粗化処理後の表面積(三次元面積:bμm2)との比[(b)/(a)]の値が1.20〜2.50の範囲であり、粗化粒子の形状が略球状となるように電気めっき法により粗化処理を施したものであること。
条件4: 当該表面処理銅箔のポリイミド樹脂基材との接着面は、二次元領域の単位面積あたりのクロムの量が2.0mg/m 2 以上6.0mg/m 2 以下となる表面処理が施されていること。
Condition 1: The surface of the surface-treated copper foil bonded to the polyimide resin base material is obtained using an untreated electrolytic copper foil having a surface with a surface roughness (Rzjis) of less than 1.0 μm.
Condition 2: The surface of the surface-treated copper foil to be bonded to the polyimide resin substrate has a surface roughness (three-dimensional area) when a two-dimensional region having a surface roughness (Rzjis) of 2.5 μm or less and 6550 μm 2 is measured by a laser method. : Surface area ratio (B) calculated by the ratio [(A) / (6550)] of A μm 2 ) to the two-dimensional area is in the range of 1.25 to 2.50.
Condition 3: The surface of the surface-treated copper foil bonded to the polyimide resin substrate is a surface area before roughening treatment (three-dimensional area: aμm 2 ) when a two-dimensional region having a surface area of 6550 μm 2 is measured by a laser method. And the ratio [(b) / (a)] of the surface area after the roughening treatment (three-dimensional area: b μm 2 ) is in the range of 1.20 to 2.50 , and the shape of the roughened particles is approximately Roughened by electroplating so as to be spherical .
Condition 4: the adhesive surface of the polyimide resin base material of the surface treated copper foil, surface treatment amount of chromium per unit area of the two-dimensional region is 2.0 mg / m 2 or more 6.0 mg / m 2 or less Being given.
また、本件発明に係る2層FCCL用の表面処理銅箔のポリイミド樹脂基材との接着面は、二次元領域の単位面積あたり40mg/m2以上のニッケル−亜鉛合金層を備えることが好ましい。 Moreover, it is preferable that the adhesion surface with the polyimide resin base material of the surface treatment copper foil for 2 layer FCCL which concerns on this invention is equipped with a nickel-zinc alloy layer 40 mg / m < 2 > or more per unit area of a two-dimensional area | region.
更に、本件発明に係る2層FCCL用の表面処理銅箔のポリイミド樹脂基材との接着面は、Lab表色系におけるL値が50〜63であることが好ましい。 Furthermore, it is preferable that the L value in a Lab color system is 50-63 as for the adhesive surface with the polyimide resin base material of the surface treatment copper foil for 2 layer FCCL which concerns on this invention.
上述の所定の条件を満たす本件発明に係る2層FCCL用の表面処理銅箔を用いて2層FCCLを製造し、更に該2層FCCLをエッチング加工して、ACFを用いて電子部品を実装する2層ポリイミドプリント配線板を作成すれば、ポリイミド樹脂基材表面とACFとの密着力が優れた2層ポリイミドプリント配線板になる。また、この2層ポリイミド銅張積層板は、銅箔の引き剥がし強さが安定しており、微細配線の形成性にも優れている。 A two-layer FCCL is manufactured using the surface-treated copper foil for the two-layer FCCL according to the present invention that satisfies the above-described predetermined conditions , and the two-layer FCCL is etched, and an electronic component is mounted using the ACF. If a two-layer polyimide printed wiring board is prepared, a two-layer polyimide printed wiring board having excellent adhesion between the polyimide resin substrate surface and the ACF is obtained. In addition, this two-layer polyimide copper clad laminate has a stable peel strength of the copper foil and is excellent in the formation of fine wiring.
本件発明に係る2層FCCL用の表面処理銅箔の形態: 本件発明に係る2層FCCL用の表面処理銅箔は、最低限、以下の4つの条件(条件1〜条件4)を満たすことが必要である。 Form of surface-treated copper foil for two-layer FCCL according to the present invention: The surface-treated copper foil for two-layer FCCL according to the present invention must satisfy the following four conditions (conditions 1 to 4) at a minimum. is necessary.
条件1: 当該表面処理銅箔のポリイミド樹脂基材との接着面は、表面粗さ(Rzjis)が1.0μm未満の表面を備える未処理電解銅箔を用いて得られたものであること。この表面粗さ(Rzjis)は、JIS規格に定める10点平均粗さである。この粗化処理を行なう前の未処理電解銅箔は、表面粗さ(Rzjis)が1.0μm未満であることが好ましい。表面粗さ(Rzjis)を1.0μm未満としたのは、粗化処理における粗化粒子の形成が異常突起、凹凸部等へ集中して、粗化粒子が局部的に形成されることを防止するためである。即ち、粗化処理を施す未処理電解銅箔の表面は、滑らかで平坦であることが好ましい。 Condition 1: The surface of the surface-treated copper foil bonded to the polyimide resin base material is obtained using an untreated electrolytic copper foil having a surface with a surface roughness (Rzjis) of less than 1.0 μm. This surface roughness (Rzjis) is a 10-point average roughness defined in JIS standards. The untreated electrolytic copper foil before the roughening treatment preferably has a surface roughness (Rzjis) of less than 1.0 μm. The reason why the surface roughness (Rzjis) is less than 1.0 μm is that the formation of roughened particles in the roughening treatment is concentrated on abnormal protrusions and uneven parts, and the roughened particles are not locally formed. It is to do. That is, the surface of the untreated electrolytic copper foil subjected to the roughening treatment is preferably smooth and flat.
条件2: 当該表面処理銅箔のポリイミド樹脂基材との接着面は、表面粗さ(Rzjis)が2.5μm以下、6550μm 2 の二次元領域をレーザー法で測定したときの表面積(三次元面積:Aμm 2 )と、二次元領域面積との比[(A)/(6550)]で算出される表面積比(B)の値が1.25〜2.50の範囲にあること。このときの銅箔接着面は、表面粗さ(Rzjis)の上限を2.5μmとしている。この表面粗さ(Rzjis)の値が2.5μm以下であれば、前記銅箔接着面は、粗化粒子として微細な金属粒子を電解法で付着形成していても、電流の極端な集中箇所がなく、析出する金属粒子同士が重なり合う部位も少なくなるため、異常に突出した電析状態の粗化粒子がなくなる。従って、当該表面処理銅箔は、ファインピッチ2層ポリイミドプリント配線板の製造用途に適している。そして、当該表面処理銅箔が2層FCCLの樹脂基材との安定した引き剥がし強さを示すためには、前記銅箔接着面の表面粗さ(Rzjis)を、1.3μm〜2.4μmとすることがより好ましい。 Condition 2: The surface of the surface-treated copper foil to be bonded to the polyimide resin substrate has a surface roughness (three-dimensional area) when a two-dimensional region having a surface roughness (Rzjis) of 2.5 μm or less and 6550 μm 2 is measured by a laser method. : Surface area ratio (B) calculated by the ratio [(A) / (6550)] of A μm 2 ) to the two-dimensional area is in the range of 1.25 to 2.50. The copper foil bonding surface at this time has an upper limit of surface roughness (Rzjis) of 2.5 μm. If the value of this surface roughness (Rzjis) is 2.5 μm or less, the copper foil adhesion surface is a portion where the current is extremely concentrated even if fine metal particles are adhered and formed as roughening particles by an electrolytic method. In addition, since there are fewer portions where the deposited metal particles overlap each other, there are no abnormally protruding roughening particles in an electrodeposited state. Therefore, the said surface-treated copper foil is suitable for the manufacture use of a fine pitch 2 layer polyimide printed wiring board. And in order for the said surface-treated copper foil to show the stable peeling strength with the resin base material of 2 layer FCCL, the surface roughness (Rzjis) of the said copper foil adhesion surface is 1.3 micrometer-2.4 micrometers. More preferably.
そして、前記銅箔接着面は、「6550μm2の二次元領域をレーザー法で測定したときの表面積(三次元面積:Aμm2)」と「二次元領域面積」との比[(A)/(6550)]で算出される表面積比(B)の値が1.25〜2.50である。この、表面積比(B)の値は、表面処理銅箔とポリイミド樹脂基材との接触面積の代替指標である。 And the said copper foil adhesion surface is the ratio [(A) / ("A surface area (three-dimensional area: Amicrometer < 2 >) when measuring the two-dimensional area | region of 6550 micrometers 2 with a laser method)" and a "two-dimensional area | region area". 6550)] is a value of 1.25 to 2.50. The value of the surface area ratio (B) is an alternative indicator of the contact area between the surface-treated copper foil and the polyimide resin substrate .
2層FCCLを用いてエッチング法で微細配線を形成するためには、該2層FCCLが備える表面処理銅箔は、少ない粗化粒子量で樹脂基材と最大の接触面積を得ていることが好ましい。そして、粗化粒子がアンカー効果を発揮して、接着強度を安定させるためには、その形状は略球状であることが好ましい。これにより、該表面処理銅箔を用いた2層ポリイミドプリント配線板の基材樹脂表面に形成される「粗化粒子の形状を備えるレプリカ」(以下、単に「レプリカ」と称する。)も、略球状となる。 In order to form fine wiring by the etching method using the two-layer FCCL, the surface-treated copper foil provided in the two-layer FCCL has a maximum contact area with the resin base material with a small amount of roughening particles. preferable. In order for the roughened particles to exhibit the anchor effect and stabilize the adhesive strength, the shape is preferably substantially spherical. Thereby, the “replica having the shape of roughened particles” (hereinafter simply referred to as “replica”) formed on the base resin surface of the two-layer polyimide printed wiring board using the surface-treated copper foil is also substantially omitted. Become spherical.
そして、上記2層ポリイミドプリント配線板にACFを用いて電子部品を実装すると、ACFの樹脂成分は、このレプリカ内に埋め込まれて硬化し、銅箔接着面に形成された粗化粒子の形状となる。そして、2層ポリイミドプリント配線板の基材樹脂表面とACFとの密着力は、化学的な接着力を活用しない限りにおいて、銅箔接着面に形成された粗化粒子の形状の影響を受ける。そして、基材樹脂表面とACFとの安定した密着力を得るには、前記レプリカの形状は、微細で緻密なものであることが好ましい。即ち、前記表面処理銅箔が備える、粗化処理で形成された粗化粒子は、微細で、均一に付着した状態が理想的なものと言える。従って、前記指標である表面積比(B)の値が重要となる。 When an electronic component is mounted on the two-layer polyimide printed wiring board using ACF, the resin component of ACF is embedded and cured in this replica, and the shape of the roughened particles formed on the copper foil adhesion surface Become. The adhesion force between the base resin surface of the two-layer polyimide printed wiring board and the ACF is affected by the shape of the roughened particles formed on the copper foil adhesion surface unless chemical adhesion is utilized. And in order to obtain the stable contact | adhesion power of the base-material resin surface and ACF, it is preferable that the shape of the said replica is fine and dense. That is, it can be said that the roughened particles formed by the roughening treatment provided in the surface-treated copper foil are ideally fine and uniformly attached. Therefore, the value of the surface area ratio (B) that is the index is important.
