WO2003033775A1 - Method of copper-plating small-diameter holes - Google Patents

Method of copper-plating small-diameter holes Download PDF

Info

Publication number
WO2003033775A1
WO2003033775A1 PCT/JP2002/010483 JP0210483W WO03033775A1 WO 2003033775 A1 WO2003033775 A1 WO 2003033775A1 JP 0210483 W JP0210483 W JP 0210483W WO 03033775 A1 WO03033775 A1 WO 03033775A1
Authority
WO
WIPO (PCT)
Prior art keywords
small
copper
electrolysis
plating
current density
Prior art date
Application number
PCT/JP2002/010483
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Nakamura
Original Assignee
Shinko Electric Industries Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co., Ltd. filed Critical Shinko Electric Industries Co., Ltd.
Priority to JP2003536491A priority Critical patent/JP4148895B2/en
Priority to US10/416,304 priority patent/US20040011654A1/en
Priority to KR10-2003-7006763A priority patent/KR20040045390A/en
Publication of WO2003033775A1 publication Critical patent/WO2003033775A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • H05K3/423Plated through-holes or plated via connections characterised by electroplating method
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/14Related to the order of processing steps
    • H05K2203/1476Same or similar kind of process performed in phases, e.g. coarse patterning followed by fine patterning

Definitions

  • the present invention relates to a method for plating a small diameter hole with copper.
  • the ordinary plating method has a problem in reliability because the plating thickness in the center of the through hole or the bottom of the via becomes extremely thin.
  • long-term mounting to increase the thickness of the interior causes additional costs, costs, and the opening is blocked, causing new problems.
  • a PPR (Periodic Pulse Reverse) plating method for example, Japanese Patent Application Laid-Open No. 2000-68651
  • a method of performing special stirring have been proposed.
  • the use of pulses in (ms) units has the following issues.
  • the reverse electrolysis current density is required to be 1 to 5 times the positive electrolysis current density. Therefore, a large power supply is required.
  • the pulse effect does not reach the center of the substrate, so it is not practical o
  • an object of the present invention is to eliminate the need for a high-precision, large-capacity pulsed power supply, thereby reducing equipment costs and, at the same time, providing copper plating in a small-diameter hole, which allows good plating in the small-diameter hole. To provide a way.
  • a method for plating a small-diameter hole with copper has a small-diameter hole using a copper sulfate plating solution containing copper sulfate, sulfuric acid, chloride ions, sulfur compounds, and a surfactant.
  • copper Me per way method in small holes applying by Ri copper plated to PPR method in diameter halls of the plated material the reverse electrolysis carried out at 0.
  • the polarization resistance in the small-diameter hole during positive electrolysis is reduced from that near the entrance of the small-diameter hole. It is characterized by forming a copper-plated film with a uniform thickness in the small-diameter hole while keeping it low.
  • the first half reverse electrolysis is performed at a high current density
  • the second half reverse electrolysis is performed.
  • Two-stage reverse electrolysis which is performed at a lower current density than in the first half, is more suitable.
  • the positive electrolysis is performed for several tens to several hundred seconds, and the reverse electrolysis is performed for several seconds to several tens of seconds.
  • a copper sulfate plating solution having a low electric resistance and a high copper concentration, with a sulfuric acid concentration of 150 to 250 g Zl and a copper sulfate concentration of 130 to 200 g / 1.
  • sulfuric acid concentration 150 to 250 g Zl
  • copper sulfate concentration 130 to 200 g / 1.
  • Is Raniwa, 2 0 0 g l before and after the sulfuric acid concentration copper sulfate plated solution was 1 5 0 g Z 1 before and after the copper sulfate concentration is suitable in stability.
  • the inside of the small diameter hole can be filled with copper plating.
  • Figure 1 is a graph showing the relationship between sulfuric acid concentration and plating solution resistance.
  • Fig. 2 is a graph showing the relationship between the concentration of sulfuric acid and the concentration of saturated copper sulfate.
  • Fig. 3 is a graph showing the relationship between the reverse electrolytic potential and the magnitude of the polarization resistance during positive electrolysis.
  • FIG. 4 is a schematic diagram showing a current waveform in one embodiment of the present invention.
  • FIG. 5 is a cross-sectional photograph of the through hole of Example 1.
  • FIG. 6 is a cross-sectional photograph of the through hole of Example 2.
  • FIG. 7 is a cross-sectional photograph of the through hole of Example 3.
  • FIG. 8 is a cross-sectional photograph of the through hole of Example 4.
  • FIG. 9 is a cross-sectional photograph of the through hole of Comparative Example 1.
  • FIG. 10 is a cross-sectional photograph of the through hole of Comparative Example 2.
  • composition of the copper sulfate plating solution is as follows: copper sulfate as a copper source, sulfuric acid for conductivity adjustment, chlorine ion (chloride) as a suppressor and a surfactant, and a plating accelerator. Consists of functional sulfur compounds.
  • FIG. 1 is a graph showing the relationship between the sulfuric acid concentration, the copper sulfate concentration, and the electrical resistance of the plating solution, and is a comparison when the electrical resistance of 5% sulfuric acid is set to 1.
  • FIG. 2 is a graph showing the relationship between the sulfuric acid concentration and the saturated copper sulfate concentration.
  • the sulfuric acid concentration is preferably at least 150 g Zl in order to obtain a plating solution having a low electric resistance.
  • the sulfuric acid concentration is preferably set to 250 gZl or less.
  • the area below the straight line in Fig. 2 is the area that can be used as a copper plating solution.
  • sulfuric acid concentration 150 to 250 g Zl
  • the copper sulfate concentration is approximately Can be dissolved within the range of 130 to 200 g / l.
  • the plating solution can be used stably while maintaining a high copper concentration. It is best to adjust the concentration of copper sulfate before and after and around 150 g. Note that the “before and after” means about ⁇ 5%.
  • chloride ion source examples include hydrochloric acid, sodium chloride, potassium chloride, and ammonium chloride. These may be used alone or in combination.
  • the amount of chlorine ion added can be used in the range of 10 to 200 mgZl as chloride ion, but is preferably around 3 SmgZ1.
  • the sulfur compound is not particularly limited. However, 3-mercapto-1 sodium monopropanesulfonate or 2-sodium sodium mercaptoethanesulfonate, bis- (3-sulfopropyl) disulfido disodium Sulfur compounds such as chromium can be used alone or in combination.
  • the surfactant is not particularly limited, a surfactant such as polyethylene glycol and polypropylene glycol can be used alone or in combination.
  • the addition amount of the surfactant can be used in the range of several mgZ1 to 1 OgZ1.
  • Surfactants when present with chlorine, increase the polarization resistance at the cathode.
  • a sulfur compound functions as a promoter by lowering the polarization resistance at the cathode.
  • the polarization resistance of the cathode surface depends on the balance between the amounts of these additives adsorbed.
  • sulfur compounds are adsorbed on the surface of the adherend, and have a strong effect of lowering the polarization resistance of the adsorbed surface. Therefore, controlling the amount of sulfur compound adsorbed leads to control of polarization resistance.
  • the surface of the large-diameter hole to be high and the polarization resistance in the small-diameter hole to be low a plating film with a uniform thickness is formed as a whole.
  • reverse electrolysis is performed to remove the sulfur compounds adsorbed on the surface side of the adherend and near the entrance of the small-diameter hole, thereby causing a difference in polarization resistance during positive electrolysis as described above. So that you can hold it.
  • the electrical resistance of the plating system is defined as the sum of the polarization resistance and the electrical resistance of the plating solution.
  • the electric resistance of the plating solution is made sufficiently smaller than the polarization resistance, the electric resistance of the plating system, and hence the current value inversely proportional thereto, depends on the magnitude of the polarization resistance.
  • the electric resistance of the plating solution is suppressed to make it easier to control the polarization resistance.
  • the polarization resistance R c is
  • R c IV SCE- V.
  • FIG. 3 is a graph showing the magnitude of the polarization resistance when reverse electrolysis was performed on the wiring substrate at various potentials for 10 seconds and then positive electrolysis was performed.
  • the polarization resistance indicates the polarization resistance on the surface of the object (wiring board).
  • the polarization resistance in the small hole is naturally lower than the polarization resistance of the surface.
  • the magnitude of the polarization resistance cannot be measured in the small-diameter hole of the object, but the effect of reverse electrolysis is almost ineffective in the small-diameter hole. Except that it hardly occurs. Therefore, the polarization resistance during the positive electrolysis in the small-diameter hole is maintained at a low level, and accordingly, the current flows into the small-diameter hole, and even in the small-diameter hole, the plating positive rotation is improved. .
  • the setting of the current density during reverse electrolysis, the reverse electrolysis time, the current density during positive electrolysis, and the electrolysis time may be performed while measuring the plating thickness according to the target adherend.
  • FIG. 4 schematically shows a current waveform of PPR plating in the present embodiment.
  • Current density during optimal reverse electrolysis 0. 1 ⁇ 0. 5 AZ dm 2, the optimal electrolysis time is 1 to about 1 0 seconds.
  • the effect is improved by performing the reverse electrolysis in two stages for the following reasons. That is, in the reverse electrolysis in the first half (first stage), the peeling action on the outside of the through hole is strong, and the peeling action on the inside of the through hole is weak. In the reverse electrolysis in the second half (second stage), the potential for peeling is extremely weak, so that peeling occurs slightly outside the through-hole, but there is almost no peeling action inside, and rather adsorption of sulfur compounds occurs. It is thought to proceed.
  • the sulfur compound outside the through-hole is reliably peeled off, and in the second-stage reverse electrolysis, the through-hole is maintained while the peeled state outside the through-hole is maintained by a weak peeling action. Adsorption of sulfur compounds inside occurs. As a result, the difference in the adsorption concentration of the sulfur compound between the outside and the inside of the through hole is larger than in the case where the reverse electrolysis is performed in a single step, and a larger polarization resistance difference is generated.
  • the inside of the through-hole may be excessively peeled off, and a sufficient polarization resistance difference between the outside and the inside of the through-hole may not be obtained. Even in such a case, the polarization resistance difference can be reliably obtained by performing the second-stage weak reverse electrolysis.
  • the current density during positive electrolysis is about 1.5 AZ dm 2 (this is not particularly limited; it may be determined by considering the throwing power of the plating), and the electrolysis time is preferably about 50 to 200 seconds. .
  • SPS refers to bis- (3-sulfopropyl) disodium disodium.
  • a 0.8 mm thick wiring board having a through hole with an opening diameter of 0.1 mm was subjected to PPR plating under the following conditions.
  • the ratio of film thickness: (film thickness at the center of the through hole / film thickness on the substrate surface) X100 was 91.3%.
  • a 0.8 mm thick wiring board having a through hole with an opening diameter of 0.15 mm was subjected to PPR plating under the following conditions.
  • the film thickness ratio was 101.4%.
  • PPR plating was performed on a 0.8 mm thick wiring board having a through horn with an opening diameter of 0.1 mm under the following conditions.
  • Positive electrolysis current density 1.5 AZdm 2 , electrolysis time 120 seconds
  • Reverse electrolysis 1 current density 0.5 A / dm 2 , electrolysis time 5 seconds
  • Reverse electrolysis 2 current density 0.1 A / dm 2 , electrolysis time 5 seconds
  • the film thickness ratio was 109.8%.
  • a PPR plating was performed on a 0.8 mm thick wiring board having a through hole with an opening diameter of 0.15 mm under the following conditions.
  • Reverse electrolysis 1 current density 0. S AZdm 2 , electrolysis time 5 seconds
  • Reverse electrolysis 2 current density 0.1 AZdm 2 , electrolysis time 5 seconds
  • the film thickness ratio was 10.8%.
  • DC plating was performed on a wiring board having a through hole with an opening diameter of 0.1 mm and a thickness of 0.8 mm under the following conditions.
  • the film thickness ratio was 53.9%.
  • DC plating was performed on a wiring board having a through hole with an opening diameter of 0.15 mm and a thickness of 0.8 mm under the following conditions.
  • FIGS. 5 to 10 are cross-sectional photographs (75 ⁇ magnification) of the through holes.
  • FIGS. 5, 6, 7, and 8 show the through holes of Examples 1, 2, 3, and 4, respectively, and FIGS. Indicates through holes of Comparative Examples 1 and 2, respectively.
  • the film thickness ratio slowing power
  • Example 1 to 4 the film thickness ratio (slowing power) was approximately 100%, and a copper-coated film having a uniform thickness was formed on the surface and in the small-diameter holes. Can be.
  • the plating thickness inside the small-diameter hole became thicker than the plating thickness on the surface.
  • the inside of the small-diameter hole can be filled by plating.
  • plating of through holes has been described as an example, but plating in micro blind vias can be performed in the same manner.
  • a long-period PPR plating method can be performed in a unit of second, and a high-precision, large-capacity pulse current is not required, so that equipment cost can be reduced.
  • the current for plating on the front and back of the substrate can be easily synchronized, and wiring that takes into account the loss due to inductance becomes unnecessary.

