JP2005121975A - Fixing belt - Google Patents

Fixing belt Download PDF

Info

Publication number
JP2005121975A
JP2005121975A JP2003358066A JP2003358066A JP2005121975A JP 2005121975 A JP2005121975 A JP 2005121975A JP 2003358066 A JP2003358066 A JP 2003358066A JP 2003358066 A JP2003358066 A JP 2003358066A JP 2005121975 A JP2005121975 A JP 2005121975A
Authority
JP
Japan
Prior art keywords
thickness
resin layer
polyimide resin
belt
fixing belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003358066A
Other languages
Japanese (ja)
Inventor
Tetsuya Moriwaki
哲哉 森脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Kogyo Co Ltd
Original Assignee
Nitto Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Kogyo Co Ltd filed Critical Nitto Kogyo Co Ltd
Priority to JP2003358066A priority Critical patent/JP2005121975A/en
Publication of JP2005121975A publication Critical patent/JP2005121975A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fixing belt that is fully durable, even when higher speed is demanded. <P>SOLUTION: The fixing belt includes a belt base material, in which a polymide resin layer and a metal layer are bonded together. The proportion of imide to polyimide, forming the polyimide resin layer, is set to 95% or higher; thereby, while the heat conductivity required for the fixing belt and a nip width required for fixing can be satisfied, a very long life can be ensured, even if higher speed is demanded in future . <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、記録媒体上の未定着トナーを圧熱融着して記録媒体上に定着させるための定着ベルトに関する。   The present invention relates to a fixing belt for fixing unfixed toner on a recording medium onto the recording medium by pressure-heat fusion.

電子写真装置用定着装置には、従来、いわゆる加熱ローラ方式が多く用いられてきた。しかし、最近は省エネルギーの観点から、定着ベルトを用いるベルト定着方式が用いられるようになった。   Conventionally, a so-called heating roller system has been often used for a fixing device for an electrophotographic apparatus. However, recently, from the viewpoint of energy saving, a belt fixing method using a fixing belt has been used.

このようなベルト定着方式の定着装置の例として特開2003−57981公報(特許文献1)記載の定着装置について図6を用いて説明する。   As an example of such a belt-fixing type fixing device, a fixing device described in Japanese Patent Application Laid-Open No. 2003-57981 (Patent Document 1) will be described with reference to FIG.

図6は定着ユニットUの各ローラに垂直な面でのモデル断面図である。この定着ユニットUでは、芯金部RCとその外周に取り付けられた弾性体RRとから形成される定着ローラR1と定着ニップ部を画像等の定着に適した温度に加熱するための加熱ローラR2との間に定着ベルトBfが張設されている。 FIG. 6 is a model cross-sectional view of the fixing unit U on a plane perpendicular to each roller. In this fixing unit U, heating for heating the fixing roller R 1 and the fixing nip formed by the core bar R C and the elastic body R R attached to the outer periphery thereof to a temperature suitable for fixing an image or the like. fixing belt B f is stretched between the rollers R 2.

加熱ローラR2は、図示しない、ばね等からなる張力付与手段によって上方に付勢されているので、定着ベルトBfには適切なテンションが付与されている。定着ベルトBfの定着ローラR1外周部に位置する部分には、下方から画像等の定着に適した圧力で加圧ローラR3が当接し、これら定着ベルトBfと加圧ローラR3との間の定着ニップ部に供給された未定着トナー画像が定着される。 Since the heating roller R 2 is urged upward by a tension applying means such as a spring (not shown ) , an appropriate tension is applied to the fixing belt B f . A pressure roller R 3 is brought into contact with a portion of the fixing belt B f located on the outer peripheral portion of the fixing roller R 1 with a pressure suitable for fixing an image or the like from below, and the fixing belt B f and the pressure roller R 3 The unfixed toner image supplied to the fixing nip portion is fixed.

このような定着装置で用いられる定着ベルト用ベルト基材としては、ニッケルやステンレスなどの金属からなる金属ベルト基材、あるいは、ポリイミド、ポリアミドイミドなどの樹脂からなる樹脂ベルト基材が多く用いられている。   As a belt substrate for a fixing belt used in such a fixing device, a metal belt substrate made of a metal such as nickel or stainless steel, or a resin belt substrate made of a resin such as polyimide or polyamideimide is often used. Yes.

しかしながら、今後求められることが予想される、さらなる高速化への対応について検討すると、金属ベルト基材を用いた場合にはフレキシブル性が低く硬いので容易に破断してしまうこと、耐久性のために厚さを厚くすると必要なニップ幅が得られなくなって定着ベルトとしての機能が発揮できなくなることが予想される。   However, considering the response to higher speeds that are expected to be required in the future, when using a metal belt base material, the flexibility is low and it is hard, so it will break easily, for durability If the thickness is increased, it is expected that the necessary nip width cannot be obtained and the function as a fixing belt cannot be exhibited.

一方、樹脂ベルト基材を用いた場合には、高速化に対応するためにより高い耐久性が必要となり、それのために厚膜化をはかると熱伝導性が低くなって、結果としてウォーミングアップタイムが遅くなったり、定着に必要な熱供給量が不足したり、あるいは、消費エネルギーが大きくなったりすることが予想される。   On the other hand, when a resin belt base material is used, higher durability is required to cope with higher speeds, and for that purpose, increasing the film thickness decreases thermal conductivity, resulting in a warm-up time. It is expected that the time will be delayed, the amount of heat supply necessary for fixing will be insufficient, or the energy consumption will increase.