しかし、粗化処理で形成される粗化粒子の形状や表面状態は、粗化処理の条件によって大きく変動する。粗化処理の結果得られる銅箔接着面の、上記Bの値が1.25を下回ると、粗化処理で形成された粗化粒子の分布が不均一であったり、アンカー効果が得られにくい形状(例えば、円錐や半球など)である傾向が大きくなる。すると、2層ポリイミドプリント配線板の基材樹脂表面とACFとの良好な密着力を得ることが出来ないため好ましくない。また、当該表面処理銅箔を用いて得られる2層FCCLは、接着強度等にバラツキが生じやすいものとなる。 However, the shape and surface state of the roughened particles formed by the roughening process vary greatly depending on the conditions of the roughening process. When the value of B above the copper foil bonding surface obtained as a result of the roughening treatment is less than 1.25, the distribution of the roughened particles formed by the roughening treatment is non-uniform or the anchor effect is difficult to obtain. The tendency to be a shape (for example, a cone or a hemisphere) increases. Then, since the favorable adhesive force of the base-material resin surface of a 2 layer polyimide printed wiring board and ACF cannot be obtained, it is unpreferable. In addition, the two-layer FCCL obtained using the surface-treated copper foil is likely to vary in adhesive strength and the like.
一方、Bの値が2.5を超えると、形成された粗化粒子の粒径バラツキが大きくなり、大きな粒子の間に小さな粒子が隠れてしまう状態が見られるようになる。そして、粗化粒子の粒径バラツキが大きいと、エッチングにより配線を形成する際の、オーバーエッチング時間の短縮が困難になる。また、2層ポリイミドプリント配線板の基材樹脂表面が備えるレプリカへの、ACFの樹脂成分の埋め込み性も悪化するため好ましくない。従って、2層ポリイミドプリント配線板の基材樹脂表面とACFとの密着力が良好であり、表面処理銅箔の接着面と2層FCCLの基材樹脂とがより良好な接着性と耐薬品性とを発揮する形状であると言うためには、当該Bの値が1.5〜2.4であることがより好ましい。 On the other hand, when the value of B exceeds 2.5, the particle size variation of the formed coarse particles becomes large, and a state in which small particles are hidden between large particles can be seen. If the particle size variation of the roughened particles is large, it is difficult to shorten the overetching time when forming the wiring by etching. Moreover, since the embedding property of the resin component of ACF to the replica provided on the base resin surface of the two-layer polyimide printed wiring board is also deteriorated, it is not preferable. Therefore, the adhesive force between the base resin surface of the two-layer polyimide printed wiring board and the ACF is good, and the adhesive surface of the surface-treated copper foil and the base resin of the two-layer FCCL have better adhesion and chemical resistance. It is more preferable that the value of B is 1.5 to 2.4.
条件3: 当該表面処理銅箔のポリイミド樹脂基材との接着面は、表面積が6550μm 2 の二次元領域をレーザー法で測定した場合の、粗化処理前の表面積(三次元面積:aμm 2 )と、粗化処理後の表面積(三次元面積:bμm 2 )との比[(b)/(a)]の値が1.20〜2.50の範囲となるよう粗化処理を施したものであることが好ましい。 Condition 3: The surface of the surface-treated copper foil bonded to the polyimide resin substrate is a surface area before roughening treatment (three-dimensional area: aμm 2 ) when a two-dimensional region having a surface area of 6550 μm 2 is measured by a laser method. And a roughening treatment so that the ratio [(b) / (a)] to the surface area after the roughening treatment (three-dimensional area: b μm 2 ) is in the range of 1.20 to 2.50. It is preferable that
ところで、一般的なプリント配線板用途で用いられている表面処理銅箔では、電解銅箔の析出面に粗化処理が施されている。この析出面は、山形の円錐形状に析出した表面形状を備え、粗化処理前でもその表面粗さ(Rzjis)は2μm以上である。このような銅箔表面に粗化処理を施すと、肥大化した粗化粒子が円錐形状の頂点に形成され、円錐形状の底辺部分や稜線部分には、粗化粒子が形成され難い。従って、前記表面粗さ(Rzjis)が1.0μm以上であると、粗化処理で形成される粗化粒子が凸部等へ集中して形成され、異常突起となる傾向が顕著に高くなる。表面粗さ(Rzjis)がこの上限を超えると、走査型電子顕微鏡で観察した前記析出面の表面状態として、うねりや凹凸形状が観察されやすくなる。 By the way, in the surface-treated copper foil used for the general printed wiring board use, the roughening process is performed to the precipitation surface of the electrolytic copper foil. This deposition surface has a surface shape deposited in a mountain-shaped conical shape, and the surface roughness (Rzjis) is 2 μm or more even before the roughening treatment. When a roughening process is performed on the surface of such a copper foil, the enlarged roughened particles are formed at the apex of the conical shape, and it is difficult for the roughened particles to be formed at the bottom portion and the ridgeline portion of the conical shape. Therefore, when the surface roughness (Rzjis) is 1.0 μm or more, the roughened particles formed by the roughening process are formed concentrated on the convex portions and the like, and the tendency to become abnormal protrusions is remarkably increased. When the surface roughness (Rzjis) exceeds this upper limit, undulations and uneven shapes are easily observed as the surface state of the precipitation surface observed with a scanning electron microscope.
そして、前記[(b)/(a)]の値が1.20を下回ると、粗化粒子の形状が略球状である良好な粗化処理が均一に行なわれていないことになり、粗化処理によるアンカー効果が得られない。すると、このような表面処理銅箔を用いて得られた2層ポリイミドプリント配線板の基材樹脂表面は、ACFの樹脂成分に対して十分な密着力を発揮し得ない。一方、上記[(b)/(a)]の値が2.50を超えると、粗化処理が過剰になり、付着形成した粗化粒子の粒径にバラツキが大きいか、又は、析出した粗化粒子の析出状態が粗くなったり、粗化粒子の形状が略球状から塊状に変化していることになる。このような表面処理銅箔を用いて得られた2層ポリイミドプリント配線板の基材樹脂表面ではアンカー効果のバラツキが大きく、ACFの樹脂成分に対して安定した密着力を発揮し得ない。 When the value of [(b) / (a)] is less than 1.20, a good roughening process in which the shape of the roughened particles is substantially spherical is not uniformly performed. The anchor effect by processing cannot be obtained. Then, the base resin surface of the two-layer polyimide printed wiring board obtained using such a surface-treated copper foil cannot exhibit sufficient adhesion to the ACF resin component. On the other hand, if the value of the above [(b) / (a)] exceeds 2.50, the roughening treatment becomes excessive, and the particle size of the coarse particles deposited and formed varies widely, or the precipitated coarse particles The precipitation state of the roughened particles becomes coarse, or the shape of the roughened particles changes from a substantially spherical shape to a lump shape. The substrate resin surface of the two-layer polyimide printed wiring board obtained using such a surface-treated copper foil has a large variation in anchor effect and cannot exhibit stable adhesion to the ACF resin component.
ここで、粗化処理における粗化粒子の形成に関して、未処理電解銅箔の表面に銅の微細な粒子を付着形成する場合の方法を簡単に述べておく。略球状の粗化粒子を金属銅で形成するには、電気めっき法や無電解めっき法を用いることが出来る。電気めっき法を用いて形成する場合には、未処理電解銅箔の表面に粒子の核を形成する第1段処理と、当該核の付着を強固にする第2段処理とからなる2段階の銅めっきにより粒子形状を形成する。 Here, regarding the formation of the roughened particles in the roughening treatment, a method in the case of forming fine copper particles on the surface of the untreated electrolytic copper foil will be briefly described. An electroplating method or an electroless plating method can be used to form substantially spherical roughened particles with metallic copper. In the case of forming by using an electroplating method, a two-stage process comprising a first stage process for forming particle nuclei on the surface of the untreated electrolytic copper foil and a second stage process for strengthening the adhesion of the nuclei. The particle shape is formed by copper plating.
まず、第1段処理では、硫酸系銅電解液として銅濃度を10g/L〜25g/L、フリー硫酸濃度を50g/L〜150g/Lとし、必要に応じ、添加剤としてゼラチンなどを添加し、液温15℃〜30℃、未処理電解銅箔を陰極として陰極電流密度20A/dm2〜50A/dm2としたやけめっき条件で電解して銅粒子の核を形成する。 First, in the first stage treatment, the sulfuric acid-based copper electrolyte has a copper concentration of 10 g / L to 25 g / L, a free sulfuric acid concentration of 50 g / L to 150 g / L, and if necessary, gelatin or the like is added as an additive. Then, electrolysis is performed under burnt plating conditions with a liquid temperature of 15 ° C. to 30 ° C. and an untreated electrolytic copper foil as a cathode, and a cathode current density of 20 A / dm 2 to 50 A / dm 2 , thereby forming nuclei of copper particles.
そして、第2段処理では、硫酸系銅電解液として銅濃度を45g/L〜100g/L、フリー硫酸濃度を50g/L〜150g/Lとした溶液を用い、液温30℃〜50℃、陰極電流密度30A/dm2〜60A/dm2で、前記銅粒子の核を覆うように平滑めっきして形状を整え、狙いとする形状の粗化粒子を得る。 In the second stage treatment, a solution having a copper concentration of 45 g / L to 100 g / L and a free sulfuric acid concentration of 50 g / L to 150 g / L as a sulfuric acid-based copper electrolyte is used. in cathode current density 30A / dm 2 ~60A / dm 2 , adjust the shape and level plating to cover the core of the copper particles, to obtain roughening particles of shape aimed.
条件4: 当該表面処理銅箔のポリイミド樹脂基材との接着面は、二次元領域の単位面積あたりのクロムの量が2.0mg/m 2 以上となる表面処理が施されていることが好ましい。即ち、本件発明に係る表面処理銅箔においては、前記銅箔接着面は、1m2の二次元領域に存在するクロムの量が2.0mg以上であることが好ましい。クロムは、プリント配線板用表面処理銅箔の防錆処理として、広く用いられる防錆成分である。クロムは、その表面に酸素を含有する不働態膜を形成し、耐食性が良好な金属であるため、該クロム成分を接着面に備える表面処理銅箔を用いて得られる、2層ポリイミドプリント配線板の耐薬品性も良好である。 Condition 4: The surface of the surface-treated copper foil bonded to the polyimide resin base material is preferably subjected to a surface treatment in which the amount of chromium per unit area of the two-dimensional region is 2.0 mg / m 2 or more. . That is, in the surface-treated copper foil according to the present invention, it is preferable that the amount of chromium existing in the two-dimensional region of 1 m 2 is 2.0 mg or more on the copper foil bonding surface. Chromium is a rust preventive component that is widely used as a rust preventive treatment for surface-treated copper foil for printed wiring boards. Chromium forms a passive film containing oxygen on its surface and is a metal with good corrosion resistance. Therefore, a two-layer polyimide printed wiring board obtained by using a surface-treated copper foil provided with the chromium component on the adhesive surface Also has good chemical resistance.