Abstract

A method of copper-plating the interiors of small-diameter holes in a material to be plated having small holes by a PPR method using a copper sulphate plating solution containing copper sulphate, sulfuric acid, chlorine ions, a sulfur compound and a surfactant, wherein those portions in the vicinities of small-hole entrances of a sulfur compound adsorbed to the material to be plated are removed by a reverse electrolysis performed within a current density range of 0.1-1A/dm2 to thereby keep a polarizing resistance lower inside the small-diameter holes than in the vicinities of small-diameter hole entrances at a regular electrolysis, whereby uniform-thickness copper-plated films are formed inside small-diameter holes. The interiors of small-diameter holes can be plated satisfactorily at reduced equipment costs without the need of a high-accuracy, large-capacity pulse power supply.

Description

明 細 書 小径ホールの銅めつき方法  Description Copper plating method for small diameter holes
技術分野 Technical field
本発明は、 小径ホールの銅めつき方法に関する。 背景技術  The present invention relates to a method for plating a small diameter hole with copper. Background art
電子部品の配線の高密度化に伴って、 配線基板のスルーホールや ブライ ンドビアが小径化し、 これらの内部に確実にめっき皮膜を形 成することが困難になっている。 すなわち、 通常のめっき方法では 、 スルーホール中央部やビア底のめっき厚が極端に薄くなるために 、 信頼性に問題がある。 また、 内部を厚くするために、 長時間のめ つきを行う と、 コス トがかかったり、 開口部が塞がったり して、 新 たな不具合が発生する。  As the wiring density of electronic components has increased, the diameter of through holes and blind vias in wiring boards has become smaller, making it difficult to reliably form plating films inside these. That is, the ordinary plating method has a problem in reliability because the plating thickness in the center of the through hole or the bottom of the via becomes extremely thin. In addition, long-term mounting to increase the thickness of the interior causes additional costs, costs, and the opening is blocked, causing new problems.
これらの問題を解決するために、 周期的に電解極性を逆転させる To solve these problems, periodically reverse the polarity of electrolysis.
P P R (Periodic Pulse Reverse) めっき法 (例えば特開 2 0 0 0 一 6 8 6 5 1号公報) や、 特殊な撹拌を行う方法が提案されている しかしながら、 従来の P P Rめっき法では、 ミ リ秒 (ms) 単位の パルスを使用するため、 次のような課題がある。 A PPR (Periodic Pulse Reverse) plating method (for example, Japanese Patent Application Laid-Open No. 2000-68651) and a method of performing special stirring have been proposed. The use of pulses in (ms) units has the following issues.
すなわち、 極性を連続的に高速に切り替えることができる高性能 で、 高価なパルス電源を必要とする。  In other words, a high-performance and expensive pulse power source that can continuously switch the polarity at high speed is required.
また、 基板の表裏のパターンのめつきを行うための 2台の電源の 同期をとる必要があるが、 パルスが高速なため同期させることが極 めて困難である。  In addition, it is necessary to synchronize the two power supplies to attach the patterns on the front and back of the board, but it is extremely difficult to synchronize because of the high-speed pulse.
また、 逆電解電流密度が正電解電流密度の 1 〜 5倍程度必要なた め、 大容量の電源が必要となる。 Also, the reverse electrolysis current density is required to be 1 to 5 times the positive electrolysis current density. Therefore, a large power supply is required.
また、 パルスが高速 (高周波数) なため、 配線のイ ンダクタ ンス によるロスを考慮した配線の引き回しが必要となる。  In addition, since the pulse is fast (high frequency), it is necessary to route the wiring in consideration of the loss due to the inductance of the wiring.
また、 被めつき物 (基板) をめつき液に吊るす、 ラックめつきの 場合には、 基板中央部にパルスの効果が届かないため、 実用的でな い o  In addition, in the case of hanging an object to be coated (substrate) in the plating liquid or rack mounting, the pulse effect does not reach the center of the substrate, so it is not practical o
さらに、 各種のめっき条件の設定が容易でないという種々の課題 力 sめる。 Moreover, various problems force s Mel that set various plating conditions are not easy.
また、 特殊な撹拌装置を用いる場合には、 全ての部分に一様に撹 拌を行うのは困難であるし、 またコス 卜がかかるという課題がある  In addition, when a special stirrer is used, it is difficult to uniformly stir all parts, and there is a problem that it is costly.
発明の開示 Disclosure of the invention
そこで、 本発明の目的は、 高精度、 大容量のパルス電源を必要と しないため、 設備コス トの低減化が図れると共に、 小径ホール内に 良好にめっきを施すことができる小径ホールの銅めつき方法を提供 することである。  Accordingly, an object of the present invention is to eliminate the need for a high-precision, large-capacity pulsed power supply, thereby reducing equipment costs and, at the same time, providing copper plating in a small-diameter hole, which allows good plating in the small-diameter hole. To provide a way.
上記目的を達成するために、 本発明による小径ホールの銅めつき 方法は、 硫酸銅、 硫酸、 塩素イオン、 硫黄化合物、 界面活性剤を含 む硫酸銅めつき液によ り、 小径ホールを有する被めつき物の小径ホ ール内に P P R法によ り銅めつきを施す小径ホール内の銅めつき方 法において、 逆電解を 0 . l 〜 l A Z dm2 の電流密度範囲で行って 、 被めつき物に吸着されている硫黄化合物の、 小径ホールの入口付 近の硫黄化合物の剥離を行う ことによ り、 正電解時の小径ホール内 の分極抵抗を小径ホールの入口付近よ り も低く保って、 小径ホール 内に均一厚さの銅めつき皮膜を形成することを特徴とする。 In order to achieve the above object, a method for plating a small-diameter hole with copper according to the present invention has a small-diameter hole using a copper sulfate plating solution containing copper sulfate, sulfuric acid, chloride ions, sulfur compounds, and a surfactant. in copper Me per way method in small holes applying by Ri copper plated to PPR method in diameter halls of the plated material, the reverse electrolysis carried out at 0. l ~ l current density range of AZ dm 2 By separating the sulfur compound adsorbed on the adherend from the sulfur compound near the entrance of the small-diameter hole, the polarization resistance in the small-diameter hole during positive electrolysis is reduced from that near the entrance of the small-diameter hole. It is characterized by forming a copper-plated film with a uniform thickness in the small-diameter hole while keeping it low.
前記逆電解時、 前半の逆電解を高い電流密度で、 後半の逆電解を 前半時よ り も低い電流密度で行う 2段階の逆電解を行う と さ らに好 適である。 During the reverse electrolysis, the first half reverse electrolysis is performed at a high current density, and the second half reverse electrolysis is performed. Two-stage reverse electrolysis, which is performed at a lower current density than in the first half, is more suitable.
