JP2014194522A - Base material for fixing belt, fixing belt, fixing device, and image forming apparatus - Google Patents

Base material for fixing belt, fixing belt, fixing device, and image forming apparatus Download PDF

Info

Publication number
JP2014194522A
JP2014194522A JP2013263678A JP2013263678A JP2014194522A JP 2014194522 A JP2014194522 A JP 2014194522A JP 2013263678 A JP2013263678 A JP 2013263678A JP 2013263678 A JP2013263678 A JP 2013263678A JP 2014194522 A JP2014194522 A JP 2014194522A
Authority
JP
Japan
Prior art keywords
fixing belt
layer
nickel
fixing
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013263678A
Other languages
Japanese (ja)
Inventor
Hiroyuki Endo
弘之 遠藤
Shigeru Fujita
滋 藤田
Yuzuru Kudo
譲 工藤
Yasuhide Fujiwara
康秀 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2013263678A priority Critical patent/JP2014194522A/en
Priority to US14/185,120 priority patent/US9291969B2/en
Publication of JP2014194522A publication Critical patent/JP2014194522A/en
Priority to US15/048,426 priority patent/US9897954B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/20Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
    • G03G15/2003Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat
    • G03G15/2014Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat
    • G03G15/2017Structural details of the fixing unit in general, e.g. cooling means, heat shielding means
    • G03G15/2028Structural details of the fixing unit in general, e.g. cooling means, heat shielding means with means for handling the copy material in the fixing nip, e.g. introduction guides, stripping means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/20Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
    • G03G15/2003Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat
    • G03G15/2014Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat
    • G03G15/2053Structural details of heat elements, e.g. structure of roller or belt, eddy current, induction heating
    • G03G15/2057Structural details of heat elements, e.g. structure of roller or belt, eddy current, induction heating relating to the chemical composition of the heat element and layers thereof

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fixing For Electrophotography (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a base material for a fixing belt for an image forming apparatus that has excellent durability, and can be used in high-speed operation.SOLUTION: There is provided a base material for a fixing belt including a copper layer composed of copper laminated on a nickel layer composed of nickel, in which an orientation ratio I(200)/I(111) of the copper layer, which is calculated from a ratio of a peak intensity of a (111) crystal surface to a peak intensity of a (200) crystal surface by X-ray diffraction analysis, is 0.1 or less.

Description

本発明は、電子写真方式を用いた複写機、プリンタ、ファクシミリなどに用いられる定着ベルト用基材、定着ベルト、定着装置、および、画像形成装置に関する。   The present invention relates to a fixing belt substrate, a fixing belt, a fixing device, and an image forming apparatus used in a copying machine, a printer, a facsimile, and the like using an electrophotographic system.

複写機、プリンタ、ファクシミリ等の電子写真技術を応用した画像形成装置において、ローラやベルトを加熱定着部品として、これを各種手段によって加熱し、トナー定着を行っている。ローラやベルトの基材としては、ニッケル電鋳法によって製造された、シームレスのニッケル電鋳皮膜が一般的に用いられている。   In an image forming apparatus using electrophotographic technology such as a copying machine, a printer, and a facsimile machine, a roller and a belt are used as heat fixing parts, which are heated by various means to perform toner fixing. As a roller or belt substrate, a seamless nickel electroformed film manufactured by a nickel electroforming method is generally used.

ここでトナー定着方式の一例について説明する。
図1に画像形成装置を、図2に図1の画像形成装置で用いられている定着装置を、そして、図3に図2の定着装置で用いられている定着ベルトの断面拡大図を、それぞれモデル的に示す。
Here, an example of the toner fixing method will be described.
FIG. 1 shows an image forming apparatus, FIG. 2 shows a fixing device used in the image forming apparatus shown in FIG. 1, and FIG. 3 shows an enlarged sectional view of a fixing belt used in the fixing apparatus shown in FIG. Shown as a model.

図1に示すように画像データに応じてレーザ光13により、所定速度で回転するドラム状の像担持体(感光体)11の感光層(予め、帯電部によって帯電されている)に露光することにより静電潜像を形成させる。このとき、上記レーザ光13を、所定速度で回動するポリゴンミラーを用いて周期的に偏向し、副走査方向に回転する上記像担持体11の感光層を副走査方向と直交する主走査方向に繰り返し走査させて露光させる。   As shown in FIG. 1, exposure is performed on a photosensitive layer (preliminarily charged by a charging unit) of a drum-shaped image carrier (photoconductor) 11 that rotates at a predetermined speed with a laser beam 13 according to image data. To form an electrostatic latent image. At this time, the laser beam 13 is periodically deflected using a polygon mirror that rotates at a predetermined speed, and the photosensitive layer of the image carrier 11 that rotates in the sub-scanning direction is in the main scanning direction perpendicular to the sub-scanning direction. And repeatedly exposing.

この例ではローラ形状の像担持体を用いる例を示したが、ローラ形状の回転体により縣架されるベルト形状の像担持体を用いることもできる。そのとき、転写ニップは、ローラ形状の回転体により縣架される部分のベルト形状の像担持体と転写ローラとの間に形成される。   In this example, a roller-shaped image carrier is used. However, a belt-shaped image carrier supported by a roller-shaped rotating body can also be used. At that time, the transfer nip is formed between the belt-shaped image carrier and the transfer roller, which are supported by the roller-shaped rotating body.

次いで、像担持体11の感光層に形成した静電潜像を現像部14から現像ローラ14aを介して供給される粉体トナーによって顕像化してトナー画像を形成させる。その後、転写装置の転写バイアス電源30がトナーと逆極性の転写バイアス電圧を転写部(転写ローラ15)に印加される。この転写バイアス電圧により、上記トナー画像を、給紙部から給紙されて搬送ローラ20、21対から転写装置の転写ローラ7と像担持体1との間に形成される転写ニップへ向けて送り出された転写媒体P上に転写させる。その後、その転写媒体P上のトナー画像を定着装置(定着部)24によって予め調整された適正温度で加圧して定着させ、画像が定着された転写媒体Pを図示しない排紙部に排紙させる。   Next, the electrostatic latent image formed on the photosensitive layer of the image carrier 11 is visualized with powder toner supplied from the developing unit 14 via the developing roller 14a to form a toner image. Thereafter, the transfer bias power supply 30 of the transfer device applies a transfer bias voltage having a polarity opposite to that of the toner to the transfer portion (transfer roller 15). With this transfer bias voltage, the toner image is fed from the paper feed unit and sent out from the pair of transport rollers 20 and 21 toward the transfer nip formed between the transfer roller 7 of the transfer device and the image carrier 1. Transfer onto the transferred transfer medium P. Thereafter, the toner image on the transfer medium P is pressed and fixed at an appropriate temperature adjusted in advance by a fixing device (fixing unit) 24, and the transfer medium P on which the image is fixed is discharged to a paper discharge unit (not shown). .

この定着装置の例24では、図2に示すように、中心部にハロゲンヒータ等の発熱部材1が設置された、円筒状ないし略円筒状の薄肉アルミニウム製の加熱パイプ2を有する。加熱パイプ2内には、加熱パイプ2内に設置されたステー3に固定された加圧用パッド4が設置されている。該加熱パイプ2の外周部には、内側に摺動層、外側に弾性層と離型層を形成したシームレスのニッケル電鋳製の定着ベルト5”が外挿されている。加熱パイプ2は定着ベルト5”を介して対向して加圧ローラ6が設置され、加圧パッド4によって定着ベルト5”を介して加圧ローラ6が接触している。図示しない加圧機構により、加圧パッド4は定着ローラ6方向に付勢されており(あるいは、図示しない加圧機構により、定着ローラ6が加圧パッド4方向に付勢されていてもよい)、定着ベルト5”と加圧ローラ6との間にニップ部が形成されている。定着装置24ではニップ部での加圧により、加圧ローラ6の回転につれて定着ベルト5が従動回転される。ニップ部にトナー画像が形成された転写媒体7が供給されると、転写媒体7は加圧、加熱されてそのトナー画像が定着されながらニップ部を通過する。   As shown in FIG. 2, this fixing device example 24 has a cylindrical or substantially cylindrical thin aluminum heating pipe 2 in which a heating member 1 such as a halogen heater is installed in the center. In the heating pipe 2, a pressurizing pad 4 fixed to a stay 3 installed in the heating pipe 2 is installed. A seamless nickel electroformed fixing belt 5 ″ having a sliding layer on the inside and an elastic layer and a release layer on the outside is extrapolated to the outer periphery of the heating pipe 2. The heating pipe 2 is fixed. A pressure roller 6 is installed oppositely through the belt 5 ″, and the pressure roller 6 is in contact with the pressure belt 4 through the fixing belt 5 ″. Is biased in the direction of the fixing roller 6 (or the fixing roller 6 may be biased in the direction of the pressure pad 4 by a pressure mechanism (not shown)), and the fixing belt 5 ″ and the pressure roller 6 A nip portion is formed between the two. In the fixing device 24, the fixing belt 5 is driven and rotated as the pressure roller 6 rotates due to the pressure at the nip portion. When the transfer medium 7 on which the toner image is formed is supplied to the nip portion, the transfer medium 7 is pressurized and heated to pass through the nip portion while fixing the toner image.