しかし、前記クロムの量が2.0mg未満の場合には、2層FCCLを構成するポリイミド樹脂基材と表面処理銅箔との接着強度等を改善することも、エッチング後の基材樹脂表面とACFとの密着性の改善も出来ない。ここで言うクロムの量は、クロムが単独で存在する場合のみならず、他の防錆成分との組み合わせとして存在しているクロム成分をも含む概念として記載している。例えば、亜鉛防錆、真鍮防錆、亜鉛−ニッケル合金防錆、亜鉛−コバルト合金防錆等と、クロメート又はクロムとの組み合わせ等である。 However, when the amount of chromium is less than 2.0 mg, the adhesive strength between the polyimide resin base material and the surface-treated copper foil constituting the two-layer FCCL can be improved. Also, the adhesion with ACF cannot be improved. The amount of chromium mentioned here is described as a concept including not only the case where chromium is present alone but also a chromium component which is present as a combination with other antirust components. For example, a combination of zinc rust prevention, brass rust prevention, zinc-nickel alloy rust prevention, zinc-cobalt alloy rust prevention, etc., and chromate or chromium.
そして、二次元領域の単位面積あたりのクロムの量が2.0mg/m2以上存在すれば、銅箔接着面の三次元表面も十分にクロムの不働態膜で被覆され、2層FCCLのポリイミド樹脂基材との安定した接着強度、2層ポリイミドプリント配線板の基材樹脂表面とACFとの密着性の改善が出来る。そして、クロム量の上限であるが、一般的な表面処理銅箔の製造方法で用いられるクロメート処理法であれば、クロメート処理溶液の浴組成などから、6.0mg/m2程度になる。しかし、銅箔接着面に存在するクロムの量が多すぎると、配線を形成する際のエッチング条件によっては、基材樹脂表面に残留してしまうことがある。従って、耐マイグレーション性の観点を併せ、前記クロム量のより好ましい範囲は、3.0mg/m2〜5.0mg/m2である。 If the amount of chromium per unit area of the two-dimensional region is 2.0 mg / m 2 or more, the three-dimensional surface of the copper foil bonding surface is also sufficiently covered with the passive state film of chromium, and the two-layer FCCL polyimide Stable adhesive strength with the resin base material can improve the adhesion between the base resin surface of the two-layer polyimide printed wiring board and the ACF. And although it is the upper limit of the amount of chromium, if it is the chromate treatment method used with the manufacturing method of a general surface treatment copper foil, it will be about 6.0 mg / m < 2 > from the bath composition of a chromate treatment solution. However, if the amount of chromium present on the copper foil bonding surface is too large, it may remain on the surface of the base resin depending on the etching conditions when forming the wiring. Therefore, combined aspects of migration resistance, a more preferable range of the chromium content is 3.0mg / m 2 ~5.0mg / m 2 .
前記クロメート処理法を用い、クロム成分を銅箔接着面に付着させるには、クロメート処理浴としてCrO3濃度を0.5g/L〜2g/Lに調整した浴を用い、液温15℃〜35℃、陰極電流密度0.2A/dm2〜4A/dm2とした電解法を用いることが出来る。 In order to adhere the chromium component to the copper foil adhesion surface using the chromate treatment method, a bath in which the CrO 3 concentration is adjusted to 0.5 g / L to 2 g / L is used as the chromate treatment bath, and the liquid temperature is 15 ° C. to 35 ° C. An electrolytic method with a cathode current density of 0.2 A / dm 2 to 4 A / dm 2 can be used.
好適な表面処理: 更に、本件発明に係る2層FCCL用の表面処理銅箔においては、その銅箔接着面は、1m2の二次元領域に存在するニッケルと亜鉛との合計量が40mg以上であることが好ましい。防錆成分としての当該ニッケルと亜鉛との合計量が40mg未満の場合には、ニッケル−亜鉛合金による被覆が不十分となる部分が発生し、2層FCCLのポリイミド樹脂基材と表面処理銅箔との接着強度等を改善することが出来ない。この40mg/m2とは、完全にフラットな理想平面を、厚さ約40Åのニッケル−亜鉛合金で被覆できる量である。40Åの厚さで理想平面を覆うニッケル−亜鉛合金量があれば、平滑な表面に粗化粒子を形成していても、粗化粒子が微細であって形状のバラツキが小さい場合には、粗化粒子の表面を含む粗化処理面のほぼ全面を三次元的に覆うことが出来る。しかし、ニッケル−亜鉛合金量が100mg/m2を超えると、銅エッチング液によるニッケル−亜鉛合金層の除去が困難になる傾向が見られるようになり、エッチング残が発生するため好ましくない。また、ここで言うニッケルと亜鉛とは、ニッケル−亜鉛合金層として形成したものとし、以下の組成で形成することが好ましい。 Suitable surface treatment: Furthermore, in the surface-treated copper foil for two-layer FCCL according to the present invention, the copper foil bonding surface has a total amount of nickel and zinc existing in a two-dimensional area of 1 m 2 of 40 mg or more. Preferably there is. When the total amount of the nickel and zinc as the anticorrosive component is less than 40 mg, a portion where the coating with the nickel-zinc alloy is insufficient occurs, and the two-layer FCCL polyimide resin base material and the surface-treated copper foil It cannot improve the adhesive strength. The 40 mg / m 2 is an amount that can cover a completely flat ideal plane with a nickel-zinc alloy having a thickness of about 40 mm. If there is an amount of nickel-zinc alloy that covers the ideal plane with a thickness of 40 mm, even if roughened particles are formed on a smooth surface, if the roughened particles are fine and the shape variation is small, Almost all of the roughened surface including the surface of the particles can be three-dimensionally covered. However, when the amount of the nickel-zinc alloy exceeds 100 mg / m 2 , it tends to be difficult to remove the nickel-zinc alloy layer with the copper etching solution, and an etching residue is generated. The nickel and zinc referred to here are formed as a nickel-zinc alloy layer, and are preferably formed with the following composition.
ニッケル−亜鉛合金層には、不可避不純物を除きニッケルを65wt%〜90wt%、亜鉛を10wt%〜35wt%含有する組成を採用することが好ましい。ここでのwt%表示には不可避不純物を含めず、ニッケルと亜鉛とで100wt%となる表示を採用した。このニッケル−亜鉛合金層は、2層FCCLのポリイミド樹脂基材と表面処理銅箔との張り合わせ加工時に、表面処理銅箔とポリイミド樹脂基材との濡れ性をニッケルの存在により改善し、接着強度等を向上させる。また、ニッケル−亜鉛合金層は、2層FCCLを用いた2層ポリイミドプリント配線板が加熱を受けたとき、金属銅とポリイミド樹脂との直接接触を防止するバリアとして機能する。その結果、金属銅の触媒的作用による樹脂の劣化が防止され、加熱後の配線の引き剥がし強さの低下が抑制される。 The nickel-zinc alloy layer preferably employs a composition containing 65 wt% to 90 wt% nickel and 10 wt% to 35 wt% zinc except for inevitable impurities. Here, the wt% display does not include inevitable impurities, and employs a display of 100 wt% of nickel and zinc. This nickel-zinc alloy layer improves the wettability of the surface-treated copper foil and the polyimide resin base material by the presence of nickel when the two-layer FCCL polyimide resin base material and the surface-treated copper foil are bonded to each other. Etc. Further, the nickel-zinc alloy layer functions as a barrier that prevents direct contact between the metal copper and the polyimide resin when the two-layer polyimide printed wiring board using the two-layer FCCL is heated. As a result, deterioration of the resin due to the catalytic action of metallic copper is prevented, and a reduction in the peel strength of the wiring after heating is suppressed.
しかしながら、ニッケル含有量が90%を超えると、銅エッチング液によるニッケル−亜鉛合金層の除去が困難になり、エッチング残が発生するため好ましくない。一方、亜鉛の含有割合が35wt%を超えると、2層FCCLのポリイミド樹脂基材と表面処理銅箔との接着強度が低下する。また、耐薬品性が低下して、錫めっきを行った場合等には、析出錫の潜り込み現象が発生しやすくなる。上記から、ニッケル−亜鉛合金組成を用いる場合であって、表面処理銅箔とポリイミド樹脂基材との接着強度等を向上させ、より確実にエッチング残の発生を防止しようとする場合には、ニッケルを70wt%〜85wt%、亜鉛を30wt%〜15wt%含有する組成とすることが、より好ましい。 However, if the nickel content exceeds 90%, it is difficult to remove the nickel-zinc alloy layer with a copper etching solution, and an etching residue is generated, which is not preferable. On the other hand, if the zinc content exceeds 35 wt%, the adhesive strength between the two-layer FCCL polyimide resin substrate and the surface-treated copper foil is lowered. Further, when the chemical resistance is lowered and tin plating is performed, the phenomenon of the precipitation of precipitated tin is likely to occur. From the above, in the case of using a nickel-zinc alloy composition, in order to improve the adhesive strength between the surface-treated copper foil and the polyimide resin base material, and to more reliably prevent the occurrence of etching residue, It is more preferable that the composition contains 70 wt% to 85 wt% and zinc contains 30 wt% to 15 wt%.
以上に述べたニッケル−亜鉛合金層を形成する場合は、例えば、硫酸ニッケルを用いてニッケル濃度が1g/L〜3.5g/L、ピロリン酸亜鉛を用いて亜鉛濃度が0.1g/L〜1g/L、そしてピロリン酸カリウムが50g/L〜250g/Lの溶液を調製し、液温20〜50℃、pH8〜11、電流密度0.3〜10A/dm2で電気めっきする等の条件を採用することが好ましい。上記条件で電気めっきすることで、膜厚均一性に優れたニッケル−亜鉛合金層が得られる。 When the nickel-zinc alloy layer described above is formed, for example, nickel sulfate is used to form a nickel concentration of 1 g / L to 3.5 g / L, and zinc pyrophosphate is used to form a zinc concentration of 0.1 g / L to Conditions such as preparing a solution of 1 g / L and potassium pyrophosphate from 50 g / L to 250 g / L and electroplating at a liquid temperature of 20 to 50 ° C., pH of 8 to 11 and a current density of 0.3 to 10 A / dm 2 Is preferably adopted. By electroplating under the above conditions, a nickel-zinc alloy layer having excellent film thickness uniformity can be obtained.
