JP7103006B2 - Copper-clad laminate - Google Patents

Copper-clad laminate Download PDF

Info

Publication number
JP7103006B2
JP7103006B2 JP2018134850A JP2018134850A JP7103006B2 JP 7103006 B2 JP7103006 B2 JP 7103006B2 JP 2018134850 A JP2018134850 A JP 2018134850A JP 2018134850 A JP2018134850 A JP 2018134850A JP 7103006 B2 JP7103006 B2 JP 7103006B2
Authority
JP
Japan
Prior art keywords
copper
copper plating
plating film
chlorine concentration
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018134850A
Other languages
Japanese (ja)
Other versions
JP2020011441A (en
Inventor
智治 渡邊
匠 下地
芳英 西山
茂樹 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018134850A priority Critical patent/JP7103006B2/en
Priority to KR1020190068158A priority patent/KR20200010033A/en
Priority to TW108124868A priority patent/TWI793350B/en
Priority to CN201910640844.5A priority patent/CN110740568B/en
Publication of JP2020011441A publication Critical patent/JP2020011441A/en
Application granted granted Critical
Publication of JP7103006B2 publication Critical patent/JP7103006B2/en
Priority to KR1020230143671A priority patent/KR20230152633A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/05Flexible printed circuits [FPCs]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、銅張積層板に関する。さらに詳しくは、本発明は、フレキシブルプリント配線板(FPC)などの製造に用いられる銅張積層板に関する。 The present invention relates to a copper-clad laminate. More specifically, the present invention relates to a copper-clad laminate used in the manufacture of flexible printed wiring boards (FPCs) and the like.

液晶パネル、ノートパソコン、デジタルカメラ、携帯電話などには、樹脂フィルムの表面に配線パターンが形成されたフレキシブルプリント配線板が用いられる。フレキシブルプリント配線板は、例えば、銅張積層板から製造される。 For liquid crystal panels, notebook computers, digital cameras, mobile phones, etc., flexible printed wiring boards having a wiring pattern formed on the surface of a resin film are used. The flexible printed wiring board is manufactured from, for example, a copper-clad laminate.

銅張積層板の製造方法としてメタライジング法が知られている。メタライジング法による銅張積層板の製造は、例えば、つぎの手順で行なわれる。まず、樹脂フィルムの表面にニッケルクロム合金からなる下地金属層を形成する。つぎに、下地金属層の上に銅薄膜層を形成する。つぎに、銅薄膜層の上に銅めっき被膜を形成する。銅めっきにより、配線パターンを形成するのに適した膜厚となるまで導体層を厚膜化する。メタライジング法により、樹脂フィルム上に直接導体層が形成された、いわゆる2層基板と称されるタイプの銅張積層板が得られる。 The metallizing method is known as a method for manufacturing a copper-clad laminate. The production of the copper-clad laminate by the metallizing method is performed, for example, by the following procedure. First, a base metal layer made of a nickel-chromium alloy is formed on the surface of the resin film. Next, a copper thin film layer is formed on the base metal layer. Next, a copper plating film is formed on the copper thin film layer. By copper plating, the conductor layer is thickened until the film thickness is suitable for forming the wiring pattern. By the metallizing method, a copper-clad laminate of a type called a so-called two-layer substrate in which a conductor layer is directly formed on a resin film can be obtained.

この種の銅張積層板を用いてフレキシブルプリント配線板を製造する方法としてセミアディティブ法が知られている。セミアディティブ法によるフレキシブルプリント配線板の製造は、つぎの手順で行なわれる(特許文献1参照)。まず、銅張積層板の銅めっき被膜の表面にレジスト層を形成する。つぎに、レジスト層のうち配線パターンを形成する部分に開口部を形成する。つぎに、レジスト層の開口部から露出した銅めっき被膜を陰極として電解めっきを行ない、配線部を形成する。つぎに、レジスト層を除去し、フラッシュエッチングなどにより配線部以外の導体層を除去する。これにより、フレキシブルプリント配線板が得られる。 The semi-additive method is known as a method for manufacturing a flexible printed wiring board using this type of copper-clad laminate. The flexible printed wiring board is manufactured by the semi-additive method according to the following procedure (see Patent Document 1). First, a resist layer is formed on the surface of the copper plating film of the copper-clad laminate. Next, an opening is formed in a portion of the resist layer that forms a wiring pattern. Next, electrolytic plating is performed using the copper plating film exposed from the opening of the resist layer as a cathode to form a wiring portion. Next, the resist layer is removed, and the conductor layer other than the wiring portion is removed by flash etching or the like. As a result, a flexible printed wiring board can be obtained.

セミアディティブ法において、銅めっき被膜の表面にレジスト層を形成するあたり、ドライフィルムレジストを用いることがある。この場合、銅めっき被膜の表面を化学研磨した後に、ドライフィルムレジストを貼り付ける。化学研磨により銅めっき被膜の表面に微細な凹凸をつけることで、アンカー効果によるドライフィルムレジストの密着性を高めている。しかし、銅めっき被膜の表面の凹凸が過剰であると、かえってドライフィルムレジストの密着性が悪化することがある。 In the semi-additive method, a dry film resist may be used to form a resist layer on the surface of the copper plating film. In this case, after the surface of the copper plating film is chemically polished, a dry film resist is attached. By making fine irregularities on the surface of the copper plating film by chemical polishing, the adhesion of the dry film resist due to the anchor effect is improved. However, if the surface of the copper plating film is excessively uneven, the adhesion of the dry film resist may be deteriorated.

特開2006-278950号公報Japanese Unexamined Patent Publication No. 2006-278950

化学研磨後の銅めっき被膜の表面粗さは、銅めっき被膜の結晶粒のサイズに影響される。結晶粒が小さいほど化学研磨後の銅めっき被膜の表面が滑らかになり、結晶粒が大きいほど化学研磨後の銅めっき被膜の表面が粗くなるという傾向がある。 The surface roughness of the copper plating film after chemical polishing is affected by the size of the crystal grains of the copper plating film. The smaller the crystal grains, the smoother the surface of the copper plating film after chemical polishing, and the larger the crystal grains, the rougher the surface of the copper plating film after chemical polishing.

本発明は上記事情に鑑み、化学研磨後の銅めっき被膜の表面を滑らかにできる銅張積層板を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a copper-clad laminate capable of smoothing the surface of a copper-plated coating after chemical polishing.

発明の銅張積層板は、ベースフィルムと、前記ベースフィルムの表面に形成された金属層と、前記金属層の表面に形成され、二次イオン質量分析法により測定した塩素濃度が1×10 19 atoms/cm 3 以上の層を有する銅めっき被膜と、を備え、前記銅めっき被膜の結晶粒の平均粒子径が300nm以下であることを特徴とする The copper-clad laminate of the present invention is formed on the surface of the base film, the metal layer formed on the surface of the base film, and the surface of the metal layer, and the chlorine concentration measured by the secondary ion mass analysis method is 1 × 10. A copper-plated coating having a layer of 19 atoms / cm 3 or more is provided, and the average particle size of the crystal grains of the copper-plated coating is 300 nm or less .

本発明によれば、銅めっき被膜の結晶粒の粒子径が300nm以下であるので、結晶粒が十分に小さく、化学研磨後の銅めっき被膜の表面を滑らかにできる。 According to the present invention, since the particle size of the crystal grains of the copper plating film is 300 nm or less, the crystal grains are sufficiently small and the surface of the copper plating film after chemical polishing can be smoothed.

