JP7087760B2 - Copper-clad laminate - Google Patents

Copper-clad laminate Download PDF

Info

Publication number
JP7087760B2
JP7087760B2 JP2018134849A JP2018134849A JP7087760B2 JP 7087760 B2 JP7087760 B2 JP 7087760B2 JP 2018134849 A JP2018134849 A JP 2018134849A JP 2018134849 A JP2018134849 A JP 2018134849A JP 7087760 B2 JP7087760 B2 JP 7087760B2
Authority
JP
Japan
Prior art keywords
copper
chlorine concentration
copper plating
film
plating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018134849A
Other languages
Japanese (ja)
Other versions
JP2020011440A (en
Inventor
智治 渡邊
匠 下地
芳英 西山
茂樹 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018134849A priority Critical patent/JP7087760B2/en
Priority to KR1020190068157A priority patent/KR20200010032A/en
Priority to TW108124867A priority patent/TWI785257B/en
Priority to CN201910640432.1A priority patent/CN110740579B/en
Publication of JP2020011440A publication Critical patent/JP2020011440A/en
Application granted granted Critical
Publication of JP7087760B2 publication Critical patent/JP7087760B2/en
Priority to KR1020230141960A priority patent/KR20230154140A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/05Flexible printed circuits [FPCs]

Description

本発明は、銅張積層板に関する。さらに詳しくは、本発明は、フレキシブルプリント配線板(FPC)などの製造に用いられる銅張積層板に関する。 The present invention relates to a copper-clad laminate. More specifically, the present invention relates to a copper-clad laminate used in the manufacture of flexible printed wiring boards (FPCs) and the like.

液晶パネル、ノートパソコン、デジタルカメラ、携帯電話などには、樹脂フィルムの表面に配線パターンが形成されたフレキシブルプリント配線板が用いられる。フレキシブルプリント配線板は、例えば、銅張積層板から製造される。 For liquid crystal panels, notebook computers, digital cameras, mobile phones, etc., flexible printed wiring boards having a wiring pattern formed on the surface of a resin film are used. The flexible printed wiring board is manufactured from, for example, a copper-clad laminate.

銅張積層板の製造方法としてメタライジング法が知られている。メタライジング法による銅張積層板の製造は、例えば、つぎの手順で行なわれる。まず、樹脂フィルムの表面にニッケルクロム合金からなる下地金属層を形成する。つぎに、下地金属層の上に銅薄膜層を形成する。つぎに、銅薄膜層の上に銅めっき被膜を形成する。銅めっきにより、配線パターンを形成するのに適した膜厚となるまで導体層を厚膜化する。メタライジング法により、樹脂フィルム上に直接導体層が形成された、いわゆる2層基板と称されるタイプの銅張積層板が得られる。 The metallizing method is known as a method for manufacturing a copper-clad laminate. The production of the copper-clad laminate by the metallizing method is performed, for example, by the following procedure. First, a base metal layer made of a nickel-chromium alloy is formed on the surface of the resin film. Next, a copper thin film layer is formed on the base metal layer. Next, a copper plating film is formed on the copper thin film layer. By copper plating, the conductor layer is thickened until the film thickness is suitable for forming a wiring pattern. By the metallizing method, a copper-clad laminate of a type called a so-called two-layer substrate in which a conductor layer is directly formed on a resin film can be obtained.

この種の銅張積層板を用いてフレキシブルプリント配線板を製造する方法としてセミアディティブ法が知られている。セミアディティブ法によるフレキシブルプリント配線板の製造は、つぎの手順で行なわれる(特許文献1参照)。まず、銅張積層板の銅めっき被膜の表面にレジスト層を形成する。つぎに、レジスト層のうち配線パターンを形成する部分に開口部を形成する。つぎに、レジスト層の開口部から露出した銅めっき被膜を陰極として電解めっきを行ない、配線部を形成する。つぎに、レジスト層を除去し、フラッシュエッチングなどにより配線部以外の導体層を除去する。これにより、フレキシブルプリント配線板が得られる。 A semi-additive method is known as a method for manufacturing a flexible printed wiring board using this type of copper-clad laminate. The flexible printed wiring board is manufactured by the semi-additive method according to the following procedure (see Patent Document 1). First, a resist layer is formed on the surface of the copper-plated coating of the copper-clad laminate. Next, an opening is formed in the portion of the resist layer that forms the wiring pattern. Next, electrolytic plating is performed using the copper plating film exposed from the opening of the resist layer as a cathode to form a wiring portion. Next, the resist layer is removed, and the conductor layer other than the wiring portion is removed by flash etching or the like. As a result, a flexible printed wiring board can be obtained.

セミアディティブ法において、銅めっき被膜の表面にレジスト層を形成するあたり、ドライフィルムレジストを用いることがある。この場合、銅めっき被膜の表面を化学研磨した後に、ドライフィルムレジストを貼り付ける。化学研磨により銅めっき被膜の表面に微細な凹凸をつけることで、アンカー効果によるドライフィルムレジストの密着性を高めている。しかし、銅めっき被膜の表面の凹凸が過剰であると、かえってドライフィルムレジストの密着性が悪化することがある。 In the semi-additive method, a dry film resist may be used to form a resist layer on the surface of the copper plating film. In this case, after the surface of the copper plating film is chemically polished, a dry film resist is attached. By making fine irregularities on the surface of the copper plating film by chemical polishing, the adhesion of the dry film resist due to the anchor effect is improved. However, if the surface of the copper plating film is excessively uneven, the adhesion of the dry film resist may be deteriorated.

特開2006-278950号公報Japanese Unexamined Patent Publication No. 2006-278950

化学研磨により銅めっき被膜を減膜する際に、導体層にピンホールが生じることがある。導体層にピンホールが存在すると、その上に形成された配線の厚さが部分的に薄くなる「窪み」、配線の幅が部分的に狭くなる「欠け」と称される外観不良の原因となる。また、ひどい場合には、配線が断線する。 When the copper plating film is reduced by chemical polishing, pinholes may occur in the conductor layer. The presence of pinholes in the conductor layer causes a poor appearance called "dents" in which the thickness of the wiring formed on the pinholes is partially thinned, and "chips" in which the width of the wiring is partially narrowed. Become. In the worst case, the wiring is broken.

本発明は上記事情に鑑み、化学研磨後のピンホールの発生を抑制できる銅張積層板を提供することを目的とする。 In view of the above circumstances, it is an object of the present invention to provide a copper-clad laminate capable of suppressing the generation of pinholes after chemical polishing.

発明の銅張積層板は、ベースフィルムと、前記ベースフィルムの表面に形成された金属層と、前記金属層の表面に形成され、不純物として塩素を含む銅めっき被膜と、を備え、前記銅めっき被膜の厚さ方向の塩素濃度分布は、複数の山形の局所分布を含み、複数の前記局所分布の全部または一部は、ピークにおける二次イオン質量分析法により測定した塩素濃度が2×1019atoms/cm3以上であることを特徴とする The copper-clad laminate of the present invention comprises a base film, a metal layer formed on the surface of the base film, and a copper plating film formed on the surface of the metal layer and containing chlorine as an impurity. The chlorine concentration distribution in the thickness direction of the plating film includes a plurality of chevron local distributions, and all or part of the plurality of local distributions has a chlorine concentration of 2 × measured by the secondary ion mass analysis method at the peak. It is characterized by having 10 19 atoms / cm 3 or more .

化学研磨による銅めっき被膜のエッチングの進行は塩素濃度が高い層により抑制される。エッチングが進行しやすい経路が高塩素濃度層で途切れるため、エッチングが局所的に厚さ方向に進行することが抑制される。その結果、ピンホールの発生を抑制できる。 The progress of etching of the copper plating film by chemical polishing is suppressed by the layer having a high chlorine concentration. Since the path through which etching is likely to proceed is interrupted in the high chlorine concentration layer, it is suppressed that the etching locally progresses in the thickness direction. As a result, the occurrence of pinholes can be suppressed.

