JP2007317782A - Flexible wiring board - Google Patents

Flexible wiring board Download PDF

Info

Publication number
JP2007317782A
JP2007317782A JP2006144180A JP2006144180A JP2007317782A JP 2007317782 A JP2007317782 A JP 2007317782A JP 2006144180 A JP2006144180 A JP 2006144180A JP 2006144180 A JP2006144180 A JP 2006144180A JP 2007317782 A JP2007317782 A JP 2007317782A
Authority
JP
Japan
Prior art keywords
copper
layer
wiring board
flexible wiring
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006144180A
Other languages
Japanese (ja)
Inventor
Kazuo Kasai
一雄 河西
Tatsuo Kibe
龍夫 木部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2006144180A priority Critical patent/JP2007317782A/en
Publication of JP2007317782A publication Critical patent/JP2007317782A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To propose a method of improving flexibility of a plated board made of two copper layers. <P>SOLUTION: A flexible wiring board comprises a two-layered copper flexible wiring board having a copper-plated layer formed on a surface of an insulative film base material via a copper sputter film. A ratio (d/t) is 0.08 to 0.3 in an average crystal grain size (d) of a copper crystal in the copper-plated layer and a thickness (t) of the copper-plated layer. The thickness (t) of the copper-plated layer is preferably 4-18 μm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、耐屈折性を向上させた銅メッキ層を有する銅フレキシブル配線基板に関する。   The present invention relates to a copper flexible wiring board having a copper plating layer with improved refraction resistance.

フレキシブル配線基板は、ハードディスクの読み書きヘッドやプリンターヘッドなどの屈曲性を必要とされる電子機器やデジタルカメラ内の屈折配線などに広く用いられている。
フレキシブル配線基板には、電解銅箔や圧延銅箔をポリイミドフィルムに接着剤で接着した通称3層基板(銅層/接着剤層/絶縁性ベースフィルム層)と、ポリイミドフィルムにメッキ等で直接銅層を形成したメッキ基板もしくは銅箔に直接ポリイミドワニスを塗って絶縁層を形成したキャスト基板等の通称2層基板(銅層/絶縁性ベースフィルム層)の2種類がある。
The flexible wiring board is widely used for a refraction wiring in an electronic device or a digital camera that requires flexibility such as a read / write head of a hard disk or a printer head.
The flexible wiring board is commonly known as a three-layer board (copper layer / adhesive layer / insulating base film layer) in which electrolytic copper foil or rolled copper foil is bonded to a polyimide film with an adhesive, and copper is directly applied to the polyimide film by plating or the like. There are two types of commonly called two-layer substrates (copper layer / insulating base film layer) such as a plated substrate on which a layer is formed or a cast substrate in which a polyimide varnish is directly applied to a copper foil to form an insulating layer.

近年、フレキシブル配線基板の電気回路配線に用いられる銅箔の耐屈折性の評価として、JIS−P−8115やASTM−D2176で規格されたMIT耐折度試験(folding endurance test)が商業的に使用さている。この試験では、試験片の回路を形成している銅パターンが断線するまでの屈折回数でその配線基板の耐屈折性が評価され、屈折回数が大きいほど耐屈折性が良いとされている。
銅箔の耐屈折性の向上に関して、例えば銅箔表面に熱処理を行ったり(例えば、特許文献1参照。)、圧延加工を行うことで耐屈折性の向上を図っている(例えば、特許文献2参照。)。
特開平8−283886号公報 特開平6−269807号公報
In recent years, the MIT folding endurance test standardized by JIS-P-8115 and ASTM-D2176 has been commercially used as an evaluation of the refraction resistance of copper foil used for electric circuit wiring of flexible wiring boards. It is. In this test, the refraction resistance of the wiring board is evaluated by the number of refractions until the copper pattern forming the circuit of the test piece is disconnected, and the greater the number of refractions, the better the refraction resistance.
Regarding the improvement of the refraction resistance of the copper foil, for example, heat treatment is performed on the surface of the copper foil (for example, see Patent Document 1), or the refraction resistance is improved by rolling (for example, Patent Document 2). reference.).
JP-A-8-283886 JP-A-6-269807

