JP2006278883A - Surface treatment copper foil and laminated circuit substrate constituted thereof - Google Patents

Surface treatment copper foil and laminated circuit substrate constituted thereof Download PDF

Info

Publication number
JP2006278883A
JP2006278883A JP2005098239A JP2005098239A JP2006278883A JP 2006278883 A JP2006278883 A JP 2006278883A JP 2005098239 A JP2005098239 A JP 2005098239A JP 2005098239 A JP2005098239 A JP 2005098239A JP 2006278883 A JP2006278883 A JP 2006278883A
Authority
JP
Japan
Prior art keywords
foil
copper foil
copper
point metal
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005098239A
Other languages
Japanese (ja)
Other versions
JP4391437B2 (en
Inventor
Yuuki Kikuchi
勇貴 菊池
Yuji Suzuki
裕二 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Circuit Foil Co Ltd
Original Assignee
Furukawa Circuit Foil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Circuit Foil Co Ltd filed Critical Furukawa Circuit Foil Co Ltd
Priority to JP2005098239A priority Critical patent/JP4391437B2/en
Publication of JP2006278883A publication Critical patent/JP2006278883A/en
Application granted granted Critical
Publication of JP4391437B2 publication Critical patent/JP4391437B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide surface treatment copper foil without generating a void or a crack in an interface between copper foil and conductive paste including a low melting point metal, and to provide a laminated circuit substrate capable of using the conductive paste including the low melting point metal by using the copper foil and high in connection reliability. <P>SOLUTION: In the surface treatment copper foil, a roughened treatment layer of the composite of at least one kind of metal or two kinds or more of copper containing the low melting point metal, nickel, a copper alloy or a nickel alloy and having a surface roughness of 0.3-10.0 μm is formed on one side of the former foil composed of copper foil or copper alloy foil having a surface roughness of one side of 0.1-5 μm or less. The laminated circuit substrate is constituted of the surface treatment copper foil and a substrate, whose through-hole formed at a resin substrate is filled with conductive paste containing the low melting point metal, which are laminated. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、表面処理銅箔および積層回路基板(多層プリント配線板)に関するもので、特に、表裏に設けられた配線の導通を導電性組成物(導電性ペースト)によって行う積層回路基板に最適な表面処理銅箔と該表面処理銅箔を用いて作成された積層回路基板に関するものである。   The present invention relates to a surface-treated copper foil and a laminated circuit board (multilayer printed wiring board), and particularly suitable for a laminated circuit board in which conduction of wiring provided on the front and back surfaces is performed by a conductive composition (conductive paste). The present invention relates to a surface-treated copper foil and a laminated circuit board created using the surface-treated copper foil.

従来の積層回路基板には、多層配線基板用基材を多層に積層後、絶縁層にスルーホールを開口し、該スルーホールの内周面をめっき処理しためっき層によって層間導通を取るスルーホールめっき法によるものがある。該スルーホールめっき法による積層回路基板は、各層の回路を低く安定した接続抵抗で接続できる利点をもつが、工程が複雑で、工数も多いため、コストが高くなり、積層回路基板の用途を制限する要因となっている。
また、スルーホールめっき法による積層回路基板では、スルーホールの直上には部品を実装できず、配線の自由度が低いと云う欠点もある。
この欠点を解消するために、スルーホールめっき法による積層回路基板において、実装部品の配置位置を避けるように、スルーホールを基板表面に対して傾斜させて形成する手法も採用されている。
In conventional multilayer circuit boards, through-hole plating is performed by laminating multilayer wiring board base materials in multiple layers, opening through holes in the insulating layer, and providing interlayer conduction with a plating layer on the inner surface of the through holes. There is a law. The multilayer circuit board by the through-hole plating method has the advantage that the circuit of each layer can be connected with a low and stable connection resistance, but the process is complicated and the man-hours are high, so the cost is high and the use of the multilayer circuit board is limited. Is a factor.
In addition, the laminated circuit board by the through-hole plating method has a drawback in that a component cannot be mounted immediately above the through-hole and the degree of freedom of wiring is low.
In order to eliminate this drawback, a method of forming a through hole in an inclined manner with respect to the surface of the substrate in a laminated circuit board by a through hole plating method is adopted so as to avoid the placement position of the mounted components.

また近年、スルーホールめっき法に代わる層間接続法として、スルーホールに導電性ペーストを充填したIVH(Interstitial Via Hole)による積層回路基板が実用化されている。この導電性ペーストを用いた積層回路基板は、スルーホールめっき法によるものに比して製造工程が簡素化され、低コスト化を図ることができる。導電性ペーストを使用した多層配線基板としては、松下グループのALIVH(Any Layer Interstitial Via Hole)基板が知られている。
しかしながら現代ではさらなる工程の短縮などの要求から、一括プレスによる積層回路基板の製造方法も開発されており、この製造方法においても導電性ペーストが用いられている。
積層回路基板の層間接続に用いられる導電性ペーストはAgペースト、銅ペーストを主成分とし、製造工程の安定性向上及び時間短縮のために、該主成分に低融点金属を含有させ多層配線基板を形成するプレス温度に近い温度で軟化し圧着させやすい状態にしている。
上記、Agペースト、銅ペーストに添加するの低融点金属は導電率、積層回路基板を形成する時のプレス温度を考慮にいれて低融点金属の種類、量を決めている。
In recent years, as an interlayer connection method replacing the through-hole plating method, a laminated circuit board using IVH (Interstitial Via Hole) in which a through-hole is filled with a conductive paste has been put into practical use. The laminated circuit board using this conductive paste has a simplified manufacturing process and can be reduced in cost as compared with a through-hole plating method. As a multilayer wiring board using a conductive paste, an ALIVH (Any Layer Interstitial Via Hole) board of Matsushita Group is known.
However, in recent years, a method for manufacturing a laminated circuit board by batch pressing has been developed due to a demand for further shortening of the process, and a conductive paste is also used in this manufacturing method.
The conductive paste used for the interlayer connection of the multilayer circuit board is mainly composed of Ag paste and copper paste, and in order to improve the stability of the manufacturing process and shorten the time, a low-melting-point metal is contained in the main component to form a multilayer wiring board. It is softened at a temperature close to the press temperature to be formed, and is in a state where it is easy to press.
The low melting point metal added to the Ag paste and the copper paste determines the kind and amount of the low melting point metal in consideration of the electrical conductivity and the press temperature when forming the laminated circuit board.