これら両者の欠点を補うものとして、ポリイミドなどの樹脂ベルトに金属層を設けた複合ベルト基材が注目されている。このような複合ベルト基材では、金属層によって樹脂ベルト基材の有する熱伝導性の低さが解決できるが、金属層の存在によってポリイミドベルト基材のフレキシブル性が損なわれるおそれがある。   In order to compensate for both of these disadvantages, a composite belt base material in which a metal layer is provided on a resin belt such as polyimide has attracted attention. In such a composite belt substrate, the low thermal conductivity of the resin belt substrate can be solved by the metal layer, but the flexibility of the polyimide belt substrate may be impaired by the presence of the metal layer.

特開2001−341231公報では、従動式の金属層とポリイミド樹脂層との積層フィルムを基材とした定着フィルムにおいて、加熱・加圧下での使用耐久性に優れた定着フィルムを得るために、そのポリイミド樹脂層をイミド化率が70〜93%のポリイミド樹脂から形成することが提案されている。   In JP-A-2001-341231, in a fixing film based on a laminated film of a driven metal layer and a polyimide resin layer, in order to obtain a fixing film having excellent use durability under heating and pressure, It has been proposed to form a polyimide resin layer from a polyimide resin having an imidization rate of 70 to 93%.

しかしながら、この技術を一般に引張荷重下で用いられる定着ベルトに応用したところ、高速運転を行ったときに充分な耐久性が得られないことが判った。
特開2003−57981公報 特開2001−341231公報
However, when this technique is applied to a fixing belt generally used under a tensile load, it has been found that sufficient durability cannot be obtained when high speed operation is performed.
JP 2003-57981 A JP 2001-341231 A

本発明は、上記した従来の問題点を改善する、すなわち、熱伝導が良好で、かつ、高速化が求められた場合であっても充分な耐久性を有する定着ベルトを提供することを目的とする。   An object of the present invention is to provide a fixing belt which improves the above-mentioned conventional problems, that is, has good durability even when heat conduction is good and high speed is required. To do.

本発明の定着ベルトは上記課題を解決するため、請求項1に記載の通り、ポリイミド樹脂層と金属層とが積層されてなるベルト基材を有する定着ベルトであって、該ポリイミド樹脂層を形成するポリイミドのイミド化率が95%以上である構成を有する。   In order to solve the above problems, a fixing belt according to the present invention is a fixing belt having a belt base material in which a polyimide resin layer and a metal layer are laminated, and the polyimide resin layer is formed. The polyimide to be imidized has a structure of 95% or more.

本発明の定着ベルトは上記課題を解決するため、請求項2に記載の通り、ポリイミド樹脂層と金属層とが積層されてなるベルト基材を有する定着ベルトであって、ポリイミド樹脂層の厚さDp(μm)が10(μm)≦Dp≦30(μm)の範囲であるときに金属層の厚さDn(μm)が25(μm)≦Dn≦Dp/2+25(μm)を満足する範囲であって、ポリイミド樹脂層の厚さDp(μm)が30(μm)≦Dp≦40(μm)の範囲であるときに金属層の厚さDn(μm)が25(μm)≦Dn≦70−Dp(μm)を満足する範囲である構成を有する。   In order to solve the above-described problem, the fixing belt of the present invention is a fixing belt having a belt base material in which a polyimide resin layer and a metal layer are laminated, and the thickness of the polyimide resin layer as described in claim 2. When Dp (μm) is in the range of 10 (μm) ≦ Dp ≦ 30 (μm), the thickness Dn (μm) of the metal layer satisfies 25 (μm) ≦ Dn ≦ Dp / 2 + 25 (μm). When the thickness Dp (μm) of the polyimide resin layer is in the range of 30 (μm) ≦ Dp ≦ 40 (μm), the thickness Dn (μm) of the metal layer is 25 (μm) ≦ Dn ≦ 70−. It has the structure which is the range which satisfies Dp (micrometer).

本発明の定着ベルトは上記課題を解決するため、請求項3に記載の通り、ポリイミド樹脂層と金属層とが積層されてなるベルト基材を有する定着ベルトであって、該ポリイミド樹脂層を形成するポリイミドのイミド化率が95%以上であり、かつ、ポリイミド樹脂層の厚さDp(μm)が10(μm)≦Dp≦30(μm)の範囲であるときに金属層の厚さDn(μm)が25(μm)≦Dn≦Dp/2+25(μm)を満足する範囲であって、ポリイミド樹脂層の厚さDp(μm)が30(μm)≦Dp≦40(μm)の範囲であるときに金属層の厚さDn(μm)が25(μm)≦Dn≦70−Dp(μm)を満足する範囲である構成を有する。   In order to solve the above-described problem, the fixing belt of the present invention is a fixing belt having a belt base material in which a polyimide resin layer and a metal layer are laminated, and forming the polyimide resin layer. When the polyimide imidization ratio is 95% or more and the thickness Dp (μm) of the polyimide resin layer is in the range of 10 (μm) ≦ Dp ≦ 30 (μm), the thickness Dn ( μm) is in a range satisfying 25 (μm) ≦ Dn ≦ Dp / 2 + 25 (μm), and the thickness Dp (μm) of the polyimide resin layer is in a range of 30 (μm) ≦ Dp ≦ 40 (μm). Sometimes, the metal layer thickness Dn (μm) is in a range satisfying 25 (μm) ≦ Dn ≦ 70−Dp (μm).

このとき、上記金属層の厚さが25μm以上35μm以下、ポリイミド樹脂層の厚さが20μm以上30μm以下であり、かつ、金属層の厚さとポリイミド樹脂層の厚さとの和が45μm以上65μm以下であると、特に優れた耐久性が得られる。   At this time, the thickness of the metal layer is 25 μm or more and 35 μm or less, the thickness of the polyimide resin layer is 20 μm or more and 30 μm or less, and the sum of the thickness of the metal layer and the thickness of the polyimide resin layer is 45 μm or more and 65 μm or less. In particular, excellent durability can be obtained.

