JP2008186970A - Substrate for flexible wiring board, its manufacturing method, and flexible wiring board using the substrate - Google Patents

Substrate for flexible wiring board, its manufacturing method, and flexible wiring board using the substrate Download PDF

Info

Publication number
JP2008186970A
JP2008186970A JP2007018714A JP2007018714A JP2008186970A JP 2008186970 A JP2008186970 A JP 2008186970A JP 2007018714 A JP2007018714 A JP 2007018714A JP 2007018714 A JP2007018714 A JP 2007018714A JP 2008186970 A JP2008186970 A JP 2008186970A
Authority
JP
Japan
Prior art keywords
layer
flexible wiring
wiring board
substrate
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007018714A
Other languages
Japanese (ja)
Inventor
Koichi Saito
弘一 斉藤
Kazuo Kasai
一雄 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2007018714A priority Critical patent/JP2008186970A/en
Publication of JP2008186970A publication Critical patent/JP2008186970A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate for a flexible wiring board having a good flexural resistance. <P>SOLUTION: A shield layer is provided on at least one of surfaces of an insulating film material by dry plating or by electroless plating, and then copper and nickel plating layers are alternately formed on the shield layer at least once by plating. At this time, the copper plating layer is provided by electroplating, and the nickel plating layer is provided by electroplating or by electroless plating. When the nickel plated layers forming the conductive layers has a total thickness T<SB>Ni</SB>and the copper plated layers have a total thickness T<SB>Cu</SB>, the thicknesses of these plated layers are adjusted so that a ratio S (T<SB>Ni</SB>/T<SB>Cu</SB>) is between 0.1 and 0.7. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、耐屈折性の向上を図った配線用導電層からなるフレキシブル配線板用基板とその製造方法、および該基板を用いたフレキシブル配線板に関するものである。   The present invention relates to a flexible wiring board substrate comprising a conductive layer for wiring with improved refraction resistance, a method for manufacturing the same, and a flexible wiring board using the substrate.

フレキシブル配線板は、一般に屈曲性を必要とするハードディスクの読み書きヘッドやプリンターヘッド、デジタルカメラ内の屈折配線板用などとして広く用いられている。   Flexible wiring boards are widely used for read / write heads and printer heads of hard disks that require flexibility, and for refractive wiring boards in digital cameras.

フレキシブル配線板を製造するために用いられるフレキシブル配線板用基板には、大きく分けて、電解銅箔や圧延銅箔を接着剤でポリイミドフィルム、ポリアミドフィルム、PETフィルムなどの絶縁性フィルムに接着した3層基板(銅層/接着剤層/ベースフィルム層(絶縁層))と、絶縁性フィルム表面にめっき等で直接銅層を形成した配線基板(通称めっき基板)や銅箔に直接ポリイミドワニス等を塗って絶縁層を形成した配線基板(通称キャスト基板)等の2層フレキシブル配線基板(銅層/ベースフィルム層(絶縁層))、さらにポリイミドフィルムの両面に前記と同様な方法により銅層を設けた両面基板とがある。
こうした、フレキシブル配線板には、上記電子機器等の屈折配線板等に利用されていることから、近年、該フレキシブル配線板の配線に対する耐屈折性の向上が望まれている。
The substrate for a flexible wiring board used for manufacturing a flexible wiring board is roughly divided into an electrolytic copper foil and a rolled copper foil adhered to an insulating film such as a polyimide film, a polyamide film, and a PET film with an adhesive. A layer substrate (copper layer / adhesive layer / base film layer (insulating layer)), a wiring substrate (commonly referred to as a plating substrate) in which a copper layer is directly formed on the surface of the insulating film by plating, or a polyimide varnish directly on a copper foil. A two-layer flexible wiring board (copper layer / base film layer (insulating layer)) such as a wiring board (commonly called a cast board) coated and formed with an insulating layer, and a copper layer provided on both sides of the polyimide film by the same method as described above And double-sided board.
Since such a flexible wiring board is used for a refractive wiring board of the above-described electronic device or the like, in recent years, it has been desired to improve the refraction resistance of the flexible wiring board with respect to the wiring.