この定着ベルト5のモデル断面図を図3に示す。定着ベルトの基材は、ニッケル電鋳法により形成されたニッケル層51により形成されている。このニッケル層51に銅から構成された銅層が積層されて、熱伝導性を向上される技術が知られている。   A model cross-sectional view of the fixing belt 5 is shown in FIG. The base material of the fixing belt is formed by a nickel layer 51 formed by a nickel electroforming method. A technique is known in which a copper layer made of copper is laminated on the nickel layer 51 to improve thermal conductivity.

無端ベルト状となった基材の内周には、ポリイミドまたはテトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(以下「PFA」とも云う)などの耐熱性樹脂により構成された摺動層54が積層されている。また、基材51の外周には、シリコーンゴムにより構成された弾性層52、および、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体などのフッ素系樹脂により構成された離型層53が、この順で積層されている。   A sliding layer 54 made of a heat-resistant resin such as polyimide or tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (hereinafter also referred to as “PFA”) is laminated on the inner circumference of the endless belt. Has been. Further, an elastic layer 52 made of silicone rubber and a release layer 53 made of fluorine resin such as tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer are arranged in this order on the outer periphery of the substrate 51. Are stacked.

ニッケル電鋳法によって定着用ベルト基材を製造する方法としては次のような工程による。まず、表面を研磨し清浄化したステンレス製の円柱母型をニッケル電鋳浴へ浸漬して通電し、ニッケルを母型表面に析出させる。円柱母型を浴外に引き上げ、析出したニッケル電鋳皮膜を脱型する。上下をカットして必要な長さにする。   A method for manufacturing a fixing belt substrate by nickel electroforming is as follows. First, a stainless steel cylindrical matrix whose surface has been polished and cleaned is immersed in a nickel electroforming bath and energized to deposit nickel on the matrix surface. The cylindrical matrix is pulled out of the bath, and the deposited nickel electroformed film is demolded. Cut the top and bottom to the required length.

このような金属層を基材として用いた定着ベルトを有する定着装置、および、そのような定着装置を備えた画像形成装置において、高速化は常に求められる課題である。   In a fixing device having a fixing belt using such a metal layer as a base material and an image forming apparatus provided with such a fixing device, a high speed is always required.

しかしながら、高速化に取り組む過程で、定着ベルト用基材の耐久性不足が問題となってきた。すなわち、画像形成の高速化により、定着ベルトは従来よりもより高速で回転され、ニップ部で加圧されながら、より短い時間内での変形がくり回されることによって、金属疲労による亀裂等が発生する場合がある。   However, in the process of speeding up, the durability of the fixing belt base material has become a problem. That is, as the image forming speed is increased, the fixing belt is rotated at a higher speed than in the past, and while being pressed at the nip portion, the deformation within a shorter time is repeated, thereby causing cracks due to metal fatigue. May occur.

このような高速化の要求に対して、特許文献1では、定着ベルトの基材として内側からステンレス鋼、銅、ステンレス鋼の順に積層されて形成された定着ベルトが提案されている。ステンレス鋼と銅とが積層されたベルトは圧延等の塑性加工によって形成されるので、電鋳法と比較すると、厚さの均一性で劣り、不均一な加工歪も残留するため耐久性が不足する。   In response to such a demand for high speed, Patent Document 1 proposes a fixing belt formed by laminating stainless steel, copper, and stainless steel in this order from the inside as a base material of the fixing belt. Since belts made of stainless steel and copper are formed by plastic working such as rolling, the thickness uniformity is inferior compared to the electroforming method, and uneven machining strain remains, resulting in insufficient durability. To do.

また、特許文献2では、ニッケル電鋳皮膜を定着ベルト用基材として、その結晶配向比I(200)/I(111)が80以上250以下の結晶配向性を有すると共に、炭素含有量が0.03〜0.10質量%である技術が開示されている。このようなニッケルの結晶配向比が耐久性に寄与するということであるが、ニッケルは熱伝導率が低いためにニッケル単層で定着ベルト用基材として用いた場合に、軸方向で熱の不均一が発生し、この問題は高速化を図ったときに画像欠陥などの問題を生じるとして顕著化する場合がある。   In Patent Document 2, a nickel electroformed film is used as a fixing belt substrate, and the crystal orientation ratio I (200) / I (111) is 80 to 250 and the carbon content is 0. A technique of 0.03 to 0.10% by mass is disclosed. This means that the crystal orientation ratio of nickel contributes to durability. However, since nickel has a low thermal conductivity, when it is used as a base material for a fixing belt with a single nickel layer, heat is not generated in the axial direction. Uniformity occurs, and this problem may become prominent as problems such as image defects occur when the speed is increased.

特許文献3では、ニッケル電鋳皮膜をシームレスベルト基材として、電鋳母型をニッケルのほかに周期表1族、6族、7族、8族から選ばれる少なくとも一種の金属元素を体積分率で10〜10000ppmの割合で含む電解液中に浸漬して電鋳法により製造し、ニッケルの結晶配向比I(200)/I(111)を5.0以上とする技術が開示されている。この技術は有機感光体に関するものであるために熱伝導性に対する配慮がなく、そのまま定着ベルト用基体として使用した場合は軸方向で熱の不均一が発生する場合が想定される。   In Patent Document 3, a nickel electroformed film is used as a seamless belt base material, and an electroforming matrix is made of nickel and at least one metal element selected from Group 1, Group 6, Group 7 and Group 8 in addition to nickel. And a technique for producing a nickel crystal orientation ratio I (200) / I (111) of 5.0 or more by immersing it in an electrolytic solution containing 10 to 10000 ppm. Since this technique relates to an organic photoreceptor, there is no consideration for thermal conductivity, and when it is used as it is as a fixing belt substrate, heat non-uniformity may occur in the axial direction.

本発明は、上述した課題に鑑みなされたものであり、その目的とするところは、耐久性に優れ、高速化に対応できる定着ベルト用基体を提供することを課題とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a fixing belt substrate that has excellent durability and can cope with high speed.

本発明は、請求項1に記載の通り、少なくとも、ニッケルにより構成されたニッケル層と、銅により構成された銅層と、が積層されて構成された定着ベルト用基材において、前記銅層のX線回折分析による、(200)結晶面のピーク強度と(111)結晶面のピーク強度との比から計算される、配向比I(200)/I(111)が0.1以下であることを特徴とする定着ベルト用基材である   According to the first aspect of the present invention, there is provided a fixing belt substrate in which at least a nickel layer made of nickel and a copper layer made of copper are laminated, The orientation ratio I (200) / I (111) calculated from the ratio of the peak intensity of the (200) crystal plane to the peak intensity of the (111) crystal plane is 0.1 or less by X-ray diffraction analysis. It is a base material for a fixing belt characterized by

本発明に係る定着ベルト用基材は、銅層のX線回折分析による、(200)結晶面のピーク強度と(111)結晶面のピーク強度との比から計算される、配向比I(200)/I(111)が0.1以下である構成により、結晶面(111)に配向しているので、銅の層の亀裂発生を低減することができることから、熱伝導性と耐久性に優れ、高速化に対応できる。   The base material for a fixing belt according to the present invention has an orientation ratio I (200) calculated from the ratio of the peak intensity of the (200) crystal plane to the peak intensity of the (111) crystal plane by X-ray diffraction analysis of the copper layer. ) / I (111) is 0.1 or less, and since it is oriented in the crystal plane (111), it is possible to reduce the occurrence of cracks in the copper layer, and thus excellent in thermal conductivity and durability. Can support high speed.

