JP2009295656A - Substrate for flexible wiring board and method for manufacturing the same - Google Patents

Substrate for flexible wiring board and method for manufacturing the same Download PDF

Info

Publication number
JP2009295656A
JP2009295656A JP2008145445A JP2008145445A JP2009295656A JP 2009295656 A JP2009295656 A JP 2009295656A JP 2008145445 A JP2008145445 A JP 2008145445A JP 2008145445 A JP2008145445 A JP 2008145445A JP 2009295656 A JP2009295656 A JP 2009295656A
Authority
JP
Japan
Prior art keywords
layer
copper
current density
substrate
flexible wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008145445A
Other languages
Japanese (ja)
Inventor
Masaaki Hasemi
正明 長谷見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2008145445A priority Critical patent/JP2009295656A/en
Publication of JP2009295656A publication Critical patent/JP2009295656A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate for a two-layer flexible wiring board, which has a copper film layer on a resin film substrate and which improves a fracture resistance property. <P>SOLUTION: The substrate for the two-layer flexible wiring board is composed of a resin film base material and a wiring copper layer formed at least on one surface of the resin film base material and having [111] preferred orientation. In a method for manufacturing the substrate for the two-layer flexible wiring board, a copper plating laminate obtained by alternately combining a low current density layer and a high current density layer is formed on at least one surface of the resin film base material, and then the copper plating laminate is heat-processed to form the wiring copper layer composed of the copper film having [111] preferred orientation from the copper plating laminate. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、樹脂フィルム基板上に銅皮膜層を有する耐折性の向上した2層フレキシブル配線板用基板及びその製造方法に関するものである。   The present invention relates to a two-layer flexible wiring board substrate having a copper film layer on a resin film substrate and having improved folding resistance, and a method for producing the same.

フレキシブル配線板は、一般に屈曲性を必要とするハードディスクの読み書きヘッドやプリンターヘッド、デジタルカメラ内の屈折配線板用などとして広く用いられている。
フレキシブル配線板用基板には、電解銅箔や圧延銅箔を接着剤で樹脂フィルム基材に接着した通称3層基板(銅層/接着剤層/ベースフィルム層(絶縁層))と、樹脂フィルム基材上にシード層、銅めっき層を順次形成した配線板用基板(通称めっき基板)および銅箔に樹脂フィルム基材のワニスを塗って絶縁層を形成した配線板用基板(通称キャスト基板)の通称2層基板(銅層/ベースフィルム層(絶縁層))の2種類がある。
Flexible wiring boards are widely used for read / write heads and printer heads of hard disks that require flexibility, and for refractive wiring boards in digital cameras.
The flexible wiring board substrate is commonly known as a three-layer substrate (copper layer / adhesive layer / base film layer (insulating layer)) in which electrolytic copper foil or rolled copper foil is bonded to a resin film substrate with an adhesive, and a resin film. Substrate for wiring board (commonly called plating board) on which a seed layer and a copper plating layer are sequentially formed on a base material, and a wiring board substrate (commonly called cast board) on which an insulating layer is formed by applying a resin film base varnish to copper foil There are two types of two-layer substrates (copper layer / base film layer (insulating layer)).

近年、フレキシブル配線基板の電気回路配線に用いられる銅箔の耐屈折性の評価としてJIS−P−8115やASTM−D2176で規格されたMIT耐折度試験(Folding Endurance Test)が工業的に使用さている。この試験では、試験片に形成する回路パターンの断線までの屈折回数で評価され、この屈折回数が大きいほど耐折性が良いとされている。   In recent years, the MIT folding resistance test (Folding Endurance Test) standardized by JIS-P-8115 and ASTM-D2176 has been industrially used as an evaluation of the refraction resistance of copper foil used for electric circuit wiring of flexible wiring boards. Yes. In this test, the number of refractions until the circuit pattern formed on the test piece is broken is evaluated, and the greater the number of refractions, the better the folding resistance.

ところで、銅箔の耐屈折性の向上を図るものとしては、例えば特許文献1にあるように、カーボン量が18ppm以下の銅箔を用いて銅箔表面を100℃以上で加熱処理することにより耐屈曲性や常温及び高温時の伸びの向上を図ったり、また、特許文献2にあるように、伸び率が20〜40%の電解銅箔を用いて圧下率40〜80%の圧延加工を行うことにより耐屈折性の向上を図る技術が提案されている。
特開平8−283886号公報 特開平6−269807号公報
By the way, in order to improve the refractive resistance of the copper foil, for example, as disclosed in Patent Document 1, the copper foil surface is heat-treated at 100 ° C. or higher using a copper foil having a carbon content of 18 ppm or less. Improvement in flexibility and elongation at normal temperature and high temperature is performed, and as disclosed in Patent Document 2, rolling with a rolling reduction of 40 to 80% is performed using an electrolytic copper foil with an elongation of 20 to 40%. Thus, a technique for improving the refraction resistance has been proposed.
JP-A-8-283886 JP-A-6-269807