フレキシブル配線板の配線に用いられる導電層の耐屈折性の評価としては、JIS−P−8115やASTM−D2176で規格されたMIT耐折度試験(folding endurance test)が商業上広く採用されている。この試験では、試験片回路を形成する回路パターンが断線するまでの屈折回数で、その配線基板の耐屈折性が評価され、屈折回数が大きいほど耐屈折性が良いとされている。   As an evaluation of the refraction resistance of a conductive layer used for wiring of a flexible wiring board, the MIT folding endurance test standardized by JIS-P-8115 and ASTM-D2176 is widely used commercially. . In this test, the refraction resistance of the wiring board is evaluated by the number of refractions until the circuit pattern forming the test piece circuit is disconnected. The larger the number of refractions, the better the refraction resistance.

かかる電気回路配線等に用いられる導電層用の銅箔の耐屈折性の向上を図るものとしては、例えば特許文献1にあるように、カーボン量が18ppm以下の銅箔を用いて該銅箔表面を100℃以上で加熱処理することにより耐屈曲性や常温及び高温時の伸びの向上を図ったり、また、特許文献2にあるように、伸び率が20〜40%の電解銅箔を用いて圧下率40〜80%の圧延加工を行うことにより耐屈折性の向上を図る技術が提案されている。
特開平8−283886号公報 特開平6−269807号公報
As for improving the refraction resistance of the copper foil for the conductive layer used for such electric circuit wiring, for example, as disclosed in Patent Document 1, the surface of the copper foil is obtained using a copper foil having a carbon amount of 18 ppm or less. Heat treatment at 100 ° C. or higher to improve bending resistance and elongation at room temperature and high temperature, and as disclosed in Patent Document 2, use an electrolytic copper foil having an elongation of 20 to 40%. There has been proposed a technique for improving the refraction resistance by rolling at a rolling reduction of 40 to 80%.
JP-A-8-283886 JP-A-6-269807

しかし、上記特許文献1、特許文献2に記載の技術は、いずれも銅箔自体に対してしか適用することができず、こうした銅箔を用いたフレキシブル配線板用基板としては、前記3層基板や、キャスト基板にならざるを得なかった。
従って、絶縁性フィルム上に直接めっきで導電層が設けられるフレキシブル配線板用基板(めっき基板)では、絶縁性フィルム上の導電層のみに対し熱処理や圧延加工をすることができず、上記従来技術はいずれも採用することができなかった。
以上のような経緯から、フレキシブル配線板用基板のうち特にめっき基板においては、耐折性の良い導電層を有するものを得るための有効な提案は未だなされていないのが現状である。
However, the techniques described in Patent Document 1 and Patent Document 2 can be applied only to the copper foil itself. As a substrate for a flexible wiring board using such a copper foil, the three-layer substrate is used. And I had to become a cast substrate.
Therefore, in a flexible wiring board substrate (plating substrate) in which a conductive layer is directly plated on an insulating film, the conductive layer on the insulating film cannot be subjected to heat treatment or rolling. Neither could be adopted.
From the background described above, the present situation is that no effective proposal has yet been made to obtain a flexible wiring board substrate, particularly a plated substrate, having a conductive layer with good folding resistance.

上記課題を解決するための本第1の発明は、絶縁性フィルム基材と、該絶縁性フィルム基材の少なくとも片面に設けられたシード層と、該シード層上に設けられた導電層からなるフレキシブル配線板用基板において、前記導電層が銅めっき層とニッケルめっき層とからなる多層構造であることを特徴とするものである。   The first invention for solving the above problems comprises an insulating film substrate, a seed layer provided on at least one surface of the insulating film substrate, and a conductive layer provided on the seed layer. The flexible wiring board substrate is characterized in that the conductive layer has a multilayer structure including a copper plating layer and a nickel plating layer.