本発明の定着ベルトは将来求められる高速化の際にも耐久性を維持しながら各層の厚さを薄くすることが可能となるので、充分なニップ幅が確保でき、このときポリイミド樹脂製の樹脂ベルトに比して格段に高い熱伝導性を有する。   Since the fixing belt of the present invention can reduce the thickness of each layer while maintaining durability even at a high speed required in the future, a sufficient nip width can be secured, and at this time, a resin made of polyimide resin It has much higher thermal conductivity than a belt.

本発明の定着ベルトはポリイミド樹脂層と金属層とが積層されてなるベルト基材を有する定着ベルトであって、該ポリイミド樹脂層を形成するポリイミドのイミド化率が95%以上である構成を有する。   The fixing belt of the present invention is a fixing belt having a belt base material in which a polyimide resin layer and a metal layer are laminated, and has a configuration in which the imidization ratio of polyimide forming the polyimide resin layer is 95% or more. .

ここで、金属としては、従来から定着ベルト用金属として用いてきたものをそのまま用いることができる。一般的にはニッケル、ニッケル合金が用いられ、例えば、特開平7−187100号公報で提案されているニッケル・マンガン合金を用いることもできる。   Here, as the metal, a metal conventionally used as a metal for a fixing belt can be used as it is. In general, nickel or a nickel alloy is used. For example, a nickel-manganese alloy proposed in Japanese Patent Laid-Open No. 7-187100 can also be used.

ここで、定着ベルトの形状としては、無端のシート状形状であることが望ましいが、ここで、無端形状の金属層は、例えば、ニッケル等の目的金属を電析することができる公知の電解浴を用いて、ステンレス鋼製などの母型を陰極とする電鋳法により得ることができる。   Here, the shape of the fixing belt is preferably an endless sheet-like shape. Here, the endless metal layer is, for example, a known electrolytic bath capable of electrodepositing a target metal such as nickel. Can be obtained by an electroforming method using a mother die made of stainless steel or the like as a cathode.

電鋳により得られた電鋳体の側端部を切り離したのちに母型から脱離させ、洗浄、乾燥、機械加工等を経て所望の形状寸法を有する金属層を得ることができるが、さらに必要に応じて熱処理を加えることにより硬度の調整を行うこともできる。   After separating the side end portion of the electroformed body obtained by electroforming, it is possible to obtain a metal layer having a desired shape and dimension through washing, drying, machining, etc. The hardness can be adjusted by applying a heat treatment as necessary.

金属層の厚さは、加工性、熱伝導性、熱容量等の熱的性質、可撓性、寸法安定性、強度等の機械的性質などのバランスの面から、25〜50μmの範囲にあることが好ましい。   The thickness of the metal layer should be in the range of 25 to 50 μm from the viewpoint of the balance of thermal properties such as workability, thermal conductivity and heat capacity, and mechanical properties such as flexibility, dimensional stability and strength. Is preferred.

このようにして得られた金属層の内面にポリイミド樹脂層を形成し定着ベルト用ベルト基材とする。具体的にはポリイミドの前駆体を有する溶液やゲル(ポリイミド前駆体ワニス)を金属層に塗布した後、後述する所定のイミド化率となるよう加熱処理することによりイミド化反応によりポリイミド樹脂層が形成される。ここで、ポリイミド前駆体ワニスとしては東レ社、宇部興産社等から様々なものが市販されている。   A polyimide resin layer is formed on the inner surface of the metal layer thus obtained to obtain a belt substrate for a fixing belt. Specifically, after a polyimide precursor solution or gel (polyimide precursor varnish) is applied to the metal layer, the polyimide resin layer is formed by an imidation reaction by heat treatment so as to have a predetermined imidization rate described later. It is formed. Here, various polyimide precursor varnishes are commercially available from Toray Industries, Ube Industries, etc.

また、ベルト基材の上記以外の製造方法としては、例えば、円筒金型を用いてポリイミド樹脂層を円筒形に形成し、次いでその外側面に化学めっき、あるいは、化学めっきと電気めっきとを組み合わせるなどのめっき法によって金属層を形成してベルト基材とする方法などが挙げられる。   Further, as a manufacturing method other than the above, for example, a polyimide resin layer is formed into a cylindrical shape using a cylindrical mold, and then chemical plating or chemical plating and electroplating are combined on the outer surface thereof. And a method of forming a metal layer by a plating method such as a belt base material.

ポリイミド樹脂層の厚さは、加工性、熱伝導性、熱容量等の熱的性質、可撓性、寸法安定性、強度等の機械的性質などのバランスの面から、5〜50μmの範囲にあることが好ましい。   The thickness of the polyimide resin layer is in the range of 5 to 50 μm from the viewpoint of balance of thermal properties such as processability, thermal conductivity, and heat capacity, and mechanical properties such as flexibility, dimensional stability, and strength. It is preferable.