しかしながら、上記に記載した方法は、すべて3層基板用の圧延銅箔や電解銅箔で配線基板形成前の銅箔に対するものであり、2層基板では、キャスト基板に用いられる銅箔に応用可能であるが、本発明が対象とするめっき基板は、樹脂フィルム基材の少なくとも片面に形成したシード層を設けた後、このシード層上に銅めっき層を形成しているため、銅めっき層の熱処理や圧延加工ができない。そのため、めっき基板において耐折性に優れためっき基板及びその製造方法についての提案には至っていない。   However, the methods described above are all applied to copper foil before wiring board formation with rolled copper foil or electrolytic copper foil for three-layer substrates, and can be applied to copper foil used for cast substrates with two-layer substrates. However, since the plating substrate targeted by the present invention is provided with a seed layer formed on at least one surface of the resin film substrate, and then a copper plating layer is formed on this seed layer, the copper plating layer It cannot be heat-treated or rolled. Therefore, the proposal about the plating board | substrate excellent in the folding resistance in the plating board | substrate, and its manufacturing method has not been reached.

このような課題に鑑み、本発明の第一の発明は、樹脂フィルム基材と、前記樹脂フィルム基材の少なくとも片面に設けられた〔111〕優先配向の配線用銅層とからなることを特徴とする2層フレキシブル配線用基板である。
また、この配線用銅層は、低電流密度層と高電流密度層を交互に組み合わせた銅めっき積層体を熱処理して形成した銅皮膜であることが好ましい。
In view of such a problem, the first invention of the present invention comprises a resin film substrate and a wiring layer [111] preferentially oriented wiring provided on at least one surface of the resin film substrate. It is the board | substrate for 2 layers flexible wiring.
Moreover, it is preferable that this copper layer for wiring is a copper film formed by heat-treating a copper plating laminate in which low current density layers and high current density layers are alternately combined.

本発明の第二の発明は、樹脂フィルム基材の少なくとも片面に低電流密度層と高電流密度層を交互に組み合わせた銅めっき積層体を形成した後、次いで熱処理して前記銅めっき積層体を〔111〕優先配向の銅皮膜からなる配線用銅層を形成したことを特徴とする2層フレキシブル配線板用基板の製造方法である。
また、この低電流密度層を形成する際の銅めっきの電流密度は0.05〜0.5A/dmで、この高電流密度層を形成する際の銅めっきの電流密度は5〜20A/dmであることが好ましい。
According to a second aspect of the present invention, after forming a copper plating laminate in which a low current density layer and a high current density layer are alternately combined on at least one surface of a resin film substrate, the copper plating laminate is then heat treated. [111] A method for producing a substrate for a two-layer flexible wiring board, wherein a copper layer for wiring composed of a preferentially oriented copper film is formed.
The current density of the copper plating when forming the low current density layer is 0.05 to 0.5 A / dm 2 , and the current density of the copper plating when forming the high current density layer is 5 to 20 A / dm 2. dm 2 is preferred.

本発明の2層フレキシブル配線板用基板によれば、樹脂フィルム基材の少なくとも片面に形成したシード層上に、低電流密度層と高電流密度層を順次複数組み合わせて多層構造の積層めっき層を設ける構成にした後に行う熱処理の作用によって、この積層めっき層が〔111〕優先配向の銅皮膜となり、MIT耐折度試験の折り曲げ時に常温動的再結晶が起こることで、耐屈折回数が大幅に向上した2層フレキシブル配線板用基板が得られるという優れた効果を得ることが可能となる。   According to the substrate for a two-layer flexible wiring board of the present invention, a multi-layered laminated plating layer is formed by sequentially combining a plurality of low current density layers and high current density layers on a seed layer formed on at least one surface of a resin film substrate. The laminated plating layer becomes a copper film with [111] priority orientation due to the heat treatment performed after the configuration is provided, and the room temperature dynamic recrystallization occurs during bending in the MIT folding resistance test, which greatly increases the number of refraction resistance. An excellent effect that an improved two-layer flexible wiring board substrate can be obtained can be obtained.

本発明の2層フレキシブル配線板用基板では、表面に導電性を付与された樹脂フィルム基材の製造方法は特に限定されず、樹脂フィルム表面の少なくとも片面に例えば銅、ニッケルなどの金属を化学的に形成する無電解めっき法、或いは銅、ニッケル、クロム等の金属を蒸着やスパッタで形成する乾式めっき法などを用いて、樹脂フィルム表面上に導電性を付与する。   In the substrate for a two-layer flexible wiring board of the present invention, the method for producing a resin film base material having conductivity on the surface is not particularly limited, and a metal such as copper or nickel is chemically applied to at least one surface of the resin film surface. Conductivity is imparted to the surface of the resin film by using an electroless plating method formed on the substrate or a dry plating method in which a metal such as copper, nickel, or chromium is formed by vapor deposition or sputtering.