しかし、上記に記載した方法は、すべて圧延銅箔や電解銅箔であり配線基板形成前の銅箔に対するもので、3層基板やキャスト基板への対応である。3層基板やキャスト基板は製造工程が煩雑であるためコストダウンには限界がある。
その点、メッキ基板は製造工程か簡単でコストダウンが容易である。メッキ基板についても銅メッキ層の耐屈折性が要求されるが、上記の耐屈折性の向上技術は適用することができない。
本発明は銅層からなる2層メッキ基板について耐屈折性をより良く改善する方法を提案するものである。
However, the methods described above are all rolled copper foil and electrolytic copper foil, and are for copper foil before the formation of the wiring board, and are compatible with three-layer boards and cast boards. A three-layer substrate or a cast substrate has a complicated manufacturing process, so there is a limit to cost reduction.
In that respect, the plating substrate is a simple manufacturing process, and cost reduction is easy. The plating substrate is also required to have a copper plating layer with refraction resistance, but the above-described technology for improving refraction resistance cannot be applied.
The present invention proposes a method for improving the refraction resistance better for a two-layer plated substrate made of a copper layer.

そこで本発明のフレキシブル配線基板は、絶縁性フィルム基材の表面に銅スパッタ膜を介して銅メッキ層を形成した2層銅フレキシブル配線基板であって、該銅メッキ層の銅結晶の平均結晶粒径(d)と銅メッキ層厚さ(t)との比(d/t)が0.08〜0.3であるフレキシブル配線基板とした。
本発明においては、前記銅メッキ層の層厚さ(t)が4〜18μmであるのが好ましい。
フレキシブル配線基板をこのように構成することにより、耐屈折性の良い2層メッキフレキシブル配線基板が得られる。
Therefore, the flexible wiring board of the present invention is a two-layer copper flexible wiring board in which a copper plating layer is formed on the surface of an insulating film base via a copper sputtered film, and the average crystal grains of the copper crystals of the copper plating layer A flexible wiring board having a ratio (d / t) of the diameter (d) to the copper plating layer thickness (t) of 0.08 to 0.3 was obtained.
In this invention, it is preferable that the layer thickness (t) of the said copper plating layer is 4-18 micrometers.
By configuring the flexible wiring board in this way, a two-layer plating flexible wiring board having good refraction resistance can be obtained.

本発明によれば、銅メッキ2層フレキシブル配線基板において、銅メッキ層の耐屈折性の向上が可能となるので、より屈折回数の多い電子機器へと応用範囲を広げることが可能となる。   According to the present invention, in the copper-plated two-layer flexible wiring board, it is possible to improve the refraction resistance of the copper-plated layer, so that it is possible to expand the application range to electronic devices with a higher number of refractions.