なお、本件発明に係る2層FCCL用の表面処理銅箔は、最終的表面処理としてシランカップリング剤処理を行ない、前記銅箔接着面が、シランカップリング剤処理層を備えるようにすることが好ましい。シランカップリング剤処理層は、表面処理銅箔の表面とポリイミド樹脂基材との濡れ性を改善し、2層FCCLのポリイミド樹脂基材と表面処理銅箔との接着強度等を向上させるための助剤としての役割を果たす。このシランカップリング剤には、最も一般的なエポキシ官能性シランカップリング剤を始めオレフィン官能性シランカップリング剤、アクリル官能性シランカップリング剤等種々のものを用いることが出来る。中でも、アミノ官能性シランカップリング剤又はメルカプト官能性シランカップリング剤を用いることが、当該接着強度等が顕著に向上するため好ましい。 The surface-treated copper foil for the two-layer FCCL according to the present invention is subjected to a silane coupling agent treatment as a final surface treatment, and the copper foil bonding surface includes a silane coupling agent treatment layer. preferable. Silane coupling agent treatment layer serves to improve the wettability between the surface and the polyimide resin substrate of the surface treated copper foil, to improve the adhesive strength between the polyimide resin base material and the surface treated copper foil of the two-layer FCCL, etc. Serves as an auxiliary agent. As this silane coupling agent, various types such as the most common epoxy functional silane coupling agent, olefin functional silane coupling agent, acrylic functional silane coupling agent and the like can be used. Among them, it is preferable to use an amino functional silane coupling agent or a mercapto functional silane coupling agent because the adhesive strength and the like are remarkably improved.
表面処理銅箔のL値: 次に、本件発明に係る2層FCCL用の表面処理銅箔においては、その銅箔接着面は、Lab表色系におけるL値が50〜63であることが好ましい。ここで言う、Lab表色系におけるL値とは、明度のことであり、値が大きくなるほど色調が明るいことを意味する。そして、表面処理銅箔の接着面にL値の概念を適用すると、明るい側は、析出した粗化粒子がまばらに付着していたり、粒子径のバラツキが大きい等、粗化処理のレベルが不十分であることの指標と出来る。従って、L値が63を超えると、粗化処理レベルが不足して、この表面処理銅箔を用いて得られた2層ポリイミドプリント配線板の基材樹脂表面は、ACFに対して十分な密着力を発揮し得ない。同時に、2層FCCLのポリイミド樹脂基材と表面処理銅箔との接着力が顕著に低下するため好ましくない。 L value of surface-treated copper foil: Next, in the surface-treated copper foil for two-layer FCCL according to the present invention, the copper foil adhesive surface preferably has an L value in the Lab color system of 50 to 63. . The L value in the Lab color system here means lightness, and the larger the value, the brighter the color tone. Then, when the concept of L value is applied to the adhesive surface of the surface-treated copper foil, the bright side has a roughening treatment level such as precipitated coarse particles adhering sparsely or a large variation in particle diameter. It can be an indicator of sufficientness. Therefore, when the L value exceeds 63, the level of roughening treatment is insufficient, and the base resin surface of the two-layer polyimide printed wiring board obtained using this surface-treated copper foil is sufficiently adhered to the ACF. Can't show power. At the same time, the adhesive force between the polyimide resin base material of the two-layer FCCL and the surface-treated copper foil is remarkably lowered, which is not preferable.
一方、L値が50未満の場合には、小さな粒子のレプリカ部のアンカー効果は有効であり、2層ポリイミドプリント配線板の基材樹脂表面とACFとの密着性は良好である。しかし、粗化処理レベルは過剰であり、部分的に粗大粒子が存在する場合がある。そして、2層FCCLにおいては、2層ポリイミドプリント配線板の軽量化や、耐屈曲性や耐熱性の向上を目的として熱圧着性ポリイミド層を薄くすることがある。このとき、L値が50未満の銅箔接着面に粗大粒子が存在する場合、熱圧着性ポリイミド層の厚さが銅箔の接着面の表面粗さ(Rzjis)未満になると、ポリイミド樹脂で粗化粒子の全体を埋め込むことが出来なくなる場合がある。すると、粗化粒子の一部がベースフィルムと直接接触することになり、この部分ではほとんど接着力を発揮しない。その結果、得られる2層FCCLの表面処理銅箔と樹脂基材との接着強度は、場所によるバラツキが大きいものとなるため、好ましくない。上記から、表面処理銅箔を用いて得られた2層ポリイミドプリント配線板の基材樹脂表面がACFに対して十分な密着力を発揮し、2層FCCL用の表面処理銅箔と樹脂基材との接着強度も良好であるためには、前記L値が50〜60であることがより好ましい。 On the other hand, when the L value is less than 50, the anchor effect of the replica part of small particles is effective, and the adhesion between the base resin surface of the two-layer polyimide printed wiring board and the ACF is good. However, the roughening treatment level is excessive, and coarse particles may be partially present. In the two-layer FCCL, the thermocompression bonding polyimide layer may be thinned for the purpose of reducing the weight of the two-layer polyimide printed wiring board and improving the bending resistance and heat resistance. At this time, when coarse particles are present on the copper foil bonding surface having an L value of less than 50, when the thickness of the thermocompression bonding polyimide layer is less than the surface roughness (Rzjis) of the copper foil bonding surface, the polyimide resin is roughened. In some cases, it becomes impossible to embed the entire chemical particles. Then, a part of the roughened particles comes into direct contact with the base film, and the adhesive force is hardly exhibited in this part. As a result, the adhesive strength between the surface-treated copper foil of the two-layer FCCL to be obtained and the resin base material is not preferable because it varies greatly depending on the location. From the above, the base resin surface of the two-layer polyimide printed wiring board obtained using the surface-treated copper foil exhibits sufficient adhesion to ACF, and the surface-treated copper foil and resin base for the two-layer FCCL The L value is more preferably 50 to 60 in order to have good adhesive strength.
<表面処理銅箔の作成>
実施例では、未処理電解銅箔として厚さ9μmの電解銅箔を製造し、析出面に粗化処理と防錆処理とを施して表面処理銅箔を4種類作成し、各種評価を行なった。粗化処理及び防錆処理の条件は、比較例で用いた条件と併せて、後の表1に示す。
<Creation of surface-treated copper foil>
In Examples, an electrolytic copper foil having a thickness of 9 μm was produced as an untreated electrolytic copper foil , and four types of surface-treated copper foils were prepared by subjecting the precipitation surface to a roughening treatment and an antirust treatment, and various evaluations were performed. . The conditions for the roughening treatment and the rust prevention treatment are shown in Table 1 later together with the conditions used in the comparative example.
電解銅箔の製造: 銅電解液に硫酸銅系溶液を用い、この溶液を電解して、析出面の表面粗さ(Rzjis)が1.0μm未満の電解銅箔を作成した。 Production of electrolytic copper foil: A copper sulfate-based solution was used as the copper electrolytic solution, and this solution was electrolyzed to prepare an electrolytic copper foil having a surface roughness (Rzjis) of the deposited surface of less than 1.0 μm.
表面粗さ(Rzjis)の評価: 上記に得られた電解銅箔の、析出面の表面粗さ(Rzjis)は、先端のrが2μmのダイヤモンドスタイラスを備える、触針式の表面粗さ計((株)小坂研究所製、商品名:SEF−30D)を用い、JIS B 0601に準拠して測定した。析出面の表面粗さ(Rzjis)は0.7μmであった。評価結果を、比較例の評価結果と併せて、後の表2に示す。 Evaluation of surface roughness (Rzjis): The surface roughness (Rzjis) of the deposited surface of the electrolytic copper foil obtained above is a stylus-type surface roughness meter having a diamond stylus having a tip r of 2 μm ( The measurement was performed according to JIS B 0601 using a product of Kosaka Laboratory, trade name: SEF-30D. The surface roughness (Rzjis) of the precipitation surface was 0.7 μm. The evaluation results are shown in Table 2 later together with the evaluation results of the comparative examples.
三次元表面積の評価: 株式会社キーエンス製超深度カラー3D形状測定顕微鏡VK−9500(使用レーザー:可視光限界波長408nmのバイオレットレーザー)を用いて、電解銅箔の析出面のうち、表面積が6550μm2の二次元領域について、表面積を測定した。その結果、析出面の三次元表面積は6588μm2であった。評価結果を、比較例の評価結果と併せて、後の表2に示す。 Evaluation of three-dimensional surface area: Using a super deep color 3D shape measurement microscope VK-9500 (used laser: violet laser with a visible light limit wavelength of 408 nm) manufactured by Keyence Corporation, the surface area of the deposited surface of the electrolytic copper foil is 6550 μm 2. The surface area of the two-dimensional region was measured. As a result, the three-dimensional surface area of the precipitation surface was 6588 μm 2 . The evaluation results are shown in Table 2 later together with the evaluation results of the comparative examples.
粗化処理: 粗化処理は2段階で実施する銅めっき条件を用いて、上記電解銅箔の析出面側に微細銅粒子を粗化粒子として付着形成する方法を採用した。1段処理では、銅濃度を10g/L、フリー硫酸濃度を100g/Lに調整した第1銅電解液を用い、電解銅箔を陰極とし、液温30℃、後の表1に記載の電流条件で電解して銅粒子の核を形成した。そして2段処理では、銅濃度を70g/L、フリー硫酸濃度を150g/Lに調製した第2銅電解液を用い、1段処理が終了した電解銅箔を陰極とし、液温を45℃、後の表1に記載の電流条件で電解して平滑めっきし、微細銅粒子の形状を整え、粗化粒子を形成した。 Roughening treatment: For the roughening treatment, a method of depositing and forming fine copper particles as roughened particles on the deposition surface side of the electrolytic copper foil was adopted using copper plating conditions performed in two stages. In the one-stage treatment, a first copper electrolytic solution in which the copper concentration is adjusted to 10 g / L and the free sulfuric acid concentration is adjusted to 100 g / L is used. The electrolytic copper foil is used as a cathode and the liquid temperature is 30 ° C. Electrolysis was performed under the conditions to form copper particle nuclei. Then, in the two-stage treatment, using a second copper electrolyte prepared with a copper concentration of 70 g / L and a free sulfuric acid concentration of 150 g / L, the electrolytic copper foil after the first-stage treatment was used as a cathode, and the liquid temperature was 45 ° C., Electrolysis was carried out under the current conditions shown in Table 1 and smooth plating was performed, the shape of the fine copper particles was adjusted, and roughened particles were formed.
防錆処理: 防錆処理は、当該電解銅箔の両面に無機防錆処理を施した、防錆処理では、ピロリン酸カリウム濃度80g/L、亜鉛濃度0.2g/L、ニッケル濃度2g/Lとしたピロリン酸浴を液温40℃で用い、後の表1に記載の防錆処理電流条件で、析出面側に亜鉛−ニッケル合金防錆処理を施した。 Anti-rust treatment: Anti-corrosion treatment was carried out by applying inorganic anti-rust treatment on both sides of the electrolytic copper foil. In anti-rust treatment, potassium pyrophosphate concentration 80g / L, zinc concentration 0.2g / L, nickel concentration 2g / L The pyrophosphoric acid bath was used at a liquid temperature of 40 ° C., and the precipitation surface side was subjected to zinc-nickel alloy rust prevention treatment under the rust prevention treatment current conditions described in Table 1 below.