本発明の一実施形態に係る銅張積層板の断面図である。It is sectional drawing of the copper-clad laminated board which concerns on one Embodiment of this invention. めっき装置の斜視図である。It is a perspective view of a plating apparatus. めっき槽の平面図である。It is a top view of a plating tank. 図(A)は実施例1における銅めっき被膜の塩素濃度分布を示すグラフである。図(B)は実施例2における銅めっき被膜の塩素濃度分布を示すグラフである。図(C)は比較例1における銅めっき被膜の塩素濃度分布を示すグラフである。FIG. (A) is a graph showing the chlorine concentration distribution of the copper plating film in Example 1. FIG. (B) is a graph showing the chlorine concentration distribution of the copper plating film in Example 2. FIG. (C) is a graph showing the chlorine concentration distribution of the copper plating film in Comparative Example 1. 図(A)は実施例1における化学研磨後の銅めっき被膜の表面のSEM画像である。図(B)は実施例2における化学研磨後の銅めっき被膜の表面のSEM画像である。図(C)は比較例1における化学研磨後の銅めっき被膜の表面のSEM画像である。FIG. (A) is an SEM image of the surface of the copper plating film after chemical polishing in Example 1. FIG. (B) is an SEM image of the surface of the copper plating film after chemical polishing in Example 2. FIG. (C) is an SEM image of the surface of the copper plating film after chemical polishing in Comparative Example 1.

つぎに、本発明の実施形態を図面に基づき説明する。
図1に示すように、本発明の一実施形態に係る銅張積層板1は、基材10と、基材10の表面に形成された銅めっき被膜20とからなる。図1に示すように基材10の片面のみに銅めっき被膜20が形成されてもよいし、基材10の両面に銅めっき被膜20が形成されてもよい。
Next, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the copper-clad laminate 1 according to the embodiment of the present invention comprises a base material 10 and a copper plating film 20 formed on the surface of the base material 10. As shown in FIG. 1, the copper plating film 20 may be formed on only one side of the base material 10, or the copper plating film 20 may be formed on both sides of the base material 10.

基材10は絶縁性を有するベースフィルム11の表面に金属層12が形成されたものである。ベースフィルム11としてポリイミドフィルムなどの樹脂フィルムを用いることができる。金属層12は、例えば、スパッタリング法により形成される。金属層12は下地金属層13と銅薄膜層14とからなる。下地金属層13と銅薄膜層14とはベースフィルム11の表面にこの順に積層されている。一般に、下地金属層13はニッケル、クロム、またはニッケルクロム合金からなる。特に限定されないが、下地金属層13の厚さは5~50nmが一般的であり、銅薄膜層14の厚さは50~400nmが一般的である。 The base material 10 has a metal layer 12 formed on the surface of a base film 11 having an insulating property. A resin film such as a polyimide film can be used as the base film 11. The metal layer 12 is formed by, for example, a sputtering method. The metal layer 12 is composed of a base metal layer 13 and a copper thin film layer 14. The base metal layer 13 and the copper thin film layer 14 are laminated in this order on the surface of the base film 11. Generally, the base metal layer 13 is made of nickel, chromium, or a nickel-chromium alloy. Although not particularly limited, the thickness of the base metal layer 13 is generally 5 to 50 nm, and the thickness of the copper thin film layer 14 is generally 50 to 400 nm.

銅めっき被膜20は金属層12の表面に形成されている。特に限定されないが、銅めっき被膜20の厚さは1~3μmが一般的である。なお、金属層12と銅めっき被膜20とを合わせて「導体層」と称する。 The copper plating film 20 is formed on the surface of the metal layer 12. Although not particularly limited, the thickness of the copper plating film 20 is generally 1 to 3 μm. The metal layer 12 and the copper plating film 20 are collectively referred to as a "conductor layer".

銅めっき被膜20は電解めっきにより成膜される。銅めっき被膜20は、特に限定されないが、図2に示すめっき装置3により成膜される。
めっき装置3は、ロールツーロールにより長尺帯状の基材10を搬送しつつ、基材10に対して電解めっきを行なう装置である。めっき装置3はロール状に巻回された基材10を繰り出す供給装置31と、めっき後の基材10(銅張積層板1)をロール状に巻き取る巻取装置32とを有する。
The copper plating film 20 is formed by electrolytic plating. The copper plating film 20 is not particularly limited, but is formed by the plating apparatus 3 shown in FIG.
The plating device 3 is a device that performs electrolytic plating on the base material 10 while transporting the long strip-shaped base material 10 by roll-to-roll. The plating device 3 has a supply device 31 for feeding out the base material 10 wound in a roll shape, and a winding device 32 for winding up the base material 10 (copper-clad laminate 1) after plating in a roll shape.

また、めっき装置3は基材10を搬送する上下一対のエンドレスベルト33(下側のエンドレスベルト33は図示省略)を有する。各エンドレスベルト33には基材10を把持する複数のクランプ34が設けられている。供給装置31から繰り出された基材10は、その幅方向が鉛直方向に沿う懸垂姿勢となり、両縁が上下のクランプ34に把持される。基材10はエンドレスベルト33の駆動によりめっき装置3内を周回した後、クランプ34から開放され、巻取装置32で巻き取られる。 Further, the plating apparatus 3 has a pair of upper and lower endless belts 33 (the lower endless belt 33 is not shown) for transporting the base material 10. Each endless belt 33 is provided with a plurality of clamps 34 for gripping the base material 10. The base material 10 unwound from the supply device 31 has a suspended posture in which the width direction is along the vertical direction, and both edges are gripped by the upper and lower clamps 34. The base material 10 circulates in the plating device 3 by driving the endless belt 33, is released from the clamp 34, and is wound by the winding device 32.

基材10の搬送経路には、前処理槽35、めっき槽40、および後処理槽36が配置されている。基材10はめっき槽40内を搬送されつつ、電解めっきによりその表面に銅めっき被膜20が成膜される。これにより、長尺帯状の銅張積層板1が得られる。 A pretreatment tank 35, a plating tank 40, and a posttreatment tank 36 are arranged in the transport path of the base material 10. While the base material 10 is conveyed in the plating tank 40, a copper plating film 20 is formed on the surface thereof by electrolytic plating. As a result, a long strip-shaped copper-clad laminated plate 1 can be obtained.

図3に示すように、めっき槽40は基材10の搬送方向に沿った横長の単一の槽である。基材10はめっき槽40の中心に沿って搬送される。めっき槽40には銅めっき液が貯留されている。めっき槽40内を搬送される基材10は、その全体が銅めっき液に浸漬されている。 As shown in FIG. 3, the plating tank 40 is a single horizontally long tank along the transport direction of the base material 10. The base material 10 is conveyed along the center of the plating tank 40. A copper plating solution is stored in the plating tank 40. The entire base material 10 conveyed in the plating tank 40 is immersed in a copper plating solution.

銅めっき液は水溶性銅塩を含む。銅めっき液に一般的に用いられる水溶性銅塩であれば、特に限定されず用いられる。水溶性銅塩として、無機銅塩、アルカンスルホン酸銅塩、アルカノールスルホン酸銅塩、有機酸銅塩などが挙げられる。無機銅塩として、硫酸銅、酸化銅、塩化銅、炭酸銅などが挙げられる。アルカンスルホン酸銅塩として、メタンスルホン酸銅、プロパンスルホン酸銅などが挙げられる。アルカノールスルホン酸銅塩として、イセチオン酸銅、プロパノールスルホン酸銅などが挙げられる。有機酸銅塩として、酢酸銅、クエン酸銅、酒石酸銅などが挙げられる。 The copper plating solution contains a water-soluble copper salt. Any water-soluble copper salt generally used for the copper plating solution is used without particular limitation. Examples of the water-soluble copper salt include an inorganic copper salt, an alkane sulfonic acid copper salt, an alkanol sulfonic acid copper salt, and an organic acid copper salt. Examples of the inorganic copper salt include copper sulfate, copper oxide, copper chloride, and copper carbonate. Examples of the alkane sulfonic acid copper salt include copper methanesulfonic acid and copper propanesulfonic acid. Examples of the alkanol sulfonic acid copper salt include copper isethionic acid and copper propanol sulfonic acid. Examples of the organic acid copper salt include copper acetate, copper citrate, copper tartrate and the like.