そして、本第2の発明は、前記発明において、銅めっき層が電解めっき法で形成され、ニッケルめっき層が電解めっき法または無電解めっき法で形成されたことを特徴とするものである。   The second invention is characterized in that, in the above invention, the copper plating layer is formed by an electrolytic plating method, and the nickel plating layer is formed by an electrolytic plating method or an electroless plating method.

そして、本第3の発明は、前記第1または2のいずれかの発明において導電層を構成するニッケルめっき層の層厚の合計値TNiと銅めっき層の層厚の合計値TCuとの比S(TNi/TCu)が0.1〜0.7であることを特徴とするものである。 In the third invention, the total thickness T Ni of the nickel plating layers constituting the conductive layer in either of the first or second invention and the total thickness T Cu of the copper plating layers. The ratio S (T Ni / T Cu ) is 0.1 to 0.7.

そして、本第4の発明は、前記第1〜3の発明の何れかのフレキシブル配線板用基板の製造方法であり、絶縁性フィルム基材の少なくとも片面に乾式めっき法または無電解めっき法によりシード層を設けた後、該シード層上にめっき法により、銅めっき層とニッケルめっき層とを交互に少なくとも1回、形成するものである。   And this 4th invention is a manufacturing method of the board | substrate for flexible wiring boards in any one of the said 1st-3rd invention, and seeds at least one surface of the insulating film base material by the dry-type plating method or the electroless-plating method. After providing the layer, a copper plating layer and a nickel plating layer are alternately formed at least once on the seed layer by plating.

そして、本第5の発明は、前記発明において銅めっき層を電解めっき法により設け、ニッケルめっき層を電解めっき法または無電解めっき法により設けるものである。   In the fifth aspect of the invention, the copper plating layer is provided by an electrolytic plating method, and the nickel plating layer is provided by an electrolytic plating method or an electroless plating method.

そして、本第6の発明は、前記発明において、導電層を構成するニッケルめっき層の層厚の合計値TNiと銅めっき層の層厚の合計値TCuとの比S(TNi/TCu)を0.1〜0.7とすることを特徴とするものである。 In the sixth aspect of the present invention, the ratio S (T Ni / T) between the total thickness T Ni of the nickel plating layers constituting the conductive layer and the total thickness T Cu of the copper plating layers in the above-described invention. Cu ) is 0.1 to 0.7.

そして、本第7の発明は、前記第1〜3の発明の何れかのフレキシブル配線板用基板を用いて製造されたフレキシブル配線板である。   And this 7th invention is a flexible wiring board manufactured using the board | substrate for flexible wiring boards in any one of the said 1st-3rd invention.

本発明のフレキシブル配線板用基板は、前記したごとく樹脂フィルム基材の少なくとも片面に形成したシード層の上に、銅めっき層とニッケルめっき層とを用いて多層構造の導電層を形成したものである。こうすることにより、折り曲げにより発生する応力を、微細なクラックをニッケル層に発生させることにより分散させ、銅層への応力の集中を回避させることができ、本発明のフレキシブル配線板用基板の耐屈折性を向上させることができる。   The substrate for a flexible wiring board of the present invention is obtained by forming a multilayer conductive layer using a copper plating layer and a nickel plating layer on a seed layer formed on at least one surface of a resin film base as described above. is there. By doing so, the stress generated by bending can be dispersed by generating fine cracks in the nickel layer, so that concentration of stress on the copper layer can be avoided, and the resistance of the flexible wiring board substrate of the present invention can be reduced. Refractive properties can be improved.

また、本発明方法によれば、既存の設備と完成された従来技術とを組み合わせることにより本発明のフレキシブル配線板用基板を製造することができるので、耐屈折特性に優れた本発明のフレキシブル配線用基板を高品質、低コストで製造することができる。
また、本発明の基板を用いて作成したフレキシブル配線板の耐屈折性は極めて高い。
In addition, according to the method of the present invention, the flexible wiring board substrate of the present invention can be manufactured by combining existing equipment and the completed prior art, so the flexible wiring of the present invention having excellent refraction resistance characteristics. Can be manufactured with high quality and low cost.
Moreover, the reflex resistance of the flexible wiring board produced using the board | substrate of this invention is very high.