図1は、本発明の実施例で用いる画像形成装置の一例を示すモデル図である。FIG. 1 is a model diagram illustrating an example of an image forming apparatus used in an embodiment of the present invention. 図2は、図1の画像形成装置の定着装置を示すモデル図である。FIG. 2 is a model diagram showing a fixing device of the image forming apparatus of FIG. 図3は、従来技術に係る定着ベルトの断面を示すモデル断面図である。FIG. 3 is a model cross-sectional view showing a cross-section of a fixing belt according to the prior art. 図4は、本発明に係る定着ベルトの断面を示すモデル断面図である。FIG. 4 is a model sectional view showing a section of the fixing belt according to the present invention. 図5は、本発明に係る他の定着ベルトの断面を示すモデル断面図である。FIG. 5 is a model sectional view showing a section of another fixing belt according to the present invention.

本発明の定着ベルト用基材は、ニッケルにより構成されたニッケル層と、銅により構成された銅層と、が積層されて構成されている。   The fixing belt substrate of the present invention is formed by laminating a nickel layer made of nickel and a copper layer made of copper.

定着ベルト用基材の厚さとしては、10μm以上60μm以下であることが好ましい。定着ベルト用基材の厚さが薄すぎると定着ベルト用基材としての強度が足りなる場合があり、また、厚すぎるとベルトとしての柔軟性が低下する場合がある。より好ましい範囲は20μm以上50μm以下である。   The thickness of the fixing belt substrate is preferably 10 μm or more and 60 μm or less. If the fixing belt substrate is too thin, the strength as the fixing belt substrate may be insufficient, and if it is too thick, the flexibility as the belt may be reduced. A more preferable range is 20 μm or more and 50 μm or less.

このような定着ベルト用基材は、まず、ステンレスなどによる電鋳母型を用いて、ニッケル電鋳法により、ニッケルにより構成されたニッケル層を形成する。   For such a fixing belt substrate, first, a nickel layer made of nickel is formed by nickel electroforming using an electroforming mother mold made of stainless steel or the like.

定着ベルト用基材に主として強度を付与するニッケル層の厚さは、後述する銅層の厚さよりも厚いことが好ましい。ニッケル層が薄すぎると、定着ベルトとしたときに十分な耐久性が得られない場合がある。   The thickness of the nickel layer that mainly gives strength to the fixing belt substrate is preferably thicker than the thickness of the copper layer described later. If the nickel layer is too thin, sufficient durability may not be obtained when used as a fixing belt.

電鋳されたニッケル層は母型から取り外し、必要に応じて洗浄し、次いで、銅電鋳を行う。   The electroformed nickel layer is removed from the matrix, washed as necessary, and then copper electroformed.

定着ベルト用基材に主として熱伝導性を付与する、銅により構成された銅層の厚さは、1μm以上であることが好ましい。銅層が薄すぎると、定着ベルトとして十分な熱伝導性を得られない場合がある。より好ましくは5μm以上である。   It is preferable that the thickness of the copper layer made of copper that mainly imparts thermal conductivity to the fixing belt substrate is 1 μm or more. If the copper layer is too thin, sufficient thermal conductivity as a fixing belt may not be obtained. More preferably, it is 5 μm or more.

本発明において、銅層のX線回折分析による、(200)結晶面のピーク強度と(111)結晶面のピーク強度との比から計算される、配向比I(200)/I(111)が0.1以下であることが必要である。0.1超であると、十分な耐久性を有する定着ベルトを得ることができない。   In the present invention, the orientation ratio I (200) / I (111) calculated from the ratio between the peak intensity of the (200) crystal plane and the peak intensity of the (111) crystal plane by X-ray diffraction analysis of the copper layer is It is necessary to be 0.1 or less. If it exceeds 0.1, a fixing belt having sufficient durability cannot be obtained.

すなわち、本発明者等の詳細な検討によれば、銅層とニッケル層とが積層されてなる定着ベルト用基材を用いた定着ベルトでは、銅層から亀裂が発生して破断に至る。しかし、上記特定の配向比とすることにより、銅層の耐久性を著しく向上させることができ、その結果、耐久性に優れた定着ベルトを得ることができる。   That is, according to detailed examinations by the present inventors, in a fixing belt using a fixing belt base material in which a copper layer and a nickel layer are laminated, a crack is generated from the copper layer and breaks. However, by using the above specific orientation ratio, the durability of the copper layer can be remarkably improved, and as a result, a fixing belt having excellent durability can be obtained.

このような銅層は、例えば次のようにして電鋳法によって得られる。
使用する銅電鋳浴として硫酸銅と硫酸とから構成された単純な銅電鋳浴を用いる。すなわち、硫酸銅(II)五水和物CuSO4・5H2Oが60〜100g/L(リットル)、硫酸H2SO4が180〜220g/Lの水溶液を電鋳浴として用いる。電鋳時の浴温度は55±3℃に調整し、母型を回転させながら,1〜5A/dm2の通電で行うことで、上記のような配向比I(200)/I(111)が0.1以下の銅層を設けることができる。
Such a copper layer is obtained, for example, by electroforming as follows.
As a copper electroforming bath to be used, a simple copper electroforming bath composed of copper sulfate and sulfuric acid is used. That is, an aqueous solution of copper (II) sulfate pentahydrate CuSO 4 .5H 2 O of 60 to 100 g / L (liter) and sulfuric acid H 2 SO 4 of 180 to 220 g / L is used as the electroforming bath. The bath temperature at the time of electroforming is adjusted to 55 ± 3 ° C., and the energization ratio 1 (200) / I (111) as described above is obtained by performing energization of 1 to 5 A / dm 2 while rotating the mother die. A copper layer of 0.1 or less can be provided.

ここで、一般的な銅めっき浴に含まれている、ゼラチン(光沢度調整用)や塩酸(光沢度調整用)を添加すると本発明の効果が得られない場合がある。   Here, when gelatin (for glossiness adjustment) or hydrochloric acid (for glossiness adjustment) contained in a general copper plating bath is added, the effects of the present invention may not be obtained.

このように、ニッケルにより構成されたニッケル層と、銅により構成された銅層と、が積層された電鋳品をそのまま、基材として用いてもよい。しかし、このままの状態で保管した場合、銅層表面が酸化されて、定着ベルト加工時での接着性が低下し、十分な耐久性が得られない場合がある。   Thus, an electroformed product in which a nickel layer made of nickel and a copper layer made of copper are stacked may be used as a base material. However, when stored in this state, the copper layer surface is oxidized, the adhesiveness during processing of the fixing belt is lowered, and sufficient durability may not be obtained.

ここで、銅層の、ニッケル層が積層されている面とは反対の面に、保護層を設けることにより上記問題を解決することができる。   Here, the above problem can be solved by providing a protective layer on the surface of the copper layer opposite to the surface on which the nickel layer is laminated.

保護層としては、定着ベルトへの加工時に容易に引きはがすことができる、引きはがし可能な樹脂フィルム等を設けて加工までの期間での酸化を防止させてもよい。あるいは、ポリイミド,ポリアミドイミドなどの耐熱性樹脂層を設け、この耐熱性樹脂層が積層された状態のまま、定着ベルトに加工してもよい。   As the protective layer, a resin film or the like that can be easily peeled off during processing to the fixing belt may be provided to prevent oxidation in the period until processing. Alternatively, a heat-resistant resin layer such as polyimide or polyamideimide may be provided and processed into a fixing belt while the heat-resistant resin layer is laminated.