銅めっき液に用いる水溶性銅塩として、無機銅塩、アルカンスルホン酸銅塩、アルカノールスルホン酸銅塩、有機酸銅塩などから選択された1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。例えば、硫酸銅と塩化銅とを組み合わせる場合のように、無機銅塩、アルカンスルホン酸銅塩、アルカノールスルホン酸銅塩、有機酸銅塩などから選択された1つのカテゴリー内の異なる2種類以上を組み合わせて用いてもよい。ただし、銅めっき液の管理の観点からは、1種類の水溶性銅塩を単独で用いることが好ましい。 As the water-soluble copper salt used in the copper plating solution, one type selected from inorganic copper salt, alkane sulfonic acid copper salt, alkanol sulfonic acid copper salt, organic acid copper salt and the like may be used alone, or two or more types may be used. May be used in combination. For example, when combining copper sulfate and copper chloride, two or more different types in one category selected from inorganic copper salt, alkane sulfonic acid copper salt, alkanol sulfonic acid copper salt, organic acid copper salt, etc. It may be used in combination. However, from the viewpoint of controlling the copper plating solution, it is preferable to use one kind of water-soluble copper salt alone.

銅めっき液は硫酸を含んでもよい。硫酸の添加量を調整することで、銅めっき液のpHおよび硫酸イオン濃度を調整できる。 The copper plating solution may contain sulfuric acid. By adjusting the amount of sulfuric acid added, the pH and sulfate ion concentration of the copper plating solution can be adjusted.

銅めっき液は一般的にめっき液に添加される添加剤を含む。添加剤として、レベラー成分、ポリマー成分、ブライトナー成分、塩素成分などが挙げられる。添加剤として、レベラー成分、ポリマー成分、ブライトナー成分、塩素成分などから選択された1種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。 The copper plating solution contains additives that are generally added to the plating solution. Examples of the additive include a leveler component, a polymer component, a Brightner component, a chlorine component and the like. As the additive, one type selected from a leveler component, a polymer component, a Brightener component, a chlorine component and the like may be used alone, or two or more types may be used in combination.

レベラー成分は窒素を含有するアミンなどで構成される。レベラー成分として、ジアリルジメチルアンモニウムクロライド、ヤヌス・グリーンBなどが挙げられる。ポリマー成分として、特に限定されないが、ポリエチレングリコール、ポリプロピレングリコール、ポリエチレングリコール-ポリプロピレングリコール共重合体から選択された1種類を単独で、または2種類以上を組み合わせて用いることが好ましい。ブライトナー成分として、特に限定されないが、ビス(3-スルホプロピル)ジスルフィド(略称SPS)、3-メルカプトプロパン-1-スルホン酸(略称MPS)などから選択された1種類を単独で、または2種類以上を組み合わせて用いることが好ましい。塩素成分として、特に限定されないが、塩酸、塩化ナトリウムなどから選択された1種類を単独で、または2種類以上を組み合わせて用いることが好ましい。 The leveler component is composed of an amine containing nitrogen and the like. Examples of the leveler component include diallyldimethylammonium chloride, Janus Green B and the like. The polymer component is not particularly limited, but it is preferable to use one selected from polyethylene glycol, polypropylene glycol, and polyethylene glycol-polypropylene glycol copolymer alone or in combination of two or more. The Brightener component is not particularly limited, but one type selected from bis (3-sulfopropyl) disulfide (abbreviated as SPS), 3-mercaptopropane-1-sulfonic acid (abbreviated as MPS), etc. may be used alone or in two types. It is preferable to use the above in combination. The chlorine component is not particularly limited, but it is preferable to use one selected from hydrochloric acid, sodium chloride and the like alone or in combination of two or more.

銅めっき液の各成分の含有量は任意に選択できる。ただし、銅めっき液は硫酸銅を60~280g/L、硫酸を20~250g/L含有することが好ましい。そうすれば、銅めっき被膜20を十分な速度で成膜できる。銅めっき液はレベラー成分を0.5~50mg/L含有することが好ましい。そうすれば、突起を抑制し平坦な銅めっき被膜20を形成できる。銅めっき液はポリマー成分を10~1,500mg/L含有することが好ましい。そうすれば、基材10端部への電流集中を緩和し均一な銅めっき被膜20を形成できる。銅めっき液はブライトナー成分を0.2~16mg/L含有することが好ましい。そうすれば、析出結晶を微細化し銅めっき被膜20の表面を平滑にできる。銅めっき液は塩素成分を20~80mg/L含有することが好ましい。そうすれば、異常析出を抑制できる。また、銅めっき液が塩素成分を含むことで、形成された銅めっき被膜20に不純物として塩素が含まれる。 The content of each component of the copper plating solution can be arbitrarily selected. However, the copper plating solution preferably contains 60 to 280 g / L of copper sulfate and 20 to 250 g / L of sulfuric acid. Then, the copper plating film 20 can be formed at a sufficient speed. The copper plating solution preferably contains a leveler component of 0.5 to 50 mg / L. Then, the protrusions can be suppressed and the flat copper plating film 20 can be formed. The copper plating solution preferably contains 10 to 1,500 mg / L of the polymer component. Then, the current concentration on the end portion of the base material 10 can be relaxed and a uniform copper plating film 20 can be formed. The copper plating solution preferably contains a Brightener component of 0.2 to 16 mg / L. Then, the precipitated crystals can be made finer and the surface of the copper plating film 20 can be smoothed. The copper plating solution preferably contains 20 to 80 mg / L of chlorine component. Then, abnormal precipitation can be suppressed. Further, since the copper plating solution contains a chlorine component, the formed copper plating film 20 contains chlorine as an impurity.

銅めっき液の温度は20~35℃が好ましい。また、めっき槽40内の銅めっき液を撹拌することが好ましい。銅めっき液を撹拌する手段は、特に限定されないが、噴流を利用した手段を用いることができる。例えば、ノズルから噴出させた銅めっき液を基材10に吹き付けることで、銅めっき液を撹拌できる。 The temperature of the copper plating solution is preferably 20 to 35 ° C. Further, it is preferable to stir the copper plating solution in the plating tank 40. The means for stirring the copper plating solution is not particularly limited, but a means using a jet can be used. For example, the copper plating solution can be agitated by spraying the copper plating solution ejected from the nozzle onto the base material 10.

めっき槽40の内部には、基材10の搬送方向に沿って複数のアノード41が配置されている。また、基材10を把持するクランプ34はカソードとしての機能も有する。アノード41とクランプ34(カソード)との間に電流を流すことで、基材10の表面に銅めっき被膜20を成膜できる。 Inside the plating tank 40, a plurality of anodes 41 are arranged along the transport direction of the base material 10. Further, the clamp 34 that grips the base material 10 also has a function as a cathode. By passing an electric current between the anode 41 and the clamp 34 (cathode), the copper plating film 20 can be formed on the surface of the base material 10.

なお、図3に示すめっき槽40には、基材10の表裏両側にアノード41が配置されている。したがって、ベースフィルム11の両面に金属層12が形成された基材10を用いれば、基材10の両面に銅めっき被膜20を成膜できる。 In the plating tank 40 shown in FIG. 3, anodes 41 are arranged on both the front and back sides of the base material 10. Therefore, if the base material 10 having the metal layers 12 formed on both sides of the base film 11 is used, the copper plating film 20 can be formed on both sides of the base film 10.

めっき槽40の内部に配置された複数のアノード41は、それぞれに整流器が接続されている。したがって、アノード41ごとに異なる電流密度となるように設定できる。本実施形態では、めっき槽40の内部が基材10の搬送方向に沿って、複数の区域に区分されている。各区域は一または複数の連続するアノード41が配置された領域に対応する。 A rectifier is connected to each of the plurality of anodes 41 arranged inside the plating tank 40. Therefore, the current densities can be set to be different for each anode 41. In the present embodiment, the inside of the plating tank 40 is divided into a plurality of areas along the transport direction of the base material 10. Each area corresponds to an area in which one or more contiguous anodes 41 are located.

各区域は低電流密度区域LZまたは高電流密度区域HZである。低電流密度区域LZでは電流密度がゼロか比較的低い「低電流密度」に設定されており、基材10に対して低電流密度での電解めっきを行なう。高電流密度区域HZでは電流密度が低電流密度よりも高い「高電流密度」に設定されており、基材10に対して高電流密度での電解めっきを行なう。 Each area is a low current density area LZ or a high current density area HZ. In the low current density area LZ, the current density is set to zero or a relatively low "low current density", and the base material 10 is electrolytically plated at a low current density. In the high current density area HZ, the current density is set to "high current density", which is higher than the low current density, and the substrate 10 is electrolytically plated at a high current density.