しかしながら、この低融点金属を含有した導電性ペーストを使用してプレスにより積層回路基板を成形する場合、銅箔表面に銅と低融点金属の拡散層が生成し、銅箔と導電性ペーストとの界面にボイドまたは亀裂が発生し、銅箔と導電性ペーストとの接続部に不具合が発生し、積層基板の接続信頼性が損なわれる問題が発生することがある。   However, when a laminated circuit board is formed by pressing using a conductive paste containing this low melting point metal, a diffusion layer of copper and a low melting point metal is formed on the surface of the copper foil, and the copper foil and the conductive paste In some cases, voids or cracks are generated at the interface, a problem occurs in the connection portion between the copper foil and the conductive paste, and the connection reliability of the multilayer substrate is impaired.

本発明は、銅箔と低融点金属を含む導電性ペーストとの界面にボイド・亀裂が発生しない銅箔の提供と、該銅箔を使用することにより低融点金属を含む導電性ペーストが使用でき、かつ、接続信頼性の高い積層回路基板を提供することを目的とする。   The present invention provides a copper foil that does not generate voids or cracks at the interface between the copper foil and the conductive paste containing a low melting point metal, and the conductive paste containing the low melting point metal can be used by using the copper foil. And it aims at providing a laminated circuit board with high connection reliability.

本発明の表面処理銅箔は、一方の面の表面粗さが0.1μm〜5μm以下の銅箔または銅合金箔からなる元箔の前記一方の面上に、低融点金属を含有する銅、ニッケル、銅合金またはニッケル合金の少なくとも1種の金属または2種類以上の組成物で表面粗さが0.3〜10.0μmの粗化処理層が形成されている表面処理銅箔である。   The surface-treated copper foil of the present invention is a copper containing a low-melting-point metal on the one surface of the original foil composed of a copper foil or a copper alloy foil having a surface roughness of 0.1 μm to 5 μm or less on one surface, A surface-treated copper foil in which a roughened layer having a surface roughness of 0.3 to 10.0 μm is formed of at least one metal of nickel, a copper alloy or a nickel alloy or two or more compositions.

前記粗化処理層を形成する低融点金属は、銅、ニッケル、銅合金またはニッケル合金の量に対し、少なくとも低融点金属が2%〜70%含有している組成物であることが好ましい。   The low melting point metal forming the roughening layer is preferably a composition containing at least 2% to 70% of the low melting point metal with respect to the amount of copper, nickel, copper alloy or nickel alloy.

前記元箔は電解銅箔または電解銅合金箔であることが好ましく、さらに、前記電解銅箔からなる元箔が、少なくとも表面処理を行う面の粗さが2μm以下であり、粒状結晶で構成されていることがより好ましい。   The base foil is preferably an electrolytic copper foil or an electrolytic copper alloy foil. Further, the base foil made of the electrolytic copper foil has a surface roughness of at least 2 μm and is composed of granular crystals. More preferably.

また、上記粗化処理層表面の明度数値が35以下であることが好ましい。   Moreover, it is preferable that the lightness numerical value of the said roughening process layer surface is 35 or less.

また、前記粗化処理層の100μm×100μm範囲内に高さが0.2〜3.0μmの突起物が200個〜150000個存在することが好ましい。   Moreover, it is preferable that there are 200 to 150,000 protrusions having a height of 0.2 to 3.0 μm in the range of 100 μm × 100 μm of the roughened layer.

本発明の積層回路基板は、一方の面の表面粗さが0.1μm〜5μm以下の銅箔または銅合金箔からなる元箔の前記一方の面上に、低融点金属を含有する銅、ニッケル、銅合金またはニッケル合金の少なくとも1種の金属または2種類以上の組成物で表面粗さを0.3〜10.0μmの粗化処理層が形成された表面処理銅箔と、樹脂基板に穿設した貫通孔に低融点金属を含有する導電性ペーストを充填した基板とを積層してなる基板である。   The laminated circuit board according to the present invention comprises copper, nickel containing a low-melting-point metal on the one surface of the original foil made of copper foil or copper alloy foil having a surface roughness of 0.1 μm to 5 μm or less on one surface. A surface-treated copper foil in which a roughened layer having a surface roughness of 0.3 to 10.0 μm is formed of at least one metal of copper alloy or nickel alloy or two or more compositions, and a resin substrate. The substrate is formed by laminating a substrate filled with a conductive paste containing a low-melting-point metal in a provided through hole.

本発明は、低融点金属を含む導電性ペーストを使用した積層回路基板に最適に対応できる銅箔を提供でき、該銅箔を用いた接続信頼性の高い積層回路基板を提供するものである。   The present invention can provide a copper foil that can be optimally adapted to a laminated circuit board using a conductive paste containing a low melting point metal, and provides a laminated circuit board having high connection reliability using the copper foil.

本発明は、元箔(銅箔または銅合金箔。以下特に区別する必要がないときは単に元箔という)に低融点金属を含有する銅、ニッケル、銅合金またはニッケル合金の1種または2種類以上(ここで、低融点金属を含有する、との意味は低融点金属が単体で銅(合金)またはニッケル(合金)と混合されて存在してもいいし、銅(合金)またはニッケル(合金)と低融点金属の合金として存在してもいい、状態をいう。)(以下これらを総称して粗化処理組成物という)にて構成された粗化処理層を形成した表面処理銅箔であり、該表面処理銅箔と樹脂基板に穿設した貫通孔に低融点金属を含有する導電性ペーストを充填した基板とを必要数積層した積層回路基板である。   The present invention relates to one or two kinds of copper, nickel, copper alloy or nickel alloy containing a low melting point metal in the base foil (copper foil or copper alloy foil; hereinafter simply referred to as the base foil when it is not necessary to distinguish between them). Above (here, low-melting point metal is included) means that the low-melting point metal may be mixed with copper (alloy) or nickel (alloy) alone, or copper (alloy) or nickel (alloy) ) And a low-melting-point metal alloy, which is a state-treated copper foil formed with a roughened layer composed of (hereinafter collectively referred to as a roughened composition). A laminated circuit board in which a necessary number of the surface-treated copper foil and a substrate filled with a conductive paste containing a low-melting-point metal are stacked in through holes formed in a resin substrate.

本発明で用いる表面処理銅箔は、絶縁基板であるエポキシ樹脂フィルム、ポリイミドフィルム、吸湿性が著しく低いために誘電特性の変化が少なく半田付けに耐えられる耐熱性を有する液晶ポリマーフィルム、ポリエーテルエーテルケトン系樹脂フィルムと張り合わせた際、密着強度が大きく、ファインパターン化が可能で、銅箔と低融点金属含有導電性ペーストとの界面においてボイドが発生するようなことのない銅箔である。
特に、絶縁基板としては、エポキシ樹脂・ポリイミドフィルム・液晶ポリマーを50%以上含む組成物からなるフィルムが適している。
The surface-treated copper foil used in the present invention is an epoxy resin film, a polyimide film, which is an insulating substrate, a liquid crystal polymer film having a heat resistance that can withstand soldering with little change in dielectric properties because of its extremely low hygroscopicity, and polyether ether When bonded to a ketone-based resin film, the adhesive strength is large, fine patterning is possible, and no void is generated at the interface between the copper foil and the low-melting-point metal-containing conductive paste.
In particular, as the insulating substrate, a film made of a composition containing 50% or more of an epoxy resin, a polyimide film, and a liquid crystal polymer is suitable.