本発明に係るフレキシブル配線板用基板を得るには、まず、ポリイミドフィルム、ポリアミドフィルム、PETフィルム等の絶縁性樹脂フィルム基材の少なくとも片面にシード層を設ける。シード層を設ける方法としては、蒸着法、スパッタリング法等の乾式めっき法、あるいは無電解めっき法を用いうる。シード層の材質としては、導電性を有するものであれば支障はないが、絶縁性フィルムとの密着性、配線形成時の簡便性等より、銅、ニッケル、クロム等の金属やこれらの合金とすることが好ましい。
なお、導電性酸化物粉を塗布してシード層を形成することも可能である。
その後、シード層の上に導電層を設ける。この導電層は銅めっき層とニッケルめっき層との多層構造とする。
In order to obtain the flexible wiring board substrate according to the present invention, first, a seed layer is provided on at least one surface of an insulating resin film substrate such as a polyimide film, a polyamide film, or a PET film. As a method for providing the seed layer, a dry plating method such as a vapor deposition method or a sputtering method, or an electroless plating method can be used. As the material of the seed layer, there is no problem as long as it has conductivity, but from the viewpoint of adhesion with an insulating film, ease of wiring formation, etc., metals such as copper, nickel, chromium, and alloys thereof. It is preferable to do.
It is also possible to form a seed layer by applying conductive oxide powder.
Thereafter, a conductive layer is provided on the seed layer. This conductive layer has a multilayer structure of a copper plating layer and a nickel plating layer.

導電層を構成する銅めっき層には配線としての機能が強く求められるため、緻密であることが望まれる。このような銅層を設けるには電解めっき法を適用するのが好ましい。簡便に緻密な銅層を得ることができるからである。この際、市販のめっき浴が適用でき、該めっき浴に推奨される条件に従ってめっきを施すことが好ましい。   Since the copper plating layer constituting the conductive layer is strongly required to have a function as a wiring, it is desired to be dense. In order to provide such a copper layer, it is preferable to apply an electrolytic plating method. This is because a dense copper layer can be easily obtained. At this time, a commercially available plating bath can be applied, and plating is preferably performed according to conditions recommended for the plating bath.

ニッケルめっき層は、屈折時にニッケルめっき層内に微細なクラックを発生させ、もって屈折時に発生する応力を分散させてクラックの進行を遅延させ、銅めっき層でのクラックの発生を送らせようとするものである。従って、あまりに緻密なニッケル層ではこうした目的がかなえられないため、ニッケルめっき層は電解めっき法または無電解めっき法により設けることが好ましく、特に無電解めっき法によることが推奨される。この際にも市販のめっき浴が使用でき、めっき条件も当該めっき浴について推奨されるものとすればよい。   The nickel plating layer generates fine cracks in the nickel plating layer at the time of refraction, thereby dispersing the stress generated at the time of refraction, delaying the progress of the crack, and sending the generation of cracks in the copper plating layer. Is. Therefore, such a purpose cannot be achieved with an extremely dense nickel layer. Therefore, it is preferable to provide the nickel plating layer by an electrolytic plating method or an electroless plating method, and in particular, an electroless plating method is recommended. Also in this case, a commercially available plating bath can be used, and the plating conditions may be recommended for the plating bath.

導電層を銅めっき層とニッケルめっき層との多層構造としたのは、前記したように折り曲げ時に発生する応力を、折り曲げ時にニッケル層内で微細なクラックを発生させ、これにより当該応力を分散させ、銅層へのクラックの進行を遅延させるためである。   The conductive layer has a multilayer structure composed of a copper plating layer and a nickel plating layer because, as described above, the stress generated at the time of bending generates fine cracks in the nickel layer at the time of bending, thereby dispersing the stress. This is to delay the progress of cracks in the copper layer.