ここで、低電流密度区域LZにおける電流密度(低電流密度)を0~0.29A/dm2に設定することが好ましい。また、高電流密度区域HZにおける電流密度(高電流密度)を0.3~10A/dm2に設定することが好ましい。 Here, it is preferable to set the current density (low current density) in the low current density area LZ to 0 to 0.29 A / dm 2 . Further, it is preferable to set the current density (high current density) in the high current density area HZ to 0.3 to 10 A / dm 2 .

低電流密度区域LZと高電流密度区域HZとは基材10の搬送方向に沿って交互に設けられている。低電流密度区域LZは複数設けられる。高電流密度区域HZは複数設けられる。基材10の搬送方向を基準として、最も上流の区域が低電流密度区域LZであってもよいし、高電流密度区域HZであってもよい。また、最も下流の区域が低電流密度区域LZであってもよいし、高電流密度区域HZであってもよい。 The low current density area LZ and the high current density area HZ are alternately provided along the transport direction of the base material 10. A plurality of low current density areas LZ are provided. A plurality of high current density areas HZ are provided. The most upstream area may be the low current density area LZ or the high current density area HZ with respect to the transport direction of the base material 10. Further, the most downstream area may be a low current density area LZ or a high current density area HZ.

複数の低電流密度区域LZにおける電流密度は同じでもよいし、異なってもよい。また、複数の高電流密度区域HZにおける電流密度は同じでもよいし、異なってもよい。ただし、高電流密度区域HZにおける電流密度は、基材10の搬送方向の下流側に向かって、段階的に上昇するよう設定することが好ましい。 The current densities in the plurality of low current density areas LZ may be the same or may be different. Further, the current densities in the plurality of high current density areas HZ may be the same or may be different. However, it is preferable that the current density in the high current density area HZ is set so as to gradually increase toward the downstream side in the transport direction of the base material 10.

基材10は、低電流密度区域LZと高電流密度区域HZとを交互に通過しながら、電解めっきされる。すなわち、めっき槽40では基材10に対して、低電流密度での電解めっきと、高電流密度での電解めっきとを交互に繰り返し行なう。これにより、銅めっき被膜20が成膜される。 The base material 10 is electroplated while alternately passing through the low current density area LZ and the high current density area HZ. That is, in the plating tank 40, electrolytic plating at a low current density and electrolytic plating at a high current density are alternately and repeatedly performed on the base material 10. As a result, the copper plating film 20 is formed.

このような方法により形成された銅めっき被膜20は、図1に示すように、異なる電流密度での電解めっきにより形成された複数の層が積層された構造となる。具体的には、銅めっき被膜20は高塩素濃度層21と低塩素濃度層22とが、厚さ方向に交互に積層された構造を有する。ここで、高塩素濃度層21は低電流密度での電解めっきにより形成され、相対的に塩素濃度が高い。また、低塩素濃度層22は高電流密度での電解めっきにより形成され、相対的に塩素濃度が低い。これは、電解めっきにおける電流密度が低いほど、銅めっき液の添加剤がめっき被膜に取り込まれやすくなるためであると推測される。 As shown in FIG. 1, the copper plating film 20 formed by such a method has a structure in which a plurality of layers formed by electrolytic plating at different current densities are laminated. Specifically, the copper plating film 20 has a structure in which high chlorine concentration layers 21 and low chlorine concentration layers 22 are alternately laminated in the thickness direction. Here, the high chlorine concentration layer 21 is formed by electrolytic plating at a low current density, and has a relatively high chlorine concentration. Further, the low chlorine concentration layer 22 is formed by electrolytic plating at a high current density, and the chlorine concentration is relatively low. It is presumed that this is because the lower the current density in electrolytic plating, the easier it is for the additive of the copper plating solution to be incorporated into the plating film.

高塩素濃度層21および低塩素濃度層22の配置は、めっき槽40における低電流密度区域LZおよび高電流密度区域HZの配置に依存する。高塩素濃度層21は複数存在する。低塩素濃度層22は複数存在する。基材10の表面(金属層12の表面)に直接積層される層が高塩素濃度層21であってもよいし、低塩素濃度層22であってもよい。また、銅めっき被膜20の表面(基材10と反対側の面)に表れる層が高塩素濃度層21であってもよいし、低塩素濃度層22であってもよい。 The arrangement of the high chlorine concentration layer 21 and the low chlorine concentration layer 22 depends on the arrangement of the low current density area LZ and the high current density area HZ in the plating tank 40. There are a plurality of high chlorine concentration layers 21. There are a plurality of low chlorine concentration layers 22. The layer directly laminated on the surface of the base material 10 (the surface of the metal layer 12) may be the high chlorine concentration layer 21 or the low chlorine concentration layer 22. Further, the layer appearing on the surface of the copper plating film 20 (the surface opposite to the base material 10) may be the high chlorine concentration layer 21 or the low chlorine concentration layer 22.

銅めっき被膜20に含まれる不純物の濃度は、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)によって測定できる。銅めっき被膜20は高塩素濃度層21と低塩素濃度層22とが交互に積層された構造であるから、その厚さ方向の塩素濃度分布には複数の山形の局所分布が含まれる(図4参照)。より詳細には、銅めっき被膜20の厚さ方向の塩素濃度分布は、複数の山形の局所分布が周期的に連続した分布となる。各局所分布のピーク近傍が高塩素濃度層21に相当し、それ以外の部分が低塩素濃度層22に相当する。 The concentration of impurities contained in the copper plating film 20 can be measured by secondary ion mass spectrometry (SIMS). Since the copper plating film 20 has a structure in which high chlorine concentration layers 21 and low chlorine concentration layers 22 are alternately laminated, the chlorine concentration distribution in the thickness direction includes a plurality of chevron local distributions (FIG. 4). reference). More specifically, the chlorine concentration distribution in the thickness direction of the copper plating film 20 is such that the local distributions of the plurality of chevrons are periodically continuous. The vicinity of the peak of each local distribution corresponds to the high chlorine concentration layer 21, and the other portion corresponds to the low chlorine concentration layer 22.

例えば、セミアディティブ法により銅張積層板1を用いてフレキシブルプリント配線板を製造する際に、化学研磨により銅めっき被膜20を減膜することがある。例えば、厚さ1~3μmの銅めっき被膜20を0.4~0.8μmまで減膜する。この化学研磨により導体層にピンホールが生じることがある。 For example, when a flexible printed wiring board is manufactured using a copper-clad laminate 1 by a semi-additive method, the copper plating film 20 may be reduced by chemical polishing. For example, the copper plating film 20 having a thickness of 1 to 3 μm is reduced to 0.4 to 0.8 μm. This chemical polishing may cause pinholes in the conductor layer.

これに対して、本実施形態の銅張積層板1であれば、ピンホールの発生を抑制できる。その理由は不明なところもあるが、概ねつぎのとおりであると考えられる。不純物として塩素を多く含む高塩素濃度層21では化学研磨液によるエッチングの進行が抑制される。エッチングが進行しやすい経路は高塩素濃度層21で途切れる。そのため、エッチングが進行しやすい経路が厚さ方向に繋がることがなく、エッチングが局所的に厚さ方向に進行することが抑制される。その結果、ピンホールの発生を抑制できる。 On the other hand, the copper-clad laminate 1 of the present embodiment can suppress the occurrence of pinholes. The reason for this is unknown, but it is thought to be as follows. In the high chlorine concentration layer 21 containing a large amount of chlorine as an impurity, the progress of etching by the chemical polishing liquid is suppressed. The path through which etching is likely to proceed is interrupted at the high chlorine concentration layer 21. Therefore, the path through which etching is likely to proceed is not connected in the thickness direction, and the etching is suppressed from locally progressing in the thickness direction. As a result, the occurrence of pinholes can be suppressed.