本発明者等は、銅箔表面と低融点金属含有導電性ペーストとの界面におけるボイド発生の原因につき鋭意研究し、ボイドが、低融点金属が銅等からなる表面処理銅箔の粗化処理層に拡散する時に発生することを突き止め、拡散する低融点金属の量と粗化処理層に拡散する厚み(深さ)に依存することを解明し、また、はじめから粗化処理層にある量以上の低融点金属を含有する銅、ニッケル、それらの合金で構成されているとボイドが発生しないことを突き止め本発明を完成した。   The present inventors have earnestly studied the cause of void generation at the interface between the copper foil surface and the low-melting point metal-containing conductive paste, and the roughened layer of the surface-treated copper foil in which the void is made of copper or the like as the low-melting point metal. The amount of low melting point metal that diffuses and the thickness (depth) that diffuses into the roughened layer are clarified, and more than the amount in the roughened layer from the beginning. The present invention has been completed by ascertaining that voids do not occur when it is composed of copper, nickel, or an alloy thereof containing a low melting point metal.

本発明で用いる元箔は、電解もしくは圧延によって製造された銅箔である。その銅箔の厚さは1μm〜200μmであり、少なくとも片面の表面粗さが、Rz:0.1μm〜5μmの銅もしくは銅合金箔である。元箔の厚みについては、厚さが1μm以下の元箔に対し、その表面上に粗化処理を施すことは非常に難しく、また、実用性を考慮すると、例えば高周波プリント配線板用に使用する元箔としては、200μm以上の箔は現実的でないと考えるためである。   The original foil used in the present invention is a copper foil manufactured by electrolysis or rolling. The thickness of the copper foil is 1 μm to 200 μm, and the surface roughness of at least one surface is a copper or copper alloy foil of Rz: 0.1 μm to 5 μm. Regarding the thickness of the original foil, it is very difficult to roughen the surface of the original foil having a thickness of 1 μm or less, and considering practicality, for example, it is used for a high-frequency printed wiring board. This is because a foil of 200 μm or more is considered unrealistic as the original foil.

元箔の表面粗さを、Rz:0.1μm〜5μmに規定するのは、Rzが0.1μm以下の箔は、現実的に製造も困難であり、もし製造できたとしても製造コストがかかることから現実的に不適であり、また、Rz:5.0μm以上の元箔を使用してもよいが、高周波特性及びファインパターン化を考えると5.0μm以下であることが好ましく、その表面粗さが2μm以下であると更に好ましい。また、この元箔は、導電性ペーストを使用し積層回路基板を形成する際、高温におけるプレス工程がはいるため銅箔に柔軟性がないとプレス時に破断が生じる可能性があるため銅箔には柔軟性が要求される。
銅箔に柔軟性を付与するためには粒状晶で構成されその表面粗さが2μm以下である銅箔が好ましい。また、粒状結晶のサイズは平均0.3μm以上が好ましく、1μm以上の結晶サイズのものが銅箔断面の10%以上を占めているものが特に好ましい。
The surface roughness of the original foil is defined as Rz: 0.1 μm to 5 μm. A foil having an Rz of 0.1 μm or less is actually difficult to manufacture, and even if it can be manufactured, manufacturing costs are required. Therefore, an original foil of Rz: 5.0 μm or more may be used, but considering the high frequency characteristics and fine patterning, it is preferably 5.0 μm or less, and its surface roughness Is more preferably 2 μm or less. In addition, when forming a laminated circuit board using a conductive paste, this original foil has a pressing process at a high temperature, so if the copper foil is not flexible, it may break during pressing. Requires flexibility.
In order to impart flexibility to the copper foil, a copper foil composed of granular crystals and having a surface roughness of 2 μm or less is preferable. Further, the average size of the granular crystals is preferably 0.3 μm or more, and those having a crystal size of 1 μm or more occupy 10% or more of the copper foil cross section are particularly preferable.

本発明においては、上記した元箔に表面処理を行う。元箔表面の表面粗化処理は、元箔の表面に粗化処理組成物を付着させ粗化処理層を形成する。上記Cu合金とはCuにNi、Mo、Co、Fe、Cr、V及びWの群から選ばれる少なくとも1種の元素を含んでいるものである。またNi合金とはCu、Mo、Co、Fe、Cr、V及びWの群から選ばれる少なくとも1種の元素を含んでいるものである。
前記粗化処理層を形成する合金粒子として含まれるMo、Co、Fe、Cr、V及びWの群から選ばれる少なくとも1種の元素は、CuまたはNiに対し0.01ppm〜20%を占めることが好ましい。存在量が20%を越える金組成では、後工程で回路パターンをエッチングする際に、溶解しにくくなるためである。
更に、均一な突起物を得るために、粗化処理時の各種電解液の選択、電流密度、液温、処理時間を最適にすることが望ましい。
更に、粗化処理層を構成する低融点金属は、粗化処理層を構成する銅またはニッケルの量の2%〜70%が好ましい。2%以下では導電ペーストに含有する低融点金属の粗化処理層に拡散する量が少なくボイド・亀裂が発生し易くなる。また、低融点金属が70%以上含まれると粗化処理層の硬さが低くなり樹脂との密着力が弱くなり、かつ接合部の抵抗を増大させることが考えられるため不適である。
In the present invention, the above-described base foil is subjected to surface treatment. In the surface roughening treatment of the original foil surface, the roughening treatment composition is attached to the surface of the original foil to form a roughening treatment layer. The Cu alloy includes Cu containing at least one element selected from the group consisting of Ni, Mo, Co, Fe, Cr, V and W. The Ni alloy contains at least one element selected from the group consisting of Cu, Mo, Co, Fe, Cr, V and W.
At least one element selected from the group consisting of Mo, Co, Fe, Cr, V, and W contained as alloy particles forming the roughening layer occupies 0.01 ppm to 20% with respect to Cu or Ni. Is preferred. This is because a gold composition having an abundance exceeding 20% is difficult to dissolve when a circuit pattern is etched in a subsequent process.
Furthermore, in order to obtain a uniform projection, it is desirable to optimize the selection of various electrolytes, current density, solution temperature, and treatment time during the roughening treatment.
Furthermore, the low melting point metal constituting the roughening treatment layer is preferably 2% to 70% of the amount of copper or nickel constituting the roughening treatment layer. If it is 2% or less, the amount of diffusion into the roughening layer of the low melting point metal contained in the conductive paste is small, and voids and cracks are likely to occur. Further, if the low melting point metal is contained in an amount of 70% or more, the hardness of the roughened layer is lowered, the adhesion to the resin is weakened, and the resistance of the joint is considered to be unsuitable.