銅メッキ2層フレキシブル配線基板に対する耐屈折性向上のための様々な検討を行った結果、銅メッキ層厚が一定の範囲においては、銅メッキ層厚さと銅メッキ層の銅結晶の結晶サイズとの比が一定の範囲において、銅メッキ層の耐屈折性が高くなることを見出した。
すなわち、上記課題を解決するために、本発明は絶縁性フィルム基材表面に導電性皮膜を介して銅メッキ層を形成したフレキシブル基板であって、銅メッキ層の銅結晶の平均結晶粒径(d)と銅メッキ層の厚さ(t)との比(以下、結晶比という)が0.08〜0.3になるメッキ皮膜を有することを特徴とするものである。ここで銅メッキ層の厚さは4μm〜18μmである銅メッキ2層フレキシブル配線基板とするのが好ましい。
すなわち、結晶比=平均結晶粒径d(単位:μm)/メッキ層厚さt(単位:μm)としたときに、d/t=0.08〜0.3であれば銅メッキ層の耐屈折性が飛躍的に向上する。ここで、t=4〜18とするのが好ましい。
As a result of various studies for improving the refraction resistance of the copper-plated two-layer flexible wiring board, the copper-plated layer thickness and the crystal size of the copper crystal of the copper-plated layer are within a certain range. It has been found that the refraction resistance of the copper plating layer is increased in a range where the ratio is constant.
That is, in order to solve the above-mentioned problems, the present invention is a flexible substrate in which a copper plating layer is formed on the surface of an insulating film substrate via a conductive film, and the average crystal grain size of copper crystals in the copper plating layer ( d) and the thickness (t) of the copper plating layer (hereinafter referred to as a crystal ratio) have a plating film having a ratio of 0.08 to 0.3. Here, the thickness of the copper plating layer is preferably a copper plating two-layer flexible wiring board having a thickness of 4 μm to 18 μm.
That is, assuming that crystal ratio = average crystal grain size d (unit: μm) / plating layer thickness t (unit: μm), d / t = 0.08 to 0.3, the resistance of the copper plating layer Refractive properties are dramatically improved. Here, t = 4-18 is preferable.

本発明は、表面に導電性を付与した銅メッキ2層メッキフレキシブル配線基板において、銅メッキ皮膜の結晶比が0.08〜0.3になるようにメッキ皮膜中の結晶粒の大きさを制御することで、耐屈折性の良い2層フレキシブル配線基板を得ることを可能にするものである。
具体的には基板となるポリイミド樹脂フィルム表面を導電化処理した後、銅メッキで銅メッキ皮膜厚が4〜18μmの範囲で所望の厚さに銅メッキを行う。次に、メッキした基板をオーブン等の加熱装置で温度と加熱時間を調節し加熱処理を行い、熱処理後の銅メッキ皮膜断面の平均結晶粒径を測定し、平均結晶粒径と皮膜の厚さ結晶比が0.08〜0.3になるように銅メッキ皮膜中の結晶粒径を制御すれば良く、熱処理条件もここで決定される。なお、本発明では結晶比で基板の耐屈折性が決定されるため、一度熱処理条件を決定すればメッキ厚を変えない限りメッキ皮膜の平均結晶粒径を測定する必要はない。
The present invention controls the size of crystal grains in a plating film so that the crystal ratio of the copper plating film is 0.08 to 0.3 in a copper-plated two-layer plating flexible wiring board having conductivity on the surface. By doing so, it is possible to obtain a two-layer flexible wiring board with good refraction resistance.
Specifically, after conducting the conductive treatment on the surface of the polyimide resin film to be a substrate, copper plating is performed to a desired thickness within a range of 4 to 18 μm in copper plating film thickness. Next, heat treatment is performed on the plated substrate with a heating device such as an oven, and the average crystal grain size of the cross section of the copper plating film after the heat treatment is measured, and the average crystal grain size and the film thickness are measured. The crystal grain size in the copper plating film may be controlled so that the crystal ratio is 0.08 to 0.3, and the heat treatment conditions are also determined here. In the present invention, since the refractive resistance of the substrate is determined by the crystal ratio, once the heat treatment conditions are determined, it is not necessary to measure the average crystal grain size of the plating film unless the plating thickness is changed.