塩素濃度分布に含まれる局所分布のピークにおける塩素濃度(二次イオン質量分析法により測定した値)は1×1019atoms/cm3以上であることが好ましく、2×1019atoms/cm3以上であることがより好ましい。塩素濃度分布に含まれる全部の局所分布がこの条件を満たしてもよいし、一部の局所分布がこの条件を満たしてもよい。塩素濃度分布が上記の通りであれば、ピンホールの発生を十分に抑制できる。 The chlorine concentration (value measured by secondary ion mass spectrometry) at the peak of the local distribution contained in the chlorine concentration distribution is preferably 1 × 10 19 atoms / cm 3 or more, and 2 × 10 19 atoms / cm 3 or more. Is more preferable. All the local distributions included in the chlorine concentration distribution may satisfy this condition, or some local distributions may satisfy this condition. If the chlorine concentration distribution is as described above, the occurrence of pinholes can be sufficiently suppressed.

塩素濃度分布に含まれる局所分布の半値全幅が隣り合う局所分布とのピーク間隔の半分よりも狭いことが好ましい。これは高塩素濃度層21の厚さが低塩素濃度層22の厚さよりも薄いことを意味する。エッチングの進行が抑制される高塩素濃度層21が薄いので、化学研磨速度が必要以上に遅くなり化学研磨に長時間を要することを防止できる。なお、塩素濃度分布に含まれる全部の局所分布が上記条件を満たしてもよいし、一部の局所分布が上記条件を満たしてもよい。 It is preferable that the full width at half maximum of the local distribution included in the chlorine concentration distribution is narrower than half of the peak interval with the adjacent local distribution. This means that the thickness of the high chlorine concentration layer 21 is thinner than the thickness of the low chlorine concentration layer 22. Since the high chlorine concentration layer 21 in which the progress of etching is suppressed is thin, it is possible to prevent the chemical polishing rate from becoming unnecessarily slow and the chemical polishing from taking a long time. All the local distributions included in the chlorine concentration distribution may satisfy the above conditions, or some local distributions may satisfy the above conditions.

また、銅めっき被膜20に高塩素濃度層21が存在することで、化学研磨後の銅めっき被膜20の表面を滑らかにできるという効果も奏する。その理由は不明なところもあるが、概ねつぎのとおりであると考えられる。化学研磨液によるエッチングの進行は高塩素濃度層21において相対的に遅くなり、低塩素濃度層22で相対的に速くなる。銅めっき被膜20の厚さ方向にエッチングの進行が遅い部分と速い部分とが交互に現れるため、エッチングが局所的に進行せず、全面に渡って均一に進行する。その結果、化学研磨後の銅めっき被膜20の表面が滑らかになる。 Further, the presence of the high chlorine concentration layer 21 in the copper plating film 20 also has an effect that the surface of the copper plating film 20 after chemical polishing can be smoothed. The reason for this is unknown, but it is thought to be as follows. The progress of etching by the chemical polishing liquid is relatively slow in the high chlorine concentration layer 21, and relatively fast in the low chlorine concentration layer 22. Since the portion where the etching progresses slowly and the portion where the etching progresses alternately appear in the thickness direction of the copper plating film 20, the etching does not proceed locally but progresses uniformly over the entire surface. As a result, the surface of the copper plating film 20 after chemical polishing becomes smooth.

なお、銅めっき被膜20は塩素以外の不純物、例えば、銅めっき液の添加剤に由来する炭素、酸素、硫黄などを含んでもよい。 The copper plating film 20 may contain impurities other than chlorine, for example, carbon, oxygen, sulfur, etc. derived from the additive of the copper plating solution.

つぎに、実施例を説明する。
(実施例1)
つぎの手順で、基材を準備した。ベースフィルムとして、厚さ35μmのポリイミドフィルム(宇部興産社製 Upilex-35SGAV1)を用意した。ベースフィルムをマグネトロンスパッタリング装置にセットした。マグネトロンスパッタリング装置内にはニッケルクロム合金ターゲットと銅ターゲットとが設置されている。ニッケルクロム合金ターゲットの組成はCrが20質量%、Niが80質量%である。真空雰囲気下で、ベースフィルムの片面に、厚さ25nmのニッケルクロム合金からなる下地金属層を形成し、その上に厚さ100nmの銅薄膜層を形成した。
Next, an embodiment will be described.
(Example 1)
The substrate was prepared by the following procedure. As a base film, a polyimide film having a thickness of 35 μm (Upilex-35SGAV1 manufactured by Ube Corporation) was prepared. The base film was set in the magnetron sputtering device. A nickel-chromium alloy target and a copper target are installed in the magnetron sputtering apparatus. The composition of the nickel-chromium alloy target is 20% by mass of Cr and 80% by mass of Ni. Under a vacuum atmosphere, a base metal layer made of a nickel-chromium alloy having a thickness of 25 nm was formed on one side of the base film, and a copper thin film layer having a thickness of 100 nm was formed on the base metal layer.

つぎに、銅めっき液を調整した。銅めっき液は硫酸銅を120g/L、硫酸を70g/L、レベラー成分を20mg/L、ポリマー成分を1,100mg/L、ブライトナー成分を16mg/L、塩素成分を50mg/L含有する。レベラー成分としてジアリルジメチルアンモニウムクロライド-二酸化硫黄共重合体(ニットーボーメディカル株式会社製 PAS-A―5)を用いた。ポリマー成分としてポリエチレングリコール-ポリプロピレングリコール共重合体(日油株式会社製 ユニルーブ50MB-11)を用いた。ブライトナー成分としてビス(3-スルホプロピル)ジスルフィド(RASCHIG GmbH社製の試薬)を用いた。塩素成分として塩酸(和光純薬工業株式会社製の35%塩酸)を用いた。 Next, the copper plating solution was adjusted. The copper plating solution contains 120 g / L of copper sulfate, 70 g / L of sulfuric acid, 20 mg / L of leveler component, 1,100 mg / L of polymer component, 16 mg / L of Brightener component, and 50 mg / L of chlorine component. A diallyldimethylammonium chloride-sulfur dioxide copolymer (PAS-A-5 manufactured by Nittobo Medical Co., Ltd.) was used as a leveler component. A polyethylene glycol-polypropylene glycol copolymer (Unilube 50MB-11 manufactured by NOF CORPORATION) was used as a polymer component. Bis (3-sulfopropyl) disulfide (reagent manufactured by RASCHIG GmbH) was used as a Brightener component. Hydrochloric acid (35% hydrochloric acid manufactured by Wako Pure Chemical Industries, Ltd.) was used as the chlorine component.

前記銅めっき液が貯留されためっき槽に基材を供給した。電解めっきにより基材の片面に厚さ2.0μmの銅めっき被膜を成膜して銅張積層板を得た。ここで、銅めっき液の温度を31℃とした。また、電解めっきの間、ノズルから噴出させた銅めっき液を基材の表面に対して略垂直に吹き付けることで、銅めっき液を撹拌した。 The base material was supplied to the plating tank in which the copper plating solution was stored. A copper plating film having a thickness of 2.0 μm was formed on one side of the base material by electrolytic plating to obtain a copper-clad laminate. Here, the temperature of the copper plating solution was set to 31 ° C. Further, during the electrolytic plating, the copper plating solution ejected from the nozzle was sprayed substantially perpendicular to the surface of the base material to stir the copper plating solution.

電解めっきにおいて、空送期間が11回含まれるように電流密度を変化させた。ここで、空送期間とは低電流密度、具体的には0.0A/dm2で電解めっきを行なう期間を意味する。空送期間以外における電流密度(高電流密度)は1.2A/dm2とした。 In electrolytic plating, the current density was changed so that the air feeding period was included 11 times. Here, the blank feeding period means a period during which electrolytic plating is performed at a low current density, specifically 0.0 A / dm 2 . The current density (high current density) other than the blank feeding period was set to 1.2 A / dm 2 .

(実施例2)
実施例1と同様の手順で銅張積層板を得た。ただし、電解めっきにおいて、空送期間が7回含まれるように電流密度を変化させた。その余の条件は実施例1と同様である。
(Example 2)
A copper-clad laminate was obtained in the same procedure as in Example 1. However, in electrolytic plating, the current density was changed so that the blank feeding period was included 7 times. The other conditions are the same as in Example 1.

(比較例1)
実施例1と同様の手順で銅張積層板を得た。ただし、電解めっきにおいて、電流密度を3.2A/dm2とし、空送期間を設けなかった。その余の条件は実施例1と同様である。
(Comparative Example 1)
A copper-clad laminate was obtained in the same procedure as in Example 1. However, in electrolytic plating, the current density was set to 3.2 A / dm 2 , and no airborne period was provided. The other conditions are the same as in Example 1.