ここで、ポリイミド樹脂層の厚さDp(μm)が10(μm)≦Dp≦40(μm)の範囲であって、そのうち、ポリイミド樹脂層の厚さDp(μm)が10(μm)≦Dp≦30(μm)の範囲であるときには金属層の厚さDn(μm)が25(μm)≦Dn≦Dp/2+25(μm)を満足する範囲であって、ポリイミド樹脂層の厚さDp(μm)が30(μm)≦Dp≦40(μm)の範囲であるときには金属層の厚さDn(μm)が25(μm)≦Dn≦70−Dp(μm)を満足する範囲(図1で斜線ハッチングで示された範囲(境界線上を含む))で高い耐久性が得られるので好ましい。   Here, the thickness Dp (μm) of the polyimide resin layer is in the range of 10 (μm) ≦ Dp ≦ 40 (μm), and the thickness Dp (μm) of the polyimide resin layer is 10 (μm) ≦ Dp. When the range is ≦ 30 (μm), the thickness Dn (μm) of the metal layer is a range satisfying 25 (μm) ≦ Dn ≦ Dp / 2 + 25 (μm), and the thickness Dp (μm) of the polyimide resin layer ) Is in the range of 30 (μm) ≦ Dp ≦ 40 (μm), the thickness Dn (μm) of the metal layer satisfies the range of 25 (μm) ≦ Dn ≦ 70−Dp (μm) (hatched in FIG. 1) It is preferable because high durability can be obtained within the range indicated by hatching (including the boundary).

さらに、金属層の厚さDn(μm)が25μm以上35μm以下、ポリイミド樹脂層の厚さDp(μm)が20μm以上30μm以下で、かつ、金属層の厚さDnとポリイミド樹脂層の厚さDpとの和は45μm以上65μm以下の範囲(図1で交差斜線ハッチングで示された範囲(境界線上を含む))であると、特に優れた耐久性が得られるのでより好ましい。   Furthermore, the thickness Dn (μm) of the metal layer is 25 μm or more and 35 μm or less, the thickness Dp (μm) of the polyimide resin layer is 20 μm or more and 30 μm or less, and the thickness Dn of the metal layer and the thickness Dp of the polyimide resin layer Is in the range of 45 μm or more and 65 μm or less (a range indicated by cross hatching in FIG. 1 (including on the boundary line)), since particularly excellent durability is obtained.

本発明ではポリイミド樹脂層を形成するポリイミドのイミド化率が95%以上であることが好ましい。イミド化率が95%未満であると充分な耐久性が得られないことがある。   In this invention, it is preferable that the imidation ratio of the polyimide which forms a polyimide resin layer is 95% or more. If the imidation ratio is less than 95%, sufficient durability may not be obtained.

ここで本発明のイミド化率について説明する。ポリイミドは、芳香族酸二無水物と芳香族ジアミンとの脱水閉環反応により形成されるが、本発明におけるポリイミドのイミド化率は、実際に生成したイミド環の量と完全に反応が完結したときのイミド環の量との比である。   Here, the imidation ratio of the present invention will be described. Polyimide is formed by a dehydration ring-closing reaction between an aromatic dianhydride and an aromatic diamine, but the imidization rate of the polyimide in the present invention is completely equal to the amount of the imide ring actually produced. It is a ratio with the amount of the imide ring.

まず、樹脂中のベンゼン環の量は反応の前後で不変であるため、樹脂表面のFTIRによる赤外吸収スペクトルにおけるベンゼン環の骨格振動に基づく1510cm-1付近のピークの吸光度を基準とし、このベンゼン環のピークに対するイミド酸のC=O振動に基づく1721cm-1付近のピークの吸光度から強度比を下記式(i)で求める。 First, since the amount of the benzene ring in the resin is unchanged before and after the reaction, the absorbance of the peak near 1510 cm −1 based on the skeleton vibration of the benzene ring in the infrared absorption spectrum by FTIR on the resin surface is used as a reference. The intensity ratio is determined by the following formula (i) from the absorbance of the peak in the vicinity of 1721 cm −1 based on the C═O vibration of imidic acid with respect to the ring peak.

Figure 2005121975
Figure 2005121975

このようにして求めた強度比の、同じ樹脂をイミド化進行が終了するまで加熱処理したときの強度比を100%としたときの比率を本発明におけるイミド化率とした。   The ratio of the strength ratio obtained as described above when the same resin was heat-treated until the progress of imidization was completed was 100%, which was defined as the imidization ratio in the present invention.

上記のポリイミド形成におけるイミド化進行終了は次のようにして判定した。ポリイミド前駆体ワニスを、最終形状が厚さ20μmのフィルム形状となるように保ちながら、昇温速度を5℃/分とし、最終加熱処理温度を150℃から350℃までの10℃ごとのそれぞれの温度として、それら最終加熱処理温度で60分間保持する加熱処理を行ったときの、上記で定義される強度比をそれぞれ調べ、ある温度での加熱処理を行った樹脂の強度比と、その処理温度より10℃低い加熱処理での樹脂の強度比との差が1%以下となったときにイミド化進行が終了したと判定した。   The completion of imidization in the polyimide formation was determined as follows. While maintaining the polyimide precursor varnish so that the final shape is a film shape having a thickness of 20 μm, the rate of temperature increase is 5 ° C./min, and the final heat treatment temperature is 150 ° C. to 350 ° C. every 10 ° C. As the temperature, the strength ratios defined above were examined when the heat treatment was held for 60 minutes at the final heat treatment temperature, the strength ratio of the resin that was heat-treated at a certain temperature, and the treatment temperature When the difference from the strength ratio of the resin in the heat treatment lower by 10 ° C. became 1% or less, it was determined that the imidization progress was completed.