さらに、保護層としては、ニッケルにより構成された保護層を設けることもできる。この場合、ニッケル層は酸化されにくく、かつ、このニッケルにより構成された保護層による保護により銅層の酸化を防止できる。その結果、定着ベルトとしての使用時の銅層での亀裂発生をより低減させることができるので、高耐久の定着ベルトを得ることができる。このニッケル層は電鋳法で形成することができ、そのときには上記で用いた設備および電鋳浴をそのまま用いることができる。保護層としてニッケル層を設けるときには、その厚さは、定着ベルト用基材の柔軟性を損なわず、かつ、銅層への空気の接触を防止できればよく、例えば0.5μm以上5μm以下とする。   Furthermore, as the protective layer, a protective layer made of nickel can be provided. In this case, the nickel layer is not easily oxidized, and oxidation of the copper layer can be prevented by protection by the protective layer made of nickel. As a result, the occurrence of cracks in the copper layer during use as a fixing belt can be further reduced, so that a highly durable fixing belt can be obtained. This nickel layer can be formed by an electroforming method, in which case the equipment and electroforming bath used above can be used as they are. When the nickel layer is provided as the protective layer, the thickness is not limited to the flexibility of the fixing belt substrate and can prevent air contact with the copper layer. For example, the thickness is 0.5 μm or more and 5 μm or less.

ここで、本発明の定着ベルト用基材は、上記のような2層構成とした後、必要に応じて銅層あるいは保護層が外周側となるように無端ベルト形状に形成し、その後、従来の定着ベルト同様に定着ベルトを得ることができる。   Here, the fixing belt substrate of the present invention has the two-layer structure as described above, and is formed into an endless belt shape so that the copper layer or the protective layer is on the outer peripheral side as necessary. A fixing belt can be obtained in the same manner as the above fixing belt.

具体的には、銅層(保護層)が外周側となるように無限ベルト形状に形成された定着ベルト用基材の外周側に、弾性層および離型層をこの順で積層する。   Specifically, the elastic layer and the release layer are laminated in this order on the outer peripheral side of the fixing belt substrate formed in an infinite belt shape so that the copper layer (protective layer) is on the outer peripheral side.

図4に、本発明に係る定着ベルトの例5のモデル断面図を示す。定着ベルト用基材40は、ニッケル層41、銅層42、および、ニッケルにより形成された保護層43がこの順で積層されて形成されている。そして、その銅層42側(保護層43側)に、弾性層44と離型層45とがこの順で積層されている。また、ニッケル層41側(定着ベルト用基材40の内周側)には、摺動層46が積層されている。   FIG. 4 is a cross-sectional view of a model of Example 5 of the fixing belt according to the present invention. The fixing belt substrate 40 is formed by laminating a nickel layer 41, a copper layer 42, and a protective layer 43 made of nickel in this order. The elastic layer 44 and the release layer 45 are laminated in this order on the copper layer 42 side (protective layer 43 side). Further, a sliding layer 46 is laminated on the nickel layer 41 side (the inner peripheral side of the fixing belt substrate 40).

また、図5に、本発明に係る定着ベルトの他の例5’のモデル断面図を示す。定着ベルト用基材40’は、ニッケル層41、および、銅層42が積層されて形成されている。そして、その銅層42側に、弾性層44と離型層45とがこの順で積層されている。また、ニッケル層41側(定着ベルト用基材40’の内周側)には、摺動層46が積層されている。   FIG. 5 shows a model cross-sectional view of another example 5 'of the fixing belt according to the present invention. The fixing belt substrate 40 ′ is formed by laminating a nickel layer 41 and a copper layer 42. An elastic layer 44 and a release layer 45 are laminated in this order on the copper layer 42 side. Further, a sliding layer 46 is laminated on the nickel layer 41 side (the inner peripheral side of the fixing belt substrate 40 ′).

ここで、弾性層44により、定着ベルトは画像定着時に画像記録紙やトナーにより形成される凹凸に追従することができ、安定した画像定着が可能となる。このような弾性層は、例えばシリコーンゴムを厚さ100μm以上200μm以下となるように積層して形成する。シリコーンゴムを用いることにより定着ベルトとしたときに求められる十分な耐熱性を得ることができる。弾性層の厚さが薄すぎると、画像定着時に画像記録紙やトナーにより形成される凹凸に追従することができず、定着不良となる場合があり、厚すぎると定着のための熱伝達性能が悪くなり部分的に定着不良となる場合がある。より好ましい厚さとしては100μm以上150μm以下である。   Here, the elastic layer 44 allows the fixing belt to follow the unevenness formed by the image recording paper or toner during image fixing, and enables stable image fixing. Such an elastic layer is formed by, for example, laminating silicone rubber so as to have a thickness of 100 μm to 200 μm. By using silicone rubber, sufficient heat resistance required when a fixing belt is obtained can be obtained. If the elastic layer is too thin, it may not be able to follow the irregularities formed by the image recording paper or toner during image fixing, resulting in poor fixing, and if it is too thick, heat transfer performance for fixing may be caused. It may worsen and partially cause poor fixing. A more preferable thickness is 100 μm or more and 150 μm or less.

また、離型層の存在によって、定着ベルトの表面にトナーやその他の汚れの付着を防止することができるので、長期間にわたって定着ベルトの機能を維持できる。このような離型層としては、例えば、PFAを厚さ5μm以上40μm以下となるように積層して形成する。離型層の厚さが薄すぎると、離型層に穴やひび割れなどの欠陥が生じてしまい、耐久性が不足する場合がある。厚すぎると定着のための熱伝達性能が悪くなることや画像定着時に画像記録紙やトナーにより形成される凹凸に追従することができなくなり、定着不良となる場合がある。より好ましい厚さとしては5μm以上10μm以下である。   Further, the presence of the release layer can prevent the toner and other dirt from adhering to the surface of the fixing belt, so that the function of the fixing belt can be maintained for a long period of time. As such a release layer, for example, PFA is laminated and formed so as to have a thickness of 5 μm to 40 μm. When the thickness of the release layer is too thin, defects such as holes and cracks are generated in the release layer, and durability may be insufficient. If it is too thick, the heat transfer performance for fixing may deteriorate, or it may not be possible to follow the unevenness formed by the image recording paper or toner during image fixing, resulting in poor fixing. A more preferable thickness is 5 μm or more and 10 μm or less.

なお、上述の様に、定着ベルト5および5’では、それらの内周に摺動層46が設けられている。摺動層46は、図2に示す定着装置24の定着ベルトとして用いられたときに、加圧用パッド4とに接して、かつ、転写媒体および加圧ローラの動きに追随して定着ベルトが回転できるようにする機能を有する。   As described above, in the fixing belts 5 and 5 ′, the sliding layer 46 is provided on the inner periphery thereof. When the sliding layer 46 is used as the fixing belt of the fixing device 24 shown in FIG. 2, the fixing belt rotates in contact with the pressing pad 4 and following the movement of the transfer medium and the pressing roller. It has a function to enable it.

このような摺動層は、定着ベルト用基材の内周面に、摺動性が良好なポリイミドまたはPFAからなる層を厚さが5μm以上30μm以下となるように積層して形成する。摺動層の厚さが薄すぎると、磨耗により比較的短期に基材が露出し、耐久性が不足する場合があり、厚すぎると定着のための熱伝達性能が悪くなり定着不良となる場合がある。より好ましい厚さとしては10μm以上20μm以下である。   Such a sliding layer is formed by laminating a layer made of polyimide or PFA having good slidability on the inner peripheral surface of the fixing belt substrate so that the thickness is 5 μm or more and 30 μm or less. If the sliding layer is too thin, the substrate may be exposed in a relatively short period of time due to wear, resulting in insufficient durability. If it is too thick, heat transfer performance for fixing may be deteriorated, resulting in poor fixing. There is. A more preferable thickness is 10 μm or more and 20 μm or less.