積層銅めっき層の形成は、導電性の付与された樹脂フィルム基板に、銅の電気めっき法を用いて、低電流密度層と高電流密度層の各銅めっき層を交互に形成して作製する。その場合、低電流密度層と高電流密度層の形成に用いる電流密度範囲は、低電流密度層では0.05〜0.5A/dm、高電流密度層では5〜20A/dmの範囲で、この電流密度の差は大きい方が望ましく、この電流密度差が小さいと、その後に熱処理しても〔111〕優先配向が十分得られず、MIT耐折度試験の折り曲げ時の常温動的再結晶が起こり難くなってしまう。
尚、積層銅めっき層の形成において、低電流密度層と高電流密度層の積層の順番は、先ず低電流密度層を形成し、次いで高電流密度層を形成する順で行ない、同じ層数になるように積層するのが好ましい。
The multilayer copper plating layer is formed by alternately forming the copper plating layers of the low current density layer and the high current density layer on the resin film substrate to which conductivity is imparted by using a copper electroplating method. . In that case, the current density range used for forming the low current density layer and the high current density layer is 0.05 to 0.5 A / dm 2 for the low current density layer and 5 to 20 A / dm 2 for the high current density layer. Therefore, it is desirable that the difference in current density is large. If the difference in current density is small, sufficient [111] preferential orientation cannot be obtained even after heat treatment, and the room temperature dynamics at the time of bending in the MIT folding resistance test are not obtained. Recrystallization hardly occurs.
In the formation of the laminated copper plating layer, the low current density layer and the high current density layer are laminated in the order in which the low current density layer is first formed and then the high current density layer is formed. It is preferable to laminate so as to be.

この積層銅めっき層の各層の厚みは、低電流密度層では、0.5〜1.0μm、高電流密度層では、1.5〜3.0μmが望ましい。これらの値より小さくても、逆に大きくても、積層後の熱処理での良好な〔111〕優先配向が得られない。
又、各層の層数は1層から4層、全体として2層から8層程度が望ましく、より望ましくは4層から8層を積層することで、熱処理後に良好な〔111〕優先配向が得られる。
The thickness of each layer of the laminated copper plating layer is preferably 0.5 to 1.0 μm for the low current density layer and 1.5 to 3.0 μm for the high current density layer. Even if it is smaller or larger than these values, good [111] preferred orientation cannot be obtained in the heat treatment after lamination.
In addition, the number of layers in each layer is preferably 1 to 4 layers, and preferably about 2 to 8 layers as a whole, and more preferably 4 to 8 layers are laminated to obtain a good [111] preferential orientation after heat treatment. .

この積層銅めっき層の形成に使用される銅の電気めっき法の光沢銅めっき液は、公知の組成の銅めっき浴を用いてよく、一般的には、硫酸銅浴を用いる。添加剤は低電流密度から高電流密度まで使用が可能なものであれば流す電流値を変化させることで低電流密度層と高電流密度層の多層構造を形成することができる。また、低電流密度用と高電流密度用の添加剤を分けて交互に使う方法でも良い。更には、浴温や攪拌といっためっき条件によって電流密度のコントロールをすることもできる。   The bright copper plating solution of the copper electroplating method used for forming this laminated copper plating layer may use a copper plating bath having a known composition, and generally uses a copper sulfate bath. As long as the additive can be used from a low current density to a high current density, a multilayer structure of a low current density layer and a high current density layer can be formed by changing a current value to be passed. Alternatively, the additive for low current density and the additive for high current density may be used separately. Furthermore, the current density can be controlled by plating conditions such as bath temperature and stirring.

積層銅めっき層の形成後の熱処理は、〔111〕優先配向させるのに重要なもので、その条件としては、温度は120から150℃が好ましく、保持時間は積層する層数などによって適時時間を選択して行なう。
以下、実施例を用いて詳細に説明する。
The heat treatment after the formation of the laminated copper plating layer is important for [111] preferential orientation. As the conditions, the temperature is preferably 120 to 150 ° C., and the holding time is set to a suitable time depending on the number of layers to be laminated. Select and do.
Hereinafter, it demonstrates in detail using an Example.

厚さ38μmのポリイミドフィルムの片面に、スパッタリングによって厚み0.1μmの銅皮膜によるシード層を形成した。この導電性を付与したポリイミドフィルムに市販の硫酸銅めっき浴を用いて、0.5A/dmの低電流密度層(Low)と5A/dmの高電流密度層(High)を、この順に交互に合わせて4層を積層させ、全体の膜厚が8μmとなるように調整した積層銅めっき層を形成した。次いで、120℃、90分間の熱処理を施し、〔111〕優先配向した銅皮膜からなる配線用銅層を有する銅ポリイミド2層フレキシブル配線板用基板を作製した。尚、〔111〕優先配向割合は、EBSD法(Electron Back Scattering Diffraction Pattern)により求めた。 A seed layer of a copper film having a thickness of 0.1 μm was formed on one side of a polyimide film having a thickness of 38 μm by sputtering. Using a commercially available copper sulfate plating bath on this conductive polyimide film, a low current density layer (Low) of 0.5 A / dm 2 and a high current density layer (High) of 5 A / dm 2 are arranged in this order. The laminated copper plating layer adjusted so that the whole film thickness might be set to 8 micrometers was formed by laminating | stacking 4 layers alternately. Next, a heat treatment was performed at 120 ° C. for 90 minutes to prepare a copper polyimide two-layer flexible wiring board substrate having a wiring copper layer composed of a copper film preferentially oriented in [111]. The [111] preferred orientation ratio was determined by the EBSD method (Electron Back Scattering Diffraction Pattern).