前記絶縁性フィルム基材としてはポリイミド基板を使用することができる。さらに詳細について説明すると、絶縁性基材としてはフィルム状にした場合柔らかく、耐熱性、耐久性の良いポリイミド樹脂が良いが、熱処理温度と時間を適当に調整すれば他の樹脂でも良い。
絶縁性基材はメッキを容易にするため表面に導電性を付与する導電化処理を施す。導電化処理は極く薄い金属膜をスパッタ等で形成することにより、絶縁体表面に導電性を付与することができる。スパッタ等で形成する金属膜は、電気回路を形成する銅メッキ層と同じ銅金属で形成するのが好ましい。スパッタ膜厚は1μm以下で充分である。導電化処理後の絶縁性基材の導電層表面に銅メッキを施して電気回路を形成する。
銅メッキは結晶が細かくメッキ表面も滑らかな光沢メッキが望ましいが、特に限定されるものではない。通常の電気メッキ法が使用でき、メッキ浴温と電流密度を最適に選択して細かい結晶を析出させる。
メッキ層の厚さは、4μmより薄くなるとメッキの欠陥などで耐屈折性が低下し、結晶粒径との相関が見られなくなる。また、18μmより厚くなると屈折したときの表面近傍の引っ張り応力が大きくなるため破断しやすくなり、耐屈折性が低下すると共に耐屈折性と結晶粒径との相関が見られなくなる。従って析出させるメッキ層の厚さは4μmより厚く18μmより薄く形成するのが適当である。
A polyimide substrate can be used as the insulating film substrate. In more detail, the insulating base material is preferably a polyimide resin that is soft, heat resistant, and durable when formed into a film, but other resins may be used if the heat treatment temperature and time are appropriately adjusted.
The insulating substrate is subjected to a conductive treatment for imparting conductivity to the surface in order to facilitate plating. The conductive treatment can impart conductivity to the surface of the insulator by forming a very thin metal film by sputtering or the like. The metal film formed by sputtering or the like is preferably formed of the same copper metal as the copper plating layer forming the electric circuit. A sputtering film thickness of 1 μm or less is sufficient. An electric circuit is formed by performing copper plating on the surface of the conductive layer of the insulating base material after the conductive treatment.
The copper plating is preferably glossy plating with fine crystals and smooth plating surface, but is not particularly limited. The usual electroplating method can be used, and fine crystals are deposited by optimally selecting the plating bath temperature and current density.
When the thickness of the plating layer is less than 4 μm, the refraction resistance is lowered due to plating defects or the like, and no correlation with the crystal grain size is observed. On the other hand, if the thickness exceeds 18 μm, the tensile stress in the vicinity of the surface when refracted becomes large, so that it tends to break, and the resistance to refraction decreases and the correlation between the resistance to refraction and the crystal grain size is not observed. Therefore, the thickness of the plating layer to be deposited is suitably formed to be thicker than 4 μm and thinner than 18 μm.

銅メッキ層を形成した後、メッキ層を熱処理して結晶粒径を調整する。熱処理温度と処理時間は基板の材質で左右されるが、基材にポリイミド樹脂を使用した場合は300℃くらいでも熱処理可能であるが、大気中で行うと銅メッキ皮膜の酸化が起きるため150℃〜250℃くらいが望ましい。これより低温で行う場合は熱処理時間を長めにする必要がある。また、250℃を越える場合は熱処理の雰囲気を窒素ガスなどで銅メッキ層の酸化防止をする必要がある。熱処理時間は200℃で15分から30分くらいが適当である。時間が長いと銅メッキ層の酸化が起きるので酸化防止対策が必要となる。熱処理後の銅結晶の平均結晶粒径は、熱処理した基板の銅メッキ部分の断面を研摩して、銅メッキ層の顕微鏡組織写真を撮り、図1のように任意の部分で線を引く(図1の点線参照)。そして、その線で切断された結晶粒のうち大きい結晶粒を5点ほど選び、厚さ方向に対して垂直方向の結晶サイズを測定し、平均結晶粒径を求める。そして、平均結晶粒径d(単位:μm)をメッキ層厚さt(単位:μm)で割って結晶比を求める。この比(d/t)が0.08〜0.3になるように熱処理温度と時間で制御することで耐屈折性の良い2層メッキ基板を得ることが可能となる。   After forming a copper plating layer, the plating layer is heat-treated to adjust the crystal grain size. The heat treatment temperature and treatment time depend on the material of the substrate, but if a polyimide resin is used as the base material, it can be heat treated even at about 300 ° C. However, if it is performed in the air, the copper plating film will oxidize at 150 ° C. About 250 ° C is desirable. When the temperature is lower than this, it is necessary to lengthen the heat treatment time. When the temperature exceeds 250 ° C., it is necessary to prevent oxidation of the copper plating layer with nitrogen gas or the like in the heat treatment atmosphere. The heat treatment time is suitably 15 to 30 minutes at 200 ° C. If the time is long, oxidation of the copper plating layer occurs, so that it is necessary to take an anti-oxidation measure. The average crystal grain size of the copper crystal after the heat treatment is obtained by polishing a cross-section of the copper-plated portion of the heat-treated substrate, taking a micrograph of the copper-plated layer, and drawing a line at an arbitrary portion as shown in FIG. (See dotted line 1). Then, about five large crystal grains are selected from the crystal grains cut by the line, the crystal size in the direction perpendicular to the thickness direction is measured, and the average crystal grain size is obtained. Then, the average crystal grain size d (unit: μm) is divided by the plating layer thickness t (unit: μm) to obtain the crystal ratio. By controlling the heat treatment temperature and time so that this ratio (d / t) is 0.08 to 0.3, it is possible to obtain a two-layer plated substrate having good refraction resistance.