更に、クロメート層の形成は電解法で実施した。このときのクロメート処理条件は、クロム酸濃度が1g/LでpHを12とした溶液を、液温を25℃で用いた。 Further, the chromate layer was formed by an electrolytic method. As the chromate treatment conditions, a solution having a chromic acid concentration of 1 g / L and a pH of 12 was used at a liquid temperature of 25 ° C.
以上の防錆処理が完了すると水洗後、直ちにシランカップリング剤処理槽で、析出面側の防錆処理層の上にシランカップリング剤の吸着を行った。このとき用いた溶液は、純水を溶媒として、アミノプロピルトリメトキシシラン濃度を3g/Lとした。そして、この溶液をシャワーリングにて吹き付けることにより吸着処理した。 When the above rust prevention treatment was completed, the silane coupling agent was adsorbed on the rust prevention treatment layer on the deposition surface side immediately after washing with water in a silane coupling agent treatment tank. The solution used at this time was pure water as a solvent and the aminopropyltrimethoxysilane concentration was 3 g / L. The solution was adsorbed by spraying with a shower ring.
上記にてシランカップリング剤処理が終了した電解銅箔は、最終的に電熱器により水分を気散させ、9μm厚さの4種類の表面処理銅箔を得た。この4種類の表面処理銅箔を、以下、単に試料1〜試料4として表示する。以下、得られた表面処理銅箔の評価結果に関して述べる。 The electrolytic copper foil that had been treated with the silane coupling agent was finally diffused of moisture with an electric heater to obtain four types of surface-treated copper foil with a thickness of 9 μm. Hereinafter, these four types of surface-treated copper foils are simply indicated as Sample 1 to Sample 4. Hereinafter, the evaluation result of the obtained surface-treated copper foil will be described.
銅箔接着面の表面粗さ(Rzjis)の測定: 試料1〜試料4の銅箔接着面の表面粗さ(Rzjis)を、電解銅箔の析出面と同様にして測定した。その結果、銅箔接着面の表面粗さ(Rzjis)は、1.5μm〜2.3μmであった。評価結果を、比較例の評価結果と併せて、後の表2に示す。 Measurement of surface roughness (Rzjis) of copper foil adhesion surface: The surface roughness (Rzjis) of the copper foil adhesion surface of Samples 1 to 4 was measured in the same manner as the deposited surface of the electrolytic copper foil. As a result, the surface roughness (Rzjis) of the copper foil bonding surface was 1.5 μm to 2.3 μm. The evaluation results are shown in Table 2 later together with the evaluation results of the comparative examples.
三次元表面積の測定: 電解銅箔の析出面と同様にして、試料1〜試料4の、銅箔接着面の三次元表面積を測定した。その結果、銅箔接着面の三次元表面積は、8490μm2〜11264μm2であり、電解銅箔の二次元表面積との表面積比(B)の値は、1.30〜1.72であった。また、(b)/(a)の値は、1.29〜1.71であった。評価結果を、比較例の評価結果と併せて、後の表2に示す。 Measurement of three-dimensional surface area: The three-dimensional surface area of the copper foil adhesion surface of Samples 1 to 4 was measured in the same manner as the deposited surface of the electrolytic copper foil. As a result, the three-dimensional surface area of the copper foil bonding surface was 8490 μm 2 to 11264 μm 2 , and the value of the surface area ratio (B) to the two-dimensional surface area of the electrolytic copper foil was 1.30 to 1.72. Moreover, the value of (b) / (a) was 1.29 to 1.71. The evaluation results are shown in Table 2 later together with the evaluation results of the comparative examples.
L値の測定: 日本電色工業(株)製分光式色差計SE2000を用いて、試料1〜試料4の、銅箔接着面のL値を測定した。その結果、銅箔接着面のL値は、50.6〜62.1であった。評価結果を、比較例の評価結果と併せて、後の表2に示す。 Measurement of L value: Using a spectroscopic color difference meter SE2000 manufactured by Nippon Denshoku Industries Co., Ltd., the L value of the copper foil bonding surface of Samples 1 to 4 was measured. As a result, the L value of the copper foil bonding surface was 50.6 to 62.1. The evaluation results are shown in Table 2 later together with the evaluation results of the comparative examples.
防錆成分量の分析: 試料1〜試料4を定寸に切断後、酸化性の酸溶液で銅箔接着面のみを溶解して防錆成分を溶出させ、溶解液を得た。その後、当該溶解液中の防錆成分濃度をICP発光分光分析装置を用いて分析し、換算により、1m2を単位面積としたときの防錆成分量を得た。クロムの量は、2.1mg/m2〜4.0mg/m2であった。また、亜鉛−ニッケル合金層の量は、49mg/m2〜64g/m2であった。評価結果を、比較例の評価結果と併せて、後の表3に示す。 Analysis of Rust Inhibiting Component Amount: After cutting Sample 1 to Sample 4 to a fixed size, only the adhesive surface of the copper foil was dissolved with an oxidizing acid solution to elute the rust preventing component to obtain a solution. Thereafter, the concentration of the anticorrosive component in the solution was analyzed using an ICP emission spectroscopic analyzer, and the amount of the anticorrosive component when 1 m 2 was defined as a unit area was obtained by conversion. The amount of chromium was 2.1mg / m 2 ~4.0mg / m 2 . Zinc - amount of nickel alloy layer was 49mg / m 2 ~64g / m 2 . The evaluation results are shown in Table 3 later together with the evaluation results of the comparative examples.
〔2層FCCLの作成〕
試料1〜試料4を用いたACF密着力評価用の2層FCCLは、以下の手順で作成した。まず、耐熱性ポリイミド層の形成に用いるワニス(S1)と熱圧着性ポリイミド層の形成に用いるワニス(S2)とを調製し、このワニスを用いて厚さ約15μm(熱圧着性ポリイミド層(3μm)/耐熱性ポリイミド層(9μm)/熱圧着性ポリイミド層(3μm))の3層ポリイミドフィルム基材を作成し、この3層ポリイミドフィルム基材に表面処理銅箔を張り合わせた。以下、各工程を説明する。
[Create 2-layer FCCL]
A two-layer FCCL for ACF adhesion evaluation using Samples 1 to 4 was prepared by the following procedure. First, a varnish (S1) used for forming a heat-resistant polyimide layer and a varnish (S2) used for forming a thermocompression-bonding polyimide layer were prepared, and a thickness of about 15 μm (thermocompression-bonding polyimide layer (3 μm) was prepared using this varnish. ) / Heat-resistant polyimide layer (9 μm) / thermocompression-bondable polyimide layer (3 μm)), and a surface-treated copper foil was bonded to the three-layer polyimide film substrate. Hereinafter, each process will be described.
ワニスの調製: S1は、N−メチル−2−ピロリドン中で、パラフェニレンジアミン(PPD)と3、3’、4、4’−ビフェニルテトラカルボン酸2無水物(s−BPDA)とを、1000:998のモル比で、モノマー濃度が18wt%になるように混合し、50℃で3時間反応させて調製した。得られたポリアミック酸溶液の25℃における粘度は、約1680ポイズであった。 Preparation of the varnish: S1 was obtained by adding paraphenylenediamine (PPD) and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) in N-methyl-2-pyrrolidone to 1000 The mixture was prepared so that the monomer concentration was 18 wt% at a molar ratio of 998, and the mixture was reacted at 50 ° C. for 3 hours. The viscosity of the obtained polyamic acid solution at 25 ° C. was about 1680 poise.
S2は、N−メチル−2−ピロリドン中で、1、3−ビス(4−)アミノフェノキシ)ベンゼン(TPE−R)と2、3、3’、4’−ビフェニルテトラカルボン酸2無水物(a−BPDA)と3、3’、4、4’−ビフェニルテトラカルボン酸2無水物(s−BPDA)とを、1000:200:800のモル比で、モノマー濃度が18wt%になるように混合し、更に、トリフェニルホスファートをモノマー重量に対して0.5wt%加え、40℃で3時間反応させて調製した。得られたポリアミック酸溶液の、25℃における粘度は、約1680ポイズであった。 S2 is 1,3-bis (4-) aminophenoxy) benzene (TPE-R) and 2,3,3 ', 4'-biphenyltetracarboxylic dianhydride (N-methyl-2-pyrrolidone) a-BPDA) and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) at a molar ratio of 1000: 200: 800 and a monomer concentration of 18 wt%. Furthermore, 0.5 wt% of triphenyl phosphate was added to the monomer weight, and the mixture was reacted at 40 ° C. for 3 hours. The resulting polyamic acid solution had a viscosity at 25 ° C. of about 1680 poise.
3層ポリイミドフィルム基材の作成: 3層ポリイミドフィルム基材の作成には、3層押し出し成形用ダイス(マルチマニホールド型ダイス)を備えた成膜装置を用いた。前記ワニスの構成(S2/S1/S2)に合わせたダイス構成と厚さを設定し、金属製支持帯上に3層構成のワニスを塗布し、140℃の熱風で乾燥後剥離し、中間体フィルムを得た。この中間体フィルムを加熱炉で150℃から450℃迄徐々に昇温し、溶媒を除去すると同時にイミド化させ、3層ポリイミドフィルム基材を得た。 Preparation of three-layer polyimide film substrate: A three-layer polyimide film substrate was prepared using a film forming apparatus equipped with a three-layer extrusion die (multimanifold die). Set the die configuration and thickness according to the configuration of the varnish (S2 / S1 / S2), apply a three-layer varnish on the metal support strip, dry it with hot air at 140 ° C., and peel it off. A film was obtained. The intermediate film was gradually heated from 150 ° C. to 450 ° C. in a heating furnace to remove the solvent and imidize at the same time to obtain a three-layer polyimide film substrate.
前記にて得られた両側に厚さ3μmの熱圧着性ポリイミド層を備える3層ポリイミドフィルム基材を200℃の熱風で30秒間予熱した後、上記試料1〜試料4それぞれの銅箔接着面を配してダブルベルトプレスに導入した。ダブルベルトプレスでは、温度330℃、圧力3.9MPaで2分間圧着後180℃以下に冷却して巻き取り、2層FCCL1〜2層FCCL4を得た。 After preheating the three-layer polyimide film base material provided with the thermocompression bonding polyimide layer having a thickness of 3 μm on both sides obtained in the above with hot air of 200 ° C. for 30 seconds, the copper foil bonding surfaces of each of the samples 1 to 4 were applied. Arranged and introduced into the double belt press. In a double belt press, a two-layer FCCL1 to a two-layer FCCL4 were obtained by crimping at a temperature of 330 ° C. and a pressure of 3.9 MPa for 2 minutes and then cooling to 180 ° C. or lower and winding.