上記のような層構造とした後、必要に応じて所定の長さとなるように切断する。本発明の定着ベルト用基材の両端面は、その表面粗さ評価時の最大断面高さRtを2μm以下とすることが好ましい。このような構成により、定着ベルトの破断の起点となる可能性の高い箇所をなくし、その結果、耐久性の良好な定着ベルトを得ることができる。このような最大断面高さRtを得るためには、例えば、定着ベルトの両端面部を切断してから研磨紙や弾性砥石を使用して研磨を施す。   After forming the layer structure as described above, it is cut to a predetermined length as necessary. The both end faces of the fixing belt substrate of the present invention preferably have a maximum cross-sectional height Rt of 2 μm or less when the surface roughness is evaluated. With such a configuration, it is possible to eliminate a portion that is highly likely to be the starting point of the fracture of the fixing belt, and as a result, it is possible to obtain a fixing belt with good durability. In order to obtain such a maximum cross-sectional height Rt, for example, the both end surfaces of the fixing belt are cut and then polished using an abrasive paper or an elastic grindstone.

このようにして得た本発明の定着ベルトは、例えば図2に示した定着装置を有する、例えば図1に示した画像形成装置に組み込んで用いることができる。また、その他の構成の定着装置、例えば、図2に示した定着装置24と異なり、加熱パイプ2がないタイプの定着装置でも好適に用いることができる。そのような定着装置では、発熱部材が定着ベルトを直接加熱し、その定着ベルトの熱によりニップ部でトナーが加熱される。   The fixing belt of the present invention thus obtained can be used by being incorporated in, for example, the image forming apparatus shown in FIG. 1 having the fixing device shown in FIG. Further, unlike the fixing device having other configurations, for example, the fixing device 24 shown in FIG. In such a fixing device, the heat generating member directly heats the fixing belt, and the toner is heated at the nip portion by the heat of the fixing belt.

以上、本発明について、好ましい実施形態を挙げて説明したが、本発明の定着ベルト用基材、定着ベルト、定着装置、および、画像形成装置は上記実施形態の構成に限定されるものではない。   While the present invention has been described with reference to the preferred embodiments, the fixing belt substrate, the fixing belt, the fixing device, and the image forming apparatus of the present invention are not limited to the configurations of the above embodiments.

当業者は、従来公知の知見に従い、本発明の定着ベルト用基材、定着ベルト、定着装置、および、画像形成装置を適宜改変することができる。このような改変によってもなお本発明の定着ベルト用基材、定着ベルト、定着装置、および、画像形成装置の構成を具備する限り、もちろん、本発明の範疇に含まれるものである。   A person skilled in the art can appropriately modify the fixing belt substrate, the fixing belt, the fixing device, and the image forming apparatus of the present invention in accordance with conventionally known knowledge. Of course, such modifications are included in the scope of the present invention as long as they include the configurations of the fixing belt substrate, the fixing belt, the fixing device, and the image forming apparatus of the present invention.

<本発明に係る定着ベルト用基材1>
ニッケル層、銅層、ニッケルにより構成された保護層の3層構造の定着ベルト用基材(図4における定着ベルト用基材40に相当)を、3種、銅層の形成条件を変えて作製した。
<Fixing Belt Substrate 1 According to the Present Invention>
A three-layer fixing belt base material (corresponding to the fixing belt base material 40 in FIG. 4) of a three-layer structure of a nickel layer, a copper layer, and a protective layer made of nickel is produced by changing the formation conditions of the copper layer. did.

まず、電鋳法によって定着ベルト用基材を作製した。
電鋳に使用する母型は、ステンレス製(SUS316)で、電鋳に用いられる部分は太さが30mmの円柱状である。その表面は、電鋳皮膜の剥離・脱型が容易となるように、表面粗さ(心線平均粗さ)Raが0.02μm以下になるように表面加工されている。上記の母型と、この母型と相対する位置にアノードと、を電鋳槽内に設置した。
First, a fixing belt substrate was prepared by electroforming.
The mother die used for electroforming is made of stainless steel (SUS316), and the portion used for electroforming is a cylindrical shape with a thickness of 30 mm. The surface is processed so that the surface roughness (core average roughness) Ra is 0.02 μm or less so that the electroforming film can be easily peeled and removed. The above master mold and an anode at a position opposite to the master mold were installed in the electroforming tank.

用いた電鋳浴は、ニッケル塩として引張り応力側になりづらく高速電鋳が可能なスルファミン酸ニッケルを525g/L、pH緩衝剤としてほう酸を33g/L、ニッケルハロゲン化物として低応力の臭化ニッケルを3g/Lを基本の浴組成とした。その他の添加剤としては以下のようにした。ピット防止剤としてドデシル硫酸ナトリウムを0.02g/L。1次光沢剤としてp−トルエンスルホンアミドを0.08g/L。2次光沢剤として2−ブチン−1、4−ジオールを0.1g/L。電鋳皮膜の耐熱性向上のためにホスフィン酸ナトリウム(次亜りん酸ナトリウム)を0.2g/L。   The electroforming bath used was 525 g / L of nickel sulfamate, which can be easily electrocasted as a nickel salt and does not easily reach the tensile stress side, 33 g / L of boric acid as a pH buffer, and low stress nickel bromide as a nickel halide. The basic bath composition was 3 g / L. Other additives were as follows. 0.02 g / L of sodium dodecyl sulfate as a pit inhibitor. 0.08 g / L of p-toluenesulfonamide as the primary brightener. As a secondary brightener, 0.1 g / L of 2-butyne-1,4-diol. 0.2 g / L of sodium phosphinate (sodium hypophosphite) to improve the heat resistance of the electroformed film.

電鋳浴のpHは4、電鋳時の浴温度は55±3℃に調整した。
母型をその円柱の軸を中心にして回転させながら、電流密度を3A/dm2として通電し、厚さが30μmのニッケル層を形成した。その後、表面にニッケル層が形成された母型を電鋳槽から引き上げ、水により洗浄した。
The pH of the electroforming bath was adjusted to 4, and the bath temperature during electroforming was adjusted to 55 ± 3 ° C.
While rotating the mother die around the axis of the cylinder, a current density of 3 A / dm 2 was applied to form a nickel layer having a thickness of 30 μm. Thereafter, the mother mold having a nickel layer formed on the surface was pulled up from the electroforming tank and washed with water.

次いで、銅電鋳をおこなった。使用した銅電鋳浴は、硫酸銅(II)五水和物が80g/Lの濃度で、硫酸が200g/Lの濃度で、それぞれ添加された水溶液である。電鋳時の浴温度は55±3℃に調整し、母型を回転させながら、電流密度を3〜5A/dm2の範囲で異なる3条件で通電し、厚さが10μmの銅層を形成した。その後、母型を電鋳槽から引き上げ、水により洗浄し、乾燥させた。 Subsequently, copper electroforming was performed. The copper electroforming bath used was an aqueous solution in which copper (II) sulfate pentahydrate was added at a concentration of 80 g / L and sulfuric acid at a concentration of 200 g / L. The bath temperature at the time of electroforming is adjusted to 55 ± 3 ° C., and a current density is applied in three different conditions in the range of 3 to 5 A / dm 2 while rotating the mother die to form a 10 μm thick copper layer. did. Thereafter, the mother mold was lifted from the electroforming tank, washed with water, and dried.

これら3種の中間品について、その銅層の表面からX線回折分析を行って(200)結晶面のピーク強度と(111)結晶面のピーク強度とを測定し、これらの比から計算される、配向比I(200)/I(111)(以降、「配向比」とも云う)を算出した。結果を表1に示す。また、X線回折分析の条件を表2に示した。   About these three kinds of intermediate products, the X-ray diffraction analysis is performed from the surface of the copper layer, the peak intensity of the (200) crystal plane and the peak intensity of the (111) crystal plane are measured, and calculated from these ratios. The orientation ratio I (200) / I (111) (hereinafter also referred to as “orientation ratio”) was calculated. The results are shown in Table 1. The conditions for X-ray diffraction analysis are shown in Table 2.

Figure 2014194522
Figure 2014194522

Figure 2014194522
Figure 2014194522

その後、上記でのニッケル層形成と同様にして、ただし、層厚が1μmの、ニッケルにより構成された保護層を形成した。   Thereafter, in the same manner as the nickel layer formation described above, a protective layer made of nickel having a layer thickness of 1 μm was formed.