この得られた2層フレキシブル配線板用基板の耐屈折性は、JIS−P−8115のMIT試験法の試験片パターンを、ホトリソグラフィーにて形成し、JIS−P−8115のMIT試験機を用いて、曲げ曲率R=0.38mm、荷重500g、屈折回転数175r.p.mの条件下で耐屈折性試験を行い、断線までの屈折回数を測定した。その結果を表1に示す。   The refraction resistance of the obtained two-layer flexible wiring board substrate is obtained by forming a test piece pattern of the MIT test method of JIS-P-8115 by photolithography and using a MIT test machine of JIS-P-8115. Bending curvature R = 0.38 mm, load 500 g, refractive rotation number 175 r. p. A refraction resistance test was performed under the condition of m, and the number of refractions until disconnection was measured. The results are shown in Table 1.

厚み38μmのポリイミドフィルムの片面にスパッタリングによって厚み0.1μmの銅皮膜を形成した。この導電性を付与したポリイミドフィルムに市販の硫酸銅めっき浴を用いて、0.1A/dmの電流密度層と10A/dmの電流密度層を交互に4層を積層させ、全体の膜厚が8μmとなるように調整しためっき皮膜を形成し、120℃にて90分間の熱処理を施した銅ポリイミド2層フレキシブル配線板用基板を試作した。
得られた2層フレキシブル配線板用基板について実施例1と同様の条件で耐屈折性試験を行なった結果を表1に併せて示す。
A copper film having a thickness of 0.1 μm was formed on one side of a polyimide film having a thickness of 38 μm by sputtering. Using this commercially available polyimide film, a commercially available copper sulfate plating bath is used to laminate four layers of 0.1 A / dm 2 current density layers and 10 A / dm 2 current density layers alternately to form an overall film. A copper polyimide two-layer flexible wiring board substrate was prepared by forming a plating film adjusted to have a thickness of 8 μm and performing heat treatment at 120 ° C. for 90 minutes.
Table 1 also shows the results of a refraction resistance test performed on the obtained two-layer flexible wiring board substrate under the same conditions as in Example 1.

厚さ38μmのポリイミドフィルムの片面にスパッタリングによって厚さ0.1μmの銅皮膜を形成した。この導電性を付与したポリイミドフィルムに市販の硫酸銅めっき浴を用いて、0.3A/dmの電流密度層と8A/dmの電流密度層を交互に4層を積層させ、全体の膜厚が8μmとなるように調整しためっき皮膜を形成し、120℃にて90分間の熱処理を施した銅ポリイミド2層フレキシブル配線板用基板を試作した。
得られた2層フレキシブル配線板用基板について実施例1と同様の条件で耐屈折性試験を行なった結果を表1に併せて示す。
A copper film having a thickness of 0.1 μm was formed on one side of a polyimide film having a thickness of 38 μm by sputtering. Using a commercially available copper sulfate plating bath on this polyimide film provided with conductivity, four current density layers of 0.3 A / dm 2 and 8 A / dm 2 are alternately laminated to form a whole film. A copper polyimide two-layer flexible wiring board substrate was prepared by forming a plating film adjusted to have a thickness of 8 μm and performing heat treatment at 120 ° C. for 90 minutes.
Table 1 also shows the results of a refraction resistance test performed on the obtained two-layer flexible wiring board substrate under the same conditions as in Example 1.

厚さ38μmのポリイミドフィルムの片面に、スパッタリングによって厚み0.1μmの銅皮膜によるシード層を形成した。この導電性を付与したポリイミドフィルムに市販の硫酸銅めっき浴を用いて、0.5A/dmの低電流密度層(Low)と5A/dmの高電流密度層(High)を、この順に交互に合わせて8層を積層させ、全体の膜厚が8μmとなるように調整した積層銅めっき層を形成した。次いで、120℃、90分間の熱処理を施し、〔111〕優先配向した銅皮膜からなる配線用銅層を有する銅ポリイミド2層フレキシブル配線板用基板を作製した。
得られた2層フレキシブル配線板用基板について実施例1と同様の条件で耐屈折性試験を行なった結果を表1に併せて示す。
A seed layer of a copper film having a thickness of 0.1 μm was formed on one side of a polyimide film having a thickness of 38 μm by sputtering. Using a commercially available copper sulfate plating bath on this conductive polyimide film, a low current density layer (Low) of 0.5 A / dm 2 and a high current density layer (High) of 5 A / dm 2 are arranged in this order. Eight layers were laminated alternately, and a laminated copper plating layer adjusted so that the total film thickness was 8 μm was formed. Next, a heat treatment was performed at 120 ° C. for 90 minutes to prepare a copper polyimide two-layer flexible wiring board substrate having a wiring copper layer composed of a copper film preferentially oriented in [111].
Table 1 also shows the results of a refraction resistance test performed on the obtained two-layer flexible wiring board substrate under the same conditions as in Example 1.