この場合、導電層を構成する銅めっき層とニッケルめっき層との厚さの比を、ニッケルめっき層の層厚の合計値TNiと銅めっき層の層厚の合計値TCuとの比S(TNi/TCu)を0.1〜0.7とすると、より効果的である。この比Sを0.1未満とするとニッケルめっき層の機能が十分発揮されず、折り曲げ時に発生する応力が直接銅めっき層に作用し、銅めっき層へのクラックの進行が早くなり、断線も早まる。 In this case, the ratio of the thickness of the copper plating layer and the nickel plating layer constituting the conductive layer is defined as the ratio S between the total thickness T Ni of the nickel plating layer and the total thickness T Cu of the copper plating layer. It is more effective when (T Ni / T Cu ) is 0.1 to 0.7. When the ratio S is less than 0.1, the nickel plating layer does not function sufficiently, the stress generated during bending acts directly on the copper plating layer, the crack progresses rapidly in the copper plating layer, and the disconnection is also accelerated. .

一方、この比Sが0.7を越えると、ニッケルめっき層の微細クラックが崩壊し、大きなクラックとなり、これまた銅めっき層に直接応力が作用することになり、断線が早まる。   On the other hand, when the ratio S exceeds 0.7, the fine cracks of the nickel plating layer collapse and become large cracks, and stress is directly applied to the copper plating layer, resulting in early disconnection.

本発明のフレキシブル配線板用基板を用いてフレキシブル配線板を得るには、従来のように、ホトリソグラフィー法を用いることができる。   In order to obtain a flexible wiring board using the flexible wiring board substrate of the present invention, a photolithography method can be used as in the prior art.

以下、実施例を用いてさらに本発明を説明する。   Hereinafter, the present invention will be further described with reference to examples.

(実施例1)
厚さ25μmのポリイミドフィルム(東レ・デュポン株式会社製 製品名 カプトン)の表面にスパッタリング法により厚さ0.2μmの銅層が設けられた銅−ポリイミド基板を用いて以下の用にしてフレキシブル配線板用基板を作成した。
前記した厚さ0.2μmの銅層をシード層とし、シード層の上に市販の硫酸銅めっき浴を用いて電解銅めっきを施して厚さ6μmの銅層を設けた。
次に、市販の無電解ニッケルめっき浴を用いて厚さ2μmの無電解ニッケルめっき層を前記銅層の上に設けた。
実際に得られた導電層を構成するニッケル層の層厚TNiと銅層の層厚の合計値TCuとの比S(TNi/TCu)は0.33であった。
(Example 1)
Flexible wiring board using a copper-polyimide substrate with a 0.2 μm thick copper layer formed on the surface of a 25 μm thick polyimide film (product name: Kapton, manufactured by Toray DuPont Co., Ltd.) by sputtering. A substrate was made.
The copper layer having a thickness of 0.2 μm was used as a seed layer, and a copper layer having a thickness of 6 μm was provided on the seed layer by performing electrolytic copper plating using a commercially available copper sulfate plating bath.
Next, an electroless nickel plating layer having a thickness of 2 μm was provided on the copper layer using a commercially available electroless nickel plating bath.
The ratio S (T Ni / T Cu ) between the layer thickness T Ni of the nickel layer and the total thickness T Cu of the copper layers constituting the conductive layer obtained was 0.33.

得られたフレキシブル配線用基板の耐屈折性を調べるため、JIS−P−8115のMIT試験法のパターンをホトリソグラフィー法にて形成し、これらをJIS−P−8115のMIT試験機(テスター産業株式会社 BE−203耐折性試験機)にセットし、R=0.38mm、荷重500g、屈折回転数175r.p.mの条件下で断線までの屈折回数を求めた。得られた結果を表1に示した。   In order to investigate the refraction resistance of the obtained substrate for flexible wiring, a JIS-P-8115 MIT test method pattern was formed by photolithography, and these were formed using a JIS-P-8115 MIT test machine (Tester Sangyo Co., Ltd.). Company BE-203 Folding Resistance Tester), and the number of refractions until disconnection was determined under the conditions of R = 0.38 mm, a load of 500 g, and a refractive rotation number of 175 rpm. The obtained results are shown in Table 1.