(実施例、比較例)
次に、実施例及び比較例を用いて本発明を説明する。
本実施例及び比較例では、厚さ38μmのポリイミドフィルムの表面に銅を厚さ0.2μmにスパッタして導電性を付与した銅−ポリイミド基板を用い、硫酸銅メッキ浴で市販の添加剤を用いて該銅−ポリイミド基板の銅スパッタ膜の表面に銅メッキを施し、銅メッキ層の層厚の異なる基板を作製した。銅メッキの条件はいずれもメッキ浴温度25℃、電流密度4A/dm とし、時間を変えて厚さ8μmと10μmのメッキ層を形成した。
次に、それぞれの基板を表1に示すように温度と時間を変えて熱処理した後、銅結晶の平均結晶粒径と銅メッキ層厚を測定し、これらの測定値から算出した結晶比と耐屈折回数を調べた。
なお、平均結晶粒径および銅メッキ層厚は、通常の金属材料の結晶組織観察で行う断面研磨法を採用し、耐屈折回数はMIT耐折度試験で調べた。MIT耐折度試験条件は、R=0.38mm、荷重500g、屈折回転数175rpmでJIS−P−8115に準じて行った。図1に銅メッキ2層フレキシブル基板の断面構造と結晶比の求め方を説明する図を示す。
また、図2に結晶比と耐屈折回数の関係を示す。
(Examples and comparative examples)
Next, the present invention will be described using examples and comparative examples.
In this example and comparative example, a commercially available additive was used in a copper sulfate plating bath, using a copper-polyimide substrate that was made conductive by sputtering copper to a thickness of 0.2 μm on the surface of a polyimide film with a thickness of 38 μm. The surface of the copper sputtered film of the copper-polyimide substrate was subjected to copper plating to produce substrates having different copper plating layer thicknesses. The copper plating conditions were as follows: the plating bath temperature was 25 ° C., the current density was 4 A / dm 2, and plating layers with thicknesses of 8 μm and 10 μm were formed at different times.
Next, after heat-treating each substrate at different temperatures and times as shown in Table 1, the average crystal grain size and copper plating layer thickness of the copper crystals were measured, and the crystal ratio and resistance to resistance calculated from these measured values were measured. The number of refractions was examined.
The average crystal grain size and copper plating layer thickness were measured by a cross-section polishing method performed by observing the crystal structure of a normal metal material, and the number of refractions was examined by an MIT folding resistance test. The MIT folding endurance test conditions were R = 0.38 mm, a load of 500 g, a refractive rotation speed of 175 rpm, and was performed according to JIS-P-8115. FIG. 1 is a diagram for explaining how to obtain the cross-sectional structure and crystal ratio of a copper-plated two-layer flexible substrate.
FIG. 2 shows the relationship between the crystal ratio and the number of refractions.