厚み38μmのポリイミドフィルムの片面にスパッタリングによって厚み0.1μmの銅皮膜を形成した。この導電性を付与したポリイミドフィルムに市販の硫酸銅めっき浴を用いて、0.1A/dmの電流密度層と10A/dmの電流密度層を交互に4層を積層させ、全体の膜厚が8μmとなるように調整しためっき皮膜を形成し、100℃の温度にて、110分間の熱処理を施した銅ポリイミド2層フレキシブル配線板用基板を試作した。
得られた2層フレキシブル配線板用基板について実施例1と同様の条件で耐屈折性試験を行なった結果を表1に併せて示す。
A copper film having a thickness of 0.1 μm was formed on one side of a polyimide film having a thickness of 38 μm by sputtering. Using this commercially available polyimide film, a commercially available copper sulfate plating bath is used to laminate four layers of 0.1 A / dm 2 current density layers and 10 A / dm 2 current density layers alternately to form an overall film. A plating film adjusted to have a thickness of 8 μm was formed, and a copper-polyimide two-layer flexible wiring board substrate that was heat-treated for 110 minutes at a temperature of 100 ° C. was prototyped.
Table 1 also shows the results of a refraction resistance test performed on the obtained two-layer flexible wiring board substrate under the same conditions as in Example 1.

厚さ38μmのポリイミドフィルムの片面にスパッタリングによって厚さ0.1μmの銅皮膜を形成した。この導電性を付与したポリイミドフィルムに市販の硫酸銅めっき浴を用いて、0.3A/dmの電流密度層と8.0A/dmの電流密度層を交互に4層を積層させ、全体の膜厚が8μmとなるように調整しためっき皮膜を形成し、150℃の温度にて、70分間の熱処理を施した銅ポリイミド2層フレキシブル配線板用基板を試作した。
得られた2層フレキシブル配線板用基板について実施例1と同様の条件で耐屈折性試験を行なった結果を表1に併せて示す。
A copper film having a thickness of 0.1 μm was formed on one side of a polyimide film having a thickness of 38 μm by sputtering. Using this commercially available polyimide film, a commercially available copper sulfate plating bath was used, and a current density layer of 0.3 A / dm 2 and a current density layer of 8.0 A / dm 2 were alternately laminated to form a total layer. A copper-polyimide two-layer flexible wiring board substrate was prepared by forming a plating film adjusted to a thickness of 8 μm and heat-treating at 150 ° C. for 70 minutes.
Table 1 also shows the results of a refraction resistance test performed on the obtained two-layer flexible wiring board substrate under the same conditions as in Example 1.

[比較例1]
厚さ38μmのポリイミドフィルムの片面にスパッタリングによって厚さ0.1μmの銅皮膜を形成した。この導電性を付与したポリイミドフィルムに市販の硫酸銅めっき浴を用いて、1A/dmの電流密度層と3A/dmの電流密度層を交互に4層を積層させ、全体の膜厚が8μmとなるように調整しためっき皮膜を形成し、120℃にて90分間の熱処理を施した銅ポリイミド基板を試作した。得られた2層フレキシブル配線板用基板について実施例1と同様の条件で耐屈折性試験を行なった結果を表1に併せて示す。
[Comparative Example 1]
A copper film having a thickness of 0.1 μm was formed on one side of a polyimide film having a thickness of 38 μm by sputtering. Using a commercially available copper sulfate plating bath on the polyimide film provided with conductivity, four current density layers of 1 A / dm 2 and 3 A / dm 2 are alternately laminated, and the total film thickness is A plating film adjusted to 8 μm was formed, and a copper polyimide substrate subjected to a heat treatment at 120 ° C. for 90 minutes was made as a prototype. Table 1 also shows the results of a refraction resistance test performed on the obtained two-layer flexible wiring board substrate under the same conditions as in Example 1.

[比較例2]
厚さ38μmのポリイミドフィルムの片面に、スパッタリングによって厚み0.1μmの銅皮膜によるシード層を形成した。この導電性を付与したポリイミドフィルムに市販の硫酸銅めっき浴を用いて、0.5A/dmの低電流密度層と5A/dmの高電流密度層を、この順に交互に合わせて4層を積層させ、全体の膜厚が8μmとなるように調整した積層銅めっき層を形成した。次いで、80℃、140分間の熱処理を施して銅ポリイミド2層フレキシブル配線板用基板を作製した。
得られた2層フレキシブル配線板用基板について実施例1と同様の条件で耐屈折性試験を行なった結果を表1に併せて示す。
[Comparative Example 2]
A seed layer of a copper film having a thickness of 0.1 μm was formed on one side of a polyimide film having a thickness of 38 μm by sputtering. Using this commercially available polyimide film, a commercially available copper sulfate plating bath is used, and a low current density layer of 0.5 A / dm 2 and a high current density layer of 5 A / dm 2 are alternately arranged in this order to form four layers. Was laminated to form a laminated copper plating layer adjusted so that the total film thickness was 8 μm. Next, a heat treatment was performed at 80 ° C. for 140 minutes to prepare a copper polyimide two-layer flexible wiring board substrate.
Table 1 also shows the results of a refraction resistance test performed on the obtained two-layer flexible wiring board substrate under the same conditions as in Example 1.