(塩素濃度測定)
実施例1、2および比較例1で得られた銅張積層板に対して、銅めっき被膜の塩素濃度を測定した。測定は二次イオン質量分析法によって行なった。測定装置としてアルバック・ファイ株式会社の四重極型二次イオン質量分析装置(PHI ADEPT-1010)を用いた。測定条件は、一次イオン種をCs+、一次加速電圧を5.0kV、検出領域を96×96μmとした。なお、本明細書における塩素濃度の値は、前記条件で測定した値を基準とする。
(Chlorine concentration measurement)
The chlorine concentration of the copper-plated coating was measured with respect to the copper-clad laminates obtained in Examples 1 and 2 and Comparative Example 1. The measurement was performed by secondary ion mass spectrometry. A quadrupole secondary ion mass spectrometer (PHI ADEPT-1010) manufactured by ULVAC FI Co., Ltd. was used as the measuring device. The measurement conditions were Cs + for the primary ion species, 5.0 kV for the primary acceleration voltage, and 96 × 96 μm for the detection region. The value of the chlorine concentration in the present specification is based on the value measured under the above conditions.

図4(A)に実施例1で得られた銅張積層板の測定結果を示す。図4(B)に実施例2で得られた銅張積層板の測定結果を示す。図4(C)に比較例1で得られた銅張積層板の測定結果を示す。図4の各グラフの横軸は銅めっき被膜の厚さ方向の位置である。0.0μmが銅薄膜層側の面、2.0μmが表面である。縦軸は塩素濃度である。 FIG. 4A shows the measurement results of the copper-clad laminate obtained in Example 1. FIG. 4B shows the measurement results of the copper-clad laminate obtained in Example 2. FIG. 4C shows the measurement results of the copper-clad laminate obtained in Comparative Example 1. The horizontal axis of each graph in FIG. 4 is the position in the thickness direction of the copper plating film. 0.0 μm is the surface on the copper thin film layer side, and 2.0 μm is the surface. The vertical axis is the chlorine concentration.

図4(A)のグラフから分かるように、実施例1では、銅めっき被膜の厚さ方向の塩素濃度分布が周期的な10個の山形の局所分布からなる。0.2μm付近のピークは最初の2回の空送期間に対応する。残りの9個のピークはそれに続く9回の空送期間に対応する。この銅めっき被膜は高塩素濃度層と低塩素濃度層とが交互に積層された構成といえる。また、この銅めっき被膜は高塩素濃度層を10層含んでいるといえる。 As can be seen from the graph of FIG. 4A, in the first embodiment, the chlorine concentration distribution in the thickness direction of the copper plating film consists of ten periodic chevron local distributions. Peaks near 0.2 μm correspond to the first two airborne periods. The remaining 9 peaks correspond to the following 9 airborne periods. It can be said that this copper plating film has a structure in which high chlorine concentration layers and low chlorine concentration layers are alternately laminated. Further, it can be said that this copper plating film contains 10 layers having a high chlorine concentration.

表1に実施例1で得られた塩素濃度分布の詳細を示す。ここで、塩素濃度分布に含まれる10個のピークを、表面側(2.0μm)から銅薄膜層側(0.0μm)に向かってそれぞれ第1~第10ピークと称する。それぞれのピークについて、ピーク値(ピークにおける塩素濃度)、そのピークを含む局所分布の半値全幅、隣り合う局所分布とのピーク間隔の半分を示す。なお、ピーク間隔として対象のピークと銅薄膜層側に隣接するピークと間隔を用いた。例えば第1ピークのピーク間隔は、第1ピークと第2ピークと間隔である。 Table 1 shows the details of the chlorine concentration distribution obtained in Example 1. Here, the 10 peaks included in the chlorine concentration distribution are referred to as the 1st to 10th peaks from the surface side (2.0 μm) to the copper thin film layer side (0.0 μm), respectively. For each peak, the peak value (chlorine concentration at the peak), the full width at half maximum of the local distribution including the peak, and the half of the peak interval with the adjacent local distribution are shown. As the peak interval, the target peak and the peak adjacent to the copper thin film layer side and the interval were used. For example, the peak interval of the first peak is the interval between the first peak and the second peak.

Figure 0007087760000001
Figure 0007087760000001

表1より、全10個のピークにおける塩素濃度が1×1019atoms/cm3以上であることが分かる。また、全10個のピークのうち5個のピークにおける塩素濃度が2×1019atoms/cm3以上であることが分かる。また、各ピークの半値全幅はピーク間隔の半分と同じが、それよりも広いことが分かる。これは、高塩素濃度層の厚さと低塩素濃度層の厚さとが同程度であることを意味する。 From Table 1, it can be seen that the chlorine concentration at all 10 peaks is 1 × 10 19 atoms / cm 3 or more. It can also be seen that the chlorine concentration in 5 of the 10 peaks is 2 × 10 19 atoms / cm 3 or more. It can also be seen that the full width at half maximum of each peak is the same as half the peak interval, but wider than that. This means that the thickness of the high chlorine concentration layer and the thickness of the low chlorine concentration layer are about the same.

図4(B)のグラフから分かるように、実施例2では、銅めっき被膜の厚さ方向の塩素濃度分布が周期的な6個の山形の局所分布からなる。0.2μm付近のピークは最初の2回の空送期間に対応する。残りの5個のピークはそれに続く5回の空送期間に対応する。この銅めっき被膜は高塩素濃度層と低塩素濃度層とが交互に積層された構成といえる。また、この銅めっき被膜は高塩素濃度層を6層含んでいるといえる。 As can be seen from the graph of FIG. 4B, in Example 2, the chlorine concentration distribution in the thickness direction of the copper plating film consists of six chevron-shaped local distributions that are periodic. Peaks near 0.2 μm correspond to the first two airborne periods. The remaining 5 peaks correspond to the following 5 airborne periods. It can be said that this copper plating film has a structure in which high chlorine concentration layers and low chlorine concentration layers are alternately laminated. Further, it can be said that this copper plating film contains 6 layers having a high chlorine concentration.

表2に実施例2で得られた塩素濃度分布の詳細を示す。ここで、塩素濃度分布に含まれる6個のピークを、表面側(2.0μm)から銅薄膜層側(0.0μm)に向かってそれぞれ第1~第6ピークと称する。それぞれのピークについて、ピーク値、半値全幅、ピーク間隔の半分を示す。

Figure 0007087760000002
Table 2 shows the details of the chlorine concentration distribution obtained in Example 2. Here, the six peaks included in the chlorine concentration distribution are referred to as the first to sixth peaks from the surface side (2.0 μm) toward the copper thin film layer side (0.0 μm), respectively. For each peak, the peak value, full width at half maximum, and half of the peak interval are shown.
Figure 0007087760000002

表2より、全6個のピークにおける塩素濃度が1×1019atoms/cm3以上であることが分かる。また、全6個のピークのうち5個のピークにおける塩素濃度が2×1019atoms/cm3以上であることが分かる。また、各ピークの半値全幅はピーク間隔の半分よりも狭いことが分かる。これは、高塩素濃度層の厚さが低塩素濃度層の厚さよりも薄いことを意味する。 From Table 2, it can be seen that the chlorine concentrations at all 6 peaks are 1 × 10 19 atoms / cm 3 or more. It can also be seen that the chlorine concentration in 5 of the 6 peaks is 2 × 10 19 atoms / cm 3 or more. It can also be seen that the full width at half maximum of each peak is narrower than half of the peak interval. This means that the thickness of the high chlorine concentration layer is thinner than the thickness of the low chlorine concentration layer.

図4(C)のグラフから分かるように、比較例1では、銅めっき被膜の厚さ方向の全体に渡って塩素濃度が低い。具体的には、塩素濃度が全体に渡って1×1019atoms/cm3未満である。したがって、この銅めっき被膜は高塩素濃度層と低塩素濃度層とが交互に積層された構成を有していない。 As can be seen from the graph of FIG. 4C, in Comparative Example 1, the chlorine concentration is low over the entire thickness direction of the copper plating film. Specifically, the chlorine concentration is less than 1 × 10 19 atoms / cm 3 overall. Therefore, this copper plating film does not have a structure in which high chlorine concentration layers and low chlorine concentration layers are alternately laminated.