本発明の一実施形態に係る銅張積層板の断面図である。It is sectional drawing of the copper-clad laminate which concerns on one Embodiment of this invention. めっき装置の斜視図である。It is a perspective view of a plating apparatus. めっき槽の平面図である。It is a top view of a plating tank. 図(A)は実施例1における銅めっき被膜の塩素濃度分布を示すグラフである。図(B)は実施例2における銅めっき被膜の塩素濃度分布を示すグラフである。FIG. (A) is a graph showing the chlorine concentration distribution of the copper plating film in Example 1. FIG. (B) is a graph showing the chlorine concentration distribution of the copper plating film in Example 2. 図(A)は比較例1における銅めっき被膜の塩素濃度分布を示すグラフである。図(B)は比較例1における銅めっき被膜の塩素濃度分布を示すグラフである。FIG. (A) is a graph showing the chlorine concentration distribution of the copper plating film in Comparative Example 1. FIG. (B) is a graph showing the chlorine concentration distribution of the copper plating film in Comparative Example 1. 図(A)は実施例1における銅張積層板の断面のSEM画像である。図(B)は実施例2における銅張積層板の断面のSEM画像である。FIG. (A) is an SEM image of a cross section of the copper-clad laminate in Example 1. FIG. (B) is an SEM image of a cross section of the copper-clad laminate in Example 2. 図(A)は比較例1における銅張積層板の断面のSEM画像である。図(B)は比較例2における銅張積層板の断面のSEM画像である。FIG. (A) is an SEM image of a cross section of the copper-clad laminate in Comparative Example 1. FIG. (B) is an SEM image of a cross section of the copper-clad laminate in Comparative Example 2. 図(A)は実施例1における化学研磨後の銅めっき被膜の表面のSEM画像である。図(B)は実施例2における化学研磨後の銅めっき被膜の表面のSEM画像である。FIG. (A) is an SEM image of the surface of the copper plating film after chemical polishing in Example 1. FIG. (B) is an SEM image of the surface of the copper plating film after chemical polishing in Example 2. 図(A)は比較例1における化学研磨後の銅めっき被膜の表面のSEM画像である。図(B)は比較例1における化学研磨後の銅めっき被膜の表面のSEM画像である。FIG. (A) is an SEM image of the surface of the copper plating film after chemical polishing in Comparative Example 1. FIG. (B) is an SEM image of the surface of the copper plating film after chemical polishing in Comparative Example 1.

つぎに、本発明の実施形態を図面に基づき説明する。
図1に示すように、本発明の一実施形態に係る銅張積層板1は、基材10と、基材10の表面に形成された銅めっき被膜20とからなる。図1に示すように基材10の片面のみに銅めっき被膜20が形成されてもよいし、基材10の両面に銅めっき被膜20が形成されてもよい。
Next, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the copper-clad laminate 1 according to the embodiment of the present invention comprises a base material 10 and a copper plating film 20 formed on the surface of the base material 10. As shown in FIG. 1, the copper plating film 20 may be formed on only one side of the base material 10, or the copper plating film 20 may be formed on both sides of the base material 10.

基材10は絶縁性を有するベースフィルム11の表面に金属層12が形成されたものである。ベースフィルム11としてポリイミドフィルムなどの樹脂フィルムを用いることができる。金属層12は、例えば、スパッタリング法により形成される。金属層12は下地金属層13と銅薄膜層14とからなる。下地金属層13と銅薄膜層14とはベースフィルム11の表面にこの順に積層されている。一般に、下地金属層13はニッケル、クロム、またはニッケルクロム合金からなる。特に限定されないが、下地金属層13の厚さは5~50nmが一般的であり、銅薄膜層14の厚さは50~400nmが一般的である。 The base material 10 has a metal layer 12 formed on the surface of an insulating base film 11. A resin film such as a polyimide film can be used as the base film 11. The metal layer 12 is formed by, for example, a sputtering method. The metal layer 12 is composed of a base metal layer 13 and a copper thin film layer 14. The base metal layer 13 and the copper thin film layer 14 are laminated in this order on the surface of the base film 11. Generally, the base metal layer 13 is made of nickel, chromium, or a nickel-chromium alloy. Although not particularly limited, the thickness of the base metal layer 13 is generally 5 to 50 nm, and the thickness of the copper thin film layer 14 is generally 50 to 400 nm.

銅めっき被膜20は金属層12の表面に形成されている。特に限定されないが、銅めっき被膜20の厚さは1~3μmが一般的である。なお、金属層12と銅めっき被膜20とを合わせて「導体層」と称する。 The copper plating film 20 is formed on the surface of the metal layer 12. Although not particularly limited, the thickness of the copper plating film 20 is generally 1 to 3 μm. The metal layer 12 and the copper plating film 20 are collectively referred to as a "conductor layer".

銅めっき被膜20は、その結晶粒の平均粒子径が300nm以下である。結晶粒が十分に小さいため、化学研磨後の銅めっき被膜20の表面を滑らかにできる。化学研磨後の銅めっき被膜20の表面粗さは、銅めっき被膜20の結晶粒のサイズに影響される。結晶粒が小さいほど化学研磨後の銅めっき被膜20の表面が滑らかになり、結晶粒が大きいほど化学研磨後の銅めっき被膜20の表面が粗くなるという傾向がある。その理由は不明なところもあるが、概ねつぎのとおりであると考えられる。結晶粒界は結晶粒内よりもエッチングが進行しにくい。そのため、化学研磨後の銅めっき被膜20の表面粗さには結晶粒のサイズが反映される。その結果、結晶粒が小さいほど化学研磨後の銅めっき被膜20の表面が滑らかになる。 The copper-plated coating 20 has an average particle size of 300 nm or less. Since the crystal grains are sufficiently small, the surface of the copper plating film 20 after chemical polishing can be smoothed. The surface roughness of the copper plating film 20 after chemical polishing is affected by the size of the crystal grains of the copper plating film 20. The smaller the crystal grains, the smoother the surface of the copper plating film 20 after chemical polishing, and the larger the crystal grains, the rougher the surface of the copper plating film 20 after chemical polishing. The reason for this is unknown, but it is thought to be as follows. Etching is less likely to proceed at the grain boundaries than within the crystal grains. Therefore, the size of the crystal grains is reflected in the surface roughness of the copper plating film 20 after chemical polishing. As a result, the smaller the crystal grains, the smoother the surface of the copper plating film 20 after chemical polishing.

なお、銅めっき被膜20の結晶粒の平均粒子径は100nm以上が好ましい。一般に、銅めっきにより形成した被膜は、再結晶の進行にともない結晶粒が徐々に大きくなる。そのため、平均粒子径が100nm未満の微細な結晶粒を維持することは困難である。平均粒子径が100nm以上の結晶粒からなる銅めっき被膜20であれば、安定的に製造できる。 The average particle size of the crystal grains of the copper plating film 20 is preferably 100 nm or more. Generally, in the coating film formed by copper plating, the crystal grains gradually increase as the recrystallization progresses. Therefore, it is difficult to maintain fine crystal grains having an average particle diameter of less than 100 nm. A copper-plated coating 20 composed of crystal grains having an average particle diameter of 100 nm or more can be stably produced.

銅めっき被膜20は電解めっきにより成膜される。銅めっき被膜20は、特に限定されないが、図2に示すめっき装置3により成膜される。
めっき装置3は、ロールツーロールにより長尺帯状の基材10を搬送しつつ、基材10に対して電解めっきを行なう装置である。めっき装置3はロール状に巻回された基材10を繰り出す供給装置31と、めっき後の基材10(銅張積層板1)をロール状に巻き取る巻取装置32とを有する。
The copper plating film 20 is formed by electrolytic plating. The copper plating film 20 is not particularly limited, but is formed by the plating apparatus 3 shown in FIG.
The plating device 3 is a device that performs electrolytic plating on the base material 10 while transporting the long strip-shaped base material 10 by roll-to-roll. The plating device 3 includes a supply device 31 for feeding out the base material 10 wound in a roll shape, and a winding device 32 for winding up the base material 10 (copper-clad laminate 1) after plating in a roll shape.