ここで、東レ社製のポリイミド前駆体ワニス(商品名:トレニース#3000 以下「ワニスA」と云う。これにより得られるポリイミドの構造を下記に構造式Iとして示す)の加熱処理温度と強度比(1710cm-1での吸光度/1510cm-1での吸光度)との関係を図2に、宇部興産社製ポリイミド前駆体ワニス(商品名:ユーピレックス 以下「ワニスB」と云う。これにより得られるポリイミドの構造を下記に構造式IIとして示す)での加熱処理温度と強度比(1710cm-1での吸光度/1550cm-1での吸光度)との関係を図3に、それぞれ示し、さらに、ワニスA及びBを200、220、250、300及び350℃における加熱処理を行ったときのイミド化率を表1に示す。なお、これらは島津製作所社製FT−IR4200を用い、ATR反射法による測定の結果から求めたものである。 Here, the heat treatment temperature and strength ratio of a polyimide precursor varnish (trade name: Trenys # 3000, hereinafter referred to as “varnish A” manufactured by Toray Industries, Inc. The structure of the polyimide thus obtained is shown as structural formula I below) The relationship between the absorbance at 1710 cm −1 / the absorbance at 1510 cm −1 is shown in FIG. Figure 3 the relationship between the heat treatment temperature and the intensity ratio at shown as structural formula II) shown below (absorbance at the absorbance / 1550 cm -1 in 1710 cm -1), respectively, further, the varnish a and B Table 1 shows the imidization ratio when the heat treatment is performed at 200, 220, 250, 300, and 350 ° C. In addition, these were calculated | required from the result of the measurement by an ATR reflection method using Shimadzu Corporation FT-IR4200.

Figure 2005121975
Figure 2005121975

Figure 2005121975
Figure 2005121975

Figure 2005121975
Figure 2005121975

図2及び図3における横軸は加熱処理温度、縦軸は上記方法で判定したイミド化進行が終了したと判定されたときの強度比を100%としたときの強度比である。また、図2、図3及び表1においては350℃までの結果しか示していないが、ワニスAあるいはワニスBを400℃での温度で処理したときの強度比も共に100%であった。   2 and 3, the horizontal axis represents the heat treatment temperature, and the vertical axis represents the intensity ratio when the intensity ratio when it is determined that the progress of imidization determined by the above method has been completed is 100%. 2 and 3 and Table 1 show only the results up to 350 ° C., but the strength ratio when varnish A or varnish B was treated at a temperature of 400 ° C. was also 100%.

本発明の定着ベルトは、上記のようにしてポリイミド樹脂層と金属層とが積層されてなるベルト基体の表面に、通常の定着ベルト同様に、シリコーンゴム、フッ素ゴム、フッ素樹脂等の耐熱性と非粘着性とを有する材料からなる離型層を常法によって設けることによって形成される。   The fixing belt of the present invention has heat resistance such as silicone rubber, fluororubber, fluororesin and the like on the surface of the belt substrate formed by laminating the polyimide resin layer and the metal layer as described above, similarly to a normal fixing belt. It is formed by providing a release layer made of a non-adhesive material by a conventional method.

ここで、本発明に係る定着ベルトの断面の一例について図4にモデル的に示す。図中符号1を付して示したのが金属層で、金属層1の一方の面(内面側)にポリイミド樹脂層2が積層され、これら2金属層1及びポリイミド樹脂層1とで定着ベルト用ベルト基材が形成され、該ベルト基材の金属層1の他方の面(外面側)にはシリコーンゴム層3を介してPFA(四ふっ化エチレンとパーフルオロアルコキシエチレンとの共重合体)層4が設けられている。   Here, FIG. 4 schematically shows an example of a cross section of the fixing belt according to the present invention. In the figure, the reference numeral 1 indicates a metal layer, and a polyimide resin layer 2 is laminated on one surface (inner surface side) of the metal layer 1. The two metal layers 1 and the polyimide resin layer 1 are used to fix the fixing belt. A belt base material is formed, and PFA (copolymer of tetrafluoroethylene and perfluoroalkoxyethylene) is provided on the other surface (outer surface side) of the metal layer 1 of the belt base material via a silicone rubber layer 3. Layer 4 is provided.

以下に本発明の定着ベルトの実施例について具体的に説明する。
[ベルト基材の作製(ワニスAでの検討)]
電鋳により、幅が5mm、直径が34mmで、厚さのみが30μmと50μmと異なる2種類のニッケル製無端ベルト(金属層)を数個ずつ作製した。
Examples of the fixing belt of the present invention will be specifically described below.
[Preparation of belt base material (examination with varnish A)]
By electroforming, two types of nickel endless belts (metal layers) each having a width of 5 mm, a diameter of 34 mm, and only thicknesses of 30 μm and 50 μm were produced.

ポリイミド前駆体ワニスであるワニスA(東レ社製、商品名:トレニース#3000)をこれら無端ベルトの内側に塗布し、最終加熱温度が220℃あるいは350℃として加熱処理を行った。このとき、それぞれのワニス塗布量を調整し、ポリイミド樹脂層の厚さが14μmあるいは50μmと異なる種類のものをそれぞれ作製した。   Varnish A (trade name: Torenice # 3000, manufactured by Toray Industries, Inc.), which is a polyimide precursor varnish, was applied to the inside of these endless belts, and heat treatment was performed at a final heating temperature of 220 ° C. or 350 ° C. At this time, the amount of each varnish applied was adjusted, and a polyimide resin layer having a thickness different from 14 μm or 50 μm was prepared.

[ベルト基材の評価]
上記で作製したベルト基材は次のようにして評価した。すなわち、図5に示すように共に直径が10mmの回転軸が固定されたローラRaと、回転軸が固定されていないローラRbとの間に評価するベルト基材Bを張設し、3kgの重さのおもりWと滑車Pを用いてローラRbに29.4Nの荷重を与えることによりベルト基材Bに張力を与えながら、ローラRaを3600rpmで回転させた。このとき、回転開始後400分までのベルト基材Bの耐久性を評価し、破断の有無、あるいは、破断した場合には破断に至るまでの耐久時間をしらべた。結果を表2に示す。
[Evaluation of belt substrate]
The belt base material produced above was evaluated as follows. That is, as shown in FIG. 5, a belt base material B to be evaluated is stretched between a roller Ra having a rotating shaft having a diameter of 10 mm fixed and a roller Rb having no rotating shaft fixed, and a weight of 3 kg is applied. The roller Ra was rotated at 3600 rpm while applying a load of 29.4 N to the roller Rb using the weight W and the pulley P to apply tension to the belt base material B. At this time, the durability of the belt base material B up to 400 minutes after the start of rotation was evaluated, and the presence or absence of breakage or, if broken, the durability time until breakage was investigated. The results are shown in Table 2.