また、 正電解を数十〜数百秒間行い、 逆電解を数秒〜数十秒間行 う よ うにする。  The positive electrolysis is performed for several tens to several hundred seconds, and the reverse electrolysis is performed for several seconds to several tens of seconds.
正電解を 1〜 2八/^1!12 の電流密度範囲で行う と好適である。 硫酸濃度を 1 5 0〜 2 5 0 g Z l 、 硫酸銅濃度を 1 3 0〜 2 0 0 g / 1 と した、 低電気抵抗、 高銅濃度の硫酸銅めつき液を用いる と よい。 さ らには、 硫酸濃度を 2 0 0 g l前後、 硫酸銅濃度を 1 5 0 g Z 1前後と した硫酸銅めつき液が安定性の上で好適である。 また、 小径ホール内を銅めつきで埋めるこ ともできる。 図面の簡単な説明 Doing positive electrolysis 1-2 eight / ^ 1! 1 2 current density range is preferred. It is preferable to use a copper sulfate plating solution having a low electric resistance and a high copper concentration, with a sulfuric acid concentration of 150 to 250 g Zl and a copper sulfate concentration of 130 to 200 g / 1. Is Raniwa, 2 0 0 g l before and after the sulfuric acid concentration, copper sulfate plated solution was 1 5 0 g Z 1 before and after the copper sulfate concentration is suitable in stability. Also, the inside of the small diameter hole can be filled with copper plating. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 硫酸濃度とめっき液の抵抗の関係を示すグラフである。 図 2は、 硫酸の濃度と飽和硫酸銅濃度の関係を示すグラフである 図 3は、 逆電解電位と、 正電解時の分極抵抗の大きさの関係を示 すグラフである。  Figure 1 is a graph showing the relationship between sulfuric acid concentration and plating solution resistance. Fig. 2 is a graph showing the relationship between the concentration of sulfuric acid and the concentration of saturated copper sulfate. Fig. 3 is a graph showing the relationship between the reverse electrolytic potential and the magnitude of the polarization resistance during positive electrolysis.
図 4は、 本発明の一実施形態における電流波形を示す模式図であ る。  FIG. 4 is a schematic diagram showing a current waveform in one embodiment of the present invention.
図 5は、 実施例 1のスルーホールの断面写真である。  FIG. 5 is a cross-sectional photograph of the through hole of Example 1.
図 6は、 実施例 2のスルーホールの断面写真である。  FIG. 6 is a cross-sectional photograph of the through hole of Example 2.
図 7は、 実施例 3のスルーホールの断面写真である。  FIG. 7 is a cross-sectional photograph of the through hole of Example 3.
図 8は、 実施例 4のスルーホールの断面写真である。  FIG. 8 is a cross-sectional photograph of the through hole of Example 4.
図 9は、 比較例 1のスルーホールの断面写真である。  FIG. 9 is a cross-sectional photograph of the through hole of Comparative Example 1.
図 1 0は、 比較例 2のスルーホールの断面写真である。 発明を実施するための最良の形態 以下、 本発明の好適な実施の形態を添付図面に基づいて詳細に説 明する。 FIG. 10 is a cross-sectional photograph of the through hole of Comparative Example 2. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
まず硫酸銅めつき液について説明する。  First, the copper sulfate plating solution will be described.
硫酸銅めつき液の組成は、 銅供給源と しての硫酸銅、 伝導度調整 のための硫酸、 抑制物質と しての塩素イオン (塩化物) および界面 活性剤、 めっき促進剤と して機能する硫黄化合物からなる。  The composition of the copper sulfate plating solution is as follows: copper sulfate as a copper source, sulfuric acid for conductivity adjustment, chlorine ion (chloride) as a suppressor and a surfactant, and a plating accelerator. Consists of functional sulfur compounds.
小径ホール内へのめっきの付き回り性を向上させるため、 高銅濃 度の液とするのが好ましく 、 また、 めっき液の電気抵抗を低くする ため、 硫酸量が多い程良好である。 しかし、 硫酸の量が多く なると 、 硫酸銅が溶解しにく く なり、 過剰になる と硫酸銅が析出してしま う。 よって、 両者のバランスが必要となる。  It is preferable to use a solution with a high copper concentration in order to improve the throwing power of the plating into the small-diameter holes, and to reduce the electric resistance of the plating solution, the larger the amount of sulfuric acid, the better. However, when the amount of sulfuric acid is large, it becomes difficult to dissolve copper sulfate, and when the amount is excessive, copper sulfate is precipitated. Therefore, a balance between the two is required.
図 1 は、 硫酸濃度、 硫酸銅濃度とめっき液の電気抵抗の関係を示 すグラフであり、 5 %硫酸の電気抵抗を 1 と した場合の比較である 。 また、 図 2は、 硫酸濃度と飽和硫酸銅濃度との関係を示すグラフ である。  FIG. 1 is a graph showing the relationship between the sulfuric acid concentration, the copper sulfate concentration, and the electrical resistance of the plating solution, and is a comparison when the electrical resistance of 5% sulfuric acid is set to 1. FIG. 2 is a graph showing the relationship between the sulfuric acid concentration and the saturated copper sulfate concentration.
図 1から明らかなよ う に、 硫酸濃度が 1 5 0 g / 1 以上で電気抵 抗は低く、 ほぼ一定となる。 したがって、 低電気抵抗のめっき液と するために、 硫酸濃度は 1 5 0 g Z l 以上が好ましい。 また高銅濃 度の液とするために、 硫酸濃度は 2 5 0 g Z l以下とするのが好ま しい。  As is clear from Fig. 1, when the sulfuric acid concentration is more than 150 g / 1, the electrical resistance is low and almost constant. Therefore, the sulfuric acid concentration is preferably at least 150 g Zl in order to obtain a plating solution having a low electric resistance. In order to obtain a solution with a high copper concentration, the sulfuric acid concentration is preferably set to 250 gZl or less.
また、 図 2の直線よ り下の領域が銅めつき液と して使用できる領 域であり、 上記硫酸濃度の範囲 ( 1 5 0〜 2 5 0 g Z l ) で、 硫酸 銅濃度は略 1 3 0〜 2 0 0 g / 1 の範囲で溶解させるこ とができる 上記範囲内で、 高銅濃度を保って安定的に使用できるめっき液と して、 硫酸濃度を 2 0 0 g / l 前後、 硫酸銅濃度を 1 5 0 gノ 1 前 後に調整する と最適である。 なお、 上記の 「前後」 とは、 ± 5 %程度をいう。 The area below the straight line in Fig. 2 is the area that can be used as a copper plating solution. In the above range of sulfuric acid concentration (150 to 250 g Zl), the copper sulfate concentration is approximately Can be dissolved within the range of 130 to 200 g / l. Within the above range, the plating solution can be used stably while maintaining a high copper concentration. It is best to adjust the concentration of copper sulfate before and after and around 150 g. Note that the “before and after” means about ± 5%.
塩素イオン源と しては、 塩酸、 塩化ナ ト リ ウム、 塩化力 リ ウム、 塩化アンモニゥム等を挙げるこ とができる。 これらは単独でも併用 してもよい。 添加量は、 塩素イオンと して、 1 0〜 2 0 0 mgZ l の 範囲で使用できるが、 3 S mgZ 1 前後が好適である。  Examples of the chloride ion source include hydrochloric acid, sodium chloride, potassium chloride, and ammonium chloride. These may be used alone or in combination. The amount of chlorine ion added can be used in the range of 10 to 200 mgZl as chloride ion, but is preferably around 3 SmgZ1.