また、めっき装置3は基材10を搬送する上下一対のエンドレスベルト33(下側のエンドレスベルト33は図示省略)を有する。各エンドレスベルト33には基材10を把持する複数のクランプ34が設けられている。供給装置31から繰り出された基材10は、その幅方向が鉛直方向に沿う懸垂姿勢となり、両縁が上下のクランプ34に把持される。基材10はエンドレスベルト33の駆動によりめっき装置3内を周回した後、クランプ34から開放され、巻取装置32で巻き取られる。 Further, the plating apparatus 3 has a pair of upper and lower endless belts 33 (the lower endless belt 33 is not shown) that conveys the base material 10. Each endless belt 33 is provided with a plurality of clamps 34 for gripping the base material 10. The base material 10 unwound from the supply device 31 is in a suspended posture in the width direction along the vertical direction, and both edges are gripped by the upper and lower clamps 34. The base material 10 circulates in the plating device 3 by driving the endless belt 33, is released from the clamp 34, and is wound by the winding device 32.

基材10の搬送経路には、前処理槽35、めっき槽40、および後処理槽36が配置されている。基材10はめっき槽40内を搬送されつつ、電解めっきによりその表面に銅めっき被膜20が成膜される。これにより、長尺帯状の銅張積層板1が得られる。 A pretreatment tank 35, a plating tank 40, and a posttreatment tank 36 are arranged in the transport path of the base material 10. While the base material 10 is conveyed in the plating tank 40, a copper plating film 20 is formed on the surface of the base material 10 by electrolytic plating. As a result, a long strip-shaped copper-clad laminate 1 can be obtained.

図3に示すように、めっき槽40は基材10の搬送方向に沿った横長の単一の槽である。基材10はめっき槽40の中心に沿って搬送される。めっき槽40には銅めっき液が貯留されている。めっき槽40内を搬送される基材10は、その全体が銅めっき液に浸漬されている。 As shown in FIG. 3, the plating tank 40 is a single horizontally long tank along the transport direction of the base material 10. The base material 10 is conveyed along the center of the plating tank 40. A copper plating solution is stored in the plating tank 40. The entire base material 10 conveyed in the plating tank 40 is immersed in a copper plating solution.

銅めっき液は水溶性銅塩を含む。銅めっき液に一般的に用いられる水溶性銅塩であれば、特に限定されず用いられる。水溶性銅塩として、無機銅塩、アルカンスルホン酸銅塩、アルカノールスルホン酸銅塩、有機酸銅塩などが挙げられる。無機銅塩として、硫酸銅、酸化銅、塩化銅、炭酸銅などが挙げられる。アルカンスルホン酸銅塩として、メタンスルホン酸銅、プロパンスルホン酸銅などが挙げられる。アルカノールスルホン酸銅塩として、イセチオン酸銅、プロパノールスルホン酸銅などが挙げられる。有機酸銅塩として、酢酸銅、クエン酸銅、酒石酸銅などが挙げられる。 The copper plating solution contains a water-soluble copper salt. Any water-soluble copper salt generally used in the copper plating solution is used without particular limitation. Examples of the water-soluble copper salt include an inorganic copper salt, an alkane sulfonic acid copper salt, an alkanol sulfonic acid copper salt, and an organic acid copper salt. Examples of the inorganic copper salt include copper sulfate, copper oxide, copper chloride, and copper carbonate. Examples of the alkane sulfonic acid copper salt include copper methanesulfonate and copper propanesulfonate. Examples of the alkanol sulfonate copper salt include copper isethionic acid and copper propanol sulfonate. Examples of the organic acid copper salt include copper acetate, copper citrate, and copper tartrate.

銅めっき液に用いる水溶性銅塩として、無機銅塩、アルカンスルホン酸銅塩、アルカノールスルホン酸銅塩、有機酸銅塩などから選択された1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。例えば、硫酸銅と塩化銅とを組み合わせる場合のように、無機銅塩、アルカンスルホン酸銅塩、アルカノールスルホン酸銅塩、有機酸銅塩などから選択された1つのカテゴリー内の異なる2種類以上を組み合わせて用いてもよい。ただし、銅めっき液の管理の観点からは、1種類の水溶性銅塩を単独で用いることが好ましい。 As the water-soluble copper salt used in the copper plating solution, one type selected from inorganic copper salt, alkane sulfonic acid copper salt, alkanol sulfonic acid copper salt, organic acid copper salt and the like may be used alone, or two or more types may be used. May be used in combination. For example, as in the case of combining copper sulfate and copper chloride, two or more different types in one category selected from inorganic copper salt, alkane sulfonic acid copper salt, alkanol sulfonic acid copper salt, organic acid copper salt, etc. It may be used in combination. However, from the viewpoint of controlling the copper plating solution, it is preferable to use one kind of water-soluble copper salt alone.

銅めっき液は硫酸を含んでもよい。硫酸の添加量を調整することで、銅めっき液のpHおよび硫酸イオン濃度を調整できる。 The copper plating solution may contain sulfuric acid. By adjusting the amount of sulfuric acid added, the pH and sulfate ion concentration of the copper plating solution can be adjusted.

銅めっき液は一般的にめっき液に添加される添加剤を含む。添加剤として、レベラー成分、ポリマー成分、ブライトナー成分、塩素成分などが挙げられる。添加剤として、レベラー成分、ポリマー成分、ブライトナー成分、塩素成分などから選択された1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。 The copper plating solution contains additives that are generally added to the plating solution. Examples of the additive include a leveler component, a polymer component, a brightener component, a chlorine component and the like. As the additive, one type selected from a leveler component, a polymer component, a brightener component, a chlorine component and the like may be used alone, or two or more types may be used in combination.

レベラー成分は窒素を含有するアミンなどで構成される。レベラー成分として、ジアリルジメチルアンモニウムクロライド、ヤヌス・グリーンBなどが挙げられる。ポリマー成分として、特に限定されないが、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレングリコール-ポリプロピレングリコール共重合体から選択された1種類を単独で、または2種類以上を組み合わせて用いることが好ましい。ブライトナー成分として、特に限定されないが、ビス(3-スルホプロピル)ジスルフィド(略称SPS)、3-メルカプトプロパン-1-スルホン酸(略称MPS)などから選択された1種類を単独で、または2種類以上を組み合わせて用いることが好ましい。塩素成分として、特に限定されないが、塩酸、塩化ナトリウムなどから選択された1種類を単独で、または2種類以上を組み合わせて用いることが好ましい。 The leveler component is composed of nitrogen-containing amines and the like. Examples of the leveler component include diallyldimethylammonium chloride and Janus Green B. The polymer component is not particularly limited, but it is preferable to use one selected from polyethylene glycol, polypropylene glycol, and polyethylene glycol-polypropylene glycol copolymer alone or in combination of two or more. The Brightener component is not particularly limited, but one type selected from bis (3-sulfopropyl) disulfide (abbreviated as SPS), 3-mercaptopropane-1-sulfonic acid (abbreviated as MPS), etc. may be used alone or as two types. It is preferable to use the above in combination. The chlorine component is not particularly limited, but it is preferable to use one selected from hydrochloric acid, sodium chloride and the like alone or in combination of two or more.