元箔上に形成する粗化処理層は、導電ペーストから粗化処理層に拡散する低融点金属の原子個数と粗化処理層に含有する低融点金属の原子個数の和に対し粗化処理層を形成する銅またはニッケルの原子数が4倍以下であることが好ましい。前記低融点金属とは、単体金属において450℃以下の融点を有する金属をさし、具体的にあげるとZn、Sn、Pb、In、Biまたは少なくともそれら金属が1種類含まれる合金である。   The roughening layer formed on the original foil is a roughening layer with respect to the sum of the number of low melting point metal atoms diffusing from the conductive paste into the roughening layer and the number of low melting point metal atoms contained in the roughening layer. It is preferable that the number of atoms of copper or nickel forming is 4 times or less. The low melting point metal is a single metal having a melting point of 450 ° C. or lower, specifically, Zn, Sn, Pb, In, Bi, or an alloy containing at least one of these metals.

元箔上の少なくとも片面に施した粗化処理層の表面粗さはRz:0.3〜10.0μmである。このように規定する理由は、粗化処理による表面粗さRzが0.3μm未満では、ピール強度が低いためその目的を果たす表面処理銅箔としては満足でなく、また、Rz:10.0μmより大きいと、高周波特性が低下し、また、ファインパターン化にも不向きとなるためである。
高周波特性・ファインパターン化を考慮すると表面粗さは3μm以下にすることが好ましい。
The surface roughness of the roughened layer applied to at least one surface of the original foil is Rz: 0.3 to 10.0 μm. The reason for specifying in this way is that when the surface roughness Rz by the roughening treatment is less than 0.3 μm, the peel strength is low, so it is not satisfactory as a surface-treated copper foil that fulfills its purpose, and Rz: from 10.0 μm If it is large, the high-frequency characteristics are deteriorated and it is not suitable for fine patterning.
In consideration of high frequency characteristics and fine patterning, the surface roughness is preferably 3 μm or less.

前記樹脂基板に穿設した貫通穴に充填の導電性ペーストは、主成分(Ag、Cu)に対し低融点金属が1%〜50%添加されたものが積層回路基板用として特に好ましい。導電性ペーストが含有する低融点金属としてはZn、In、Sn、Pb、Biまたはこれらの合金であり、少なくともこれら金属の1種類が含有されているものが好ましい。また、表面処理箔は、導電ペーストに含有する低融点金属と同一の低融点金属が含まれる粗化処理層とすることが好ましい。   The conductive paste filled in the through holes formed in the resin substrate is particularly preferable for a laminated circuit substrate in which a low melting point metal is added in an amount of 1% to 50% with respect to the main component (Ag, Cu). The low melting point metal contained in the conductive paste is Zn, In, Sn, Pb, Bi or an alloy thereof, and preferably contains at least one kind of these metals. The surface-treated foil is preferably a roughened layer containing the same low melting point metal as the low melting point metal contained in the conductive paste.

本発明における表面処理銅箔の明度数値は、35以下であることが望ましい。本発明において明度数値とは、通常、表面の粗さを見る指標として使用されている明度数値であり、測定方法としては、測定サンプル表面に光をあて光の反射量を測定し明度数値として表す方法である。
本発明においては、被測定表面処理銅箔に
Ni: 0.01〜0.5mg/dm2
Zn: 0.01〜0.5mg/dm2
Cr: 0.01〜0.3mg/dm2
の範囲内の防錆処理を施した後、明度計(スガ試験機株式会社 機種名:SMカラーコンピューター 型番SM−4)を使用して明度数値を測定した。
表面処理銅箔の表面明度を測定すると、表面粗さのRzが大きいかまたは粗化粒子間の深さが深い時は、光の反射量が少なくなるため明度数値が低くなり、平滑だと光の反射量が大きくなり明度数値が高くなる傾向にある。絶縁基板とのピール強度を向上させるためには明度数値を35以下とすることが好ましい。即ち、明度数値が35以上では、粗化面の表面粗度Rzを大きくしてもなだらかな凹凸面となり表面処理銅箔と絶縁基板との食いつきが悪く、ピール強度が向上しないためである。
The brightness value of the surface-treated copper foil in the present invention is desirably 35 or less. In the present invention, the lightness value is a lightness value that is usually used as an index for measuring the roughness of the surface. As a measurement method, light reflection is applied to the surface of the measurement sample to express the lightness value. Is the method.
In the present invention, the surface-treated copper foil to be measured
Ni: 0.01 to 0.5 mg / dm 2
Zn: 0.01 to 0.5 mg / dm 2
Cr: 0.01 to 0.3 mg / dm 2
After the rust-proofing treatment within the range, the lightness value was measured using a lightness meter (Suga Test Instruments Co., Ltd., model name: SM color computer, model number SM-4).
When the surface brightness of the surface-treated copper foil is measured, when the surface roughness Rz is large or the depth between the roughened particles is deep, the amount of light reflection decreases, and the brightness value decreases. The amount of reflection increases and the brightness value tends to increase. In order to improve the peel strength with the insulating substrate, the brightness value is preferably 35 or less. That is, when the brightness value is 35 or more, even if the surface roughness Rz of the roughened surface is increased, the surface becomes smooth and uneven, and the biting between the surface-treated copper foil and the insulating substrate is poor, and the peel strength is not improved.

本発明の表面処理銅箔は、導電性ペーストによる亀裂・ボイドの影響を抑えるために粗化処理による付着金属量を絶縁樹脂との接着強度を充分持たせる量より少なく付着することになる。そのため、絶縁樹脂との密着性を上げるために最適な粗化形状が要求される。
本発明において、粗化粒子から構成される突起物は、場所による密着性の差を無くすため、高さとして0.2μm〜3.0μmの範囲に入っている突起物が、100μm×100μmの面積の中に200〜150000個存在することが好ましい。なお、ここでいう高さとは、元箔の表面と突起物の頂点との距離をいう。
The surface-treated copper foil of the present invention adheres in an amount less than the amount that gives sufficient adhesion strength to the insulating resin in order to suppress the influence of cracks and voids caused by the conductive paste. Therefore, an optimum roughened shape is required to improve the adhesion with the insulating resin.
In the present invention, the protrusion composed of the roughened particles eliminates the difference in adhesion depending on the location, so that the protrusion in the range of 0.2 μm to 3.0 μm in height has an area of 100 μm × 100 μm. It is preferable that 200 to 150,000 are present in the inside. The height here refers to the distance between the surface of the original foil and the apex of the protrusion.