硫黄化合物は特に限定されないが、 3 —メルカプ ト— 1 一プロパ ンスルホン酸ナ ト リ ゥムもしく は 2—メルカプ トエタンスルホン酸 ナ ト リ ウム、 ビス一 ( 3 —スルフォプロ ピル) 一ジスルファイ ドジ ソディ ウムなどの硫黄化合物を単独も しく は併用して好適に用いる こ とができる。  The sulfur compound is not particularly limited. However, 3-mercapto-1 sodium monopropanesulfonate or 2-sodium sodium mercaptoethanesulfonate, bis- (3-sulfopropyl) disulfido disodium Sulfur compounds such as chromium can be used alone or in combination.
これら硫黄化合物の添加量は、 l mg/ 1 前後の僅かな添加量で効 果がある。  The effect of adding these sulfur compounds is as small as about lmg / 1.
界面活性剤も特に限定されないが、 ポ リ エチレングリ コール、 ポ リ プロ ピレンダリ コールなどの界面活性剤を単独も しく は併用して 使用できる。  Although the surfactant is not particularly limited, a surfactant such as polyethylene glycol and polypropylene glycol can be used alone or in combination.
界面活性剤の添加量は、 数 mgZ 1 〜 1 O gZ 1 程度の範囲で使用 できる。  The addition amount of the surfactant can be used in the range of several mgZ1 to 1 OgZ1.
界面活性剤は塩素ィオンと共に存在するこ とで、 陰極での分極抵 抗を高くする。  Surfactants, when present with chlorine, increase the polarization resistance at the cathode.
一方、 硫黄化合物は、 陰極での分極抵抗を低く して、 促進剤と し て機能する。  On the other hand, a sulfur compound functions as a promoter by lowering the polarization resistance at the cathode.
硫酸銅めつき液中に、 界面活性剤、 塩素イオン、 硫黄化合物が含 まれる場合、 陰極表面の分極抵抗はこれら添加剤の吸着量のバラン スに依存する。 特に、 硫黄化合物は被めつき物の表面に吸着され、 吸着した表面の分極抵抗を下げる効果が強い。 したがって、 硫黄化 合物の吸着量を制御するこ とは分極抵抗の制御につながる。  When surfactants, chloride ions, and sulfur compounds are contained in the copper sulfate plating solution, the polarization resistance of the cathode surface depends on the balance between the amounts of these additives adsorbed. In particular, sulfur compounds are adsorbed on the surface of the adherend, and have a strong effect of lowering the polarization resistance of the adsorbed surface. Therefore, controlling the amount of sulfur compound adsorbed leads to control of polarization resistance.
本発明では、 正電解時、 被めつき物 (配線基板等) の表面や、 小 径ホールの入口側の分極抵抗を高く、 小径ホール内の分極抵抗を低 くするように制御して、 全体と して、 均一な厚さのめっき皮膜が形 成されるようにするのである。 According to the present invention, during positive electrolysis, the surface of By controlling the polarization resistance on the inlet side of the large-diameter hole to be high and the polarization resistance in the small-diameter hole to be low, a plating film with a uniform thickness is formed as a whole.
そのために、 逆電解を行って、 被めつき物の表面側や小径ホール の入口付近に吸着されている硫黄化合物を剥離し、 これにより、 正 電解時、 上記のように、 分極抵抗に差をもたせるようにする。  For this purpose, reverse electrolysis is performed to remove the sulfur compounds adsorbed on the surface side of the adherend and near the entrance of the small-diameter hole, thereby causing a difference in polarization resistance during positive electrolysis as described above. So that you can hold it.
めつき系の電気抵抗は、 分極抵抗とめっき液の電気抵抗の和と し て定義される。  The electrical resistance of the plating system is defined as the sum of the polarization resistance and the electrical resistance of the plating solution.
したがって、 めっき液の電気抵抗を分極抵抗に対して十分に小さ くすれば、 めっき系の電気抵抗、 したがってこれに反比例する電流 値は分極抵抗の大きさに依存することになる。 上記のように、 銅め つき液中の硫酸濃度を高く して、 めっき液の電気抵抗を低く抑え、 分極抵抗の制御をよ り行い易いようにしているのである。  Therefore, if the electric resistance of the plating solution is made sufficiently smaller than the polarization resistance, the electric resistance of the plating system, and hence the current value inversely proportional thereto, depends on the magnitude of the polarization resistance. As described above, by increasing the sulfuric acid concentration in the copper plating solution, the electric resistance of the plating solution is suppressed to make it easier to control the polarization resistance.
分極抵抗 R c を、  The polarization resistance R c is
R c = I V S C E 一 V。 | 1 ( V。 は平衡電位) と定義し、 電位 と電流値により分極抵抗を測定した。 R c = IV SCE- V. | 1 (V is the equilibrium potential), and the polarization resistance was measured by the potential and the current value.
図 3は、 配線基板に逆電解を種々の電位で、 1 0秒間行い、 次い で正電解を行った際の分極抵抗の大きさを計測したグラフである。 なお、 分極抵抗は、 被めつき物 (配線基板) の表面での分極抵抗を 示す。 小径ホール内の分極抵抗は当然に表面の分極抵抗よりも低く なる。  FIG. 3 is a graph showing the magnitude of the polarization resistance when reverse electrolysis was performed on the wiring substrate at various potentials for 10 seconds and then positive electrolysis was performed. The polarization resistance indicates the polarization resistance on the surface of the object (wiring board). The polarization resistance in the small hole is naturally lower than the polarization resistance of the surface.
図 3に見られるよ うに、 逆電解時の電解電位が 0 . 1 0〜 0 . 1 6 V ( V s S C E ) の範囲で、 正電解時の分極抵抗が変化し、 逆 電解時の電解電位により、 正電解時の分極抵抗を制御できることが わかる。 電解電位が高くなるほど分極抵抗が高くなる。 すなわち、 電極電位が高くなるほど、 硫黄化合物の剥離が生じ、 正電解時の分 極抵抗が高くなるのである。 しかも、 逆電解の時間を 1 0秒と長時間に設定した場合で、 正電 解時の分極抵抗を制御できる電位範囲が得られたことは特筆に値す る。 このことは、 長周期の P P Rめっきが行えることを示唆してい る。 As shown in Fig. 3, when the electrolysis potential during reverse electrolysis is in the range of 0.10 to 0.16 V (Vs SCE), the polarization resistance during positive electrolysis changes, and the electrolysis potential during reverse electrolysis changes. It can be seen that the polarization resistance during positive electrolysis can be controlled. The higher the electrolytic potential, the higher the polarization resistance. In other words, the higher the electrode potential, the more the sulfur compound peels off, and the higher the polarization resistance during positive electrolysis. In addition, it is noteworthy that the potential range in which the polarization resistance during positive electrolysis can be controlled was obtained when the reverse electrolysis time was set as long as 10 seconds. This suggests that long-period PPR plating can be performed.
実験の結果、 逆電解の時間は、 1秒〜数十秒の範囲で十分行える こと力 sわ力、つた。 The results of the experiment, the time of reverse electrolysis, well done this and the force s' s power in the range of 1 second to a few tens of seconds, ivy.