銅めっき液の各成分の含有量は任意に選択できる。ただし、銅めっき液は硫酸銅を60~280g/L、硫酸を20~250g/L含有することが好ましい。そうすれば、銅めっき被膜20を十分な速度で成膜できる。銅めっき液はレベラー成分を0.5~50mg/L含有することが好ましい。そうすれば、突起を抑制し平坦な銅めっき被膜20を形成できる。銅めっき液はポリマー成分を10~1,500mg/L含有することが好ましい。そうすれば、基材10端部への電流集中を緩和し均一な銅めっき被膜20を形成できる。銅めっき液はブライトナー成分を0.2~16mg/L含有することが好ましい。そうすれば、析出結晶を微細化し銅めっき被膜20の表面を平滑にできる。銅めっき液は塩素成分を20~80mg/L含有することが好ましい。そうすれば、異常析出を抑制できる。また、銅めっき液が塩素成分を含むことで、形成された銅めっき被膜20に不純物として塩素が含まれる。 The content of each component of the copper plating solution can be arbitrarily selected. However, the copper plating solution preferably contains 60 to 280 g / L of copper sulfate and 20 to 250 g / L of sulfuric acid. Then, the copper plating film 20 can be formed at a sufficient speed. The copper plating solution preferably contains a leveler component of 0.5 to 50 mg / L. Then, the protrusions can be suppressed and the flat copper plating film 20 can be formed. The copper plating solution preferably contains a polymer component of 10 to 1,500 mg / L. Then, the current concentration on the end portion of the base material 10 can be relaxed and a uniform copper plating film 20 can be formed. The copper plating solution preferably contains a Brightener component of 0.2 to 16 mg / L. Then, the precipitated crystals can be made finer and the surface of the copper plating film 20 can be smoothed. The copper plating solution preferably contains a chlorine component of 20 to 80 mg / L. Then, abnormal precipitation can be suppressed. Further, since the copper plating solution contains a chlorine component, the formed copper plating film 20 contains chlorine as an impurity.

銅めっき液の温度は20~35℃が好ましい。また、めっき槽40内の銅めっき液を撹拌することが好ましい。銅めっき液を撹拌する手段は、特に限定されないが、噴流を利用した手段を用いることができる。例えば、ノズルから噴出させた銅めっき液を基材10に吹き付けることで、銅めっき液を撹拌できる。 The temperature of the copper plating solution is preferably 20 to 35 ° C. Further, it is preferable to stir the copper plating solution in the plating tank 40. The means for stirring the copper plating solution is not particularly limited, but a means using a jet can be used. For example, the copper plating solution can be agitated by spraying the copper plating solution ejected from the nozzle onto the base material 10.

めっき槽40の内部には、基材10の搬送方向に沿って複数のアノード41が配置されている。また、基材10を把持するクランプ34はカソードとしての機能も有する。アノード41とクランプ34(カソード)との間に電流を流すことで、基材10の表面に銅めっき被膜20を成膜できる。 Inside the plating tank 40, a plurality of anodes 41 are arranged along the transport direction of the base material 10. Further, the clamp 34 that grips the base material 10 also has a function as a cathode. By passing an electric current between the anode 41 and the clamp 34 (cathode), the copper plating film 20 can be formed on the surface of the base material 10.

なお、図3に示すめっき槽40には、基材10の表裏両側にアノード41が配置されている。したがって、ベースフィルム11の両面に金属層12が形成された基材10を用いれば、基材10の両面に銅めっき被膜20を成膜できる。 In the plating tank 40 shown in FIG. 3, anodes 41 are arranged on both the front and back sides of the base material 10. Therefore, if the base material 10 having the metal layers 12 formed on both sides of the base film 11 is used, the copper plating film 20 can be formed on both sides of the base film 10.

めっき槽40の内部に配置された複数のアノード41は、それぞれに整流器が接続されている。したがって、アノード41ごとに異なる電流密度となるように設定できる。本実施形態では、めっき槽40の内部が基材10の搬送方向に沿って、複数の区域に区分されている。各区域は一または複数の連続するアノード41が配置された領域に対応する。 A rectifier is connected to each of the plurality of anodes 41 arranged inside the plating tank 40. Therefore, the current density can be set to be different for each anode 41. In the present embodiment, the inside of the plating tank 40 is divided into a plurality of areas along the transport direction of the base material 10. Each area corresponds to an area in which one or more contiguous anodes 41 are located.

各区域は低電流密度区域LZまたは高電流密度区域HZである。低電流密度区域LZでは電流密度がゼロか比較的低い「低電流密度」に設定されており、基材10に対して低電流密度での電解めっきを行なう。高電流密度区域HZでは電流密度が低電流密度よりも高い「高電流密度」に設定されており、基材10に対して高電流密度での電解めっきを行なう。 Each zone is a low current density zone LZ or a high current density zone HZ. In the low current density area LZ, the current density is set to zero or a relatively low "low current density", and the base material 10 is electrolytically plated at a low current density. In the high current density area HZ, the current density is set to "high current density", which is higher than the low current density, and the base material 10 is electrolytically plated at a high current density.

ここで、低電流密度区域LZにおける電流密度(低電流密度)を0~0.29A/dm2に設定することが好ましい。また、高電流密度区域HZにおける電流密度(高電流密度)を0.3~10A/dm2に設定することが好ましい。 Here, it is preferable to set the current density (low current density) in the low current density area LZ to 0 to 0.29 A / dm 2 . Further, it is preferable to set the current density (high current density) in the high current density area HZ to 0.3 to 10 A / dm 2 .

低電流密度区域LZと高電流密度区域HZとは基材10の搬送方向に沿って交互に設けられている。低電流密度区域LZの数は1つでもよいし、複数でもよい。高電流密度区域HZの数は1つでもよいし、複数でもよい。基材10の搬送方向を基準として、最も上流の区域が低電流密度区域LZであってもよいし、高電流密度区域HZであってもよい。また、最も下流の区域が低電流密度区域LZであってもよいし、高電流密度区域HZであってもよい。 The low current density area LZ and the high current density area HZ are alternately provided along the transport direction of the base material 10. The number of low current density areas LZ may be one or plural. The number of high current density areas HZ may be one or plural. The most upstream area may be the low current density area LZ or the high current density area HZ with reference to the transport direction of the base material 10. Further, the most downstream area may be a low current density area LZ or a high current density area HZ.

めっき槽40に複数の低電流密度区域LZが配置される場合、複数の低電流密度区域LZにおける電流密度は同じでもよいし、異なってもよい。また、めっき槽40に複数の高電流密度区域HZが配置される場合、複数の高電流密度区域HZにおける電流密度は同じでもよいし、異なってもよい。ただし、高電流密度区域HZにおける電流密度は、基材10の搬送方向の下流側に向かって、段階的に上昇するよう設定することが好ましい。 When a plurality of low current density areas LZ are arranged in the plating tank 40, the current densities in the plurality of low current density areas LZ may be the same or different. Further, when a plurality of high current density areas HZ are arranged in the plating tank 40, the current densities in the plurality of high current density areas HZ may be the same or different. However, it is preferable that the current density in the high current density area HZ is set so as to gradually increase toward the downstream side in the transport direction of the base material 10.

基材10は、低電流密度区域LZと高電流密度区域HZとを交互に通過しながら、電解めっきされる。すなわち、めっき槽40では基材10に対して、低電流密度での電解めっきと、高電流密度での電解めっきとを交互に繰り返し行なう。これにより、銅めっき被膜20が成膜される。 The base material 10 is electroplated while alternately passing through the low current density area LZ and the high current density area HZ. That is, in the plating tank 40, electrolytic plating at a low current density and electrolytic plating at a high current density are alternately and repeatedly performed on the base material 10. As a result, the copper plating film 20 is formed.