〔2層FCCL特性の評価〕
ポリイミド樹脂基材と表面処理銅箔との接着強度: 上記で得られた2層FCCLの銅箔の上面にドライフィルムタイプのフォトレジスト層を設けた。このフォトレジスト層に、フォトマスクを用いて配線パターンを露光し、フォトレジスト層の配線パターンとなる部位以外を現像して除去した。この、エッチングレジストを形成した2層FCCLの配線パターンとなる部位以外の銅箔をエッチングにより除去し、その後、銅箔上のフォトレジスト層を剥離して除去し、幅10mmの直線状の配線を備える、P/S−A測定用配線板1〜P/S−A測定用配線板4を得た。
[Evaluation of 2-layer FCCL characteristics]
Adhesive strength between polyimide resin substrate and surface-treated copper foil: A dry film type photoresist layer was provided on the upper surface of the copper foil of the two-layer FCCL obtained above. The photoresist layer was exposed to a wiring pattern using a photomask, and portions other than the portion of the photoresist layer that became the wiring pattern were developed and removed. The copper foil other than the portion that becomes the wiring pattern of the two-layer FCCL formed with the etching resist is removed by etching, and then the photoresist layer on the copper foil is peeled off and removed to form a linear wiring having a width of 10 mm. The P / SA measurement wiring board 1 to the P / SA measurement wiring board 4 were prepared.
前記表面処理銅箔とポリイミド樹脂基材との接着強度は、常態引き剥がし強さ(Peel Strength as Received:以下、「P/S−A」と称する)で評価した。P/S−Aの測定は、上記にて得られたP/S−A測定用配線板を用い、JIS C 6471の方法Aに示す方法を参照し、万能試験機AC−20C−SL(T・S Engineering社製 )を用い、90度引き剥がし強さ(Peel Strength:以下、「P/S」と称する)で測定した。その結果、P/S−Aの値は、1.19N/mm〜1.28N/mmであった。評価結果を、比較例の評価結果と併せて、後の表4に示す。 The adhesive strength between the surface-treated copper foil and the polyimide resin base material was evaluated by normal peel strength (hereinafter referred to as “P / SA”). The P / SA measurement is performed using the P / SA measurement wiring board obtained above, referring to the method shown in Method A of JIS C 6471, and using the universal testing machine AC-20C-SL (T -Using S Engineering), 90 degree peel strength (hereinafter referred to as “P / S”) was measured. As a result, the value of P / SA was 1.19 N / mm to 1.28 N / mm. The evaluation results are shown in Table 4 later together with the evaluation results of the comparative examples.
ACF密着力: ACF密着力は、ACFとアンクラッドポリイミドフィルムとの密着力で評価した。評価に用いるアンクラッドポリイミドフィルムは、前記の各2層FCCLから10cm×10cmのサンプルを採取し、塩化第二鉄エッチング液を用いて銅箔を全面エッチングし、アンクラッドポリイミドフィルム1〜アンクラッドポリイミドフィルム4を得た。 ACF adhesion strength: ACF adhesion strength was evaluated by adhesion strength between ACF and unclad polyimide film. The unclad polyimide film used for the evaluation was obtained by taking a sample of 10 cm × 10 cm from each of the above two-layer FCCL, etching the entire surface of the copper foil using a ferric chloride etchant, Film 4 was obtained.
ACFボンディングシートの作成: 前記アンクラッドポリイミドフィルム1〜アンクラッドポリイミドフィルム4とACF樹脂との密着力評価には、ACF用の樹脂を調製して形成したボンディングシートを用いた。具体的には、混合溶媒(トルエン:メチルエチルケトン=1:1)25gにエピコート1009(ジャパンエポキシレジン(株)製)25gを溶解し、潜在硬化剤(HX3941HP:旭化成(株)製)25gと、シランカップリング剤(KBM−403:信越化学(株)製)0.5gとを加え、原料ドープを調製した。この原料ドープを離型フィルムに塗布し、80℃で5分間乾燥して、厚さ30μmのボンディングシートを得た。 Preparation of ACF bonding sheet: For the evaluation of the adhesion between the unclad polyimide film 1 to the unclad polyimide film 4 and the ACF resin, a bonding sheet prepared by preparing a resin for ACF was used. Specifically, 25 g of Epicoat 1009 (manufactured by Japan Epoxy Resin Co., Ltd.) is dissolved in 25 g of mixed solvent (toluene: methyl ethyl ketone = 1: 1), 25 g of latent curing agent (HX3941HP: manufactured by Asahi Kasei Co., Ltd.), and silane A raw material dope was prepared by adding 0.5 g of a coupling agent (KBM-403: manufactured by Shin-Etsu Chemical Co., Ltd.). This raw material dope was applied to a release film and dried at 80 ° C. for 5 minutes to obtain a bonding sheet having a thickness of 30 μm.
試料の前処理: 前処理として、Ni−Crシード層除去剤であるFLICKER−MH(日本化学産業(株)製)を液度30℃で用い、ここに前記アンクラッドポリイミドフィルム1〜アンクラッドポリイミドフィルム4を20分間浸漬し、水洗後、3vol%の希塩酸に室温で30秒間浸漬し、水洗した後、風乾した。 Sample pretreatment: As a pretreatment, FLICKER-MH (manufactured by Nippon Chemical Industry Co., Ltd.) which is a Ni-Cr seed layer remover was used at a liquidity of 30 ° C. The film 4 was immersed for 20 minutes, washed with water, then immersed in 3 vol% dilute hydrochloric acid at room temperature for 30 seconds, washed with water, and then air-dried.
ボンディングシートの張り合わせと前処理: ここでは、前記アンクラッドポリイミドフィルム1〜アンクラッドポリイミドフィルム4とボンディングシートとの張り合わせを行い、当該アンクラッドポリイミドフィルムの上に、ボンディングシートを積層載置し、設定温度170℃、圧力30kgf/cm2、プレス時間が5分間の条件で加熱圧着を行い、積層シート1〜積層シート4を得た。このようにして得られた積層シート1〜積層シート4は、密着力評価を行う前に、湿熱処理(105℃、100%RH、12時間)を前処理として行った。 Bonding and pre-treatment of bonding sheet: Here, the unclad polyimide film 1 to the unclad polyimide film 4 are bonded to the bonding sheet, and the bonding sheet is laminated and set on the unclad polyimide film. Thermocompression bonding was performed under the conditions of a temperature of 170 ° C., a pressure of 30 kgf / cm 2 , and a press time of 5 minutes to obtain laminated sheets 1 to 4. The laminated sheets 1 to 4 thus obtained were subjected to wet heat treatment (105 ° C., 100% RH, 12 hours) as a pre-treatment before the adhesion evaluation.
ACF密着力: ACF密着力は、90度引き剥がし強さで評価した。評価用の試片は、前記積層シート1〜積層シート4から幅2mm、長さ50mmサイズで切り出し、それぞれを4片作成した。そして、ボンディングシート側をP/S測定用の支持金具に両面テープで固定し、アンクラッドポリイミドフィルムの2mm幅端部をチャッキングし、50mm/分の速度でP/S(ACF密着力)を測定した。その結果、積層シート1〜積層シート4が示したP/S(ACF密着力)は、0.40N/mm〜0.49N/mmであった。評価結果を、比較例の評価結果と併せて、後の表4に示す。 ACF adhesion strength: ACF adhesion strength was evaluated by 90 degree peeling strength. Specimens for evaluation were cut out from the laminated sheet 1 to laminated sheet 4 with a width of 2 mm and a length of 50 mm, and four pieces were produced. Then, the bonding sheet side is fixed to the support fitting for P / S measurement with double-sided tape, the 2 mm wide end portion of the unclad polyimide film is chucked, and P / S (ACF adhesion) is obtained at a speed of 50 mm / min. It was measured. As a result, the P / S (ACF adhesion) exhibited by the laminated sheets 1 to 4 was 0.40 N / mm to 0.49 N / mm. The evaluation results are shown in Table 4 later together with the evaluation results of the comparative examples.
充填性: 基材樹脂表面へのレプリカ形状の形成状態を、充填性として評価した。まず、アンクラッドポリイミドフィルムの光透過性を光学顕微鏡で観察し、光の透過状態から判断してレプリカ形状の形成が異常と考えられる部分をマーキングした。マーキングした部分は、更に走査型電子顕微鏡(Scanning Electron Microscope:SEM)を用い、倍率100倍の観察像を撮影し、以下の判断基準によって充填性の良否を判定した。 Fillability: The formation state of the replica shape on the base resin surface was evaluated as fillability. First, the light transmittance of the unclad polyimide film was observed with an optical microscope, and a portion where the formation of the replica shape was considered abnormal as judged from the light transmission state was marked. The marked portion was further taken using a scanning electron microscope (SEM), and an observation image at a magnification of 100 times was taken, and the quality of the filling property was determined according to the following criteria.
良(○):レプリカ形状が形成されていない部分が視野内に観察されない。
否(×):レプリカ形状が形成されていない部分が視野内に明確に1点以上観察される。
Good (◯): A portion where no replica shape is formed is not observed in the field of view.
No (x): One or more points where no replica shape is formed are clearly observed in the field of view.
実施例のアンクラッドポリイミドフィルム1〜アンクラッドポリイミドフィルム4には、レプリカ形状が形成されていない部分が視野内に観察されなかった。従って、充填性は、全て良(○)であった。評価結果を、比較例の評価結果と併せて、後の表4に示す。 In the unclad polyimide film 1 to the unclad polyimide film 4 of the example, a portion where a replica shape was not formed was not observed in the visual field. Accordingly, the filling properties were all good (◯). The evaluation results are shown in Table 4 later together with the evaluation results of the comparative examples.
〔比較例1〕
表面処理銅箔の作成: 比較例1では、実施例と同じ電解銅箔を用い、実施例の表面処理条件に対し、粗化処理の条件と、亜鉛−ニッケル合金層の形成条件とが異なる設定とし、試料11を得た。処理条件を、実施例及び比較例2の処理条件と併せて、後の表1に示す。
[Comparative Example 1]
Preparation of surface-treated copper foil: In Comparative Example 1, the same electrolytic copper foil as that of the example was used, and the conditions of the roughening treatment and the formation conditions of the zinc-nickel alloy layer were set different from the surface treatment conditions of the example. Sample 11 was obtained. The processing conditions are shown in Table 1 later together with the processing conditions of Examples and Comparative Example 2.
表面処理銅箔の評価: 前記試料11に対して、実施例と同様の評価を行なった。その結果、試料11の銅箔接着面の表面粗さ(Rzjis)は0.9μm、三次元表面積は8040μm2、電解銅箔の二次元表面積との比(B)の値は1.23、(b)/(a)の値は1.22、そしてL値は64.3であった。防錆成分量は、クロムの量が2.0mg/m2、ニッケルと亜鉛との合計量が25mg/m2であった。評価結果を、実施例及び比較例2の評価結果と併せて、後の表2及び表3に示す。 Evaluation of surface-treated copper foil: The sample 11 was evaluated in the same manner as in the examples. As a result, the surface roughness (Rzjis) of the copper foil bonding surface of Sample 11 is 0.9 μm, the three-dimensional surface area is 8040 μm 2 , and the ratio (B) to the two-dimensional surface area of the electrolytic copper foil is 1.23, ( The value of b) / (a) was 1.22, and the L value was 64.3. The amount of the rust preventive component was 2.0 mg / m 2 for chromium and 25 mg / m 2 for the total amount of nickel and zinc. The evaluation results are shown in Table 2 and Table 3 later together with the evaluation results of Examples and Comparative Example 2.