なお、 逆電解の制御を電位によ り制御すると、 電流密度が暴走す るおそれがあるので、 電流密度で制御するのが好適である。 上記電 位に対応する電流密度は 0. l A〜 l /dm2 となる。 If the reverse electrolysis is controlled by the potential, the current density may run away. Therefore, it is preferable to control the reverse current by the current density. Current density corresponding to the conductive position becomes 0. l A~ l / dm 2.
また、 0. 5 ΑΖ η2 より大きな電流密度の場合には、 被めつき 物の表面が荒れてく るので、 0. 1〜 0. 5 A/dm2 の範囲での電 流密度で制御するのが好ましい。 ただし、 荒れがそれ程問題となら ない被めつき物の場合には、 上記以上の電流密度で制御してもよい このよ う に、 逆電解時の電流密度によつて硫黄化合物の剥離の程 度が制御でき、 その結果、 正電解時の分極抵抗を制御できる。 In the case of larger current density than 0. 5 ΑΖ η 2 are as they may go rough surface of the object to be plated was controlled by current density in the range of 0. 1~ 0. 5 A / dm 2 Is preferred. However, in the case of an adherend whose roughness is not so problematic, it may be controlled at a current density higher than the above. Thus, the degree of peeling of the sulfur compound depends on the current density during reverse electrolysis. Can be controlled, and as a result, the polarization resistance during positive electrolysis can be controlled.
分極抵抗の大きさは、 被めつき物の小径ホール内では計測ができ ないが、 逆電解の効果は小径ホール内にはほとんど及ばないので、 小径ホール内での硫黄化合物の剥離は入口付近を除いてほとんど生 じないと考えてよい。 したがって、 小径ホール内の正電解時の分極 抵抗は低いまま維持され、 それだけ、 小径ホール内への電流の流れ 込みが生じ、 小径ホール内であっても、' めっきの付き回り正が改善 される。 逆電解時の電流密度設定、 逆電解時間、 正電解時の電流密 度、 電解時間の設定は、 対象となる被めつき物に応じて、 めっき厚 を計測しつつ行えばよい。  The magnitude of the polarization resistance cannot be measured in the small-diameter hole of the object, but the effect of reverse electrolysis is almost ineffective in the small-diameter hole. Except that it hardly occurs. Therefore, the polarization resistance during the positive electrolysis in the small-diameter hole is maintained at a low level, and accordingly, the current flows into the small-diameter hole, and even in the small-diameter hole, the plating positive rotation is improved. . The setting of the current density during reverse electrolysis, the reverse electrolysis time, the current density during positive electrolysis, and the electrolysis time may be performed while measuring the plating thickness according to the target adherend.
図 4は、 本実施の形態における P P Rめっきの電流波形を模式的 に示す。 最適な逆電解時の電流密度は 0 . 1〜0 . 5 A Z dm2 で、 最適な 電解時間は 1〜 1 0秒程度である。 FIG. 4 schematically shows a current waveform of PPR plating in the present embodiment. Current density during optimal reverse electrolysis 0. 1~0. 5 AZ dm 2, the optimal electrolysis time is 1 to about 1 0 seconds.
また、 実験の結果、 逆電解時、 前半の逆電解を高い電流密度で、 後半の逆電解を前半時よ り も低い電流密度で行う 2段階の逆電解を 行う よ うにする と、 よ り効果的であるこ とがわかった。  In addition, as a result of the experiment, it is more effective to perform two-stage reverse electrolysis in which the reverse electrolysis in the first half is performed at a higher current density and the reverse electrolysis in the latter half is performed at a lower current density than in the first half. It turned out to be a target.
このよ う に逆電解を 2段階で行なう こ とによ り効果が向上するの は下記の理由による と考えられる。 すなわち、 前半 ( 1段目) の逆 電解では、 スルーホールの外部に対する剥離作用が強く 、 スルーホ ールの内部に対する剥離作用が弱い。 後半 ( 2段目) の逆電解では 、 剥離のための電位が極めて弱いため、 スルーホールの外部では僅 かに剥離が行なわれるが、 内部では剥離作用がほとんどなく 、 むし ろ硫黄化合物の吸着が進行すると考えられる。  It is considered that the effect is improved by performing the reverse electrolysis in two stages for the following reasons. That is, in the reverse electrolysis in the first half (first stage), the peeling action on the outside of the through hole is strong, and the peeling action on the inside of the through hole is weak. In the reverse electrolysis in the second half (second stage), the potential for peeling is extremely weak, so that peeling occurs slightly outside the through-hole, but there is almost no peeling action inside, and rather adsorption of sulfur compounds occurs. It is thought to proceed.
したがって、 1段目の逆電解ではスルーホール外部の硫黄化合物 を確実に剥離し、 2段目の逆電解では微弱な剥離作用によ りスルー ホール外部の剥離された状態が維持されるながらスルーホール内部 への硫黄化合物の吸着が起きる。 その結果、 逆電解を 1段階で行な つた場合に比べて、 スルーホールの外部と内部での硫黄化合物の吸 着濃度差が大き く なり、 よ り大きな分極抵抗差が発生する。  Therefore, in the first-stage reverse electrolysis, the sulfur compound outside the through-hole is reliably peeled off, and in the second-stage reverse electrolysis, the through-hole is maintained while the peeled state outside the through-hole is maintained by a weak peeling action. Adsorption of sulfur compounds inside occurs. As a result, the difference in the adsorption concentration of the sulfur compound between the outside and the inside of the through hole is larger than in the case where the reverse electrolysis is performed in a single step, and a larger polarization resistance difference is generated.
また、 1段のみの逆電解ではスルーホールの形状によってはスル 一ホール内部を剥離し過ぎてしまい、 スルーホールの外部と内部の 分極抵抗差が十分得られない場合がある。 このよ うな場合にも、 2 段目の弱い逆電解を行なう こ とによ り、 分極抵抗差を確実に得るこ とができる。  Also, in reverse electrolysis with only one stage, depending on the shape of the through-hole, the inside of the through-hole may be excessively peeled off, and a sufficient polarization resistance difference between the outside and the inside of the through-hole may not be obtained. Even in such a case, the polarization resistance difference can be reliably obtained by performing the second-stage weak reverse electrolysis.
正電解時の電流密度は 1 . 5 A Z dm2 程度 (これは特に限定され ない。 めっきの付き回り性をみて決定すればよい) 、 電解時間は 5 0〜 2 0 0秒程度が良好である。 実施例 The current density during positive electrolysis is about 1.5 AZ dm 2 (this is not particularly limited; it may be determined by considering the throwing power of the plating), and the electrolysis time is preferably about 50 to 200 seconds. . Example
硫酸銅めつき液は下記組成のものを共通して用いた  Copper sulfate plating solution with the following composition was used in common
硫酸銅 5水和物 1 5 0 g / 1  Copper sulfate pentahydrate 1 500 g / 1
硫酸 2 0 0 g / 1  Sulfuric acid 200 g / 1
ポ リ エチレングリ コール 4 0 0 0 3 g / 1  Polyethylene glycol 4 0 0 3 g / 1
S P S 1 mg/ 1  S P S 1 mg / 1
塩素ィォン 3 5 mg/ 1  Chlorine 3 5 mg / 1
なお、 S P Sは、 ビス一 ( 3—スルフォプロ ピル) 一ジスノレファ ィ ドジソディ ウムをレ、う。  In addition, SPS refers to bis- (3-sulfopropyl) disodium disodium.