このような方法により形成された銅めっき被膜20は、図1に示すように、異なる電流密度での電解めっきにより形成された複数の層が積層された構造となる。具体的には、銅めっき被膜20は高塩素濃度層21と低塩素濃度層22とが、厚さ方向に交互に積層された構造を有する。ここで、高塩素濃度層21は低電流密度での電解めっきにより形成され、相対的に塩素濃度が高い。また、低塩素濃度層22は高電流密度での電解めっきにより形成され、相対的に塩素濃度が低い。これは、電解めっきにおける電流密度が低いほど、銅めっき液の添加剤がめっき被膜に取り込まれやすくなるためであると推測される。 As shown in FIG. 1, the copper plating film 20 formed by such a method has a structure in which a plurality of layers formed by electrolytic plating at different current densities are laminated. Specifically, the copper plating film 20 has a structure in which high chlorine concentration layers 21 and low chlorine concentration layers 22 are alternately laminated in the thickness direction. Here, the high chlorine concentration layer 21 is formed by electrolytic plating at a low current density, and has a relatively high chlorine concentration. Further, the low chlorine concentration layer 22 is formed by electrolytic plating at a high current density, and the chlorine concentration is relatively low. It is presumed that this is because the lower the current density in electrolytic plating, the easier it is for the additive of the copper plating solution to be incorporated into the plating film.

高塩素濃度層21および低塩素濃度層22の配置は、めっき槽40における低電流密度区域LZおよび高電流密度区域HZの配置に依存する。高塩素濃度層21の数は1つでもよいし、複数でもよい。低塩素濃度層22の数は1つでもよいし、複数でもよい。基材10の表面(金属層12の表面)に直接積層される層が高塩素濃度層21であってもよいし、低塩素濃度層22であってもよい。また、銅めっき被膜20の表面(基材10と反対側の面)に表れる層が高塩素濃度層21であってもよいし、低塩素濃度層22であってもよい。 The arrangement of the high chlorine concentration layer 21 and the low chlorine concentration layer 22 depends on the arrangement of the low current density area LZ and the high current density area HZ in the plating tank 40. The number of high chlorine concentration layers 21 may be one or plural. The number of low chlorine concentration layers 22 may be one or plural. The layer directly laminated on the surface of the base material 10 (the surface of the metal layer 12) may be the high chlorine concentration layer 21 or the low chlorine concentration layer 22. Further, the layer appearing on the surface of the copper plating film 20 (the surface opposite to the base material 10) may be the high chlorine concentration layer 21 or the low chlorine concentration layer 22.

銅めっき被膜20に含まれる不純物の濃度は、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)によって測定できる。高塩素濃度層21の二次イオン質量分析法により測定した塩素濃度は1×1019atoms/cm3以上であることが好ましい。低塩素濃度層22の二次イオン質量分析法により測定した塩素濃度は1×1019atoms/cm3未満であることが好ましい。 The concentration of impurities contained in the copper plating film 20 can be measured by secondary ion mass spectrometry (SIMS). The chlorine concentration measured by the secondary ion mass spectrometry of the high chlorine concentration layer 21 is preferably 1 × 10 19 atoms / cm 3 or more. The chlorine concentration measured by the secondary ion mass spectrometry of the low chlorine concentration layer 22 is preferably less than 1 × 10 19 atoms / cm 3 .

一般に、銅めっき被膜20の結晶粒はめっき処理後の再結晶の進行にともない、徐々に大きくなる。これに対して本実施形態の銅めっき被膜20においては、高塩素濃度層21により応力緩和が分断され、再結晶の進行が抑制される。そのため、銅めっき被膜20の結晶粒を微細なまま維持できる。具体的には、結晶粒の平均粒子径を300nm以下に維持できる。 In general, the crystal grains of the copper plating film 20 gradually increase in size as the recrystallization progresses after the plating treatment. On the other hand, in the copper plating film 20 of the present embodiment, stress relaxation is divided by the high chlorine concentration layer 21, and the progress of recrystallization is suppressed. Therefore, the crystal grains of the copper plating film 20 can be maintained as fine. Specifically, the average particle size of the crystal grains can be maintained at 300 nm or less.

なお、銅めっき被膜20は塩素以外の不純物、例えば、銅めっき液の添加剤に由来する炭素、酸素、硫黄などを含んでもよい。 The copper plating film 20 may contain impurities other than chlorine, such as carbon, oxygen, and sulfur derived from additives in the copper plating solution.

つぎに、実施例を説明する。
(実施例1)
つぎの手順で、基材を準備した。ベースフィルムとして、厚さ35μmのポリイミドフィルム(宇部興産社製 Upilex-35SGAV1)を用意した。ベースフィルムをマグネトロンスパッタリング装置にセットした。マグネトロンスパッタリング装置内にはニッケルクロム合金ターゲットと銅ターゲットとが設置されている。ニッケルクロム合金ターゲットの組成はCrが20質量%、Niが80質量%である。真空雰囲気下で、ベースフィルムの片面に、厚さ25nmのニッケルクロム合金からなる下地金属層を形成し、その上に厚さ100nmの銅薄膜層を形成した。
Next, an embodiment will be described.
(Example 1)
The substrate was prepared by the following procedure. As a base film, a polyimide film having a thickness of 35 μm (Upilex-35SGAV1 manufactured by Ube Corporation) was prepared. The base film was set in the magnetron sputtering apparatus. A nickel-chromium alloy target and a copper target are installed in the magnetron sputtering apparatus. The composition of the nickel-chromium alloy target is 20% by mass of Cr and 80% by mass of Ni. Under a vacuum atmosphere, a base metal layer made of a nickel-chromium alloy having a thickness of 25 nm was formed on one side of the base film, and a copper thin film layer having a thickness of 100 nm was formed on the base metal layer.

つぎに、銅めっき液を調整した。銅めっき液は硫酸銅を120g/L、硫酸を70g/L、レベラー成分を20mg/L、ポリマー成分を1,100mg/L、ブライトナー成分を16mg/L、塩素成分を50mg/L含有する。レベラー成分としてジアリルジメチルアンモニウムクロライド-二酸化硫黄共重合体(ニットーボーメディカル株式会社製 PAS-A―5)を用いた。ポリマー成分としてポリエチレングリコール-ポリプロピレングリコール共重合体(日油株式会社製 ユニルーブ50MB-11)を用いた。ブライトナー成分としてビス(3-スルホプロピル)ジスルフィド(RASCHIG GmbH社製の試薬)を用いた。塩素成分として塩酸(和光純薬工業株式会社製の35%塩酸)を用いた。 Next, the copper plating solution was adjusted. The copper plating solution contains 120 g / L of copper sulfate, 70 g / L of sulfuric acid, 20 mg / L of leveler component, 1,100 mg / L of polymer component, 16 mg / L of Brightener component, and 50 mg / L of chlorine component. A diallyldimethylammonium chloride-sulfur dioxide copolymer (PAS-A-5 manufactured by Nittobo Medical Co., Ltd.) was used as a leveler component. A polyethylene glycol-polypropylene glycol copolymer (Unilube 50MB-11 manufactured by NOF CORPORATION) was used as a polymer component. Bis (3-sulfopropyl) disulfide (reagent manufactured by RASCHIG GmbH) was used as the Brightener component. Hydrochloric acid (35% hydrochloric acid manufactured by Wako Pure Chemical Industries, Ltd.) was used as the chlorine component.

前記銅めっき液が貯留されためっき槽に基材を供給した。電解めっきにより基材の片面に厚さ2.0μmの銅めっき被膜を成膜して銅張積層板を得た。ここで、銅めっき液の温度を31℃とした。また、電解めっきの間、ノズルから噴出させた銅めっき液を基材の表面に対して略垂直に吹き付けることで、銅めっき液を撹拌した。 The base material was supplied to the plating tank in which the copper plating solution was stored. A copper plating film having a thickness of 2.0 μm was formed on one side of the base material by electrolytic plating to obtain a copper-clad laminate. Here, the temperature of the copper plating solution was set to 31 ° C. Further, during the electrolytic plating, the copper plating solution ejected from the nozzle was sprayed substantially perpendicular to the surface of the base material to stir the copper plating solution.