2層FCCLの作成及び評価: 前記試料11を用い、実施例と同様にして2層FCCL11を作成し、同様の項目を評価した。 Preparation and evaluation of two-layer FCCL: Using the sample 11, a two-layer FCCL11 was prepared in the same manner as in the example, and the same items were evaluated.
ポリイミド樹脂基材と表面処理銅箔との接着強度: 前記2層FCCL11を用い、実施例と同様にして、P/S測定用配線板11を作成してP/S−Aを評価した。その結果、P/S測定用配線板11のP/S−Aは1.09N/mmであった。評価結果を、実施例及び比較例2の評価結果と併せて、後の表4に示す。 Adhesive strength between polyimide resin substrate and surface-treated copper foil: Using the two-layer FCCL11, a P / S measurement wiring board 11 was prepared and P / SA was evaluated in the same manner as in the example. As a result, P / S-A of the wiring board 11 for P / S measurement was 1.09 N / mm. The evaluation results are shown in Table 4 later together with the evaluation results of Examples and Comparative Example 2.
ACF密着力と充填性: アンクラッドポリイミドフィルム11のACF密着力は、実施例と同様にして、アンクラッドポリイミドフィルム11とボンディングシートとを貼り合わせた積層シート11を作成して評価した。その結果、積層シート11のP/S(ACF密着力)は0.16N/mmであった。また、充填性では、アンクラッドポリイミドフィルム11にはレプリカ形状が形成されていない部分が視野内に観察されなかった。従って、充填性は良(○)であった。評価結果を、実施例と比較例2の評価結果と併せて、後の表4に示す。 ACF Adhesive Strength and Fillability: The ACF adhesive strength of the unclad polyimide film 11 was evaluated by preparing a laminated sheet 11 in which the unclad polyimide film 11 and the bonding sheet were bonded in the same manner as in the example. As a result, the P / S (ACF adhesion) of the laminated sheet 11 was 0.16 N / mm. Moreover, in the filling property, the part where the replica shape was not formed in the unclad polyimide film 11 was not observed in the visual field. Therefore, the filling property was good (◯). The evaluation results are shown in Table 4 later together with the evaluation results of Examples and Comparative Example 2.
〔比較例2〕
表面処理銅箔の作成: 比較例2では、未処理電解銅箔として厚さ9μmの三井金属鉱業(株)製VLP電解銅箔を用い、析出面側に粗化処理と防錆処理とを施し、試料12を得た。このVLP電解銅箔析出面の表面粗さ(Rzjis)は2.0μmであり、三次元表面積は8512μm2であった。粗化処理と防錆処理の処理条件を、実施例及び比較例1の処理条件と併せて、以下の表1に示す。
[Comparative Example 2]
Preparation of surface-treated copper foil: In Comparative Example 2, a 9 μm thick VLP electrolytic copper foil manufactured by Mitsui Mining & Smelting Co., Ltd. was used as the untreated electrolytic copper foil , and a roughening treatment and a rust prevention treatment were performed on the precipitation surface side. Sample 12 was obtained. The VLP electrolytic copper foil deposition surface had a surface roughness (Rzjis) of 2.0 μm and a three-dimensional surface area of 8512 μm 2 . The treatment conditions for the roughening treatment and the rust prevention treatment are shown in the following Table 1 together with the treatment conditions for Examples and Comparative Example 1.
表面処理銅箔の評価: 前記試料12に対して、実施例と同様の評価を行なった。その結果、試料12の銅箔接着面の表面粗さ(Rzjis)は3.2μm、三次元表面積は13099μm2、電解銅箔の二次元表面積との比(B)の値は2.00、(b)/(a)の値は1.53、そしてL値は58.2であった。防錆成分量は、クロムの量が3.2mg/m2、ニッケルと亜鉛との合計量が57mg/m2であった。評価結果を、実施例と比較例1の評価結果と併せて、以下の表2及び表3に示す。 Evaluation of surface-treated copper foil: The sample 12 was evaluated in the same manner as in the examples. As a result, the surface roughness (Rzjis) of the copper foil bonding surface of Sample 12 is 3.2 μm, the three-dimensional surface area is 13099 μm 2 , and the ratio (B) to the two-dimensional surface area of the electrolytic copper foil is 2.00 ( The value of b) / (a) was 1.53 and the L value was 58.2. The amount of the rust preventive component was 3.2 mg / m 2 for chromium and 57 mg / m 2 for the total amount of nickel and zinc. The evaluation results are shown in Table 2 and Table 3 below together with the evaluation results of Examples and Comparative Example 1.
2層FCCLの作成及び評価: 前記試料12を用い、2層FCCLの特性評価を行なうための2層FCCL12を、厚さ約17μm(S2:4μm/S1:9μm/S2:4μm)の3層ポリイミドフィルム基材を用いた以外は実施例と同様にして作成し、同様の項目を評価した。 Preparation and evaluation of two-layer FCCL: Using the sample 12, the two-layer FCCL12 for evaluating the characteristics of the two-layer FCCL is a three-layer polyimide having a thickness of about 17 μm (S2: 4 μm / S1: 9 μm / S2: 4 μm). Except that the film base material was used, it was prepared in the same manner as in the example, and the same items were evaluated.
ポリイミド樹脂基材と表面処理銅箔との接着強度: 上記で得られた2層FCCL12を用い、実施例と同様にして、P/S測定用配線板12を作成してP/S−Aを評価した。その結果、P/S測定用配線板12のP/S−Aは1.22N/mmであった。評価結果を、実施例及び比較例1の評価結果と併せて、後の表4に示す。 Adhesive strength between polyimide resin substrate and surface-treated copper foil: Using the two-layer FCCL12 obtained above, a P / S measurement wiring board 12 was prepared and P / SA was obtained in the same manner as in the example. evaluated. As a result, P / S-A of P / S measurement wiring board 12 was 1.22 N / mm. The evaluation results are shown in Table 4 later together with the evaluation results of Examples and Comparative Example 1.
ACF密着力: アンクラッドポリイミドフィルム12のACF密着力は、実施例と同様にして、アンクラッドポリイミドフィルム12とボンディングシートとを貼り合わせた積層シート12を作成して評価した。その結果、積層シート12のP/S(ACF密着力)は0.20N/mmであった。評価結果を、実施例と比較例1の評価結果と併せて、以下の表4に示す。 ACF Adhesive Strength: The ACF adhesive strength of the unclad polyimide film 12 was evaluated by creating a laminated sheet 12 in which the unclad polyimide film 12 and the bonding sheet were bonded in the same manner as in the example. As a result, the P / S (ACF adhesion) of the laminated sheet 12 was 0.20 N / mm. The evaluation results are shown in Table 4 below together with the evaluation results of Examples and Comparative Example 1.
<実施例と比較例1との対比>
実施例のP/S測定用配線板1〜P/S測定用配線板4が示したP/S−Aは1.19N/mm〜1.28N/mmであり、実用上十分な値であった。これに対し、比較例1のP/S測定用配線板11が示したP/S−Aは1.09N/mmであり、実施例のP/S測定用配線板1〜P/S測定用配線板4と比べ、0.1N/mm以上P/S−Aが弱く、明らかに異なるレベルでP/S−Aが劣っている。
<Contrast between Example and Comparative Example 1>
P / S-A indicated by the P / S measurement wiring board 1 to P / S measurement wiring board 4 of the example is 1.19 N / mm to 1.28 N / mm, which is a practically sufficient value. It was. On the other hand, the P / S-A indicated by the P / S measurement wiring board 11 of Comparative Example 1 is 1.09 N / mm, and the P / S measurement wiring boards 1 to P / S measurement of the example. Compared with the wiring board 4, the P / SA is weaker at 0.1 N / mm or more, and the P / SA is inferior at a clearly different level.
そして、比較例1のアンクラッドポリイミドフィルム11が示した充填性は、実施例と同様に良(○)であった。しかし、比較例1の積層シート11が示したP/S(ACF密着力)は0.16N/mmであり、実施例の最低値でもある基準値0.40N/mmを満足できず、不十分なレベルであった。これは、試料11の銅箔接着面は、(B)の値が1.23、L値が64.3であり、本件発明の要件を満足していないことによると推察される。従って、比較例1で得られた試料11は、ACFを用いて電子部品を実装する2層ポリイミドプリント配線板の製造には適していない表面処理銅箔である。 And the filling property which the unclad polyimide film 11 of the comparative example 1 showed was good ((circle)) similarly to the Example. However, the P / S (ACF adhesion strength) exhibited by the laminated sheet 11 of Comparative Example 1 is 0.16 N / mm, which is insufficient because it cannot satisfy the reference value of 0.40 N / mm, which is the lowest value of the example. It was a great level. This is presumably because the copper foil bonding surface of Sample 11 has a value of (B) of 1.23 and an L value of 64.3, which does not satisfy the requirements of the present invention. Therefore, the sample 11 obtained in Comparative Example 1 is a surface-treated copper foil that is not suitable for manufacturing a two-layer polyimide printed wiring board on which electronic components are mounted using ACF.
<実施例と比較例2との対比>
比較例2のP/S測定用配線板12が示したP/S−Aは1.22N/mmであり、実施例のP/S測定用配線板1〜P/S測定用配線板4とほぼ同等の値となっている。
<Contrast between Example and Comparative Example 2>
The P / S-A indicated by the P / S measurement wiring board 12 of Comparative Example 2 is 1.22 N / mm, and the P / S measurement wiring board 1 to P / S measurement wiring board 4 of the example and It is almost the same value.
また、比較例2の積層シート12が示したP/S(ACF密着力)は0.20N/mmであり、比較例1よりは大きな値を示しているが、実施例の最低値でもある基準値0.40N/mmを満足できず、不十分なレベルであった。 Further, P / S (ACF adhesion) shown by the laminated sheet 12 of Comparative Example 2 is 0.20 N / mm, which is larger than that of Comparative Example 1, but is also a minimum value of the example. The value of 0.40 N / mm could not be satisfied, which was an insufficient level.
上記から、実施例で作成した2層FCCL用の表面処理銅箔は、本件発明の要件である銅箔接着面の表面粗さ(Rzjis)及び(B)の値を満足している故に、ACFを用いて電子部品の実装を行なうプリント配線板用途に好適に用いることが出来る表面処理銅箔である。更に、L値が低いことがより好ましいことも明らかである。 From the above, the surface-treated copper foil for the two-layer FCCL prepared in the examples satisfies the values of the surface roughness (Rzjis) and (B) of the copper foil bonding surface, which are requirements of the present invention. It is a surface-treated copper foil that can be suitably used for printed wiring board applications in which electronic parts are mounted using Further, it is clear that a low L value is more preferable.