実施例 1 Example 1
開口径 0. 1 mmのスルーホールを有する、 厚さ 0. 8 mmの配線基 板に下記の条件で P P Rめっきを行った。  A 0.8 mm thick wiring board having a through hole with an opening diameter of 0.1 mm was subjected to PPR plating under the following conditions.
正電解 : 電流密度 1. 5 A/dm2 、 電解時間 1 2 0秒 Positive electrolysis: current density 1.5 A / dm 2 , electrolysis time 120 seconds
逆電解 : 電流密度 0. 5 A//dm2 、 電解時間 1 0秒 Reverse electrolysis: current density 0.5 A // dm 2 , electrolysis time 10 seconds
めっき時間 7 6分  Plating time 7 6 minutes
その結果、 膜厚比 : (スルーホール中央部の膜厚/基板表面の膜 厚) X 1 0 0は 9 1. 3 %であった。  As a result, the ratio of film thickness: (film thickness at the center of the through hole / film thickness on the substrate surface) X100 was 91.3%.
実施例 2 Example 2
開口径 0. 1 5 mmのスルーホールを有する、 厚さ 0. 8 mmの配線 基板に下記の条件で P P Rめっきを行った。  A 0.8 mm thick wiring board having a through hole with an opening diameter of 0.15 mm was subjected to PPR plating under the following conditions.
正電解 : 電流密度 1. 5 A /dm2 、 電解時間 1 2 0秒 Positive electrolysis: current density 1.5 A / dm 2 , electrolysis time 120 seconds
逆電解 : 電流密度 0. δ ΑΖ η2 、 電解時間 1 0秒 Reverse electrolysis: current density 0. δ ΑΖ η 2 , electrolysis time 10 seconds
めっき時間 7 6分  Plating time 7 6 minutes
その結果、 膜厚比は 1 0 1 . 4 %であった。  As a result, the film thickness ratio was 101.4%.
実施例 3 Example 3
開口径 0. 1 mmのスルーホーノレを有する、 厚さ 0. 8 mmの配線基 板に下記の条件で P P Rめっきを行った。 正電解 : 電流密度 1 . 5 AZdm2 、 電解時間 1 2 0秒 PPR plating was performed on a 0.8 mm thick wiring board having a through horn with an opening diameter of 0.1 mm under the following conditions. Positive electrolysis: current density 1.5 AZdm 2 , electrolysis time 120 seconds
逆電解 1 : 電流密度 0. 5 A/dm2 、 電解時間 5秒 Reverse electrolysis 1: current density 0.5 A / dm 2 , electrolysis time 5 seconds
逆電解 2 : 電流密度 0. 1 A/dm2 、 電解時間 5秒 Reverse electrolysis 2: current density 0.1 A / dm 2 , electrolysis time 5 seconds
めっき時間 7 6分  Plating time 7 6 minutes
その結果、 膜厚比は 1 0 9. 8 %であった。  As a result, the film thickness ratio was 109.8%.
実施例 4 Example 4
開口径 0. 1 5 mmのスルーホールを有する、 厚さ 0. 8 mmの配線 基板に下記の条件で P P Rめつきを行った。  A PPR plating was performed on a 0.8 mm thick wiring board having a through hole with an opening diameter of 0.15 mm under the following conditions.
正電解 : 電流密度 1 . 5 AZdm2 、 電解時間 1 2 0秒 Positive electrolysis: current density 1.5 AZdm 2 , electrolysis time 120 seconds
逆電解 1 : 電流密度 0. S AZdm2 、 電解時間 5秒 Reverse electrolysis 1: current density 0. S AZdm 2 , electrolysis time 5 seconds
逆電解 2 : 電流密度 0. 1 AZdm2 、 電解時間 5秒 Reverse electrolysis 2: current density 0.1 AZdm 2 , electrolysis time 5 seconds
めつき時間 7 6分  Installation time 7 6 minutes
その結果、 膜厚比は 1 1 0. 8 %であった。  As a result, the film thickness ratio was 10.8%.
比較例 1 Comparative Example 1
上記硫酸銅めつき液を用いて、 開口径 0. 1 mmのスルーホールを 有する、 厚さ 0. 8 mmの配線基板に下記の条件で直流めつきを行つ た。  Using the above copper sulfate plating solution, DC plating was performed on a wiring board having a through hole with an opening diameter of 0.1 mm and a thickness of 0.8 mm under the following conditions.
電流密度 1 . 3 5 AZdm2Current density 1.35 AZdm 2 ,
めっき時間 7 6分  Plating time 7 6 minutes
その結果膜厚比は 5 3. 9 %であった。  As a result, the film thickness ratio was 53.9%.
比較例 2 Comparative Example 2
上記硫酸銅めつき液を用いて、 開口径 0. 1 5 mmのスルーホール を有する、 厚さ 0. 8 mmの配線基板に下記の条件で直流めつきを行 つた。  Using the above copper sulfate plating solution, DC plating was performed on a wiring board having a through hole with an opening diameter of 0.15 mm and a thickness of 0.8 mm under the following conditions.
電流密度 1 . 3 5 A / dm2Current density 1.35 A / dm 2 ,
めっき時間 7 6分  Plating time 7 6 minutes
その結果膜厚比は 5 4. 8 %であった。 図 5〜図 1 0はスルーホールの断面写真 (倍率 7 5倍) であり、 図 5 、 6 、 7 、 8はそれぞれ実施例 1 、 2 、 3 、 4 のスルーホール を、 図 9 、 1 0はそれぞれ比較例 1 、 2 のスルーホールを示す。 以上のよ う に、 実施例 1 ~ 4においては、 膜厚比 (ス ローイ ング パワー) がほぼ 1 0 0 %となり、 表面および小径ホール内に、 均一 厚さの銅めつき皮膜を形成することができる。 As a result, the film thickness ratio was 54.8%. FIGS. 5 to 10 are cross-sectional photographs (75 × magnification) of the through holes. FIGS. 5, 6, 7, and 8 show the through holes of Examples 1, 2, 3, and 4, respectively, and FIGS. Indicates through holes of Comparative Examples 1 and 2, respectively. As described above, in Examples 1 to 4, the film thickness ratio (slowing power) was approximately 100%, and a copper-coated film having a uniform thickness was formed on the surface and in the small-diameter holes. Can be.
特に、 逆電解を 2段階で行った場合に、 小径ホール内部のめっき 厚の方が表面のめっき厚よ り も厚く なる結果となった。 この場合に 、 めっき時間を延長すれば、 小径ホール内をめつきによって埋める こ と も可能となる。  In particular, when the reverse electrolysis was performed in two stages, the plating thickness inside the small-diameter hole became thicker than the plating thickness on the surface. In this case, if the plating time is extended, the inside of the small-diameter hole can be filled by plating.
また、 上記実施例ではスルーホールのめっきを例と して説明した が、 マイ ク ロブライ ン ドビア内のめっきも同様にして行う こ とがで きる。 産業上の利用可能性  Further, in the above embodiment, plating of through holes has been described as an example, but plating in micro blind vias can be performed in the same manner. Industrial applicability
以上のよ う に、 本発明方法によれば、 秒単位での長周期の P P R めっき法とするこ とができ、 高精度、 大容量のパルス電流を必要と しないから、 設備コス トを低減できる。  As described above, according to the method of the present invention, a long-period PPR plating method can be performed in a unit of second, and a high-precision, large-capacity pulse current is not required, so that equipment cost can be reduced. .
また、 基板の表裏のめっきのための電流の同期も容易にとるこ と ができ、 イ ンダクタンスによる ロスを考慮した配線も不用となる。  In addition, the current for plating on the front and back of the substrate can be easily synchronized, and wiring that takes into account the loss due to inductance becomes unnecessary.
さ らに、 表面、 開口部、 小径ホール内部の膜厚がほぼ均一となる めっき皮膜を形成するこ とができる。  Further, it is possible to form a plating film having a substantially uniform film thickness on the surface, the opening, and the inside of the small-diameter hole.