Figure 2007317782
Figure 2007317782

この結果から、結晶比が0.08〜0.3の範囲で500回を越える高い耐屈折回数が得られたことがわかる。   From this result, it can be seen that a high anti-refraction frequency exceeding 500 times was obtained when the crystal ratio was in the range of 0.08 to 0.3.

本発明によって,製作の容易な2層メッキ配線基板を用いて電気配線パターン部を形成し、熱処理によって結晶粒径を調整することにより耐屈折性の良い2層フレキシブル配線基板を提供することができるので、耐久性に優れたフレキシブル配線基板を安価に提供することが可能となる。   According to the present invention, it is possible to provide a two-layer flexible wiring board having good refraction resistance by forming an electric wiring pattern portion using a two-layer plated wiring board that is easy to manufacture and adjusting the crystal grain size by heat treatment. Therefore, it becomes possible to provide a flexible wiring board having excellent durability at low cost.

断面構造と結晶比の求め方を説明する図である。It is a figure explaining how to obtain a cross-sectional structure and a crystal ratio. 結晶比と耐屈折回数の関係を示す図である。It is a figure which shows the relationship between a crystal ratio and the frequency | count of antirefracting.

符号の説明Explanation of symbols

1 絶縁性フレキシブル基材
2 銅スパッタ膜
3 銅メッキ層
4 銅結晶粒
DESCRIPTION OF SYMBOLS 1 Insulating flexible base material 2 Copper sputtered film 3 Copper plating layer 4 Copper crystal grain

Claims (3)

絶縁性フィルム基材の表面に、銅スパッタ膜を介して銅メッキ層を形成した2層銅フレキシブル配線基板であって、該銅メッキ層の銅結晶の平均結晶粒径(d)と銅メッキ層厚(t)との比(d/t)が0.08〜0.3であることを特徴とするフレキシブル配線基板。 A two-layer copper flexible wiring board in which a copper plating layer is formed on a surface of an insulating film base via a copper sputtered film, wherein the copper crystal has an average crystal grain size (d) and a copper plating layer A flexible wiring board having a ratio (d / t) to a thickness (t) of 0.08 to 0.3. 前記銅メッキ層の層厚(t)が4〜18μmであることを特徴とする請求項1に記載のフレキシブル配線基板。 The flexible wiring board according to claim 1, wherein the copper plating layer has a thickness (t) of 4 to 18 μm. 前記絶縁性フィルム基材がポリイミド基板であることを特徴とする請求項1または2に記載のフレキシブル配線基板。 The flexible wiring substrate according to claim 1, wherein the insulating film base material is a polyimide substrate.
JP2006144180A 2006-05-24 2006-05-24 Flexible wiring board Pending JP2007317782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006144180A JP2007317782A (en) 2006-05-24 2006-05-24 Flexible wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006144180A JP2007317782A (en) 2006-05-24 2006-05-24 Flexible wiring board

Publications (1)

Publication Number Publication Date
JP2007317782A true JP2007317782A (en) 2007-12-06

Family

ID=38851404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006144180A Pending JP2007317782A (en) 2006-05-24 2006-05-24 Flexible wiring board

Country Status (1)