保護層形成後、表面に定着ベルト用基材が形成された母型を冷水中に浸漬し、熱膨張差により母型と定着ベルト用基材と間に隙間を生じさせて母型から定着ベルト用基材を脱型させ、3種の本発明に係る定着ベルト用基材1((1)〜(3))を得た。   After forming the protective layer, the mother die having a fixing belt substrate formed on the surface thereof is immersed in cold water, and a gap is formed between the mother die and the fixing belt substrate due to a difference in thermal expansion, thereby the fixing belt from the mother die. The base material for a mold was demolded to obtain three types of base materials 1 ((1) to (3)) for a fixing belt according to the present invention.

<本発明に係る定着ベルト用基材2>
上記定着ベルト用基材1(2)と同様にして、但し、保護層を設けずに、すなわち、ニッケル層と銅層との2層構造の定着ベルト用基材(図5における定着ベルト用基材40’に相当)を作製した。このとき、(200)結晶面のピーク強度と(111)結晶面のピーク強度との比から計算される、銅層の配向比I(200)/I(111)を表1に併せて示した。
<Fixing Belt Substrate 2 According to the Present Invention>
Similar to the fixing belt substrate 1 (2) except that a protective layer is not provided, that is, a fixing belt substrate having a two-layer structure of a nickel layer and a copper layer (the fixing belt substrate in FIG. 5). Material 40 ′). At this time, the orientation ratio I (200) / I (111) of the copper layer calculated from the ratio between the peak intensity of the (200) crystal plane and the peak intensity of the (111) crystal plane is also shown in Table 1. .

<本発明に係る定着ベルト用基材3>
上記定着ベルト用基材1(3)と同様にして、但し、ニッケル層と銅層の厚さをともに20μmとして、すなわち、ニッケル層、銅層、保護層の3層構造の定着ベルト用基材を作製した。このときの銅層の配向比I(200)/I(111)を表1に併せて示した。
<Fixing Belt Substrate 3 According to the Present Invention>
Similar to the fixing belt substrate 1 (3), except that the thickness of both the nickel layer and the copper layer is 20 μm, that is, the three-layer structure of the nickel layer, the copper layer, and the protective layer. Was made. The orientation ratio I (200) / I (111) of the copper layer at this time is also shown in Table 1.

<比較例1の定着ベルト用基材>
上記実施例の定着ベルト用基材1(1)と同様にして、但し、銅電鋳浴に光沢剤であるゼラチンを10ppmの濃度となるように添加して、3層構造の定着ベルト用基材を作製した。このときの銅層の配向比I(200)/I(111)を表1に併せて示した。
<Fixing Belt Substrate of Comparative Example 1>
In the same manner as the fixing belt substrate 1 (1) of the above embodiment, except that a brightening agent gelatin was added to the copper electroforming bath so as to have a concentration of 10 ppm. A material was prepared. The orientation ratio I (200) / I (111) of the copper layer at this time is also shown in Table 1.

<比較例2の定着ベルト用基材>
上記実施例の定着ベルト用基材1(1)および1(2)と同様にして、但し、銅電鋳浴に光沢剤である塩酸を60ppmの濃度となるように添加して、3層構造の定着ベルト用基材をそれぞれ作製した。比較例2の定着ベルト用基材2(1)および2(2)である。このときの銅層の配向比I(200)/I(111)を表1に併せて示した。
<Fixing Belt Substrate of Comparative Example 2>
Similar to the fixing belt substrates 1 (1) and 1 (2) of the above examples, except that a brightening agent hydrochloric acid is added to the copper electroforming bath to a concentration of 60 ppm to form a three-layer structure. Each fixing belt substrate was prepared. These are fixing belt substrates 2 (1) and 2 (2) of Comparative Example 2. The orientation ratio I (200) / I (111) of the copper layer at this time is also shown in Table 1.

<比較例3の定着ベルト用基材>
上記定着ベルト用基材1(2)および1(3)と同様にして、但し、銅電鋳浴にゼラチンを10ppm、塩酸を60ppmの濃度となるように、それぞれ添加して、3層構造の定着ベルト用基材(比較例2の定着ベルト用基材3(1)および3(2))をそれぞれ作製した。このときの銅層の配向比I(200)/I(111)を表1に併せて示した。
<Fixing Belt Substrate of Comparative Example 3>
In the same manner as the fixing belt substrates 1 (2) and 1 (3), except that gelatin is added to the copper electroforming bath to a concentration of 10 ppm and hydrochloric acid to 60 ppm. Fixing belt substrates (fixing belt substrates 3 (1) and 3 (2) of Comparative Example 2) were respectively produced. The orientation ratio I (200) / I (111) of the copper layer at this time is also shown in Table 1.

<定着ベルトの作製>
上記10種類の定着ベルト用基材を用いて、定着ベルトを作製した。
それぞれの定着ベルト用基材の外周、すなわち、銅層(あるいは保護層)側に弾性層として厚さ120μmのシリコーンゴム層(弾性層)を、スプレー塗装工法によりプリカーサ剤を塗布し、その後150℃で2時間、加熱処理して設けた。ついで離型層として厚さ10μmのPFA層(離型層)を、プリカーサ剤をスプレー塗装工法により塗布し、その後340℃で2時間、加熱処理して設けた。
<Preparation of fixing belt>
A fixing belt was produced using the ten types of fixing belt substrates.
A silicone rubber layer (elastic layer) having a thickness of 120 μm is applied as an elastic layer on the outer periphery of each fixing belt substrate, that is, on the copper layer (or protective layer) side, and a precursor agent is applied by a spray coating method. And heat-treated for 2 hours. Then, a PFA layer (release layer) having a thickness of 10 μm was applied as a release layer by applying a precursor agent by a spray coating method, and then heat-treated at 340 ° C. for 2 hours.

<定着ベルトの作製>
さらに、定着ベルト用基材の内周面に厚さ15μmのポリイミド層(潤滑層)を塗布し、その後、200℃、30分間、加熱処理して設けた。
<Preparation of fixing belt>
Further, a polyimide layer (lubricant layer) having a thickness of 15 μm was applied to the inner peripheral surface of the fixing belt substrate, and then heat-treated at 200 ° C. for 30 minutes.

次いでこれら中間体の両端の不要部を切断し、その後、研磨紙を弾性体に巻きつけて構成した工具により研磨を施し、定着ベルト用基材部分の両端面の表面粗さ評価時の最大断面高さRtを2μm以下の、長さが370mmの定着ベルトをそれぞれ得た。   Next, unnecessary portions at both ends of these intermediate bodies are cut, and then polished with a tool formed by winding abrasive paper around an elastic body, and the maximum cross section at the time of evaluating the surface roughness of both end surfaces of the fixing belt substrate portion A fixing belt having a height Rt of 2 μm or less and a length of 370 mm was obtained.

<定着ベルトの評価>
上記で得た、計10種類の定着ベルトの評価を行った。
図1にモデル的に示す画像形成装置の定着装置に、それぞれ定着ベルトとして取り付け、同条件でA4版40万枚の定着操作(用紙はその短辺方向に供給)をおこなった。このとき、定着ベルトの亀裂発生の有無、あるいは、破断の有無を調べた。定着操作中に亀裂発生、あるいは、破断が生じたときには、そのときまでの処理枚数(1万枚単位)を調べた。結果を表1に併せて示す。
<Evaluation of fixing belt>
A total of 10 types of fixing belts obtained above were evaluated.
1 were attached as fixing belts to the fixing device of the image forming apparatus shown as a model in FIG. 1, and a fixing operation of 400,000 A4 plates (paper was supplied in the short side direction) was performed under the same conditions. At this time, the presence or absence of cracks in the fixing belt or the presence or absence of breakage was examined. When cracks or breaks occurred during the fixing operation, the number of processed sheets (in units of 10,000 sheets) until that time was examined. The results are also shown in Table 1.