(実施例2)
電解銅めっき層の厚さを4μmとし、無電解ニッケルめっき層の厚さを3μmとし、その上に厚さ1μmの電解銅めっき層を設けた以外は実施例1と同様にしてフレキシブル配線板用基板を作成した。得られた導電層の比Sは0.6であった。
(Example 2)
For flexible wiring boards as in Example 1, except that the thickness of the electrolytic copper plating layer was 4 μm, the thickness of the electroless nickel plating layer was 3 μm, and an electrolytic copper plating layer having a thickness of 1 μm was provided thereon. A substrate was created. The ratio S of the obtained conductive layer was 0.6.

得られたフレキシブル配線板用基板について実施例1と同様の条件でMIT試験を行なった。得られた結果を表1に併せて示した。   The obtained flexible wiring board substrate was subjected to an MIT test under the same conditions as in Example 1. The obtained results are also shown in Table 1.

(実施例3)
電解銅めっき層の厚さを7μmとし、厚さ1μmの電気ニッケルめっき層を設けた以外は実施例1と同様にしてフレキシブル配線板用基板を作成した。得られた導電層の比Sは0.1であった。なお、電気ニッケルめっき層を得るために使用しためっき浴は自家建浴のワット浴であった。
(Example 3)
A flexible wiring board substrate was prepared in the same manner as in Example 1 except that the thickness of the electrolytic copper plating layer was 7 μm and an electric nickel plating layer having a thickness of 1 μm was provided. The ratio S of the obtained conductive layers was 0.1. The plating bath used to obtain the electronickel plating layer was a private bath watt bath.

得られたフレキシブル配線板用基板について実施例1と同様の条件でMIT試験を行なった。得られた結果を表1に併せて示した。   The obtained flexible wiring board substrate was subjected to an MIT test under the same conditions as in Example 1. The obtained results are also shown in Table 1.

(実施例4)
本例は、従来例に相当する。
導電層を厚さ8μmの電気銅めっき層とした以外は実施例1と同様にしてフレキシブル配線板用基板を作成した。
Example 4
This example corresponds to a conventional example.
A flexible wiring board substrate was prepared in the same manner as in Example 1 except that the conductive layer was an electrolytic copper plating layer having a thickness of 8 μm.

得られたフレキシブル配線板用基板について実施例1と同様の条件でMIT試験を行なった。得られた結果を表1に併せて示した。
The obtained flexible wiring board substrate was subjected to an MIT test under the same conditions as in Example 1. The obtained results are also shown in Table 1.

Figure 2008186970
Figure 2008186970

表1の結果より明らかなごとく、本発明のフレキシブル配線用基板は、従来品に比べて断線までの屈折回数が大幅に向上している。   As is apparent from the results in Table 1, the flexible wiring substrate of the present invention has a significantly improved number of refractions until disconnection compared to the conventional product.

この結果とニッケルめっき層との特性とを考慮すると、本発明品では、MIT耐折度試験で受ける折り曲げ応力をニッケルめっき層で微細なクラックを形成することにより分散し、銅めっき層へのクラックの進行を抑制することができるものと推察できる。
なお、実施例4では、従来品と同様に導電層が銅めっき層のみであり、MIT耐折度試験で受ける折り曲げ応力が直接銅めっき層表面に、局部的にかかるため、当該部分にクラックが入り易く、そのクラックが厚さ方向に伝播し、断線につながることが試験後の破断面の観察により確認された。
Considering this result and the characteristics of the nickel plating layer, in the present invention product, the bending stress received in the MIT folding resistance test is dispersed by forming fine cracks in the nickel plating layer, and cracks in the copper plating layer It can be inferred that the progression of the can be suppressed.
In Example 4, as in the conventional product, the conductive layer is only a copper plating layer, and the bending stress received in the MIT folding resistance test is directly applied directly to the surface of the copper plating layer, so that there is a crack in that portion. It was confirmed by observation of the fracture surface after the test that it was easy to enter, and the crack propagated in the thickness direction, leading to disconnection.