電解めっきにおいて、空送期間が11回含まれるように電流密度を変化させた。ここで、空送期間とは低電流密度、具体的には0.0A/dm2で電解めっきを行なう期間を意味する。空送期間以外における電流密度(高電流密度)は1.2A/dm2とした。 In electroplating, the current density was changed so that the idle feeding period was included 11 times. Here, the airborne period means a period during which electrolytic plating is performed at a low current density, specifically 0.0 A / dm 2 . The current density (high current density) other than the airborne period was set to 1.2 A / dm 2 .

(実施例2)
実施例1と同様の手順で銅張積層板を得た。ただし、電解めっきにおいて、空送期間が7回含まれるように電流密度を変化させた。その余の条件は実施例1と同様である。
(Example 2)
A copper-clad laminate was obtained in the same procedure as in Example 1. However, in electrolytic plating, the current density was changed so that the idle feeding period was included 7 times. The other conditions are the same as in Example 1.

(比較例1)
実施例1と同様の手順で銅張積層板を得た。ただし、電解めっきにおいて、電流密度を3.2A/dm2とし、空送期間を設けなかった。その余の条件は実施例1と同様である。
(Comparative Example 1)
A copper-clad laminate was obtained in the same procedure as in Example 1. However, in electrolytic plating, the current density was set to 3.2 A / dm 2 , and no airborne period was provided. The other conditions are the same as in Example 1.

(比較例2)
実施例1と同様の手順で銅張積層板を得た。ただし、電解めっきにおいて、電流密度を0.33A/dm2とし、空送期間を設けなかった。その余の条件は実施例1と同様である。
(Comparative Example 2)
A copper-clad laminate was obtained in the same procedure as in Example 1. However, in electrolytic plating, the current density was set to 0.33 A / dm 2 , and no airborne period was provided. The other conditions are the same as in Example 1.

(塩素濃度測定)
実施例1、2および比較例1、2で得られた銅張積層板に対して、銅めっき被膜の塩素濃度を測定した。測定は二次イオン質量分析法によって行なった。測定装置としてアルバック・ファイ株式会社の四重極型二次イオン質量分析装置(PHI ADEPT-1010)を用いた。測定条件は、一次イオン種をCs+、一次加速電圧を5.0kV、検出領域を96×96μmとした。なお、本明細書における塩素濃度の値は、前記条件で測定した値を基準とする。
(Chlorine concentration measurement)
The chlorine concentration of the copper plating film was measured with respect to the copper-clad laminates obtained in Examples 1 and 2 and Comparative Examples 1 and 2. The measurement was performed by secondary ion mass spectrometry. A quadrupole secondary ion mass spectrometer (PHI ADEPT-1010) manufactured by ULVAC FI Co., Ltd. was used as the measuring device. The measurement conditions were Cs + for the primary ion species, 5.0 kV for the primary acceleration voltage, and 96 × 96 μm for the detection region. The chlorine concentration value in the present specification is based on the value measured under the above conditions.

図4(A)に実施例1で得られた銅張積層板の測定結果を示す。図4(B)に実施例2で得られた銅張積層板の測定結果を示す。図5(A)に比較例1で得られた銅張積層板の測定結果を示す。図5(B)に比較例2で得られた銅張積層板の測定結果を示す。各グラフの横軸は銅めっき被膜の厚さ方向の位置である。0.0μmが銅薄膜層側の面、2.0μmが表面である。縦軸は塩素濃度である。 FIG. 4A shows the measurement results of the copper-clad laminate obtained in Example 1. FIG. 4B shows the measurement results of the copper-clad laminate obtained in Example 2. FIG. 5A shows the measurement results of the copper-clad laminate obtained in Comparative Example 1. FIG. 5B shows the measurement results of the copper-clad laminate obtained in Comparative Example 2. The horizontal axis of each graph is the position in the thickness direction of the copper plating film. 0.0 μm is the surface on the copper thin film layer side, and 2.0 μm is the surface. The vertical axis is the chlorine concentration.

図4(A)のグラフから分かるように、実施例1では、銅めっき被膜の厚さ方向の塩素濃度分布が周期的な10個のピークを有する分布となっている。0.2μm付近のピークは最初の2回の空送期間に対応する。残りの9個のピークはそれに続く9回の空送期間に対応する。各ピークの塩素濃度は1×1019atoms/cm3以上である。また、ピーク間の下限は1×1019atoms/cm3未満である。したがって、この銅めっき被膜は高塩素濃度層と低塩素濃度層とが交互に積層された構成といえる。また、この銅めっき被膜は高塩素濃度層を10層含んでいるといえる。 As can be seen from the graph of FIG. 4A, in Example 1, the chlorine concentration distribution in the thickness direction of the copper plating film is a distribution having 10 periodic peaks. The peak around 0.2 μm corresponds to the first two airborne periods. The remaining nine peaks correspond to the subsequent nine airborne periods. The chlorine concentration of each peak is 1 × 10 19 atoms / cm 3 or more. The lower limit between peaks is less than 1 × 10 19 atoms / cm 3 . Therefore, it can be said that this copper plating film has a structure in which high chlorine concentration layers and low chlorine concentration layers are alternately laminated. Further, it can be said that this copper plating film contains 10 layers having a high chlorine concentration.

図4(B)のグラフから分かるように、実施例2では、銅めっき被膜の厚さ方向の塩素濃度分布が周期的な6個のピークを有する分布となっている。0.2μm付近のピークは最初の2回の空送期間に対応する。残りの5個のピークはそれに続く5回の空送期間に対応する。各ピークの塩素濃度は1×1019atoms/cm3以上である。また、ピーク間の下限は1×1019atoms/cm3未満である。したがって、この銅めっき被膜は高塩素濃度層と低塩素濃度層とが交互に積層された構成といえる。また、この銅めっき被膜は高塩素濃度層を6層含んでいるといえる。 As can be seen from the graph of FIG. 4B, in Example 2, the chlorine concentration distribution in the thickness direction of the copper plating film has six periodic peaks. The peak around 0.2 μm corresponds to the first two airborne periods. The remaining 5 peaks correspond to the following 5 airborne periods. The chlorine concentration of each peak is 1 × 10 19 atoms / cm 3 or more. The lower limit between peaks is less than 1 × 10 19 atoms / cm 3 . Therefore, it can be said that this copper plating film has a structure in which high chlorine concentration layers and low chlorine concentration layers are alternately laminated. Further, it can be said that this copper plating film contains 6 layers having a high chlorine concentration.

図5(A)のグラフから分かるように、比較例1では、銅めっき被膜の厚さ方向の全体に渡って塩素濃度が低い。具体的には、塩素濃度が全体に渡って1×1019atoms/cm3未満である。したがって、この銅めっき被膜は高塩素濃度層と低塩素濃度層とが交互に積層された構成を有していない。 As can be seen from the graph of FIG. 5A, in Comparative Example 1, the chlorine concentration is low over the entire thickness direction of the copper plating film. Specifically, the chlorine concentration is less than 1 × 10 19 atoms / cm 3 overall. Therefore, this copper plating film does not have a structure in which high chlorine concentration layers and low chlorine concentration layers are alternately laminated.