元箔表面に形成される突起物の高さについては、0.2μm以下では、高さが低いためピール強度を上げる効果が得られず、また、3.0μm以上では、高周波特性が低下するうえにファインパターン化に不向きとなる。
元箔の表面に形成される突起物の数は、100μm×100μmの面積の中に200個〜150000個存在することが好ましい。突起物の数が200個以下になると密着性の安定性に関して不適となり、また150000個以上になると突起物間の空間が少なくなり密着性に対する効果が果たされなくなり不適となる。
突起物の高さは、表面処理銅箔を樹脂埋めし、研磨を行った後断面のSEM観察を行い観察写真により突起物の高さを確認する。突起物は表面に均一に分布していることがさらに好ましい。
As for the height of the protrusion formed on the surface of the original foil, if the height is 0.2 μm or less, the height is low, so that the effect of increasing the peel strength cannot be obtained. It is not suitable for fine patterning.
The number of protrusions formed on the surface of the original foil is preferably 200 to 150,000 in an area of 100 μm × 100 μm. If the number of protrusions is 200 or less, the stability of the adhesion is unsuitable, and if it is 150,000 or more, the space between the protrusions is reduced and the effect on the adhesion is not achieved.
As for the height of the protrusion, the surface-treated copper foil is filled with resin, polished, and then subjected to SEM observation of the cross section, and the height of the protrusion is confirmed by an observation photograph. More preferably, the protrusions are uniformly distributed on the surface.

また、突起物を設けた表面に、粉落ち性・耐塩酸性・耐熱性・導電性を向上させることを目的にNi、Ni合金、Zn、Zn合金、Agの群から選ばれる少なくとも1種の金属めっき層を設けると良い。更に、突起物を設けなかった方の表面にも耐塩酸性・耐熱性・導電性を向上させることを目的にNi、Ni合金、Zn、Zn合金、Agの少なくとも1種の金属めっき層を付着させると良い。これらの目的を果たすためには、付着金属量として0.05mg/dm以上、10mg/dm以下であることが望ましい。
特に液晶ポリマー樹脂等におけるNiまたはNi合金は、ピール強度を高める効果がある。
In addition, at least one metal selected from the group consisting of Ni, Ni alloy, Zn, Zn alloy, and Ag is provided on the surface provided with the protrusions for the purpose of improving powder fall resistance, hydrochloric acid resistance, heat resistance, and conductivity. A plating layer may be provided. Furthermore, at least one metal plating layer of Ni, Ni alloy, Zn, Zn alloy, or Ag is attached to the surface on which the protrusion is not provided for the purpose of improving hydrochloric acid resistance, heat resistance, and conductivity. And good. In order to achieve these purposes, the amount of deposited metal is preferably 0.05 mg / dm 2 or more and 10 mg / dm 2 or less.
In particular, Ni or Ni alloy in liquid crystal polymer resin or the like has an effect of increasing peel strength.

上記構成からなる表面処理銅箔上にCrおよび/またはクロメート被膜を形成させ防錆処理を行い、又は、必要に応じシランカップリング処理または防錆処理+シランカップリング処理を施す。   A Cr and / or chromate film is formed on the surface-treated copper foil having the above-described configuration to carry out a rust prevention treatment, or a silane coupling treatment or a rust prevention treatment + silane coupling treatment is carried out as necessary.

以下、本発明を実施形態に基づいて更に詳しく説明するが、本発明はこれらに限定されるものではない。   Hereinafter, although this invention is demonstrated in more detail based on embodiment, this invention is not limited to these.

原箔1
厚さ:12μmで、マット面粗度:Rz=0.89μmの未処理電解銅箔、及び未処理圧延銅箔(元箔)を用意した。
原箔2
厚さ:12μmで、マット面粗度:Rz=1.35μmの未処理電解銅箔を用意した。
原箔3
厚さ:12μmで、マット面粗度:Rz=1.42μmの未処理電解銅箔を用意した。
Raw foil 1
An untreated electrolytic copper foil having a thickness of 12 μm and a mat surface roughness of Rz = 0.89 μm and an untreated rolled copper foil (original foil) were prepared.
Raw foil 2
An untreated electrolytic copper foil having a thickness of 12 μm and a mat surface roughness of Rz = 1.35 μm was prepared.
Raw foil 3
An untreated electrolytic copper foil having a thickness of 12 μm and a mat surface roughness of Rz = 1.42 μm was prepared.

上記原箔1〜3を下記電気めっきA〜Cの液組成・浴温度・電流条件範囲内にてめっき浴1→めっき浴2またはめっき浴1→めっき浴2→めっき浴3の順番で少なくとも1回のめっき(粗化処理)を行い、更にその粗化処理面に、Niめっき(0.3mg/dm2)亜鉛めっき(0.1mg/dm2)を施し、その上にクロメート処理を施した。 The raw foils 1 to 3 are at least 1 in the order of plating bath 1 → plating bath 2 or plating bath 1 → plating bath 2 → plating bath 3 within the range of the liquid composition, bath temperature, and current conditions of the following electroplating AC. Plating (roughening treatment) was performed once, and further, Ni plating (0.3 mg / dm 2 ) and zinc plating (0.1 mg / dm 2 ) were applied to the roughened surface, and chromate treatment was applied thereon. .

(実施例1〜7)
電気めっきA
めっき浴1
硫酸銅(Cu金属として) : 1〜10g/dm3
硫酸 : 30〜100g/dm3
モリブデン酸アンモニウム(Mo金属として) :0.1〜5.0g/dm3
電流密度 :10〜60A/dm
通電時間 :1秒〜3分
浴温 :20〜60℃
(Examples 1-7)
Electroplating A
Plating bath 1
Copper sulfate (as Cu metal): 1 to 10 g / dm 3
Sulfuric acid: 30-100 g / dm 3
Ammonium molybdate (as Mo metal): 0.1 to 5.0 g / dm 3
Current density: 10 to 60 A / dm 2
Energizing time: 1 second-3 minutes Bath temperature: 20-60 ° C

・めっき浴2
硫酸錫 : 30〜50g/dm3
硫酸 :80〜120g/dm3
クレゾールスルホン酸 :80〜100g/dm3
β―ナフトール : 1〜3g/dm
電流密度 :1〜5A/dm2
浴温 :10〜30℃
・ Plating bath 2
Tin sulfate: 30-50 g / dm 3
Sulfuric acid: 80-120 g / dm 3
Cresol sulfonic acid: 80 to 100 g / dm 3
β-naphthol: 1-3 g / dm 3
Current density: 1-5A / dm 2
Bath temperature: 10-30 ° C