(化学研磨)
実施例1、2および比較例1で得られた銅張積層板に対して化学研磨を行なった。化学研磨液として硫酸と過酸化水素とを主成分とした液(三菱ガス化学株式会社製CPE-750を10倍に希釈した液)を用いた。厚さ2μmの銅めっき被膜を0.5μmまで減膜した。
(Chemical polishing)
The copper-clad laminates obtained in Examples 1 and 2 and Comparative Example 1 were chemically polished. As the chemical polishing solution, a solution containing sulfuric acid and hydrogen peroxide as main components (a solution obtained by diluting CPE-750 manufactured by Mitsubishi Gas Chemical Company, Inc. 10-fold) was used. The copper plating film having a thickness of 2 μm was reduced to 0.5 μm.

各銅張積層板の化学研磨速度を表3に示す。比較例1を基準とすると、実施例1は化学研磨速度が14.9%遅くなり、実施例2は化学研磨速度が13.7%遅くなることが分かる。その理由は不明なところもあるが、エッチングの進行が抑制される高塩素濃度層21が薄い方が、化学研磨速度が速くなるためであると推測される。これより、化学研磨速度の観点からは、塩素濃度分布に含まれる局所分布の半値全幅が隣り合う局所分布とのピーク間隔の半分よりも狭いこと(実施例2)が好ましいことが確認された。 Table 3 shows the chemical polishing rates of each copper-clad laminate. Based on Comparative Example 1, it can be seen that the chemical polishing rate of Example 1 is 14.9% slower and that of Example 2 is 13.7% slower. The reason is unknown, but it is presumed that the thinner the high chlorine concentration layer 21 in which the progress of etching is suppressed, the faster the chemical polishing rate. From this, it was confirmed that from the viewpoint of the chemical polishing rate, it is preferable that the full width at half maximum of the local distribution contained in the chlorine concentration distribution is narrower than half of the peak interval with the adjacent local distribution (Example 2).

Figure 0007087760000003
Figure 0007087760000003

(ピンホール)
つぎに、化学研磨後のピンホールの数を測定した。
化学研磨の後、ピンホールの数を測定した。測定は、ベースフィルム側からハロゲンランプを照射して、金属顕微鏡により視野内に存在する透過光の数を計数することにより行った。ここで、金属顕微鏡の視野は1.81mm×2.27mmである。3視野の透過光の数の総数をピンホール数とした。
(Pinhole)
Next, the number of pinholes after chemical polishing was measured.
After chemical polishing, the number of pinholes was measured. The measurement was performed by irradiating a halogen lamp from the base film side and counting the number of transmitted lights existing in the field of view with a metallurgical microscope. Here, the field of view of the metallurgical microscope is 1.81 mm × 2.27 mm. The total number of transmitted lights in the three fields of view was defined as the number of pinholes.

その結果を表1に示す。実施例1、2は比較例1に比べてピンホールが少ないことが確認された。これより、高塩素濃度層と低塩素濃度層とが交互に積層された銅めっき被膜であれば、ピンホールの発生を抑制できることが確認された。また、銅めっき被膜に含まれる高塩素濃度層の数が多いほうがピンホールの発生を抑制できることが確認された。銅めっき被膜に含まれる高塩素濃度層の数が6層以上であれば、ピンホールの発生を十分に抑制できる。 The results are shown in Table 1. It was confirmed that Examples 1 and 2 had fewer pinholes than Comparative Example 1. From this, it was confirmed that the generation of pinholes can be suppressed if the copper-plated coating film is obtained by alternately laminating high-chlorine concentration layers and low-chlorine concentration layers. It was also confirmed that the larger the number of high chlorine concentration layers contained in the copper plating film, the more the occurrence of pinholes can be suppressed. When the number of high chlorine concentration layers contained in the copper plating film is 6 or more, the occurrence of pinholes can be sufficiently suppressed.

Figure 0007087760000004
Figure 0007087760000004

(表面粗さ)
実施例1、2および比較例1で得られた銅張積層板に対して、化学研磨前の銅めっき被膜の表面粗さを測定した。その結果を表5に示す。ここで、表面積比の測定にはキーエンス社製レーザー顕微鏡VK-9510を用いた。70×93μmの測定エリアの測定表面積から表面積比を求めた。化学研磨前の表面粗さは、実施例1、2および比較例1でほぼ同一である。
(Surface roughness)
The surface roughness of the copper-plated coating before chemical polishing was measured for the copper-clad laminates obtained in Examples 1 and 2 and Comparative Example 1. The results are shown in Table 5. Here, a laser microscope VK-9510 manufactured by KEYENCE Corporation was used for measuring the surface area ratio. The surface area ratio was determined from the measured surface area of the measurement area of 70 × 93 μm. The surface roughness before chemical polishing is almost the same in Examples 1 and 2 and Comparative Example 1.

つぎに、各銅張積層板に対して化学研磨を行なった。その条件は前述の化学研磨と同じである。化学研磨の後、銅めっき被膜の表面粗さを測定した。その結果を表5に示す。 Next, chemical polishing was performed on each copper-clad laminate. The conditions are the same as the above-mentioned chemical polishing. After chemical polishing, the surface roughness of the copper plating film was measured. The results are shown in Table 5.

実施例1、2では化学研磨の前後で表面粗さにほとんど変化がないことが分かる。一方、比較例1では化学研磨後の銅めっき被膜の表面が粗くなっていることが分かる。実施例1、2は比較例1に比べて化学研磨後の銅めっき被膜の表面が滑らかであることが確認できる。 It can be seen that in Examples 1 and 2, there is almost no change in the surface roughness before and after the chemical polishing. On the other hand, in Comparative Example 1, it can be seen that the surface of the copper plating film after chemical polishing is rough. In Examples 1 and 2, it can be confirmed that the surface of the copper plating film after chemical polishing is smoother than that in Comparative Example 1.

Figure 0007087760000005
Figure 0007087760000005

図5に化学研磨の後の銅めっき被膜の表面のSEM画像を示す。図5(A)は実施例1のSEM画像である。図5(B)は実施例2のSEM画像である。図5(C)は比較例1のSEM画像である。これらのSEM画像からも、実施例1、2は比較例1に比べて化学研磨後の銅めっき被膜の表面が滑らかであることが分かる。 FIG. 5 shows an SEM image of the surface of the copper plating film after chemical polishing. FIG. 5A is an SEM image of Example 1. FIG. 5B is an SEM image of Example 2. FIG. 5C is an SEM image of Comparative Example 1. From these SEM images, it can be seen that the surface of the copper plating film after chemical polishing is smoother in Examples 1 and 2 than in Comparative Example 1.

以上より、高塩素濃度層と低塩素濃度層とが交互に積層された銅めっき被膜であれば、化学研磨後の銅めっき被膜の表面を滑らかにできることが確認された。 From the above, it was confirmed that the surface of the copper-plated coating after chemical polishing can be smoothed if the copper-plated coating is obtained by alternately laminating high-chlorine concentration layers and low-chlorine concentration layers.