図5(B)のグラフから分かるように、比較例2では、比較例1に比べて、銅めっき被膜の厚さ方向の全体に渡って塩素濃度が高い。この銅めっき被膜は高塩素濃度層と低塩素濃度層とが交互に積層された構成を有していないが、全体に渡って高濃度で塩素を含んでいる。 As can be seen from the graph of FIG. 5B, in Comparative Example 2, the chlorine concentration is higher in the entire thickness direction of the copper plating film than in Comparative Example 1. This copper plating film does not have a structure in which high chlorine concentration layers and low chlorine concentration layers are alternately laminated, but contains chlorine in a high concentration as a whole.

(結晶粒)
実施例1、2および比較例1、2で得られた銅張積層板について、めっき処理から7日経過後に断面を観察した。図6(A)に実施例1の断面のSEM画像を示す。図6(B)に実施例2の断面のSEM画像を示す。図7(A)に比較例1の断面のSEM画像を示す。図7(B)に比較例2の断面のSEM画像を示す。これらのSEM画像より、実施例1、2は比較例1、2に比べて、銅めっき被膜の結晶粒が微細であることが分かる。
(Crystal grains)
The cross sections of the copper-clad laminates obtained in Examples 1 and 2 and Comparative Examples 1 and 2 were observed 7 days after the plating treatment. FIG. 6A shows an SEM image of the cross section of Example 1. FIG. 6B shows an SEM image of the cross section of Example 2. FIG. 7A shows an SEM image of the cross section of Comparative Example 1. FIG. 7B shows an SEM image of the cross section of Comparative Example 2. From these SEM images, it can be seen that the crystal grains of the copper plating film in Examples 1 and 2 are finer than those in Comparative Examples 1 and 2.

各SEM画像を用いて、銅めっき被膜の結晶粒の平均粒子径を求めた。その手順はつぎの通りである。まず、SEM画像を画像処理して銅めっき被膜に含まれる結晶粒のそれぞれを識別する。つぎに、各結晶粒の面積から円相当の直径を求める。つぎに、算出された直径の度数分布を求める。ここで、級数を10nm刻みで分割し、各級における個数頻度を求める。つぎに、各級の直径を面積に換算し、面積に個数頻度を乗算して面積頻度を求める。求められた面積頻度から平均粒子径を求める。 Using each SEM image, the average particle size of the crystal grains of the copper plating film was determined. The procedure is as follows. First, the SEM image is image-processed to identify each of the crystal grains contained in the copper plating film. Next, the diameter equivalent to a circle is obtained from the area of each crystal grain. Next, the calculated frequency distribution of the diameter is obtained. Here, the series is divided in increments of 10 nm, and the number frequency in each series is obtained. Next, the diameter of each class is converted into an area, and the area is multiplied by the number frequency to obtain the area frequency. The average particle size is obtained from the obtained area frequency.

その結果を表1に示す。実施例1、2は比較例1、2に比べて、結晶粒の平均粒子径が小さいことが確認された。実施例1、2において結晶粒が小さいのは、銅めっき被膜が高塩素濃度層と低塩素濃度層とが交互に積層された構成を有するためであると考えられる。銅めっき被膜に高塩素濃度層が含まれることで再結晶の進行が抑制され、結晶粒を微細なまま維持できると推測される。 The results are shown in Table 1. It was confirmed that the average particle size of the crystal grains in Examples 1 and 2 was smaller than that in Comparative Examples 1 and 2. It is considered that the reason why the crystal grains are small in Examples 1 and 2 is that the copper plating film has a structure in which high chlorine concentration layers and low chlorine concentration layers are alternately laminated. It is presumed that the inclusion of the high chlorine concentration layer in the copper plating film suppresses the progress of recrystallization and keeps the crystal grains fine.

実施例1は実施例2に比べて結晶粒の平均粒子径が小さい。実施例1の銅めっき被膜は高塩素濃度層を10層含んでおり、実施例2の銅めっき被膜は高塩素濃度層を6層含んでいる。このことから、銅めっき被膜に含まれる高塩素濃度層の数が多いほど、結晶粒の平均粒子径が小さくなるといえる。 In Example 1, the average particle size of the crystal grains is smaller than that in Example 2. The copper plating film of Example 1 contains 10 high chlorine concentration layers, and the copper plating film of Example 2 contains 6 high chlorine concentration layers. From this, it can be said that the larger the number of high chlorine concentration layers contained in the copper plating film, the smaller the average particle size of the crystal grains.

(表面粗さ)
実施例1、2および比較例1、2で得られた銅張積層板に対して、化学研磨前の銅めっき被膜の表面粗さを測定した。ここで、表面積比の測定にはキーエンス社製レーザー顕微鏡VK-9510を用いた。70×93μmの測定エリアの測定表面積から表面積比を求めた。
(Surface roughness)
The surface roughness of the copper-plated coating before chemical polishing was measured with respect to the copper-clad laminates obtained in Examples 1 and 2 and Comparative Examples 1 and 2. Here, a laser microscope VK-9510 manufactured by KEYENCE was used for measuring the surface area ratio. The surface area ratio was determined from the measured surface area of the measurement area of 70 × 93 μm.

その結果を表1に示す。化学研磨前の表面粗さは、実施例1、2および比較例1でほぼ同一である。比較例2は実施例1、2および比較例1に比べて、表面が若干粗い。 The results are shown in Table 1. The surface roughness before chemical polishing is almost the same in Examples 1 and 2 and Comparative Example 1. The surface of Comparative Example 2 is slightly rougher than that of Examples 1 and 2 and Comparative Example 1.

つぎに、各銅張積層板に対して化学研磨を行なった。化学研磨液として硫酸と過酸化水素とを主成分とした液(三菱ガス化学株式会社製CPE-750を10倍に希釈した液)を用いた。厚さ2μmの銅めっき被膜を0.5μmまで減膜した。化学研磨の後、銅めっき被膜の表面粗さを測定した。 Next, each copper-clad laminate was chemically polished. As the chemical polishing solution, a solution containing sulfuric acid and hydrogen peroxide as main components (a solution obtained by diluting CPE-750 manufactured by Mitsubishi Gas Chemical Company, Inc. 10-fold) was used. The copper plating film having a thickness of 2 μm was reduced to 0.5 μm. After chemical polishing, the surface roughness of the copper plating film was measured.

その結果を表1に示す。実施例1、2では化学研磨の前後で表面粗さにほとんど変化がないことが分かる。一方、比較例1、2では化学研磨後の銅めっき被膜の表面が粗くなっていることが分かる。実施例1、2は比較例1、2に比べて化学研磨後の銅めっき被膜の表面が滑らかであることが確認できる。 The results are shown in Table 1. It can be seen that in Examples 1 and 2, there is almost no change in the surface roughness before and after the chemical polishing. On the other hand, in Comparative Examples 1 and 2, it can be seen that the surface of the copper plating film after chemical polishing is rough. It can be confirmed that in Examples 1 and 2, the surface of the copper plating film after chemical polishing is smoother than that in Comparative Examples 1 and 2.

各銅張積層板に対して化学研磨後の銅めっき被膜の表面を観察した。図8(A)は実施例1のSEM画像である。図8(B)は実施例2のSEM画像である。図9(A)は比較例1のSEM画像である。図9(B)は比較例2のSEM画像である。これらのSEM画像からも、実施例1、2は比較例1、2に比べて化学研磨後の銅めっき被膜の表面が滑らかであることが分かる。 The surface of the copper-plated coating after chemical polishing was observed for each copper-clad laminate. FIG. 8A is an SEM image of Example 1. FIG. 8B is an SEM image of Example 2. FIG. 9A is an SEM image of Comparative Example 1. FIG. 9B is an SEM image of Comparative Example 2. From these SEM images, it can be seen that the surface of the copper plating film after chemical polishing is smoother in Examples 1 and 2 than in Comparative Examples 1 and 2.