表1から、X線回折分析による、配向比I(200)/I(111)が0.1以下である本発明に係る定着ベルト用基材を用いた定着ベルトは、優れた耐久性を有することが理解される。また、これら本発明に係る定着ベルトでは、定着むらの発生がなく、得られた画像はベタ画像においても全体が均一状態であると良好で、銅層による、高い温度むらの発生防止効果が確認された。   From Table 1, the fixing belt using the fixing belt substrate according to the present invention having an orientation ratio I (200) / I (111) of 0.1 or less by X-ray diffraction analysis has excellent durability. It is understood. Further, in the fixing belt according to the present invention, there is no occurrence of uneven fixing, and the obtained image is good even when the whole image is uniform, and it is confirmed that the copper layer prevents the occurrence of high temperature unevenness. It was done.

なお、上記、着ベルト用基材1(2)と同様にして作製した定着ベルト用基材を用い、上記同様に弾性層、離型層、および、潤滑層を形成し、両端の切断後の端面の研磨を行わずに作製した定着ベルトを作製した。その定着ベルト用基材部分の両端面の表面粗さ評価時の最大断面高さRtは2.2μmであり、この定着ベルトを上記同様に評価したところ、35万枚の定着動作で破断が生じた。   In addition, using the fixing belt substrate produced in the same manner as the wearing belt substrate 1 (2), an elastic layer, a release layer, and a lubricating layer were formed in the same manner as described above, and both ends were cut. A fixing belt produced without polishing the end face was produced. The maximum cross-sectional height Rt at the time of evaluating the surface roughness of the both end surfaces of the fixing belt substrate portion is 2.2 μm. When this fixing belt is evaluated in the same manner as described above, fracture occurs in the fixing operation of 350,000 sheets. It was.

1 発熱部材
2 加熱パイプ
3 ステー
4 加圧用パッド
5、5’ 本発明に係る定着ベルトの例
5” 従来技術に係る定着ベルト
6 加圧ローラ
11 像担持体
13 レーザ光
14 現像部
14a 現像ローラ
15 転写ローラ
20、21 搬送ローラ
24 定着装置
40、40’ 定着ベルト用基材
41 ニッケル層
42 銅層
43 保護層
44 弾性層
45 離型層
46 摺動層
P 記録媒体
DESCRIPTION OF SYMBOLS 1 Heat generating member 2 Heating pipe 3 Stay 4 Pressing pad 5, 5 'Example of fixing belt according to the present invention 5 "Fixing belt according to the prior art 6 Pressure roller 11 Image carrier 13 Laser beam 14 Developing section 14a Developing roller 15 Transfer roller 20, 21 Conveying roller 24 Fixing device 40, 40 ′ Fixing belt substrate 41 Nickel layer 42 Copper layer 43 Protective layer 44 Elastic layer 45 Release layer 46 Sliding layer P Recording medium

特開2010−217347号公報JP 2010-217347 A 特開2004‐183034号公報JP 2004-183034 A 特開2006−84718号公報JP 2006-84718 A

Claims (8)

少なくとも、ニッケルにより構成されたニッケル層と、銅により構成された銅層と、が積層されて構成された定着ベルト用基材において、
前記銅層のX線回折分析による、(200)結晶面のピーク強度と(111)結晶面のピーク強度との比から計算される、配向比I(200)/I(111)が0.1以下であることを特徴とする定着ベルト用基材。
At least, a fixing belt substrate configured by laminating a nickel layer composed of nickel and a copper layer composed of copper,
The orientation ratio I (200) / I (111) calculated from the ratio of the peak intensity of the (200) crystal plane to the peak intensity of the (111) crystal plane is 0.1 by X-ray diffraction analysis of the copper layer. A fixing belt substrate characterized by the following:
前記銅層の、前記ニッケル層が積層されている面とは反対の面に、保護層が設けられていることを特徴とする請求項1に記載の定着ベルト用基材。   The fixing belt substrate according to claim 1, wherein a protective layer is provided on a surface of the copper layer opposite to a surface on which the nickel layer is laminated. 前記保護層がニッケルにより構成されていることを特徴とする請求項1または請求項2に記載の定着ベルト用基材。   The fixing belt substrate according to claim 1, wherein the protective layer is made of nickel. 前記定着ベルト用基材の厚さが20μm以上50μm以下であり、かつ、前記ニッケル層の厚さが、前記銅層の厚さよりも厚いことを特徴とする請求項1ないし請求項3のいずれか1項に記載の定着ベルト用基材。   The thickness of the base material for fixing belt is 20 μm or more and 50 μm or less, and the thickness of the nickel layer is thicker than the thickness of the copper layer. 2. A fixing belt substrate according to item 1. 請求項1ないし請求項4のいずれかに記載の定着ベルト用基材を有する定着ベルトであって、
定着ベルト用基材が、前記銅層側が外周となる無端ベルト形状とされており、かつ、
前記定着ベルト用基材の前記外周側に、弾性層および離型層がこの順で積層されていることを特徴とする定着ベルト。
A fixing belt having the fixing belt substrate according to any one of claims 1 to 4,
The fixing belt base material has an endless belt shape with the copper layer side as the outer periphery, and
A fixing belt, wherein an elastic layer and a release layer are laminated in this order on the outer peripheral side of the fixing belt substrate.
前記定着ベルト用基材の両端面の表面粗さ評価時の最大断面高さRtが2μm以下であることを特徴とする請求項5に記載の定着ベルト。   The fixing belt according to claim 5, wherein the maximum cross-sectional height Rt when the surface roughness of both end faces of the fixing belt substrate is evaluated is 2 μm or less. 請求項1ないし請求項4のいずれかに記載の定着ベルト用基材を有することを特徴とする定着装置。   A fixing device comprising the fixing belt substrate according to claim 1. 請求項1ないし請求項4のいずれかに記載の定着ベルト用基材を有することを特徴とする画像形成装置。   An image forming apparatus comprising the fixing belt substrate according to claim 1.
JP2013263678A 2013-02-26 2013-12-20 Base material for fixing belt, fixing belt, fixing device, and image forming apparatus Pending JP2014194522A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013263678A JP2014194522A (en) 2013-02-26 2013-12-20 Base material for fixing belt, fixing belt, fixing device, and image forming apparatus
US14/185,120 US9291969B2 (en) 2013-02-26 2014-02-20 Base for fixing belt, fixing belt, fixing device, and image forming apparatus
US15/048,426 US9897954B2 (en) 2013-02-26 2016-02-19 Base for fixing belt, fixing belt, fixing device, and image forming apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013035684 2013-02-26
JP2013035684 2013-02-26
JP2013263678A JP2014194522A (en) 2013-02-26 2013-12-20 Base material for fixing belt, fixing belt, fixing device, and image forming apparatus

Publications (1)

Publication Number Publication Date
JP2014194522A true JP2014194522A (en) 2014-10-09

Family

ID=51388300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013263678A Pending JP2014194522A (en) 2013-02-26 2013-12-20 Base material for fixing belt, fixing belt, fixing device, and image forming apparatus

Country Status (2)

Country Link
US (2) US9291969B2 (en)
JP (1) JP2014194522A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10185259B2 (en) 2016-03-18 2019-01-22 Ricoh Company, Ltd. Endless belt, fixing device, image forming apparatus, and method of manufacturing endless belt