めっき浴3
硫酸銅(Cu金属として) : 20〜70g/dm3
硫酸 :30〜100g/dm
電流密度 :5〜45A/dm2
通電時間 :1秒〜3分
浴温 :20℃〜60℃
Plating bath 3
Copper sulfate (as Cu metal): 20 to 70 g / dm 3
Sulfuric acid: 30 to 100 g / dm 3 ,
Current density: 5 to 45 A / dm 2
Energizing time: 1 second to 3 minutes Bath temperature: 20 ° C to 60 ° C

電気めっきB
めっき浴1
硫酸銅(Cu金属として) :1〜50g/dm3
硫酸ニッケル(Ni金属として) :3〜25g/dm3
メタパナジン酸アンモニウム(V金属として) :0.1〜15g/dm3
pH :1.0〜4.5
電流密度 :10〜60A/dm2
通電時間 :5秒〜20秒
浴温 :20℃〜60℃
Electroplating B
Plating bath 1
Copper sulfate (as Cu metal): 1 to 50 g / dm 3
Nickel sulfate (as Ni metal): 3 to 25 g / dm 3
Ammonium metapanadate (as V metal): 0.1 to 15 g / dm 3
pH: 1.0 to 4.5
Current density: 10-60 A / dm 2
Energizing time: 5 to 20 seconds Bath temperature: 20 to 60 ° C

・めっき浴2
硫酸錫 : 30〜50 g/dm
硫酸 : 80〜120 g/dm3
クレゾールスルホン酸 : 80〜100 g/dm3
β―ナフトール : 1〜3 g/dm
電流密度 :1〜5A/dm2
浴温 :10〜30℃
・ Plating bath 2
Tin sulfate: 30-50 g / dm 3
Sulfuric acid: 80-120 g / dm 3
Cresol sulfonic acid: 80-100 g / dm 3
β-naphthol: 1-3 g / dm 3
Current density: 1-5A / dm 2
Bath temperature: 10-30 ° C

めっき浴3
硫酸銅(Cu金属として) :10〜70g/dm3
硫酸 :30〜120g/dm3
電流密度 :20〜50A/dm2
通電時間 :5秒〜3分
浴温 :20℃〜65℃
Plating bath 3
Copper sulfate (as Cu metal): 10-70 g / dm 3
Sulfuric acid: 30-120 g / dm 3
Current density: 20 to 50 A / dm 2
Energizing time: 5 seconds to 3 minutes Bath temperature: 20 ° C to 65 ° C

電気めっきC
めっき浴1
硫酸銅(Cu金属として) : 1〜50g/dm3
硫酸コバルト(Co金属として) : 1〜50g/dm3
モリブデン酸アンモニウム(Mo金属として) : 0.1〜10g/dm3
pH :0.5〜4.0
電流密度 :10〜60A/dm2
通電時間 :5秒〜25秒
浴温 :20℃〜60℃
Electroplating C
Plating bath 1
Copper sulfate (as Cu metal): 1 to 50 g / dm 3
Cobalt sulfate (as Co metal): 1-50 g / dm 3
Ammonium molybdate (as Mo metal): 0.1 to 10 g / dm 3
pH: 0.5-4.0
Current density: 10-60 A / dm 2
Energizing time: 5 to 25 seconds Bath temperature: 20 to 60 ° C

めっき浴2
ピロリン酸銅(Cu金属として) :5〜50g/dm3
ピロリン酸錫 :30〜120g/dm3
ピロリン酸ナトリウム :150〜450g/dm3
シュウ酸アンモニウム :3〜40g/dm3
電流密度 :0.5〜2A/dm2
通電時間 :1分〜5分
浴温 :20℃〜65℃
Plating bath 2
Copper pyrophosphate (as Cu metal): 5-50 g / dm 3
Tin pyrophosphate: 30-120 g / dm 3
Sodium pyrophosphate: 150-450 g / dm 3
Ammonium oxalate: 3 to 40 g / dm 3
Current density: 0.5-2 A / dm 2
Energizing time: 1 to 5 minutes Bath temperature: 20 ° C to 65 ° C

(比較例1〜7)
上記原箔1〜3を下記電気めっきD〜Fの液組成・浴温度・電流条件範囲内にてめっき浴3→めっき浴4の順番で少なくとも1回のめっき(粗化処理)を行い、表1に示す表面形状を得た。
更に、その粗化処理面に、Niめっき(0.3mg/dm2)亜鉛めっき(0.1mg/dm2)を施し、その上にクロメート処理を施した。
(Comparative Examples 1-7)
The raw foils 1 to 3 are subjected to at least one plating (roughening treatment) in the order of the plating bath 3 to the plating bath 4 within the range of the liquid composition, bath temperature and current conditions of the following electroplating D to F. The surface shape shown in 1 was obtained.
Further, Ni plating (0.3 mg / dm 2 ) zinc plating (0.1 mg / dm 2 ) was applied to the roughened surface, and chromate treatment was performed thereon.

電気めっきD
めっき浴3
硫酸銅(Cu金属として) : 1〜10g/dm3
硫酸 : 30〜100g/dm3
モリブデン酸アンモニウム(Mo金属として) :0.1〜5.0g/dm3
電流密度 :10〜60A/dm
通電時間 :1秒〜3分
浴温 :20〜60℃
Electroplating D
Plating bath 3
Copper sulfate (as Cu metal): 1 to 10 g / dm 3
Sulfuric acid: 30-100 g / dm 3
Ammonium molybdate (as Mo metal): 0.1 to 5.0 g / dm 3
Current density: 10 to 60 A / dm 2
Energizing time: 1 second-3 minutes Bath temperature: 20-60 ° C

めっき浴4
硫酸銅(Cu金属として) :20〜70g/dm3
硫酸 :30〜100g/dm
電流密度 :5〜45A/dm2
通電時間 :1秒〜3分
浴温 :20℃〜60℃
Plating bath 4
Copper sulfate (as Cu metal): 20 to 70 g / dm 3
Sulfuric acid: 30 to 100 g / dm 3 ,
Current density: 5 to 45 A / dm 2
Energizing time: 1 second to 3 minutes Bath temperature: 20 ° C to 60 ° C

電気めっきE
めっき浴3
硫酸銅(Cu金属として) : 1〜50g/dm3
硫酸ニッケル(Ni金属として) : 3〜25g/dm3
メタパナジン酸アンモニウム(V金属として) :0.1〜15g/dm3
pH :1.0〜4.5
電流密度 :10〜60A/dm2
通電時間 :5秒〜20秒
浴温 :20℃〜60℃
Electroplating E
Plating bath 3
Copper sulfate (as Cu metal): 1 to 50 g / dm 3
Nickel sulfate (as Ni metal): 3 to 25 g / dm 3
Ammonium metapanadate (as V metal): 0.1 to 15 g / dm 3
pH: 1.0-4.5
Current density: 10-60 A / dm 2
Energizing time: 5 to 20 seconds Bath temperature: 20 to 60 ° C