[従来例]
厚さ38μmのポリイミドフィルムの片面に、スパッタリングによって厚み0.1μmの銅皮膜によるシード層を形成した。この導電性を付与したポリイミドフィルムに市販の硫酸銅めっき浴を用いて、0.5A/dmの電流密度層を厚み8μmとなるように調整した銅めっき層を形成した。次いで、120℃、90分間の熱処理を施した配線用銅層を有する銅ポリイミド2層フレキシブル配線板用基板を作製した。
得られた2層フレキシブル配線板用基板について実施例1と同様の条件で耐屈折性試験を行なった結果を表1に併せて示す。
[Conventional example]
A seed layer of a copper film having a thickness of 0.1 μm was formed on one side of a polyimide film having a thickness of 38 μm by sputtering. A copper plating layer in which a 0.5 A / dm 2 current density layer was adjusted to a thickness of 8 μm was formed on this conductive polyimide film using a commercially available copper sulfate plating bath. Subsequently, the board | substrate for copper polyimide 2 layer flexible wiring boards which has the copper layer for wiring which performed the heat processing for 120 minutes at 120 degreeC was produced.
Table 1 also shows the results of a refraction resistance test performed on the obtained two-layer flexible wiring board substrate under the same conditions as in Example 1.

Figure 2009295656
Figure 2009295656

表1より明らかなごとく、本発明の2層フレキシブル配線板用基板は、従来例に比べて断線までの屈折回数が大幅に向上しているのがわかる。又、めっき皮膜層を形成する際の電流密度が本発明範囲を外れている比較例1では、〔111〕優先配向割合が低く、そのため、満足する屈曲回数が得られなかった。更に、熱処理条件が外れている比較例2においても充分な〔111〕優先配向割合が得られず、屈曲回数の向上が見られなかった。   As is apparent from Table 1, it can be seen that the number of refractions until disconnection is significantly improved in the two-layer flexible wiring board substrate of the present invention as compared with the conventional example. Further, in Comparative Example 1 in which the current density at the time of forming the plating film layer is out of the range of the present invention, the [111] preferential orientation ratio is low, so that a satisfactory number of bendings cannot be obtained. Further, even in Comparative Example 2 in which the heat treatment conditions were not satisfied, a sufficient [111] preferential orientation ratio could not be obtained, and the number of bendings was not improved.

Claims (4)

樹脂フィルム基材と、前記樹脂フィルム基材の少なくとも片面に設けられた〔111〕優先配向の配線用銅層とからなることを特徴とする2層フレキシブル配線用基板。   A two-layer flexible wiring board comprising a resin film base material and a wiring layer of [111] priority orientation provided on at least one surface of the resin film base material. 前記配線用銅層が、低電流密度層と高電流密度層を交互に組み合わせた銅めっき積層体を熱処理して形成した〔111〕優先配向の銅皮膜であることを特徴とする請求項1記載の2層フレキシブル配線用基板。   The copper layer for wiring is a [111] preferentially oriented copper film formed by heat-treating a copper plating laminate in which low current density layers and high current density layers are alternately combined. 2 layer flexible wiring board. 樹脂フィルム基材の少なくとも片面に低電流密度層と高電流密度層を交互に組み合わせた銅めっき積層体を形成した後、次いで熱処理して前記銅めっき積層体を〔111〕優先配向の銅皮膜からなる配線用銅層を形成したことを特徴とする2層フレキシブル配線板用基板の製造方法。   After forming a copper plating laminate in which a low current density layer and a high current density layer are alternately combined on at least one surface of the resin film substrate, the copper plating laminate is then heat treated to remove the copper plating laminate from the [111] priority oriented copper film. The manufacturing method of the board | substrate for 2 layer flexible wiring boards characterized by forming the copper layer for wiring which becomes. 前記低電流密度層を形成する際の銅めっきの電流密度が0.05〜0.5A/dmで、前記高電流密度層を形成する際の銅めっきの電流密度が5〜20A/dmであることを特徴とする請求項3記載の2層フレキシブル配線板用基板の製造方法。 The current density of the copper plating when forming the low current density layer is 0.05 to 0.5 A / dm 2 , and the current density of the copper plating when forming the high current density layer is 5 to 20 A / dm 2. The method for producing a substrate for a two-layer flexible wiring board according to claim 3, wherein:
JP2008145445A 2008-06-03 2008-06-03 Substrate for flexible wiring board and method for manufacturing the same Pending JP2009295656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008145445A JP2009295656A (en) 2008-06-03 2008-06-03 Substrate for flexible wiring board and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008145445A JP2009295656A (en) 2008-06-03 2008-06-03 Substrate for flexible wiring board and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2009295656A true JP2009295656A (en) 2009-12-17