Figure 2005121975
Figure 2005121975

表2より、いずれの条件においてもポリイミド樹脂層のイミド化率が100%である基材の方がイミド化率が82%の基材よりも長い寿命であることが判る。特に、イミド化率が100%、金属層厚さが30μmで、ポリイミド樹脂層の厚さが50μmのベルト基材は極めて長寿命であることが判る。   From Table 2, it can be seen that the base material in which the imidization ratio of the polyimide resin layer is 100% has a longer lifetime than the base material in which the imidization ratio is 82% under any condition. In particular, it can be seen that a belt substrate having an imidization rate of 100%, a metal layer thickness of 30 μm, and a polyimide resin layer thickness of 50 μm has a very long life.

[ニッケル層およびポリイミド樹脂層の厚さの検討(ワニスAでの検討)]
上記同様にして、ただし電鋳条件を変えて厚さのみを25、30、35あるいは40μmに変えたニッケル製の金属無端ベルトを数個ずつ作製した。このとき厚さが25μm未満の無端ベルトについてはその後の加工が困難であるため以降の検討は行わなかった。
[Examination of thickness of nickel layer and polyimide resin layer (examination in varnish A)]
Several nickel endless belts made of nickel were produced in the same manner as above, except that the electroforming conditions were changed and only the thickness was changed to 25, 30, 35, or 40 μm. At this time, an endless belt having a thickness of less than 25 μm was difficult to be processed thereafter, so that no further examination was performed.

これらの金属無端ベルトのそれぞれの内側にワニスAを塗布し、最終加熱温度を350℃として、ベルト基材を得た。このとき、塗布量を変化させてポリイミド樹脂層の厚さが10、20、30あるいは40μmのものをそれぞれ得た。   Varnish A was applied to the inside of each of these metal endless belts, and the final heating temperature was set to 350 ° C. to obtain a belt base material. At this time, the coating amount was changed to obtain a polyimide resin layer having a thickness of 10, 20, 30 or 40 μm.

これらベルト基材の寿命について、ポリイミド樹脂層を設けなかったニッケル無端ベルトのみでの結果とともに、上記同様に耐久性について検討した。   Regarding the life of these belt base materials, together with the results of only the nickel endless belt without the polyimide resin layer, the durability was examined in the same manner as described above.

このときの耐久時間が1000分以上であった場合を極めて長寿命であるとして「○」と、500分以上1000分以下であった場合には充分な耐久性があるとして「△」と、500分未満を耐久性が不充分であるとして「×」と、それぞれ評価した。評価結果を実際の耐久時間の値(単位:分)とともに表3に示す。   When the durability time is 1000 minutes or more, “◯” is assumed to be an extremely long life, and when it is 500 minutes or more and 1000 minutes or less, “Δ” is 500 Less than a minute was evaluated as “x” because the durability was insufficient. The evaluation results are shown in Table 3 together with the actual endurance time value (unit: minutes).

Figure 2005121975
Figure 2005121975

表3より、本発明に係るベルト基材では従来技術に係る金属製ベルト基材に比べ、優れた耐久性を有することが判る。   From Table 3, it can be seen that the belt base material according to the present invention has superior durability compared to the metal belt base material according to the prior art.

ここで、ポリイミド樹脂層の厚さDp(μm)が10(μm)≦Dp≦30(μm)の範囲であるときには金属層の厚さDn(μm)が25(μm)≦Dn≦Dp/2+25(μm)を満足する範囲であって、ポリイミド樹脂層の厚さDp(μm)が30(μm)≦Dp≦40(μm)の範囲であるときには金属層の厚さDn(μm)が25(μm)≦Dn≦70−Dp(μm)を満足する範囲(図1で斜線ハッチングで示された範囲(境界線上を含む))で充分に高い耐久性が得られることが判る。   Here, when the thickness Dp (μm) of the polyimide resin layer is in the range of 10 (μm) ≦ Dp ≦ 30 (μm), the thickness Dn (μm) of the metal layer is 25 (μm) ≦ Dn ≦ Dp / 2 + 25. When the thickness Dp (μm) of the polyimide resin layer is in the range of 30 (μm) ≦ Dp ≦ 40 (μm), the thickness Dn (μm) of the metal layer is 25 ( (μm) ≦ Dn ≦ 70−Dp (μm), it can be seen that sufficiently high durability can be obtained in the range (the range shown by hatching in FIG. 1 (including the boundary line)).

さらに、金属層の厚さDn(μm)が25μm以上35μm以下、ポリイミド樹脂層の厚さDp(μm)が20μm以上30μm以下で、かつ、金属層の厚さDnとポリイミド樹脂層の厚さDpとの和は45μm以上65μm以下の範囲(図1で交差斜線ハッチングで示された範囲(境界線上を含む))であると、特に長寿命となることが判る。   Furthermore, the thickness Dn (μm) of the metal layer is 25 μm or more and 35 μm or less, the thickness Dp (μm) of the polyimide resin layer is 20 μm or more and 30 μm or less, and the thickness Dn of the metal layer and the thickness Dp of the polyimide resin layer It can be seen that the lifetime is particularly long when it is in the range of 45 μm or more and 65 μm or less (the range indicated by cross hatching in FIG. 1 (including the boundary line)).