めっき浴4
硫酸銅(Cu金属として) : 10〜70g/dm3
硫酸 :30〜120g/dm3
電流密度 :20〜50A/dm2
通電時間 :5秒〜3分
浴温 :20℃〜65℃
Plating bath 4
Copper sulfate (as Cu metal): 10-70 g / dm 3
Sulfuric acid: 30-120 g / dm 3
Current density: 20 to 50 A / dm 2
Energizing time: 5 seconds to 3 minutes Bath temperature: 20 ° C to 65 ° C

電気めっきF
めっき浴3
硫酸銅(Cu金属として) : 1〜50g/dm3
硫酸コバルト(Co金属として) : 1〜50g/dm3
モリブデン酸アンモニウム(Mo金属として) :0.1〜10g/dm3
pH :0.5〜4.0
電流密度 :10〜60A/dm2
通電時間 :5秒〜25秒
浴温 :20℃〜60℃
Electroplating F
Plating bath 3
Copper sulfate (as Cu metal): 1 to 50 g / dm 3
Cobalt sulfate (as Co metal): 1-50 g / dm 3
Ammonium molybdate (as Mo metal): 0.1 to 10 g / dm 3
pH: 0.5 to 4.0
Current density: 10-60 A / dm 2
Energizing time: 5 to 25 seconds Bath temperature: 20 to 60 ° C

めっき浴4
硫酸銅(Cu金属として) : 20〜70g/dm3
硫酸 :30〜120g/dm
電流密度 :3A/dm2
通電時間 :1秒〜2分
浴温 :30℃
Plating bath 4
Copper sulfate (as Cu metal): 20 to 70 g / dm 3
Sulfuric acid: 30-120 g / dm 3
Current density: 3 A / dm 2
Energizing time: 1 second to 2 minutes Bath temperature: 30 ° C

実施例1〜7、比較例1〜7の電気めっきによる粗化処理による粒子の付着量、粗化処理面の表面粗さ、突起物の個数、明度数値を表1に示す。   Table 1 shows the adhesion amount of particles by the roughening treatment by electroplating in Examples 1 to 7 and Comparative Examples 1 to 7, the surface roughness of the roughened surface, the number of protrusions, and the brightness value.

・表面処理銅箔のピール強度の評価
実施例及び比較例で作成した表面処理銅箔に、液晶ポリマーフィルム1(以下フィルム1という)ポリエーテルエーテルケトンフィルム(以下フィルム2という)を下記ラミネート方法で貼り付け、ピール強度を測定した。
-Evaluation of peel strength of surface-treated copper foil A liquid crystal polymer film 1 (hereinafter referred to as film 1) and a polyether ether ketone film (hereinafter referred to as film 2) were applied to the surface-treated copper foil prepared in Examples and Comparative Examples by the following laminating method. Adhesion and peel strength were measured.

・液晶ポリマーフィルムと表面処理銅箔のラミネート方法
表面処理銅箔と液晶ポリマーフィルム1を積層し、280℃で一定圧力をかけ、10分間保持した後冷却し、基板用複合材とした。
ポリエーテルエーテルケトンフィルムと表面処理銅箔のラミネート方法
表面処理銅箔とポリエーテルエーテルケトンフィルムを積層し、205℃で一定圧力をかけ、10分間保持した後冷却し、基板用複合材とした。
-Lamination method of liquid crystal polymer film and surface-treated copper foil The surface-treated copper foil and the liquid crystal polymer film 1 were laminated, a constant pressure was applied at 280 ° C., held for 10 minutes, and then cooled to obtain a substrate composite.
Lamination method of polyetheretherketone film and surface-treated copper foil A surface-treated copper foil and a polyetheretherketone film were laminated, a constant pressure was applied at 205 ° C., held for 10 minutes, and then cooled to obtain a substrate composite.

この様にして作成した表面処理箔とフィルムとの基板複合材(銅張積層)のピール強度を測定した。ピール強度の測定は、JIS・C6471に準じ、180度方向に引き剥がして行い、その結果を表1に示す。   The peel strength of the substrate composite material (copper-clad laminate) of the surface-treated foil and film thus prepared was measured. The peel strength is measured in accordance with JIS C6471 by peeling in the direction of 180 degrees, and the results are shown in Table 1.

ボイド発生の確認方法は次のとおりである。
低融点金属におけるボイド発生の確認方法
ボイド発生の評価については、低融点金属であるSnを粗化処理面に1.5μmの厚さにめっきし、この銅箔を、320℃にて加熱処理を行い断面観察しボイド及び亀裂の発生状況を確認した。結果を表1に示す。
The method for confirming the occurrence of voids is as follows.
Method for confirming void generation in low melting point metal For evaluation of void generation, Sn, which is a low melting point metal, is plated on the roughened surface to a thickness of 1.5 μm, and this copper foil is heated at 320 ° C. The cross section was observed and the occurrence of voids and cracks was confirmed. The results are shown in Table 1.

Figure 2006278883
Figure 2006278883

本発明の積層回路基板を構成する表面処理銅箔は、従来の銅のみの粗化と比較し、ピール強度を変えずにボイドの発生を低融点金属を含有させることで有効に抑制できた。   The surface-treated copper foil constituting the laminated circuit board of the present invention was able to effectively suppress the generation of voids by containing a low melting point metal without changing the peel strength as compared with the conventional roughening of copper alone.

Claims (7)