Claims

請 求 の 範 囲 The scope of the claims
1. 硫酸銅、 硫酸、 塩素イ オン、 硫黄化合物、 界面活性剤を含 む硫酸銅めつき液によ り、 小径ホールを有する被めつき物の小径ホ ール内に P P R法により銅めつきを施す小径ホールの銅めつき方法 において、 1. Copper plating using a copper sulfate plating solution containing copper sulfate, sulfuric acid, chlorine ions, sulfur compounds, and surfactants, in a small-diameter hole of an object with small-diameter holes, using the PPR method. In the method of attaching copper to a small diameter hole,
逆電解を 0. l〜 l AZdm2 の電流密度範囲で行って、 被めつき 物に吸着されている硫黄化合物の、 小径ホールの入口付近の硫黄化 合物の剥離を行う ことによ り、 正電解時の小径ホール内の分極抵抗 を小径ホールの入口付近よ り も低く保って、 小径ホール内に均一厚 さの銅めつき皮膜を形成することを特徴とする小径ホールの銅めつ き方法。 The reverse electrolysis performed at a current density range of 0. l~ l AZdm 2, the sulfur compounds which are adsorbed on the plated material, Ri particular good performing separation of sulfur of compounds near the entrance of the small-diameter hole, Copper plating in small holes characterized by maintaining a polarization resistance in small holes during positive electrolysis lower than near the entrance of small holes and forming a copper-plated film of uniform thickness in small holes. Method.
2. 前記逆電解時、 前半の逆電解を高い電流密度で、 後半の逆 電解を前半時よ り も低い電流密度で行う 2段階の逆電解を行う こと を特徴とする請求項 1 '記載の小径ホールの銅めつき方法。  2. The two-stage reverse electrolysis in which the reverse electrolysis in the first half is performed at a high current density and the reverse electrolysis in the second half is performed at a lower current density than that in the first half, wherein the reverse electrolysis is performed. Copper plating method for small diameter holes.
3. 正電解を数十〜数百秒間行い、 逆電解を数秒〜数十秒間を 行なう ことを特徴とする請求項 1または 2記載の小径ホールの銅め つき方法。  3. The method of claim 1 or 2, wherein the positive electrolysis is performed for several tens to several hundred seconds, and the reverse electrolysis is performed for several seconds to several tens of seconds.
4. 正電解を l〜2 AZdm2 の電流密度範囲で行う ことを特徴 とする請求項 1 , 2または 3記載の小径ホールの銅めつき方法。 4. The method of claim 1, 2, or 3, wherein the positive electrolysis is performed in a current density range of l to 2 AZdm2.
5. 硫酸濃度を 1 5 0〜 2 5 0 g/ l、 硫酸銅濃度を 1 3 0 ~ 2 0 0 g Z l と した、 低電気抵抗、 高銅濃度の硫酸銅めつき液を用 いることを特徴とする請求項 1, 2, 3または 4記載の小径ホール の銅めつき方法。  5. Use a copper sulfate plating solution with low electrical resistance and high copper concentration, with sulfuric acid concentration of 150-250 g / l and copper sulfate concentration of 130-200 g Zl. The method of claim 1, 2, 3 or 4, wherein the small diameter hole is copper-plated.
6. 小径ホール内を銅めつきで埋めることを特徴とする請求項 1〜 5のうちのいずれか 1項記載の小径ホールの銅めつき方法。  6. The copper plating method for a small diameter hole according to claim 1, wherein the inside of the small diameter hole is filled with copper plating.
PCT/JP2002/010483 2001-10-16 2002-10-09 Method of copper-plating small-diameter holes WO2003033775A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003536491A JP4148895B2 (en) 2001-10-16 2002-10-09 Hole copper plating method
US10/416,304 US20040011654A1 (en) 2001-10-16 2002-10-09 Method of copper plating small diameter hole
KR10-2003-7006763A KR20040045390A (en) 2001-10-16 2002-10-09 Method of copper-plating small-diameter holes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001317878 2001-10-16
JP2001-317878 2001-10-16

Publications (1)

Publication Number Publication Date
WO2003033775A1 true WO2003033775A1 (en) 2003-04-24

Family

ID=19135677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/010483 WO2003033775A1 (en) 2001-10-16 2002-10-09 Method of copper-plating small-diameter holes

Country Status (6)

Country Link
US (1) US20040011654A1 (en)
JP (1) JP4148895B2 (en)
KR (1) KR20040045390A (en)
CN (1) CN1283848C (en)
TW (1) TW561808B (en)
WO (1) WO2003033775A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188745A (en) * 2004-12-30 2006-07-20 Samsung Electro Mech Co Ltd Fill plated structure of inner via hole and manufacturing method thereof
JP2008513985A (en) * 2004-09-20 2008-05-01 アトテック・ドイチュラント・ゲーエムベーハー Electrical treatment for filling metal in through holes, especially electrical treatment for filling copper in printed circuit board through holes
JP2010098140A (en) * 2008-10-16 2010-04-30 Dainippon Printing Co Ltd Through electrode substrate, manufacturing method thereof, and semiconductor device using the through electrode substrate
US7909976B2 (en) 2005-12-28 2011-03-22 Shinko Electric Industries Co., Ltd. Method for filling through hole
JP2012136765A (en) * 2010-12-28 2012-07-19 Ebara Corp Electroplating method
US8637397B2 (en) 2008-10-16 2014-01-28 Dai Nippon Printing Co., Ltd Method for manufacturing a through hole electrode substrate
CN110740579A (en) * 2018-07-18 2020-01-31 住友金属矿山株式会社 Copper-clad laminated board