[ワニスBによる検討]
上記同様に、ただしワニスAの代わりにワニスBを用いて検討を行った。厚さが25μm、30μm、35μm、あるいは、40μmのニッケル電鋳ベルトを用いその内周側にワニスBを、最終的なポリイミド樹脂層厚さが30μmとなるように塗布し、熱処理によりポリイミド樹脂層のイミド化率を100%とした、ニッケル層とポリイミド樹脂層とが積層されてなるベルト基材を得た。これらのベルト基材について上記同様の耐久試験を行った。結果を表4に示す。
[Examination by varnish B]
As above, however, varnish B was used in place of varnish A for examination. A nickel electroformed belt having a thickness of 25 μm, 30 μm, 35 μm, or 40 μm is used, and varnish B is applied to the inner periphery thereof so that the final polyimide resin layer thickness becomes 30 μm, and the polyimide resin layer is subjected to heat treatment. A belt base material obtained by laminating a nickel layer and a polyimide resin layer with an imidization ratio of 100% was obtained. These belt base materials were subjected to the same durability test as described above. The results are shown in Table 4.

Figure 2005121975
Figure 2005121975

ワニスBを用いた場合であっても、樹脂層厚さが30μmのときに、ニッケル層の厚さが25μm以上40μm以下の範囲で充分な耐久性が得られ、さらにニッケル層の厚さが25μm以上35μm以下の範囲で特に長寿命となることが判る。   Even when varnish B is used, when the resin layer thickness is 30 μm, sufficient durability is obtained in the range of the nickel layer thickness of 25 μm to 40 μm, and the nickel layer thickness is 25 μm. It can be seen that the lifetime is particularly long in the range of 35 μm or less.

本発明の定着ベルトは、定着ベルトに求められる熱伝導性や定着に必要なニップ幅を満足することが可能でありながら、将来求められる高速条件であっても格段に長い寿命を有する優れた定着ベルトである。   The fixing belt of the present invention is capable of satisfying the thermal conductivity required for the fixing belt and the nip width necessary for fixing, but having an extremely long life even under high speed conditions required in the future. It is a belt.

ニッケル層の厚さとポリイミド樹脂層の厚さとにおいて特に高い効果が得られる範囲を示したグラフである。It is the graph which showed the range in which especially high effect is acquired in the thickness of a nickel layer, and the thickness of a polyimide resin layer. ワニスAの加熱処理と強度比の関係を示す図である。It is a figure which shows the relationship between the heat processing of varnish A, and intensity | strength ratio. ワニスBの加熱処理と強度比の関係を示す図である。It is a figure which shows the relationship between the heat processing of varnish B, and intensity ratio. 本発明に係る定着ベルトの一例の断面を示すモデル図である。FIG. 3 is a model diagram illustrating a cross section of an example of a fixing belt according to the present invention. 実施例でベルト基材を評価するために用いた評価装置を示すモデル図である。It is a model figure which shows the evaluation apparatus used in order to evaluate a belt base material in the Example. 特開2003−57981公報記載の定着ベルト方式の定着装置の例を示す図である。1 is a diagram illustrating an example of a fixing belt type fixing device described in JP-A-2003-57981.

符号の説明Explanation of symbols

1 金属層
2 ポリイミド樹脂層
3 シリコーンゴム層
4 PFA層
Ra、Rb ローラ
B 被評価ベルト基材
W おもり
P 滑車
DESCRIPTION OF SYMBOLS 1 Metal layer 2 Polyimide resin layer 3 Silicone rubber layer 4 PFA layer Ra, Rb Roller B Evaluated belt base material W Weight P Pulley

Claims (4)

ポリイミド樹脂層と金属層とが積層されてなるベルト基材を有する定着ベルトであって、該ポリイミド樹脂層を形成するポリイミドのイミド化率が95%以上であることを特徴とする定着ベルト。   A fixing belt having a belt base material in which a polyimide resin layer and a metal layer are laminated, wherein the imidation ratio of polyimide forming the polyimide resin layer is 95% or more. ポリイミド樹脂層と金属層とが積層されてなるベルト基材を有する定着ベルトであって、
ポリイミド樹脂層の厚さDp(μm)が10(μm)≦Dp≦30(μm)の範囲であるときに金属層の厚さDn(μm)が
25(μm)≦Dn≦Dp/2+25(μm)
を満足する範囲であって、ポリイミド樹脂層の厚さDp(μm)が30(μm)≦Dp≦40(μm)の範囲であるときに金属層の厚さDn(μm)が
25(μm)≦Dn≦70−Dp(μm)
を満足する範囲であることを特徴とする定着ベルト。
A fixing belt having a belt base material in which a polyimide resin layer and a metal layer are laminated,
When the thickness Dp (μm) of the polyimide resin layer is in the range of 10 (μm) ≦ Dp ≦ 30 (μm), the thickness Dn (μm) of the metal layer is 25 (μm) ≦ Dn ≦ Dp / 2 + 25 (μm )
When the thickness Dp (μm) of the polyimide resin layer is in the range of 30 (μm) ≦ Dp ≦ 40 (μm), the thickness Dn (μm) of the metal layer is 25 (μm). ≦ Dn ≦ 70−Dp (μm)
A fixing belt characterized by satisfying the requirements.
ポリイミド樹脂層と金属層とが積層されてなるベルト基材を有する定着ベルトであって、該ポリイミド樹脂層を形成するポリイミドのイミド化率が95%以上であり、かつ、ポリイミド樹脂層の厚さDp(μm)が10(μm)≦Dp≦30(μm)の範囲であるときに金属層の厚さDn(μm)が
25(μm)≦Dn≦Dp/2+25(μm)
を満足する範囲であって、ポリイミド樹脂層の厚さDp(μm)が30(μm)≦Dp≦40(μm)の範囲であるときに金属層の厚さDn(μm)が
25(μm)≦Dn≦70−Dp(μm)
を満足する範囲であることを特徴とする定着ベルト。
A fixing belt having a belt base material in which a polyimide resin layer and a metal layer are laminated, and the imidation ratio of polyimide forming the polyimide resin layer is 95% or more, and the thickness of the polyimide resin layer When Dp (μm) is in the range of 10 (μm) ≦ Dp ≦ 30 (μm), the thickness Dn (μm) of the metal layer is 25 (μm) ≦ Dn ≦ Dp / 2 + 25 (μm)
When the thickness Dp (μm) of the polyimide resin layer is in the range of 30 (μm) ≦ Dp ≦ 40 (μm), the thickness Dn (μm) of the metal layer is 25 (μm). ≦ Dn ≦ 70−Dp (μm)
A fixing belt characterized by satisfying the requirements.
上記金属層の厚さが25μm以上35μm以下、ポリイミド樹脂層の厚さが20μm以上30μm以下であり、かつ、金属層の厚さとポリイミド樹脂層の厚さとの和が45μm以上65μm以下であることを特徴とする請求項3に記載の定着ベルト。   The metal layer has a thickness of 25 μm to 35 μm, the polyimide resin layer has a thickness of 20 μm to 30 μm, and the sum of the thickness of the metal layer and the polyimide resin layer is 45 μm to 65 μm. The fixing belt according to claim 3.
JP2003358066A 2003-10-17 2003-10-17 Fixing belt Pending JP2005121975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003358066A JP2005121975A (en) 2003-10-17 2003-10-17 Fixing belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003358066A JP2005121975A (en) 2003-10-17 2003-10-17 Fixing belt