Country Link
JP (1) JP2007317782A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008294432A (en) * 2007-04-26 2008-12-04 Mitsui Mining & Smelting Co Ltd Printed wiring board, method of manufacturing the same, and electrolytic copper foil for copper clad laminate used for manufacturing printed wiring board
US9418937B2 (en) * 2011-12-09 2016-08-16 Infineon Technologies Ag Integrated circuit and method of forming an integrated circuit
JP2017188565A (en) * 2016-04-05 2017-10-12 住友金属鉱山株式会社 Conductive substrate and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09115961A (en) * 1995-10-17 1997-05-02 Sumitomo Metal Mining Co Ltd Method for manufacturing electronic circuit part material using copper-coated polyimide substrate
JPH11501268A (en) * 1996-08-23 1999-02-02 グールド エレクトロニクス インコーポレイテッド High performance flexible laminate
JP2006224571A (en) * 2005-02-21 2006-08-31 Furukawa Circuit Foil Kk Copper-metallized film and its production method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09115961A (en) * 1995-10-17 1997-05-02 Sumitomo Metal Mining Co Ltd Method for manufacturing electronic circuit part material using copper-coated polyimide substrate
JPH11501268A (en) * 1996-08-23 1999-02-02 グールド エレクトロニクス インコーポレイテッド High performance flexible laminate
JP2006224571A (en) * 2005-02-21 2006-08-31 Furukawa Circuit Foil Kk Copper-metallized film and its production method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008294432A (en) * 2007-04-26 2008-12-04 Mitsui Mining & Smelting Co Ltd Printed wiring board, method of manufacturing the same, and electrolytic copper foil for copper clad laminate used for manufacturing printed wiring board
JP4691573B2 (en) * 2007-04-26 2011-06-01 三井金属鉱業株式会社 Printed wiring board, method for producing the printed wiring board, and electrolytic copper foil for copper-clad laminate used for producing the printed wiring board
US9418937B2 (en) * 2011-12-09 2016-08-16 Infineon Technologies Ag Integrated circuit and method of forming an integrated circuit
DE102012111831B4 (en) 2011-12-09 2019-08-14 Infineon Technologies Ag Integrated circuit and method for manufacturing an integrated circuit
US10446469B2 (en) 2011-12-09 2019-10-15 Infineon Technologies Ag Semiconductor device having a copper element and method of forming a semiconductor device having a copper element
JP2017188565A (en) * 2016-04-05 2017-10-12 住友金属鉱山株式会社 Conductive substrate and method for producing the same

Similar Documents

Publication Publication Date Title
JP2009295656A (en) Substrate for flexible wiring board and method for manufacturing the same
JP4522972B2 (en) High gloss rolled copper foil for copper-clad laminates
TWI600778B (en) Flexible wiring
US20120135266A1 (en) Copper Foil and Method for Producing Same
TWI646207B (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP2008294432A (en) Printed wiring board, method of manufacturing the same, and electrolytic copper foil for copper clad laminate used for manufacturing printed wiring board
CN109392242B (en) Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
CN110072333B (en) Copper foil for flexible printed board, copper-clad laminate using same, flexible printed board, and electronic device
JP2005194619A (en) Copper foil having folding resistance and its production method
JPH09191163A (en) Flexible board, beryllium-copper alloy foil for use therein and manufacture thereof
TWI663270B (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
JP2007317782A (en) Flexible wiring board
TW202106885A (en) Copper foil for flexible printed substrate having improved bendability of CCL (copper clad laminate)
JP5329491B2 (en) Copper foil for flexible printed wiring board and method for producing the same
JP4430020B2 (en) Copper foil for flexible printed wiring board, manufacturing method thereof and flexible printed wiring board
JP2008106291A (en) Plated substrate
TWI718025B (en) Copper foil for flexible printed circuit boards, copper-clad laminates, flexible printed circuit boards and electronic devices using the same
TWI731247B (en) Copper foil for flexible printed circuit boards, copper-clad laminates using the same, flexible printed circuit boards and electronic devices
TW201947042A (en) Copper foil for flexible printed substrate, copper-clad laminate using the same, flexible printed substrate and electronic machine capable of improving the etching speed
JP2007092118A (en) Metallic material for printed circuit board
JP5346408B2 (en) Metal foil provided with electric resistance film and method for manufacturing the same
KR102461189B1 (en) Flexible copper clad laminate, printed circuit board using the same
JP2009043800A (en) Flexible wiring board
JP2008124048A (en) Conductor for flexible board, its production process and flexible board
JP2010153537A (en) Flexible wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100610

A02 Decision of refusal

Effective date: 20101014

Free format text: JAPANESE INTERMEDIATE CODE: A02