Family

ID=41543611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008145445A Pending JP2009295656A (en) 2008-06-03 2008-06-03 Substrate for flexible wiring board and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2009295656A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2339589A1 (en) 2009-12-25 2011-06-29 Global Nuclear Fuel-Japan Co., Ltd. Fuel assembly
CN103014799A (en) * 2012-12-05 2013-04-03 深圳市兴达线路板有限公司 Electroplating process of circuit board of burning-resistant board
WO2013161507A1 (en) * 2012-04-24 2013-10-31 住友金属鉱山株式会社 Two-layered flexible wiring substrate, flexible wiring board, and methods for producing same
JP2014159608A (en) * 2013-02-19 2014-09-04 Sumitomo Metal Mining Co Ltd Method for producing flexible wiring board, and flexible wiring board
JP2014194522A (en) * 2013-02-26 2014-10-09 Ricoh Co Ltd Base material for fixing belt, fixing belt, fixing device, and image forming apparatus
JP2015081376A (en) * 2013-10-23 2015-04-27 住友金属鉱山株式会社 Two-layer flexible wiring board and production method thereof
CN104582257A (en) * 2013-10-22 2015-04-29 住友金属矿山株式会社 2 layer flexible wiring substrate and the flexible wiring board using the same
JP2019167583A (en) * 2018-03-23 2019-10-03 住友金属鉱山株式会社 Copper-clad laminated sheet, and method of producing copper-clad laminated sheet
JP2020011440A (en) * 2018-07-18 2020-01-23 住友金属鉱山株式会社 Copper-clad laminate
JP2020011438A (en) * 2018-07-18 2020-01-23 住友金属鉱山株式会社 Copper-clad laminate
JP2020011441A (en) * 2018-07-18 2020-01-23 住友金属鉱山株式会社 Copper-clad laminate
JP2020012156A (en) * 2018-07-18 2020-01-23 住友金属鉱山株式会社 Method for producing copper-clad laminate
JP2020011439A (en) * 2018-07-18 2020-01-23 住友金属鉱山株式会社 Copper-clad laminate
JP2020139197A (en) * 2019-02-28 2020-09-03 住友金属鉱山株式会社 Production method of flexible substrate
JP2020152955A (en) * 2019-03-20 2020-09-24 住友金属鉱山株式会社 Copper-clad laminate and production method of copper-clad laminate
JP2021008650A (en) * 2019-07-01 2021-01-28 住友金属鉱山株式会社 Copper-clad laminate plate
JP2021019020A (en) * 2019-07-17 2021-02-15 住友金属鉱山株式会社 Adhesion strength evaluation sample preparation method for copper-clad laminate
JP2021042443A (en) * 2019-09-12 2021-03-18 住友金属鉱山株式会社 Copper-clad laminate and method for manufacturing copper-clad laminate