本発明のフレキシブル配線板用基板は、前記したごとく樹脂フィルム基材の少なくとも片面に形成したシード層の上に、銅めっき層およびニッケルめっき層を順次組み合わせて形成した多層構造の積層めっき層を設けた構成にしたことにより、折り曲げ特性に優れ、屈曲部、折り曲げ部を有する回路基板として優れたものとなる。このため、本発明のフレキシブル配線板用基板は特にハードディスクの読み書きヘッドやプリンターヘッドなど、またデジタルカメラ内の屈折配線用回路基板などの良好な屈折特性や屈曲特性が求められる配線板用として優れた効果を発揮する。また、本発明の方法に従えば、このような高品質のフレキシブル配線板用基板を低コストで製造することができる。加えて、本発明のフレキシブル配線板用基板を用いて作成したフレキシブル配線板の耐屈折性は高く、信頼性が高い。従って本発明の工業的価値は極めて大である。   The flexible wiring board substrate of the present invention is provided with a multilayer plating layer having a multilayer structure formed by sequentially combining a copper plating layer and a nickel plating layer on the seed layer formed on at least one surface of the resin film base as described above. With this configuration, the circuit board has excellent bending characteristics and is excellent as a circuit board having a bent portion and a bent portion. For this reason, the flexible wiring board substrate of the present invention is particularly excellent for wiring boards that require good refraction and bending characteristics, such as hard disk read / write heads and printer heads, and circuit boards for refractive wiring in digital cameras. Demonstrate the effect. Further, according to the method of the present invention, such a high-quality flexible wiring board substrate can be manufactured at low cost. In addition, the flexible wiring board produced using the flexible wiring board substrate of the present invention has high refraction resistance and high reliability. Therefore, the industrial value of the present invention is extremely great.

Claims (7)

絶縁性フィルム基材と、該絶縁性フィルム基材の少なくとも片面に設けられたシード層と、該シード層上に設けられた導電層からなるフレキシブル配線板用基板において、前記導電層が銅めっき層とニッケルめっき層とからなる多層構造であることを特徴とするフレキシブル配線板用基板。 In a flexible wiring board substrate comprising an insulating film substrate, a seed layer provided on at least one surface of the insulating film substrate, and a conductive layer provided on the seed layer, the conductive layer is a copper plating layer A substrate for a flexible wiring board, characterized in that it has a multilayer structure comprising a nickel plating layer. 前記銅めっき層が電解めっき法で形成され、前記ニッケルめっき層が電解めっき法または無電解めっき法で形成されたことを特徴とする請求項1記載のフレキシブル配線板用基板。 2. The flexible wiring board substrate according to claim 1, wherein the copper plating layer is formed by an electrolytic plating method, and the nickel plating layer is formed by an electrolytic plating method or an electroless plating method. ニッケルめっき層の層厚の合計値TNiと銅めっき層の層厚の合計値TCuとの比S(TNi/TCu)が0.1〜0.7であることを特徴とする請求項1または2記載のフレキシブル配線板用基板。 The ratio S (T Ni / T Cu ) between the total thickness T Ni of the nickel plating layer and the total thickness T Cu of the copper plating layer is 0.1 to 0.7. Item 3. The flexible wiring board substrate according to Item 1 or 2. 絶縁性フィルム基材の少なくとも片面に乾式めっき法または無電解めっき法によりシード層を設けた後、該シード層上にめっき法により、銅めっき層とニッケルめっき層とを交互に少なくとも1回、形成することを特徴とするフレキシブル配線板用基板の製造方法。 After a seed layer is provided on at least one surface of the insulating film base by dry plating or electroless plating, a copper plating layer and a nickel plating layer are alternately formed at least once on the seed layer by plating. A method for producing a flexible wiring board substrate, comprising: 銅めっき層を電解めっき法により設け、ニッケルめっき層を電解めっき法または無電解めっき法により設けることを特徴とする請求項4記載のフレキシブル配線板用基板の製造方法。 The method for producing a substrate for a flexible wiring board according to claim 4, wherein the copper plating layer is provided by an electrolytic plating method and the nickel plating layer is provided by an electrolytic plating method or an electroless plating method. ニッケルめっき層の層厚の合計値TNiと銅めっき層の層厚の合計値TCuとの比S(TNi/TCu)を0.1〜0.7とすることを特徴とする請求項4または5記載のフレキシブル配線板用基板の製造方法。 The ratio S (T Ni / T Cu ) between the total thickness T Ni of the nickel plating layer and the total thickness T Cu of the copper plating layer is 0.1 to 0.7. Item 6. The method for producing a flexible wiring board substrate according to Item 4 or 5. 請求項1〜3記載の何れかのフレキシブル配線板用基板を用いて製造されたフレキシブル配線板 The flexible wiring board manufactured using the board | substrate for flexible wiring boards in any one of Claims 1-3.
JP2007018714A 2007-01-30 2007-01-30 Substrate for flexible wiring board, its manufacturing method, and flexible wiring board using the substrate Pending JP2008186970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007018714A JP2008186970A (en) 2007-01-30 2007-01-30 Substrate for flexible wiring board, its manufacturing method, and flexible wiring board using the substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007018714A JP2008186970A (en) 2007-01-30 2007-01-30 Substrate for flexible wiring board, its manufacturing method, and flexible wiring board using the substrate