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040074775A1 (en) * 2002-10-21 2004-04-22 Herdman Roderick Dennis Pulse reverse electrolysis of acidic copper electroplating solutions
SE0403047D0 (en) * 2004-12-14 2004-12-14 Polymer Kompositer I Goeteborg Pulse-plating method and apparatus
US20060226014A1 (en) * 2005-04-11 2006-10-12 Taiwan Semiconductor Manufacturing Co., Ltd. Method and process for improved uniformity of electrochemical plating films produced in semiconductor device processing
CN103492617B (en) * 2011-01-26 2017-04-19 恩索恩公司 Process for filling vias in the microelectronics
CN102443828B (en) * 2011-09-23 2014-11-19 上海华力微电子有限公司 Method for electro-coppering in through hole of semiconductor silicon chip
TWI454422B (en) * 2012-04-12 2014-10-01 Nat Univ Tsing Hua A method for manufacturing a copper nano-wire with high density of twins
CN104109886A (en) * 2013-04-22 2014-10-22 广东致卓精密金属科技有限公司 Microvia-superfilling copper plating technology
US10154598B2 (en) 2014-10-13 2018-12-11 Rohm And Haas Electronic Materials Llc Filling through-holes
JP2017199854A (en) 2016-04-28 2017-11-02 Tdk株式会社 Through wiring board

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0356696A (en) * 1989-07-24 1991-03-12 Canon Inc Wet electroplating device
JPH07336017A (en) * 1994-06-08 1995-12-22 Hitachi Ltd Manufacture of thin-film circuit by periodic reverse electrolyzing method and thin-film circuit board, thin-film multilayer circuit board and electronic circuit device using the same
JPH1143797A (en) * 1997-07-25 1999-02-16 Hideo Honma Method for via-filling
WO1999018266A1 (en) * 1997-10-06 1999-04-15 Learonal, Inc. Programmed pulse electroplating process
JP2000068651A (en) * 1998-08-25 2000-03-03 Nippon Riironaaru Kk Manufacture of built-up printed wiring board with filled blind viahole
WO2000016597A1 (en) * 1998-09-14 2000-03-23 Ibiden Co., Ltd. Printed wiring board and its manufacturing method
JP2001254197A (en) * 2000-03-14 2001-09-18 Oki Printed Circuit Kk Method of manufacturing printed circuit board and electroplating device used in its electroplating stage

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4517059A (en) * 1981-07-31 1985-05-14 The Boeing Company Automated alternating polarity direct current pulse electrolytic processing of metals
US5486280A (en) * 1994-10-20 1996-01-23 Martin Marietta Energy Systems, Inc. Process for applying control variables having fractal structures
DE19545231A1 (en) * 1995-11-21 1997-05-22 Atotech Deutschland Gmbh Process for the electrolytic deposition of metal layers
WO1999054527A2 (en) * 1998-04-21 1999-10-28 Applied Materials, Inc. Electro-chemical deposition system and method of electroplating on substrates
JP3594894B2 (en) * 2000-02-01 2004-12-02 新光電気工業株式会社 Via filling plating method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0356696A (en) * 1989-07-24 1991-03-12 Canon Inc Wet electroplating device
JPH07336017A (en) * 1994-06-08 1995-12-22 Hitachi Ltd Manufacture of thin-film circuit by periodic reverse electrolyzing method and thin-film circuit board, thin-film multilayer circuit board and electronic circuit device using the same
JPH1143797A (en) * 1997-07-25 1999-02-16 Hideo Honma Method for via-filling
WO1999018266A1 (en) * 1997-10-06 1999-04-15 Learonal, Inc. Programmed pulse electroplating process
JP2000068651A (en) * 1998-08-25 2000-03-03 Nippon Riironaaru Kk Manufacture of built-up printed wiring board with filled blind viahole
WO2000016597A1 (en) * 1998-09-14 2000-03-23 Ibiden Co., Ltd. Printed wiring board and its manufacturing method
JP2001254197A (en) * 2000-03-14 2001-09-18 Oki Printed Circuit Kk Method of manufacturing printed circuit board and electroplating device used in its electroplating stage

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008513985A (en) * 2004-09-20 2008-05-01 アトテック・ドイチュラント・ゲーエムベーハー Electrical treatment for filling metal in through holes, especially electrical treatment for filling copper in printed circuit board through holes
JP2006188745A (en) * 2004-12-30 2006-07-20 Samsung Electro Mech Co Ltd Fill plated structure of inner via hole and manufacturing method thereof
US7909976B2 (en) 2005-12-28 2011-03-22 Shinko Electric Industries Co., Ltd. Method for filling through hole
JP2010098140A (en) * 2008-10-16 2010-04-30 Dainippon Printing Co Ltd Through electrode substrate, manufacturing method thereof, and semiconductor device using the through electrode substrate
US8637397B2 (en) 2008-10-16 2014-01-28 Dai Nippon Printing Co., Ltd Method for manufacturing a through hole electrode substrate
JP2012136765A (en) * 2010-12-28 2012-07-19 Ebara Corp Electroplating method
CN110740579A (en) * 2018-07-18 2020-01-31 住友金属矿山株式会社 Copper-clad laminated board
CN110740579B (en) * 2018-07-18 2023-04-07 住友金属矿山株式会社 Copper-clad laminated board

Also Published As

Publication number Publication date
US20040011654A1 (en) 2004-01-22
KR20040045390A (en) 2004-06-01
JP4148895B2 (en) 2008-09-10
JPWO2003033775A1 (en) 2005-02-03
CN1283848C (en) 2006-11-08
TW561808B (en) 2003-11-11
CN1476492A (en) 2004-02-18

Similar Documents

Publication Publication Date Title
WO2003033775A1 (en) Method of copper-plating small-diameter holes
JP4740632B2 (en) Improved plating method
JP4221064B2 (en) Electrodeposition method of copper layer
JP2009299195A (en) Method for electrolytic deposition of metal coating
JP2001519480A (en) Programmed pulse electroplating
US20050121314A1 (en) Electrolytic plating method and device for a wiring board
JP2008031516A (en) Electroplating method
KR20090052891A (en) Deposition of conductive polymer and metallization of non-conductive substrates
KR20180110102A (en) Soluble copper anode, electrolytic copper plating apparatus, electrolytic copper plating method, and preservation method of acid electrolytic copper plating solution
JP2003213489A (en) Method of via-filling
JP2006316328A (en) Method for manufacturing two-layer flexible copper-clad laminate
JP2009228124A (en) Method of filling through-hole
TW569390B (en) Via filling method
WO1989007162A1 (en) Electrochemical processes
KR20040057979A (en) Method for depositing lead-free tin alloy
JP4132273B2 (en) Method for manufacturing build-up printed wiring board having filled blind via holes
TWI683931B (en) Anode for electrolytic copper plating and electrolytic copper plating device using the same
JPS6257120B2 (en)
JPH1143797A (en) Method for via-filling
JP2008144232A (en) Method for roughening surface of copper foil
JP2006114787A (en) Manufacturing method of circuit board
JP2003055800A (en) Electrolytic copper plating method
WO2002086196A1 (en) Copper acid baths, system and method for electroplating high aspect ratio substrates
JPH118469A (en) Via-filling method
JPH1036991A (en) Production of electrolytic copper foil

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2003536491

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR

WWE Wipo information: entry into national phase

Ref document number: 10416304

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020037006763

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 028031326

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020037006763

Country of ref document: KR