表1から分かるように、銅めっき被膜の結晶粒の平均粒子径が251nmである実施例2では化学研磨後の銅めっき被膜の表面が滑らかであるといえる。一方、銅めっき被膜の結晶粒の平均粒子径が376nmである比較例2では化学研磨後の銅めっき被膜の表面が粗い。このことから、銅めっき被膜の結晶粒の平均粒子径が300nm以下であれば、化学研磨後の銅めっき被膜の表面を滑らかにできると考えられる。 As can be seen from Table 1, in Example 2 in which the average particle size of the crystal grains of the copper plating film is 251 nm, it can be said that the surface of the copper plating film after chemical polishing is smooth. On the other hand, in Comparative Example 2 in which the average particle size of the crystal grains of the copper plating film is 376 nm, the surface of the copper plating film after chemical polishing is rough. From this, it is considered that if the average particle size of the crystal grains of the copper plating film is 300 nm or less, the surface of the copper plating film after chemical polishing can be smoothed.

Figure 0007103006000001
Figure 0007103006000001

1 銅張積層板
10 基材
11 ベースフィルム
12 金属層
13 下地金属層
14 銅薄膜層
20 銅めっき被膜
21 高塩素濃度層
22 低塩素濃度層
1 Copper-clad laminate 10 Base film 11 Base film 12 Metal layer 13 Base metal layer 14 Copper thin film layer 20 Copper plating film 21 High chlorine concentration layer 22 Low chlorine concentration layer

Claims (2)

ベースフィルムと、
前記ベースフィルムの表面に形成された金属層と、
前記金属層の表面に形成され、二次イオン質量分析法により測定した塩素濃度が1×10 19 atoms/cm 3 以上の層を有する銅めっき被膜と、を備え、
前記銅めっき被膜の結晶粒の平均粒子径が300nm以下である
ことを特徴とする銅張積層板。
With the base film
The metal layer formed on the surface of the base film and
A copper plating film formed on the surface of the metal layer and having a layer having a chlorine concentration of 1 × 10 19 atoms / cm 3 or more measured by secondary ion mass spectrometry is provided.
A copper-clad laminate characterized in that the average particle size of the crystal grains of the copper plating film is 300 nm or less.
前記銅めっき被膜は、二次イオン質量分析法により測定した塩素濃度が1×10 19 atoms/cm 3 以上である高塩素濃度層と、二次イオン質量分析法により測定した塩素濃度が1×10 19 atoms/cm 3 未満である低塩素濃度層とが交互に積層されてなる
ことを特徴とする請求項1記載の銅張積層板。
The copper plating film has a high chlorine concentration layer having a chlorine concentration of 1 × 10 19 atoms / cm 3 or more measured by the secondary ion mass analysis method and a chlorine concentration of 1 × 10 measured by the secondary ion mass analysis method. The copper-clad laminate according to claim 1, wherein low chlorine concentration layers having a concentration of less than 19 atoms / cm 3 are alternately laminated.
JP2018134850A 2018-07-18 2018-07-18 Copper-clad laminate Active JP7103006B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018134850A JP7103006B2 (en) 2018-07-18 2018-07-18 Copper-clad laminate
KR1020190068158A KR20200010033A (en) 2018-07-18 2019-06-10 Copper clad laminate
TW108124868A TWI793350B (en) 2018-07-18 2019-07-15 copper clad laminate
CN201910640844.5A CN110740568B (en) 2018-07-18 2019-07-16 Copper-clad laminate
KR1020230143671A KR20230152633A (en) 2018-07-18 2023-10-25 Copper clad laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018134850A JP7103006B2 (en) 2018-07-18 2018-07-18 Copper-clad laminate

Publications (2)

Publication Number Publication Date
JP2020011441A JP2020011441A (en) 2020-01-23
JP7103006B2 true JP7103006B2 (en) 2022-07-20

Family

ID=69170580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018134850A Active JP7103006B2 (en) 2018-07-18 2018-07-18 Copper-clad laminate

Country Status (4)

Country Link
JP (1) JP7103006B2 (en)
KR (2) KR20200010033A (en)
CN (1) CN110740568B (en)
TW (1) TWI793350B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7230564B2 (en) * 2019-02-15 2023-03-01 住友金属鉱山株式会社 Method for manufacturing copper-clad laminate
JP7343280B2 (en) * 2019-02-15 2023-09-12 住友金属鉱山株式会社 Manufacturing method for copper clad laminates
KR102362580B1 (en) * 2020-05-07 2022-02-15 동아대학교 산학협력단 Electroplating apparatus for manufacturing multilayer copper foil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087292A (en) 1998-09-14 2000-03-28 Ibiden Co Ltd Electroplating method, production of circuit board and printed circuit board by electroplating, circuit board having circuit consisting of copper coating film and printed circuit board having wiring consisting of copper coating film
JP2008130585A (en) 2006-11-16 2008-06-05 Sumitomo Metal Mining Co Ltd Copper-coated polyimide substrate and manufacturing method thereof
JP2009295656A (en) 2008-06-03 2009-12-17 Sumitomo Metal Mining Co Ltd Substrate for flexible wiring board and method for manufacturing the same
JP2011017036A (en) 2009-07-07 2011-01-27 Ebara-Udylite Co Ltd Copper plating method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278950A (en) 2005-03-30 2006-10-12 Fujikura Ltd Printed circuit board and its manufacturing method
TW200847867A (en) * 2007-04-26 2008-12-01 Mitsui Mining & Smelting Co Printed wire board and manufacturing method thereof, and electrolytic copper foil for copper-clad lamination board used for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000087292A (en) 1998-09-14 2000-03-28 Ibiden Co Ltd Electroplating method, production of circuit board and printed circuit board by electroplating, circuit board having circuit consisting of copper coating film and printed circuit board having wiring consisting of copper coating film
JP2008130585A (en) 2006-11-16 2008-06-05 Sumitomo Metal Mining Co Ltd Copper-coated polyimide substrate and manufacturing method thereof
JP2009295656A (en) 2008-06-03 2009-12-17 Sumitomo Metal Mining Co Ltd Substrate for flexible wiring board and method for manufacturing the same
JP2011017036A (en) 2009-07-07 2011-01-27 Ebara-Udylite Co Ltd Copper plating method

Also Published As

Publication number Publication date
CN110740568B (en) 2023-04-28
TW202014067A (en) 2020-04-01
KR20230152633A (en) 2023-11-03
JP2020011441A (en) 2020-01-23
KR20200010033A (en) 2020-01-30
TWI793350B (en) 2023-02-21
CN110740568A (en) 2020-01-31

Similar Documents

Publication Publication Date Title
JP6993613B2 (en) Manufacturing method of copper-clad laminate
JP7107190B2 (en) Method for manufacturing copper-clad laminate
JP7103006B2 (en) Copper-clad laminate
JP7107189B2 (en) COPPER CLAD LAMINATES AND METHOD FOR MANUFACTURING COPPER CLAD LAMINATES
JP7087759B2 (en) Copper-clad laminate
JP7215211B2 (en) Method for manufacturing copper-clad laminate
JP7211184B2 (en) COPPER CLAD LAMINATES AND METHOD FOR MANUFACTURING COPPER CLAD LAMINATES
JP7230564B2 (en) Method for manufacturing copper-clad laminate
JP7276025B2 (en) COPPER CLAD LAMINATES AND METHOD FOR MANUFACTURING COPPER CLAD LAMINATES
JP7087758B2 (en) Copper-clad laminate
JP7087760B2 (en) Copper-clad laminate
JP7343280B2 (en) Manufacturing method for copper clad laminates
JP2021008650A (en) Copper-clad laminate plate
JP2020139197A (en) Production method of flexible substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220620

R150 Certificate of patent or registration of utility model

Ref document number: 7103006

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150