1 銅張積層板
10 基材
11 ベースフィルム
12 金属層
13 下地金属層
14 銅薄膜層
20 銅めっき被膜
21 高塩素濃度層
22 低塩素濃度層
1 Copper-clad laminate 10 Base film 11 Base film 12 Metal layer 13 Base metal layer 14 Copper thin film layer 20 Copper plating film 21 High chlorine concentration layer 22 Low chlorine concentration layer

Claims (2)

ベースフィルムと、
前記ベースフィルムの表面に形成された金属層と、
前記金属層の表面に形成され、不純物として塩素を含む銅めっき被膜と、を備え、
前記銅めっき被膜の厚さ方向の塩素濃度分布は、複数の山形の局所分布を含み、
複数の前記局所分布の全部または一部は、ピークにおける二次イオン質量分析法により測定した塩素濃度が2×10 19 atoms/cm 3 以上である
ことを特徴とする銅張積層板。
With the base film
The metal layer formed on the surface of the base film and
A copper-plated coating formed on the surface of the metal layer and containing chlorine as an impurity is provided.
The chlorine concentration distribution in the thickness direction of the copper plating film includes a plurality of chevron local distributions.
All or part of the plurality of local distributions have a chlorine concentration of 2 × 10 19 atoms / cm 3 or more measured by secondary ion mass spectrometry at the peak.
A copper-clad laminate characterized by this.
複数の前記局所分布の全部または一部は、半値全幅が隣り合う前記局所分布とのピーク間隔の半分よりも狭い
ことを特徴とする請求項記載の銅張積層板。
The copper-clad laminate according to claim 1 , wherein all or a part of the plurality of local distributions has a full width at half maximum narrower than half of the peak interval with the adjacent local distributions.
JP2018134849A 2018-07-18 2018-07-18 Copper-clad laminate Active JP7087760B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018134849A JP7087760B2 (en) 2018-07-18 2018-07-18 Copper-clad laminate
KR1020190068157A KR20200010032A (en) 2018-07-18 2019-06-10 Copper clad laminate
TW108124867A TWI785257B (en) 2018-07-18 2019-07-15 copper clad laminate
CN201910640432.1A CN110740579B (en) 2018-07-18 2019-07-16 Copper-clad laminated board
KR1020230141960A KR20230154140A (en) 2018-07-18 2023-10-23 Copper clad laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018134849A JP7087760B2 (en) 2018-07-18 2018-07-18 Copper-clad laminate

Publications (2)

Publication Number Publication Date
JP2020011440A JP2020011440A (en) 2020-01-23
JP7087760B2 true JP7087760B2 (en) 2022-06-21

Family

ID=69170565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018134849A Active JP7087760B2 (en) 2018-07-18 2018-07-18 Copper-clad laminate

Country Status (4)

Country Link
JP (1) JP7087760B2 (en)
KR (2) KR20200010032A (en)
CN (1) CN110740579B (en)
TW (1) TWI785257B (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040118691A1 (en) 2002-12-23 2004-06-24 Shipley Company, L.L.C. Electroplating method
US20050016858A1 (en) 2002-12-20 2005-01-27 Shipley Company, L.L.C. Reverse pulse plating composition and method
WO2008084524A1 (en) 2007-01-09 2008-07-17 Fujitsu Microelectronics Limited Process for producing semiconductor device and apparatus for semiconductor device production
JP2009295656A (en) 2008-06-03 2009-12-17 Sumitomo Metal Mining Co Ltd Substrate for flexible wiring board and method for manufacturing the same
JP2010232283A (en) 2009-03-26 2010-10-14 Sumitomo Metal Mining Co Ltd Copper-coated polyimide substrate and method of manufacturing the same
JP2011006773A (en) 2009-05-25 2011-01-13 Mitsui Mining & Smelting Co Ltd Sulfuric acid base copper plating liquid for semi-additive and method for producing printed circuit board
JP2011014848A (en) 2009-07-06 2011-01-20 Mitsui Mining & Smelting Co Ltd Printed wiring board, and method of manufacturing the same
JP2011017036A (en) 2009-07-07 2011-01-27 Ebara-Udylite Co Ltd Copper plating method
JP2012057191A (en) 2010-09-06 2012-03-22 Sumitomo Metal Mining Co Ltd Method for electroplating long conductive substrate, method for manufacturing copper-coated long conductive substrate using the method and roll-to-roll type electroplating apparatus
JP2015078428A (en) 2013-09-11 2015-04-23 古河電気工業株式会社 Electrolytic copper foil, flexible wiring board and battery
CN105472900A (en) 2014-09-05 2016-04-06 深南电路有限公司 Processing method of circuit board
JP2017031459A (en) 2015-07-31 2017-02-09 住友金属鉱山株式会社 Electric copper plating solution for flexible wiring board and method of producing laminate produced by the electric copper plating solution

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003033775A1 (en) * 2001-10-16 2003-04-24 Shinko Electric Industries Co., Ltd. Method of copper-plating small-diameter holes
US20050126919A1 (en) * 2003-11-07 2005-06-16 Makoto Kubota Plating method, plating apparatus and a method of forming fine circuit wiring
JP2006278950A (en) 2005-03-30 2006-10-12 Fujikura Ltd Printed circuit board and its manufacturing method
TWI568865B (en) * 2013-10-23 2017-02-01 Sumitomo Metal Mining Co Layer 2 flexible wiring substrate and manufacturing method thereof, and two-layer flexible wiring board and manufacturing method thereof
WO2018047933A1 (en) * 2016-09-12 2018-03-15 古河電気工業株式会社 Copper foil and copper-clad laminate comprising same
KR102382665B1 (en) * 2016-09-22 2022-04-08 맥더미드 엔쏜 인코포레이티드 Copper electrodeposition in microelectronics
KR20180083515A (en) * 2017-01-13 2018-07-23 케이씨에프테크놀로지스 주식회사 Electrolytic Copper Foil Substantially Free Of Wrinkle Problem, Electrode Comprising The Same, Secondary Battery Comprising The Same, and Method for Manufacturing The Same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050016858A1 (en) 2002-12-20 2005-01-27 Shipley Company, L.L.C. Reverse pulse plating composition and method
US20040118691A1 (en) 2002-12-23 2004-06-24 Shipley Company, L.L.C. Electroplating method
WO2008084524A1 (en) 2007-01-09 2008-07-17 Fujitsu Microelectronics Limited Process for producing semiconductor device and apparatus for semiconductor device production
JP2009295656A (en) 2008-06-03 2009-12-17 Sumitomo Metal Mining Co Ltd Substrate for flexible wiring board and method for manufacturing the same
JP2010232283A (en) 2009-03-26 2010-10-14 Sumitomo Metal Mining Co Ltd Copper-coated polyimide substrate and method of manufacturing the same
JP2011006773A (en) 2009-05-25 2011-01-13 Mitsui Mining & Smelting Co Ltd Sulfuric acid base copper plating liquid for semi-additive and method for producing printed circuit board
JP2011014848A (en) 2009-07-06 2011-01-20 Mitsui Mining & Smelting Co Ltd Printed wiring board, and method of manufacturing the same
JP2011017036A (en) 2009-07-07 2011-01-27 Ebara-Udylite Co Ltd Copper plating method
JP2012057191A (en) 2010-09-06 2012-03-22 Sumitomo Metal Mining Co Ltd Method for electroplating long conductive substrate, method for manufacturing copper-coated long conductive substrate using the method and roll-to-roll type electroplating apparatus
JP2015078428A (en) 2013-09-11 2015-04-23 古河電気工業株式会社 Electrolytic copper foil, flexible wiring board and battery
CN105472900A (en) 2014-09-05 2016-04-06 深南电路有限公司 Processing method of circuit board
JP2017031459A (en) 2015-07-31 2017-02-09 住友金属鉱山株式会社 Electric copper plating solution for flexible wiring board and method of producing laminate produced by the electric copper plating solution

Also Published As

Publication number Publication date
CN110740579B (en) 2023-04-07
JP2020011440A (en) 2020-01-23
TW202014066A (en) 2020-04-01
KR20230154140A (en) 2023-11-07
CN110740579A (en) 2020-01-31
KR20200010032A (en) 2020-01-30
TWI785257B (en) 2022-12-01

Similar Documents

Publication Publication Date Title
JP6993613B2 (en) Manufacturing method of copper-clad laminate
JP7107190B2 (en) Method for manufacturing copper-clad laminate
KR20230152633A (en) Copper clad laminate
JP7107189B2 (en) COPPER CLAD LAMINATES AND METHOD FOR MANUFACTURING COPPER CLAD LAMINATES
JP7087759B2 (en) Copper-clad laminate
JP7087760B2 (en) Copper-clad laminate
JP7087758B2 (en) Copper-clad laminate
JP7276025B2 (en) COPPER CLAD LAMINATES AND METHOD FOR MANUFACTURING COPPER CLAD LAMINATES
JP7230564B2 (en) Method for manufacturing copper-clad laminate
JP7215211B2 (en) Method for manufacturing copper-clad laminate
JP7211184B2 (en) COPPER CLAD LAMINATES AND METHOD FOR MANUFACTURING COPPER CLAD LAMINATES
JP7343280B2 (en) Manufacturing method for copper clad laminates
JP2021008650A (en) Copper-clad laminate plate
JP2020139197A (en) Production method of flexible substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220523

R150 Certificate of patent or registration of utility model

Ref document number: 7087760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150