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2339589A1 (en) 2009-12-25 2011-06-29 Global Nuclear Fuel-Japan Co., Ltd. Fuel assembly
WO2013161507A1 (en) * 2012-04-24 2013-10-31 住友金属鉱山株式会社 Two-layered flexible wiring substrate, flexible wiring board, and methods for producing same
CN104247576B (en) * 2012-04-24 2017-05-31 住友金属矿山株式会社 2 layers of flexible wiring substrate and flexible wiring and its manufacture method
KR20150003854A (en) * 2012-04-24 2015-01-09 스미토모 긴조쿠 고잔 가부시키가이샤 Two-layered flexible wiring substrate, flexible wiring board, and methods for producing same
KR101669745B1 (en) * 2012-04-24 2016-10-27 스미토모 긴조쿠 고잔 가부시키가이샤 Two-layered flexible wiring substrate, flexible wiring board, and methods for producing same
JPWO2013161507A1 (en) * 2012-04-24 2015-12-24 住友金属鉱山株式会社 Two-layer flexible wiring board, flexible wiring board, and manufacturing method thereof
CN103014799B (en) * 2012-12-05 2015-12-02 深圳市兴达线路板有限公司 A kind of circuit board plating process of burn-out-proof plate
CN103014799A (en) * 2012-12-05 2013-04-03 深圳市兴达线路板有限公司 Electroplating process of circuit board of burning-resistant board
JP2014159608A (en) * 2013-02-19 2014-09-04 Sumitomo Metal Mining Co Ltd Method for producing flexible wiring board, and flexible wiring board
JP2014194522A (en) * 2013-02-26 2014-10-09 Ricoh Co Ltd Base material for fixing belt, fixing belt, fixing device, and image forming apparatus
US9897954B2 (en) 2013-02-26 2018-02-20 Ricoh Company, Ltd. Base for fixing belt, fixing belt, fixing device, and image forming apparatus
CN104582257A (en) * 2013-10-22 2015-04-29 住友金属矿山株式会社 2 layer flexible wiring substrate and the flexible wiring board using the same
JP2015081376A (en) * 2013-10-23 2015-04-27 住友金属鉱山株式会社 Two-layer flexible wiring board and production method thereof
JP2019167583A (en) * 2018-03-23 2019-10-03 住友金属鉱山株式会社 Copper-clad laminated sheet, and method of producing copper-clad laminated sheet
JP6993613B2 (en) 2018-03-23 2022-01-13 住友金属鉱山株式会社 Manufacturing method of copper-clad laminate
KR20200010034A (en) * 2018-07-18 2020-01-30 스미토모 긴조쿠 고잔 가부시키가이샤 Copper clad laminate
KR102525404B1 (en) * 2018-07-18 2023-04-24 스미토모 긴조쿠 고잔 가부시키가이샤 Copper clad laminate
JP2020012156A (en) * 2018-07-18 2020-01-23 住友金属鉱山株式会社 Method for producing copper-clad laminate
JP2020011439A (en) * 2018-07-18 2020-01-23 住友金属鉱山株式会社 Copper-clad laminate
KR20200010031A (en) * 2018-07-18 2020-01-30 스미토모 긴조쿠 고잔 가부시키가이샤 Copper clad laminate
JP2020011438A (en) * 2018-07-18 2020-01-23 住友金属鉱山株式会社 Copper-clad laminate
CN110740567A (en) * 2018-07-18 2020-01-31 住友金属矿山株式会社 Copper-clad laminated board
CN110740567B (en) * 2018-07-18 2023-05-26 住友金属矿山株式会社 Copper-clad laminate
KR102525403B1 (en) * 2018-07-18 2023-04-24 스미토모 긴조쿠 고잔 가부시키가이샤 Copper clad laminate
JP2020011441A (en) * 2018-07-18 2020-01-23 住友金属鉱山株式会社 Copper-clad laminate
JP7103006B2 (en) 2018-07-18 2022-07-20 住友金属鉱山株式会社 Copper-clad laminate
JP7087758B2 (en) 2018-07-18 2022-06-21 住友金属鉱山株式会社 Copper-clad laminate
JP2020011440A (en) * 2018-07-18 2020-01-23 住友金属鉱山株式会社 Copper-clad laminate
JP7087760B2 (en) 2018-07-18 2022-06-21 住友金属鉱山株式会社 Copper-clad laminate
JP7087759B2 (en) 2018-07-18 2022-06-21 住友金属鉱山株式会社 Copper-clad laminate
JP7273361B2 (en) 2019-02-28 2023-05-15 住友金属鉱山株式会社 Flexible substrate manufacturing method
JP2020139197A (en) * 2019-02-28 2020-09-03 住友金属鉱山株式会社 Production method of flexible substrate
JP7211184B2 (en) 2019-03-20 2023-01-24 住友金属鉱山株式会社 COPPER CLAD LAMINATES AND METHOD FOR MANUFACTURING COPPER CLAD LAMINATES
JP2020152955A (en) * 2019-03-20 2020-09-24 住友金属鉱山株式会社 Copper-clad laminate and production method of copper-clad laminate
JP2021008650A (en) * 2019-07-01 2021-01-28 住友金属鉱山株式会社 Copper-clad laminate plate
JP7273366B2 (en) 2019-07-01 2023-05-15 住友金属鉱山株式会社 copper clad laminate
JP2021019020A (en) * 2019-07-17 2021-02-15 住友金属鉱山株式会社 Adhesion strength evaluation sample preparation method for copper-clad laminate
JP7245420B2 (en) 2019-07-17 2023-03-24 住友金属鉱山株式会社 Preparation method for adhesion strength evaluation sample of copper-clad laminate
JP2021042443A (en) * 2019-09-12 2021-03-18 住友金属鉱山株式会社 Copper-clad laminate and method for manufacturing copper-clad laminate
JP7276025B2 (en) 2019-09-12 2023-05-18 住友金属鉱山株式会社 COPPER CLAD LAMINATES AND METHOD FOR MANUFACTURING COPPER CLAD LAMINATES

Similar Documents

Publication Publication Date Title
JP2009295656A (en) Substrate for flexible wiring board and method for manufacturing the same
JP5919303B2 (en) Surface-treated copper foil and copper-clad laminate using the same
TWI600778B (en) Flexible wiring
JP2013089910A (en) Flexible printed board and manufacturing method of the same
TWI633195B (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
TWI646207B (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
TWI588273B (en) Copper alloy foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board and electronic equipment
JP5532706B2 (en) Method for producing flexible copper-clad laminate
JP5266925B2 (en) Metallized polyimide film and method for producing the same
CN109392242A (en) Flexible printed base plate copper foil, the copper clad layers stack for having used the copper foil, flexible printed base plate and electronic equipment
JP2012038823A (en) Wiring circuit board
CN103766010B (en) The Copper Foil of flexible printing wiring board, copper-clad laminated board, flexible printing wiring board and electronic equipment
TWI663270B (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
CN107046763B (en) Copper foil for flexible printed board and copper-clad laminate using same
JP4430020B2 (en) Copper foil for flexible printed wiring board, manufacturing method thereof and flexible printed wiring board
JP4668232B2 (en) Flexible printed circuit board
CN107046768B (en) Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
JP2008106291A (en) Plated substrate
TWI731247B (en) Copper foil for flexible printed circuit boards, copper-clad laminates using the same, flexible printed circuit boards and electronic devices
JP2007317782A (en) Flexible wiring board
JP2008308749A (en) Copper plating method
US20070048507A1 (en) Laminated circuit board
JP2009043800A (en) Flexible wiring board
JP2010153537A (en) Flexible wiring board
JP2008186970A (en) Substrate for flexible wiring board, its manufacturing method, and flexible wiring board using the substrate