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014194522A (en) * 2013-02-26 2014-10-09 Ricoh Co Ltd Base material for fixing belt, fixing belt, fixing device, and image forming apparatus
JP2014211630A (en) * 2013-04-03 2014-11-13 Nok株式会社 Fixing metal multi-layer member
JP6079443B2 (en) 2013-05-01 2017-02-15 株式会社リコー Fixing belt substrate, fixing belt, fixing device, and image forming apparatus
CN106483808A (en) * 2015-08-31 2017-03-08 株式会社远藤制作所 Using stainless fixing apparatus
US20180067429A1 (en) * 2016-09-02 2018-03-08 Kabushiki Kaisha Toshiba Fixing belt and fixing apparatus
JP7293828B2 (en) * 2019-04-11 2023-06-20 富士フイルムビジネスイノベーション株式会社 Fixing member, fixing device, and image forming apparatus
JP7243468B2 (en) 2019-06-06 2023-03-22 株式会社リコー Fixing belt, fixing device, and image forming apparatus
JP7354719B2 (en) * 2019-09-24 2023-10-03 富士フイルムビジネスイノベーション株式会社 Fixing member, fixing device, and image forming device
JP7363267B2 (en) * 2019-09-24 2023-10-18 富士フイルムビジネスイノベーション株式会社 Fixing member, fixing device, and image forming device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04195052A (en) * 1990-11-28 1992-07-15 Hitachi Ltd Photosetting resist composition and printing plate using same
JP2002332592A (en) * 2000-07-07 2002-11-22 Hitachi Metals Ltd R-t-b-base magnet and electrolytic copper plating method for the same
JP2004086083A (en) * 2002-08-29 2004-03-18 Ricoh Co Ltd End surface machining method for nickel seamless belt for image forming apparatus
JP2007182623A (en) * 2005-12-08 2007-07-19 Mitsui Mining & Smelting Co Ltd Method for producing thin metal product
JP2008003459A (en) * 2006-06-26 2008-01-10 Shin Etsu Polymer Co Ltd Endless belt and image forming apparatus
JP2009025565A (en) * 2007-07-19 2009-02-05 Fuji Xerox Co Ltd Fixing member, manufacturing method of fixing member, fixing device, and image forming apparatus
JP2009295656A (en) * 2008-06-03 2009-12-17 Sumitomo Metal Mining Co Ltd Substrate for flexible wiring board and method for manufacturing the same
US20100021748A1 (en) * 2008-07-25 2010-01-28 Xerox Corporation Metallization process for making fuser members
JP2010181492A (en) * 2009-02-03 2010-08-19 Fuji Xerox Co Ltd Endless belt, fixing device and image forming apparatus
JP2010217841A (en) * 2009-03-19 2010-09-30 Konica Minolta Business Technologies Inc Fixing device and image forming device
JP2012042496A (en) * 2010-08-12 2012-03-01 Konica Minolta Business Technologies Inc Image forming apparatus

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026990A (en) 1998-07-10 2000-01-25 Kobe Steel Ltd Electroformed belt excellent in fatigue strength
US6564033B2 (en) * 2000-12-12 2003-05-13 Canon Kabushiki Kaisha Fixing belt and image heating and fixing apparatus
US6782230B2 (en) * 2002-06-11 2004-08-24 Canon Kabushiki Kaisha Fixing belt, and image heat fixing assembly
JP4318909B2 (en) 2002-12-02 2009-08-26 シンジーテック株式会社 Metal belt and coated belt
JP2005089790A (en) 2003-09-12 2005-04-07 Ricoh Co Ltd Seamless belt substrate, production method therefor, and seamless belt for heat fixing
JP2005165291A (en) 2003-11-12 2005-06-23 Canon Inc Endless metal belt, fixing belt and heat fixing device
JP4444648B2 (en) * 2003-12-25 2010-03-31 シンジーテック株式会社 Fixing belt
JP2006084718A (en) 2004-09-15 2006-03-30 Ricoh Co Ltd Cylindrical seamless nickel belt, method for manufacturing same, and functionally separated organic photoreceptor
EP1693716B1 (en) * 2005-02-21 2017-01-04 Canon Kabushiki Kaisha Heat fixing member and heat fixing assembly
JP4612862B2 (en) * 2005-04-28 2011-01-12 キヤノン株式会社 Image heating device
JP5099749B2 (en) 2006-03-22 2012-12-19 キヤノン株式会社 Endless metal belt, fixing belt using the same, and heat fixing device
JP5321788B2 (en) 2007-05-23 2013-10-23 ソニー株式会社 Secondary battery current collector, secondary battery negative electrode, secondary battery and electronic device
JP5470936B2 (en) 2009-03-13 2014-04-16 富士ゼロックス株式会社 Endless belt, fixing device and image forming apparatus
EP2515908A2 (en) * 2009-12-22 2012-10-31 Merck Sharp & Dohme Corp. 1,4-substituted piperazine derivatives and methods of use thereof
JP2012168218A (en) 2011-02-10 2012-09-06 Achilles Corp Metal belt
JP5875417B2 (en) * 2011-03-29 2016-03-02 キヤノン株式会社 Image heating device
JP5638032B2 (en) * 2012-06-19 2014-12-10 京セラドキュメントソリューションズ株式会社 Fixing apparatus and image forming apparatus having the same
JP2014194522A (en) * 2013-02-26 2014-10-09 Ricoh Co Ltd Base material for fixing belt, fixing belt, fixing device, and image forming apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04195052A (en) * 1990-11-28 1992-07-15 Hitachi Ltd Photosetting resist composition and printing plate using same
JP2002332592A (en) * 2000-07-07 2002-11-22 Hitachi Metals Ltd R-t-b-base magnet and electrolytic copper plating method for the same
JP2004086083A (en) * 2002-08-29 2004-03-18 Ricoh Co Ltd End surface machining method for nickel seamless belt for image forming apparatus
JP2007182623A (en) * 2005-12-08 2007-07-19 Mitsui Mining & Smelting Co Ltd Method for producing thin metal product
JP2008003459A (en) * 2006-06-26 2008-01-10 Shin Etsu Polymer Co Ltd Endless belt and image forming apparatus
JP2009025565A (en) * 2007-07-19 2009-02-05 Fuji Xerox Co Ltd Fixing member, manufacturing method of fixing member, fixing device, and image forming apparatus
JP2009295656A (en) * 2008-06-03 2009-12-17 Sumitomo Metal Mining Co Ltd Substrate for flexible wiring board and method for manufacturing the same
US20100021748A1 (en) * 2008-07-25 2010-01-28 Xerox Corporation Metallization process for making fuser members
JP2010181492A (en) * 2009-02-03 2010-08-19 Fuji Xerox Co Ltd Endless belt, fixing device and image forming apparatus
JP2010217841A (en) * 2009-03-19 2010-09-30 Konica Minolta Business Technologies Inc Fixing device and image forming device
JP2012042496A (en) * 2010-08-12 2012-03-01 Konica Minolta Business Technologies Inc Image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10185259B2 (en) 2016-03-18 2019-01-22 Ricoh Company, Ltd. Endless belt, fixing device, image forming apparatus, and method of manufacturing endless belt

Also Published As

Publication number Publication date
US9897954B2 (en) 2018-02-20
US9291969B2 (en) 2016-03-22
US20140241771A1 (en) 2014-08-28
US20160170352A1 (en) 2016-06-16

Similar Documents

Publication Publication Date Title
JP2014194522A (en) Base material for fixing belt, fixing belt, fixing device, and image forming apparatus
JP4930026B2 (en) Laminated body, endless belt, fixing device and image forming apparatus
US20140169848A1 (en) Image heating apparatus and image heating rotational body to be mounted on the image heating apparatus
US8224221B2 (en) Endless belt including a metal layer having low residual strain, fixing device and image forming apparatus
JP4685635B2 (en) Metal belt, fixing belt and heat fixing device
JP4707844B2 (en) Electroformed nickel belt, coated nickel belt, and method for producing coated nickel belt
JP4707821B2 (en) Fixing belt and manufacturing method thereof
JP4737342B1 (en) Manufacturing method of annular body
JP6079443B2 (en) Fixing belt substrate, fixing belt, fixing device, and image forming apparatus
JP5930175B2 (en) Metal multilayer member for fixing
JP2013061565A (en) Endless belt, fixing belt, fixing device and image forming device
JP2011039287A (en) Metal belt and fixing belt using the same
JP4344158B2 (en) Fixing belt and image heating fixing device
JP3866215B2 (en) Fixing belt
JP5194780B2 (en) Manufacturing method of fixing belt
JP5948979B2 (en) Endless metal thin film roll, method for manufacturing endless metal thin film roll, heat fixing belt, fixing unit, and image forming apparatus
JP2005121975A (en) Fixing belt
JP2005089790A (en) Seamless belt substrate, production method therefor, and seamless belt for heat fixing
JP2017068284A (en) Base material for fixing belt, fixing belt, fixing device, and image forming apparatus
US10947633B2 (en) Method of producing electrocast belt
JP5196064B2 (en) Fixing device and image forming apparatus
JP2012163811A (en) Image heating device
JP2010197836A (en) Endless belt, fixing device and image forming apparatus
JP2004294634A (en) Fixing belt
JP4424134B2 (en) Fixing member and image forming apparatus

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171205