Publications (1)

Publication Number Publication Date
JP2005121975A true JP2005121975A (en) 2005-05-12

Family

ID=34614764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003358066A Pending JP2005121975A (en) 2003-10-17 2003-10-17 Fixing belt

Country Status (1)

Country Link
JP (1) JP2005121975A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171694A (en) * 2005-12-22 2007-07-05 Fuji Xerox Co Ltd Endless belt used for fixing device, fixing device using the endless belt and image forming apparatus
JP2007240845A (en) * 2006-03-08 2007-09-20 Synztec Co Ltd Fixing belt
JP2012113175A (en) * 2010-11-25 2012-06-14 Canon Inc Fixing belt and fixing device
US10990048B1 (en) 2019-11-01 2021-04-27 Fuji Xerox Co., Ltd. Fixing belt, fixing device, and image forming apparatus
US11327425B2 (en) 2019-11-01 2022-05-10 Fujifilm Business Innovation Corp. Fixing belt, fixing device, and image forming apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007171694A (en) * 2005-12-22 2007-07-05 Fuji Xerox Co Ltd Endless belt used for fixing device, fixing device using the endless belt and image forming apparatus
JP2007240845A (en) * 2006-03-08 2007-09-20 Synztec Co Ltd Fixing belt
JP2012113175A (en) * 2010-11-25 2012-06-14 Canon Inc Fixing belt and fixing device
US10990048B1 (en) 2019-11-01 2021-04-27 Fuji Xerox Co., Ltd. Fixing belt, fixing device, and image forming apparatus
US11327425B2 (en) 2019-11-01 2022-05-10 Fujifilm Business Innovation Corp. Fixing belt, fixing device, and image forming apparatus

Similar Documents

Publication Publication Date Title
JP2014194522A (en) Base material for fixing belt, fixing belt, fixing device, and image forming apparatus
US8105655B2 (en) Fast and low temperature cured polyimide fuser belt
JP2005121975A (en) Fixing belt
JP2706432B2 (en) Fixing belt and fixing device for electrophotographic apparatus
JP5380718B2 (en) Metal belt and fixing belt using the same
JP6079443B2 (en) Fixing belt substrate, fixing belt, fixing device, and image forming apparatus
JP2014211630A (en) Fixing metal multi-layer member
US11327425B2 (en) Fixing belt, fixing device, and image forming apparatus
US10025245B2 (en) Resistance heating element, fixing device, and image forming apparatus
JP2013174671A (en) Metal multilayer member for fixation
US6647238B2 (en) Fixing belt and fixing apparatus equipped with same
JP6299891B2 (en) Fixing belt substrate, fixing belt, fixing device, and image forming apparatus
US6792237B2 (en) Fixing belt and fixing apparatus equipped with same
JP2002292790A (en) Method for manufacturing polyimide film composition, polyimide film composition, endless belt, fixing belt and dpc photosensitive body
JP2004309830A (en) Fixing belt and apparatus for thermally fixing image
US10990048B1 (en) Fixing belt, fixing device, and image forming apparatus
JP2005031474A (en) Fixing belt and manufacturing method for the same
JP5737836B2 (en) Fast and low temperature curing polyimide fixing belts
JP4849356B2 (en) Manufacturing method of composite fixing belt
JP2014010246A (en) Metal multilayer member for fixation
JP2005031485A (en) Fixing belt
EP2309338B1 (en) Fast and low temperature cured polyimide fuser belt
JP2014130284A (en) Laminated electrocast sleeve and fixing belt
JP4424134B2 (en) Fixing member and image forming apparatus
JP2006047766A (en) Toner fixing belt

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060217

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060628

A131 Notification of reasons for refusal

Effective date: 20060704

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20070807

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071005

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071015

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20071102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518