一方の面の表面粗さが0.1μm〜5μm以下の銅箔または銅合金箔からなる元箔の前記一方の面上に、低融点金属を含有する銅、ニッケル、銅合金またはニッケル合金の少なくとも1種の金属または2種類以上の組成物で表面粗さが0.3〜10.0μmの粗化処理層が形成されている表面処理銅箔。   At least one of copper, nickel, a copper alloy or a nickel alloy containing a low melting point metal on the one surface of the original foil made of a copper foil or a copper alloy foil having a surface roughness of 0.1 μm to 5 μm or less on one surface A surface-treated copper foil in which a roughened layer having a surface roughness of 0.3 to 10.0 μm is formed of one type of metal or two or more types of compositions. 前記粗化処理層を形成する低融点金属は、銅、ニッケル、銅合金またはニッケル合金の量に対し、少なくとも低融点金属が2%〜70%含有している組成物であることを特徴とする請求項1に記載の表面処理銅箔。   The low melting point metal forming the roughening layer is a composition containing at least 2% to 70% of a low melting point metal with respect to the amount of copper, nickel, copper alloy or nickel alloy. The surface-treated copper foil of Claim 1. 前記元箔は電解銅箔または電解銅合金箔であることを特徴とする請求項1または請求項2に記載の表面処理銅箔。   3. The surface-treated copper foil according to claim 1, wherein the base foil is an electrolytic copper foil or an electrolytic copper alloy foil. 前記電解銅箔からなる元箔が、少なくとも表面処理を行う面の粗さが2μm以下であり、粒状結晶で構成されていることを特徴とする請求項1乃至請求項3のいずれかに記載の表面処理銅箔。   4. The base foil made of the electrolytic copper foil has at least a surface treatment surface roughness of 2 μm or less and is composed of granular crystals. 5. Surface treated copper foil. 上記粗化処理層表面の明度数値が35以下であることを特徴とする請求項1乃至請求項4のいずれかに記載の表面処理銅箔。   5. The surface-treated copper foil according to claim 1, wherein a lightness value on the surface of the roughened layer is 35 or less. 前記粗化処理層の100μm×100μm範囲内に高さが0.2〜3.0μmの突起物が200個〜150000個存在することを特徴とする請求項1乃至請求項5のいずれかに記載の表面処理銅箔。   6. The method according to claim 1, wherein there are 200 to 150,000 protrusions having a height of 0.2 to 3.0 μm within a range of 100 μm × 100 μm of the roughening treatment layer. Surface treated copper foil. 一方の面の表面粗さが0.1μm〜5μm以下の銅箔または銅合金箔からなる元箔の前記一方の面上に、低融点金属を含有する銅、ニッケル、銅合金またはニッケル合金の少なくとも1種の金属または2種類以上の組成物で表面粗さを0.3〜10.0μmの粗化処理層が形成された表面処理銅箔と、樹脂基板に穿設した貫通孔に低融点金属を含有する導電性ペーストを充填した基板とを積層してなる積層回路基板。   At least one of copper, nickel, a copper alloy or a nickel alloy containing a low melting point metal on the one surface of the original foil made of a copper foil or a copper alloy foil having a surface roughness of 0.1 μm to 5 μm or less on one surface A low-melting-point metal in a surface-treated copper foil in which a roughened layer having a surface roughness of 0.3 to 10.0 μm is formed of one kind of metal or two or more kinds of compositions and a through-hole drilled in a resin substrate A laminated circuit board formed by laminating a substrate filled with a conductive paste containing
JP2005098239A 2005-03-30 2005-03-30 Multilayer circuit board, surface-treated copper foil for multilayer circuit board, and surface-treated copper foil Active JP4391437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005098239A JP4391437B2 (en) 2005-03-30 2005-03-30 Multilayer circuit board, surface-treated copper foil for multilayer circuit board, and surface-treated copper foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005098239A JP4391437B2 (en) 2005-03-30 2005-03-30 Multilayer circuit board, surface-treated copper foil for multilayer circuit board, and surface-treated copper foil

Publications (2)

Publication Number Publication Date
JP2006278883A true JP2006278883A (en) 2006-10-12
JP4391437B2 JP4391437B2 (en) 2009-12-24

Family

ID=37213291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005098239A Active JP4391437B2 (en) 2005-03-30 2005-03-30 Multilayer circuit board, surface-treated copper foil for multilayer circuit board, and surface-treated copper foil

Country Status (1)

Country Link
JP (1) JP4391437B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164588A (en) * 2007-12-10 2009-07-23 Furukawa Electric Co Ltd:The Surface-treated copper foil and circuit board
WO2012020818A1 (en) * 2010-08-12 2012-02-16 新日鐵化学株式会社 Metal-clad laminated plate
CN114603946A (en) * 2022-05-12 2022-06-10 广州方邦电子股份有限公司 Metal foil, copper-clad laminate, wiring board, semiconductor, negative electrode material, and battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7421208B2 (en) * 2019-12-24 2024-01-24 日本電解株式会社 Surface treated copper foil and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164588A (en) * 2007-12-10 2009-07-23 Furukawa Electric Co Ltd:The Surface-treated copper foil and circuit board
WO2012020818A1 (en) * 2010-08-12 2012-02-16 新日鐵化学株式会社 Metal-clad laminated plate
CN114603946A (en) * 2022-05-12 2022-06-10 广州方邦电子股份有限公司 Metal foil, copper-clad laminate, wiring board, semiconductor, negative electrode material, and battery
CN114603946B (en) * 2022-05-12 2022-09-06 广州方邦电子股份有限公司 Metal foil, copper-clad laminate, wiring board, semiconductor, negative electrode material, and battery

Also Published As

Publication number Publication date
JP4391437B2 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
KR101129471B1 (en) Surface treatment copper foil and circuit board
KR101853519B1 (en) Liquid crystal polymer-copper clad laminate and copper foil used for liquid crystal polymer-copper clad laminate
CN1984527B (en) Ultrathin copper foil with carrier and printed circuit board
JP4609850B2 (en) Multilayer circuit board
JP4833692B2 (en) Copper foil, method for producing copper foil, and laminated circuit board using the copper foil
JP4934409B2 (en) Ultra-thin copper foil with carrier and printed wiring board
US6893742B2 (en) Copper foil with low profile bond enhancement
KR20060052031A (en) Surface treated copper foil and circuit board
JP2010100942A (en) Ultra-thin copper foil with carrier, method of manufacturing the same and printed circuit board
JP2005076091A (en) Method of producing ultrathin copper foil with carrier, and ultrathin copper foil with carrier produced by the production method
JP2007186797A (en) Method for producing ultrathin copper foil with carrier, ultrathin copper foil produced by the production method, and printed circuit board, multilayer printed circuit board and wiring board for chip on film using the ultrathin copper foil
JP2007314855A (en) Ultra-thin copper foil provided with carrier, copper-clad laminate and printed circuit board
JP4974186B2 (en) Circuit board
US7976956B2 (en) Laminated circuit board
JP2017508890A (en) Copper foil, electrical parts including the same, and battery
JP4391437B2 (en) Multilayer circuit board, surface-treated copper foil for multilayer circuit board, and surface-treated copper foil
JP4615226B2 (en) Composite material for substrate and circuit board using the same
JP2009214308A (en) Copper foil with carrier
WO1996025838A1 (en) Copper foil and high-density multi-layered printed circuit board using the copper foil for inner layer circuit
JP2009149977A (en) Surface-treated copper foil, surface treatment method for the same, and laminated circuit board
JP4593331B2 (en) Multilayer circuit board and manufacturing method thereof
JP4748519B2 (en) Ultra thin copper foil with carrier, manufacturing method thereof, printed wiring board using ultra thin copper foil with carrier
JP2004315843A (en) Electrically conductive base material with resistance layer, circuit board with resistance layer, and resistance circuit wiring board
JP4609849B2 (en) Multilayer circuit board
US20070048507A1 (en) Laminated circuit board

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080624

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080801

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20090106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091007

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4391437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350