Publications (1)

Publication Number Publication Date
JP2008186970A true JP2008186970A (en) 2008-08-14

Family

ID=39729814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007018714A Pending JP2008186970A (en) 2007-01-30 2007-01-30 Substrate for flexible wiring board, its manufacturing method, and flexible wiring board using the substrate

Country Status (1)

Country Link
JP (1) JP2008186970A (en)

Similar Documents

Publication Publication Date Title
JP2009295656A (en) Substrate for flexible wiring board and method for manufacturing the same
JP6149066B2 (en) Surface treated copper foil
TWI627307B (en) Surface-treated copper foil for printed wiring board, copper-clad laminate for printed wiring board, and printed wiring board
WO2012169249A1 (en) Liquid crystal polymer-copper clad laminate and copper foil used for liquid crystal polymer-copper clad laminate
JP6190846B2 (en) Surface treated copper foil
WO2019208521A1 (en) Surface-treated copper foil, copper clad laminate, and printed wiring board
TWI633817B (en) Coreless assembly support substrate
TWI526553B (en) Flexible laminates for flexible wiring
JP2006222185A (en) Polyimide flexible copper clad laminate, copper foil therefor, and polyimide flexible printed wiring board
TW201105826A (en) Copper foil and a method for producing same
TW201109468A (en) Flexible copper covered laminate board, flexible printed circuit board for chip-on-film, and method for making same
TW200950633A (en) Flex-rigid wiring board and method for manufacturing the same
JP2012038823A (en) Wiring circuit board
TW200936003A (en) Surface treated copper foil and printed circuit board substrate
JP4430020B2 (en) Copper foil for flexible printed wiring board, manufacturing method thereof and flexible printed wiring board
JP2006150591A (en) Metal foil for high frequency circuit
JP2008186970A (en) Substrate for flexible wiring board, its manufacturing method, and flexible wiring board using the substrate
JP2013147016A (en) Flexible circuit copper clad laminate, printed circuit board using the same, and method of manufacturing the same
JP2008106291A (en) Plated substrate
JP2007317782A (en) Flexible wiring board
JP2006278883A (en) Surface treatment copper foil and laminated circuit substrate constituted thereof
JP2007220730A (en) Substrate for flexible wiring board and flexible wiring board using the same
JP2020065038A (en) Copper foil electric resistor and electric circuit board structure comprising copper foil electric resistor
JP2016008343A (en) Surface-treated copper foil, copper-clad laminate using the surface-treated copper foil, and production method of the surface-treated copper foil
TWI290093B (en) Laminate for HDD suspension and process for producing the same