本件発明に係る2層ポリイミド銅張積層板用の表面処理銅箔は、粗化粒子が微細で、且つ、均一である。そのため、ACFを用いて電子部品をする際には、2層ポリイミドプリント配線板の基材樹脂表面とACFとの密着力が良好であり、電子部品の脱落などが発生しにくい。従って、質量の関係で2層ポリイミドプリント配線板へのACF実装が出来ないため、レーザーを使用したスポットハンダ付けなどで実装していた、耐熱性が低い電子部品のACF実装が可能になる。更に、防錆処理層も、三次元的な被覆が均一に施されている。従って、この表面処理銅箔を用いて得られる2層ポリイミド銅張積層板は、微細配線の形成性に優れ、形成された配線は、耐薬品性、耐吸湿性に優れている。 In the surface-treated copper foil for a two-layer polyimide copper clad laminate according to the present invention, the roughened particles are fine and uniform. Therefore, when an electronic component is made using ACF, the adhesion between the base resin surface of the two-layer polyimide printed wiring board and the ACF is good, and the electronic component is unlikely to drop off. Therefore, ACF mounting on a two-layer polyimide printed wiring board cannot be performed due to the mass, so that ACF mounting of electronic parts with low heat resistance that has been mounted by spot soldering using a laser or the like becomes possible. Furthermore, the rust-proofing layer is also uniformly coated in three dimensions. Therefore, the two-layer polyimide copper clad laminate obtained by using this surface-treated copper foil is excellent in the formation of fine wiring, and the formed wiring is excellent in chemical resistance and moisture absorption resistance.
Claims (3)
前記表面処理銅箔は、条件1〜条件4を満たすことを特徴とする2層ポリイミド銅張積層板用の表面処理銅箔。
条件1: 当該表面処理銅箔のポリイミド樹脂基材との接着面は、表面粗さ(Rzjis)が1.0μm未満の表面を備える未処理電解銅箔を用いて得られたものであること。
条件2: 当該表面処理銅箔のポリイミド樹脂基材との接着面は、表面粗さ(Rzjis)が2.5μm以下、6550μm2の二次元領域をレーザー法で測定したときの表面積(三次元面積:Aμm2)と、二次元領域面積との比[(A)/(6550)]で算出される表面積比(B)の値が1.25〜2.50の範囲にあること。
条件3: 当該表面処理銅箔のポリイミド樹脂基材との接着面は、表面積が6550μm2の二次元領域をレーザー法で測定した場合の、粗化処理前の表面積(三次元面積:aμm2)と、粗化処理後の表面積(三次元面積:bμm2)との比[(b)/(a)]の値が1.20〜2.50の範囲であり、粗化粒子の形状が略球状となるように電気めっき法により粗化処理を施したものであること。
条件4: 当該表面処理銅箔のポリイミド樹脂基材との接着面は、二次元領域の単位面積あたりのクロムの量が2.0mg/m 2 以上6.0mg/m 2 以下となる表面処理が施されていること。 In the surface-treated copper foil for a two-layer polyimide copper-clad laminate used for manufacturing a printed wiring board on which an electronic component is mounted using an anisotropic conductive film,
The surface-treated copper foil for a two-layer polyimide copper clad laminate, wherein the surface-treated copper foil satisfies conditions 1 to 4.
Condition 1: The surface of the surface-treated copper foil bonded to the polyimide resin base material is obtained using an untreated electrolytic copper foil having a surface with a surface roughness (Rzjis) of less than 1.0 μm.
Condition 2: The surface of the surface-treated copper foil to be bonded to the polyimide resin substrate has a surface roughness (three-dimensional area) when a two-dimensional region having a surface roughness (Rzjis) of 2.5 μm or less and 6550 μm 2 is measured by a laser method. : Surface area ratio (B) calculated by the ratio [(A) / (6550)] of A μm 2 ) to the two-dimensional area is in the range of 1.25 to 2.50.
Condition 3: The adhesion surface of the surface-treated copper foil with the polyimide resin base material is a surface area before roughening treatment (three-dimensional area: a μm 2 ) when a two-dimensional region having a surface area of 6550 μm 2 is measured by a laser method. The value of the ratio [(b) / (a)] to the surface area after the roughening treatment (three-dimensional area: b μm 2 ) is in the range of 1.20 to 2.50 , and the shape of the roughened particles is substantially spherical. Roughened by electroplating so that
Condition 4: the adhesive surface of the polyimide resin base material of the surface treated copper foil, surface treatment amount of chromium per unit area of the two-dimensional region is 2.0 mg / m 2 or more 6.0 mg / m 2 or less Being given.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007276784A JP5215631B2 (en) | 2007-10-24 | 2007-10-24 | Surface treated copper foil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007276784A JP5215631B2 (en) | 2007-10-24 | 2007-10-24 | Surface treated copper foil |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009105286A JP2009105286A (en) | 2009-05-14 |
JP5215631B2 true JP5215631B2 (en) | 2013-06-19 |
Family
ID=40706675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007276784A Active JP5215631B2 (en) | 2007-10-24 | 2007-10-24 | Surface treated copper foil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5215631B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4999126B2 (en) | 2010-06-15 | 2012-08-15 | 古河電気工業株式会社 | Circuit parts |
JP5497808B2 (en) * | 2012-01-18 | 2014-05-21 | Jx日鉱日石金属株式会社 | Surface-treated copper foil and copper-clad laminate using the same |
WO2013108415A1 (en) * | 2012-01-18 | 2013-07-25 | Jx日鉱日石金属株式会社 | Surface-treated copper foil for copper-clad laminate and copper-clad laminate using same |
KR102128954B1 (en) * | 2012-06-06 | 2020-07-01 | 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 | Copper foil for printed wiring board, process for preparing the same, and printed wiring board using the copper foil |
TWI509111B (en) * | 2012-11-26 | 2015-11-21 | Jx Nippon Mining & Metals Corp | Surface treatment of electrolytic copper foil, laminated board, and printed wiring board, electronic equipment |
JP6329731B2 (en) * | 2013-04-26 | 2018-05-23 | Jx金属株式会社 | Copper foil with carrier, method for producing copper-clad laminate, and method for producing printed wiring board |
JP6166614B2 (en) * | 2013-07-23 | 2017-07-19 | Jx金属株式会社 | Surface-treated copper foil, copper foil with carrier, substrate, printed wiring board, printed circuit board, copper-clad laminate, and printed wiring board manufacturing method |
EP3026145A4 (en) | 2013-07-23 | 2017-04-12 | JX Nippon Mining & Metals Corporation | Treated surface copper foil, copper foil with carrier, substrate, resin substrate, printed circuit board, copper clad laminate, and printed circuit board manufacturing method |
JP6335449B2 (en) * | 2013-07-24 | 2018-05-30 | Jx金属株式会社 | Copper foil with carrier, method for producing copper-clad laminate and method for producing printed wiring board |
JP7445830B2 (en) | 2018-10-05 | 2024-03-08 | パナソニックIpマネジメント株式会社 | Copper-clad laminates, wiring boards, and copper foils with resin |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3476264B2 (en) * | 1993-12-24 | 2003-12-10 | 三井金属鉱業株式会社 | Copper foil for printed circuit inner layer and method of manufacturing the same |
JP2002194573A (en) * | 2000-12-27 | 2002-07-10 | Mitsubishi Gas Chem Co Inc | Surface treatment agent for copper and copper alloy |
JP4567360B2 (en) * | 2004-04-02 | 2010-10-20 | 三井金属鉱業株式会社 | Copper foil manufacturing method and copper foil obtained by the manufacturing method |
JP4652020B2 (en) * | 2004-11-16 | 2011-03-16 | 新日鐵化学株式会社 | Copper-clad laminate |
JP2006222185A (en) * | 2005-02-09 | 2006-08-24 | Furukawa Circuit Foil Kk | Polyimide flexible copper clad laminate, copper foil therefor, and polyimide flexible printed wiring board |
-
2007
- 2007-10-24 JP JP2007276784A patent/JP5215631B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009105286A (en) | 2009-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5215631B2 (en) | Surface treated copper foil | |
JP5634103B2 (en) | A treated copper foil for a copper clad laminate, a copper clad laminate obtained by bonding the treated copper foil to an insulating resin substrate, and a printed wiring board using the copper clad laminate. | |
JP5497808B2 (en) | Surface-treated copper foil and copper-clad laminate using the same | |
TWI704048B (en) | Surface-treated copper foil and copper clad laminate made of it | |
JP5475897B1 (en) | Surface-treated copper foil and laminate using the same, copper foil, printed wiring board, electronic device, and method for manufacturing printed wiring board | |
TW202340543A (en) | Surface-treated copper foil, copper clad laminate, and printed wiring board | |
WO2013108415A1 (en) | Surface-treated copper foil for copper-clad laminate and copper-clad laminate using same | |
JP2007186797A (en) | Method for producing ultrathin copper foil with carrier, ultrathin copper foil produced by the production method, and printed circuit board, multilayer printed circuit board and wiring board for chip on film using the ultrathin copper foil | |
JP2013001993A (en) | Ultrathin copper foil with carrier foil and method of manufacturing the same | |
JP2011219789A (en) | Treated copper foil for copper-clad laminate, copper-clad laminate obtained by sticking the treated copper foil to insulating resin substrate, and printed wiring board obtained by using the copper-clad laminate | |
JP5913356B2 (en) | Copper foil for printed circuit | |
KR20070044774A (en) | Two-layer flexible printed wiring board and method for manufacturing the same | |
JP2010141227A (en) | Rolled copper foil for printed wiring board | |
TW202030379A (en) | Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board | |
TW202001000A (en) | Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board | |
JP4999126B2 (en) | Circuit parts | |
JP6845382B1 (en) | Surface-treated copper foil, copper-clad laminate, and printed wiring board | |
JP4660819B2 (en) | Copper foil for flexible printed wiring boards for COF | |
JP4748519B2 (en) | Ultra thin copper foil with carrier, manufacturing method thereof, printed wiring board using ultra thin copper foil with carrier | |
JP2013096003A (en) | Copper foil for printed circuit | |
TW202042600A (en) | Copper foil with surface treatment, copper-coated laminate, and printed circuit board capable of achieving tightness with non-roughened surface and reliability of high standard and reduced transmission loss | |
WO2024070245A1 (en) | Surface-treated copper foil, copper-clad laminate plate, and printed wiring board | |
WO2024070246A1 (en) | Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board | |
TWI411707B (en) | Ultra - low copper foil as the carrier of ultra - thin copper foil and its use | |
WO2024070247A1 (en) | Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100806 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111227 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120222 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120824 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121120 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20121127 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130218 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130301 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5215631 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160308 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |