JP2013185228A - Electrolytic copper foil and negative electrode collector for secondary battery - Google Patents

Electrolytic copper foil and negative electrode collector for secondary battery Download PDF

Info

Publication number
JP2013185228A
JP2013185228A JP2012052765A JP2012052765A JP2013185228A JP 2013185228 A JP2013185228 A JP 2013185228A JP 2012052765 A JP2012052765 A JP 2012052765A JP 2012052765 A JP2012052765 A JP 2012052765A JP 2013185228 A JP2013185228 A JP 2013185228A
Authority
JP
Japan
Prior art keywords
copper foil
foil
electrolytic copper
tungsten
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012052765A
Other languages
Japanese (ja)
Other versions
JP2013185228A5 (en
Inventor
Kimiko Fujisawa
季実子 藤澤
Kensaku Shinozaki
健作 篠崎
Akitoshi Suzuki
昭利 鈴木
Takahiro Tsuruta
隆宏 鶴田
Ken Ezura
健 繪面
Atsushi Shinozaki
淳 篠崎
Masato Ebisugi
政登 胡木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2012052765A priority Critical patent/JP2013185228A/en
Priority to KR1020157022124A priority patent/KR20150097821A/en
Priority to EP12819841.3A priority patent/EP2660359A4/en
Priority to PCT/JP2012/069368 priority patent/WO2013018773A1/en
Priority to KR1020137006252A priority patent/KR101669087B1/en
Priority to CN201280004436.7A priority patent/CN103348041B/en
Priority to TW101127554A priority patent/TWI496954B/en
Priority to US13/965,291 priority patent/US9890463B2/en
Publication of JP2013185228A publication Critical patent/JP2013185228A/en
Publication of JP2013185228A5 publication Critical patent/JP2013185228A5/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolytic copper foil by which adhesion between a current collector (copper foil) and an active material is maintained and the current collector (copper foil) does not break upon high expansion and contraction of the active material, and to provide an excellent lithium secondary battery by using the electrolytic copper foil as a negative electrode collector.SOLUTION: An electrolytic copper foil has a ratio of peak intensities I (220)/I (200) of at least 3 obtained by X-ray diffraction and contains tungsten in the foil. A tungsten concentration in the electrolytic copper foil is preferably 15-540 ppm, initial tensile strength is preferably at least 600 MPa, and the tensile strength after heated at 300°C for one hour is preferably at least 450 MPa.

Description

本発明は、耐熱性に優れた電解銅箔に関するものであり、特にリチウム二次電池電極用集電体として優れる電解銅箔に関するものである。   The present invention relates to an electrolytic copper foil excellent in heat resistance, and particularly relates to an electrolytic copper foil excellent as a current collector for a lithium secondary battery electrode.

リチウム二次電池は、基本的に、正極、負極、電解液から構成され、負極は、集電体として用いられる銅箔の表面に炭素系材料からなる負極活物質層をコーティングすることで形成される。
負極の形成法としては、負極活物質とバインダー樹脂(活物質と銅箔基板とを結着することを目的に添加される)を溶剤に溶かしたものを銅箔基板上に塗布し、バインダー樹脂の硬化温度以上の温度で乾燥させた後、プレスすることで形成するスラリー法が一般的である。
A lithium secondary battery is basically composed of a positive electrode, a negative electrode, and an electrolyte, and the negative electrode is formed by coating a surface of a copper foil used as a current collector with a negative electrode active material layer made of a carbon-based material. The
As a method for forming the negative electrode, a negative electrode active material and a binder resin (added for the purpose of binding the active material and the copper foil substrate) dissolved in a solvent are applied onto the copper foil substrate, and the binder resin is then formed. The slurry method is generally formed by pressing after drying at a temperature equal to or higher than the curing temperature.

バインダー樹脂としては、ポリフッ化ビニリデン(PVDF)やスチレンブタジエンゴム(SBR)等が広く用いられているが、近年、電池の高容量化に伴い着目されている、炭素系材料よりも理論容量の高いケイ素、スズ、ゲルマニウム合金系材料などは、充放電時のリチウムの挿入脱離に伴う体積膨張率が非常に大きく、これまで一般的に用いられてきたバインダー樹脂では強度が足りず活物質の剥離が起こるため、銅基板との接着強度の高いポリイミド系樹脂が好ましく使用されてきている。   As the binder resin, polyvinylidene fluoride (PVDF), styrene butadiene rubber (SBR), and the like are widely used. However, in recent years, the theoretical capacity is higher than that of carbon-based materials, which are attracting attention as the capacity of batteries increases. Silicon, tin, germanium alloy materials, etc. have a very large volume expansion coefficient due to lithium insertion / desorption during charge / discharge, and binder resins that have been used so far have insufficient strength to peel off active materials. Therefore, a polyimide resin having a high adhesive strength with a copper substrate has been preferably used.

しかし、ポリイミド系樹脂はこれまで広く使用されてきたバインダー樹脂と違い、硬化温度が300℃程度と非常に高く、この加熱条件に耐え得る負極集電体(銅箔)が要求されている。
このような要求に対し、本発明者等は銅箔にタングステンを添加して銅箔の耐熱性を改善し、ポリイミド系樹脂をバインダー樹脂とする活物質をコーティングする集電体用電解銅箔の開発を試みた。しかし、タングステンは電解銅箔中に非常に取り込みにくい金属である。
However, unlike binder resins that have been widely used so far, the polyimide resin has a very high curing temperature of about 300 ° C., and a negative electrode current collector (copper foil) that can withstand this heating condition is required.
In response to such demands, the present inventors improved the heat resistance of the copper foil by adding tungsten to the copper foil, and the electrolytic copper foil for a current collector coated with an active material having a polyimide resin as a binder resin. Tried development. However, tungsten is a metal that is very difficult to incorporate into the electrolytic copper foil.

電解銅箔を製箔する電解液にタングステンを添加した文献として特許文献1、2が存在する。
特許文献1、2は共に印刷回路用銅箔に関するものであり、その実施例には電解液にタングステン(W)と塩化物イオンを20〜100mg/l添加した電解液で製箔した銅箔はピンホールがなく、樹脂基板との接着性に優れ、180℃における熱間伸び率が高い、と開示しているが、銅箔中にタングステンが取り込まれた、即ち、Cu−W合金箔が製造された、との記載はない。
Patent Documents 1 and 2 exist as documents in which tungsten is added to an electrolytic solution for forming an electrolytic copper foil.
Patent Documents 1 and 2 both relate to a copper foil for a printed circuit, and in the examples, a copper foil made of an electrolytic solution in which 20 to 100 mg / l of tungsten (W) and chloride ions are added to the electrolytic solution is Although it is disclosed that there is no pinhole, excellent adhesion to a resin substrate, and high hot elongation at 180 ° C., tungsten is incorporated into the copper foil, that is, a Cu—W alloy foil is manufactured. There is no description that it was done.

特許3238278号公報Japanese Patent No. 3238278 特開平9−67693号公報JP-A-9-67693

ポリイミド系樹脂はこれまで広く使用されてきたバインダー樹脂と違い、硬化温度が300℃程度と非常に高く、この加熱条件に耐え得る負極集電体(銅箔)が要求されている。
本発明者等は、上記のような電極形成時の加熱工程に耐え得る銅箔の条件として、300℃、1時間加熱後の引張強度が450MPa以上の高耐熱性銅箔の製箔を目標とし、鋭意開発に取り組んだ。
Unlike the binder resins that have been widely used so far, the polyimide resin has a very high curing temperature of about 300 ° C., and a negative electrode current collector (copper foil) that can withstand this heating condition is required.
As a condition of the copper foil that can withstand the heating process at the time of electrode formation as described above, the present inventors have targeted the production of a highly heat-resistant copper foil having a tensile strength after heating at 300 ° C. for 1 hour of 450 MPa or more. , Worked hard on development.

上記の目標に対して種々開発を重ねた結果、300℃、1時間加熱後の引張強度が450MPa以上を保つことのできる銅箔は、融点の高いタングステンを添加し銅合金箔とすることで目的を達成できることを確認し、本発明に至った。   As a result of various developments for the above target, a copper foil that can maintain a tensile strength of 450 MPa or more after heating at 300 ° C. for 1 hour is achieved by adding tungsten having a high melting point to obtain a copper alloy foil. As a result, the present invention was achieved.

本発明の電解銅箔は、X線回折より得られたピーク強度比
I(220)/I(200)
が3以上で、箔中にタングステンを含有する電解銅箔である。
The electrolytic copper foil of the present invention has a peak intensity ratio I (220) / I (200) obtained by X-ray diffraction.
Is an electrolytic copper foil having 3 or more and containing tungsten in the foil.

本発明電解銅箔に含まれるタングステン濃度は15ppm以上であることが好ましく、より好ましいタングステン濃度は15ppm以上、540ppm以下である。   The tungsten concentration contained in the electrolytic copper foil of the present invention is preferably 15 ppm or more, and more preferably 15 ppm or more and 540 ppm or less.

本発明電解銅箔の初期の引張強度は600MPa以上であることが好ましく、より好ましくは、初期の引張強度が600MPa以上で、300℃、1時間加熱後の引張強度が450MPa以上の電解銅箔である。   The initial tensile strength of the electrolytic copper foil of the present invention is preferably 600 MPa or more, more preferably an electrolytic copper foil having an initial tensile strength of 600 MPa or more and a tensile strength after heating at 300 ° C. for 1 hour of 450 MPa or more. is there.

本発明の二次電池用負極集電体は、本発明の電解銅箔を用いた集電体である。   The negative electrode current collector for a secondary battery of the present invention is a current collector using the electrolytic copper foil of the present invention.

本発明は、タングステンを箔中に取り込むことで、300℃、1時間加熱後の引張強度が450MPa以上で、耐熱性に優れる合金電解箔を提供することができる。   The present invention can provide an alloy electrolytic foil having excellent heat resistance with a tensile strength of 450 MPa or more after heating at 300 ° C. for 1 hour by incorporating tungsten into the foil.

銅箔中にタングステンを取り込むことで、加熱時の結晶粒子の粗大化が抑制され、耐熱性が向上するが、タングステンは電解銅箔中に非常に取り込みにくい。
本発明は、電解液に所定の有機添加剤を添加し、製箔された電解銅箔のX線回折より得られるピーク強度比、I(220)/I(200)、を3以上の結晶方位に制御することで電解銅箔中にタングステンを取り込むことに成功し、タングステンを含有し、耐熱性に優れるタングステン−銅合金箔を完成した。
By incorporating tungsten into the copper foil, coarsening of crystal particles during heating is suppressed and heat resistance is improved, but tungsten is very difficult to incorporate into the electrolytic copper foil.
In the present invention, a peak intensity ratio obtained by X-ray diffraction of an electrolytic copper foil obtained by adding a predetermined organic additive to an electrolytic solution and having a crystal orientation of 3 or more, I (220) / I (200) As a result, tungsten was successfully incorporated into the electrolytic copper foil, and a tungsten-copper alloy foil containing tungsten and excellent in heat resistance was completed.

ポリイミド系樹脂をバインダー樹脂とする活物質を堆積する集電体用電解銅箔は、300℃、1時間加熱後の引張り強さが450MPa以上の電解銅合金箔である。
上述したように、リチウム二次電池の負極集電体を構成する集電体(銅箔)は、ポリイミドバインダーを使用する場合、通常300℃、1時間の熱処理に耐える必要性がある。即ち、リチウム二次電池用集電体表面には活物質、導電材とバインダー樹脂の混合物に溶剤などを加えてペースト状に調製した活物質組成物が塗布され、乾燥工程を経て、リチウム二次電池の負極とするが、その乾燥工程において、300℃、1時間の熱処理を必要とする。この乾燥工程の加熱条件に耐え、かつ活物質の充放電サイクルによる膨張、収縮に耐える銅箔としては、300℃、1時間加熱後の引張強度が450MPa以上の電解銅箔を必要とする。
The electrolytic copper foil for a current collector on which an active material having a polyimide resin as a binder resin is deposited is an electrolytic copper alloy foil having a tensile strength of 450 MPa or more after heating at 300 ° C. for 1 hour.
As described above, the current collector (copper foil) constituting the negative electrode current collector of the lithium secondary battery needs to withstand heat treatment at 300 ° C. for 1 hour usually when a polyimide binder is used. That is, an active material composition prepared by adding a solvent or the like to a mixture of an active material, a conductive material and a binder resin is applied to the surface of a current collector for a lithium secondary battery, and after passing through a drying process, Although it is set as the negative electrode of a battery, the drying process requires heat treatment at 300 ° C. for 1 hour. As a copper foil that can withstand the heating conditions of the drying step and withstand expansion and contraction due to charge / discharge cycles of the active material, an electrolytic copper foil having a tensile strength of 450 MPa or more after heating at 300 ° C. for 1 hour is required.

本発明者等はCu−W合金箔を製造するために種々の実験を繰り返した。その結果、塩素イオンが含まれる電解液では、液中にタングステンを多く添加しても製箔した銅箔中にタングステンが取り込まれることはなく、当然この様な電解液で製箔された銅箔の常温及び加熱後の箔の引張強度は向上しなかった。
しかし、電解液に塩素イオンを含まれていても、液中にエチレンチオ尿素等のチオ尿素系化合物を添加すると製箔条件によってはタングステンが箔中に取り込まれる、との見解を得た。
このような見解の基にタングステンが銅箔中に取り込まれる要因を解析したところ、銅箔のX線回析より得られるピーク強度比I(220)/I(200)が3以上であると、タングステンが箔中に取り込まれる、との結果を得た。
The inventors repeated various experiments in order to produce Cu-W alloy foils. As a result, in an electrolytic solution containing chlorine ions, even if a large amount of tungsten is added to the solution, tungsten is not taken into the formed copper foil, and naturally the copper foil formed with such an electrolytic solution is used. The tensile strength of the foil after heating at normal temperature and after heating was not improved.
However, even if the electrolytic solution contains chlorine ions, the opinion was obtained that when a thiourea compound such as ethylenethiourea was added to the solution, tungsten was taken into the foil depending on the foil-making conditions.
When analyzing the factor that tungsten is taken into the copper foil based on such a view, the peak intensity ratio I (220) / I (200) obtained by X-ray diffraction of the copper foil is 3 or more. The result that tungsten was taken in in foil was obtained.

このような知見を踏まえて電解銅箔を次の条件で製箔することで、耐熱性に優れた電解銅箔を製造することに成功した。
即ち、300℃、1時間加熱後の引張り強さが450MPa以上の銅合金箔を下記基本電解浴組成、電流密度で製箔することにより、電解銅箔のX線回析より得られるピーク強度比I(220)/I(200)が3以上となり、タングステンがCu−W合金として箔内に取り込まれた電解銅箔を製箔することができる。
Based on these findings, we succeeded in producing an electrolytic copper foil with excellent heat resistance by making an electrolytic copper foil under the following conditions.
That is, the peak intensity ratio obtained from the X-ray diffraction of the electrolytic copper foil by producing a copper alloy foil having a tensile strength of 450 MPa or more after heating at 300 ° C. for 1 hour with the following basic electrolytic bath composition and current density. An electrolytic copper foil in which I (220) / I (200) is 3 or more and tungsten is taken into the foil as a Cu-W alloy can be manufactured.

基本電解浴組成:
Cu=50〜150g/L
2SO4=20〜200g/L
Cl=15〜50ppm
タングステン酸ナトリウム(タングステンとして)=10〜200ppm
チオ尿素系化合物=3〜20ppm
電流密度:
電流密度=20〜60A/dm
Basic electrolytic bath composition:
Cu = 50 to 150 g / L
H 2 SO 4 = 20 to 200 g / L
Cl = 15-50ppm
Sodium tungstate (as tungsten) = 10-200ppm
Thiourea compounds = 3-20ppm
Current density:
Current density = 20-60 A / dm 2

Figure 2013185228
Figure 2013185228

電解液中にタングステンを10〜200ppm添加する。タングステンの添加量を10ppm以上とするのは、これ以下ではタングステンを含有させた効果が現れず、200ppm以上含有させても引張強度向上等の効果は向上しないためである。従ってタングステンの添加量は10〜200ppmとすることが好ましい。   10 to 200 ppm of tungsten is added to the electrolytic solution. The reason why the added amount of tungsten is set to 10 ppm or more is that the effect of containing tungsten does not appear below this, and the effect of improving the tensile strength or the like does not improve even if contained at 200 ppm or more. Therefore, the addition amount of tungsten is preferably 10 to 200 ppm.

電解液にチオ尿素系化合物を添加する第一の目的は銅箔中にタングステンを取り込み、Cu−W合金箔とするためである。上述したように塩素イオンを添加した電解液では銅箔にまともにタングステンを取り込むことはできない。しかし、本発明ではチオ尿素系化合物を添加することで、銅箔中にWを取り込むことに成功した。添加するチオ尿素系化合物の量を3ppm〜20ppmとするのは、3ppm以下では銅箔中にタングステンを規定量取り込むことができず、300℃、1時間加熱後の引張強度が450MPa以下となり、20ppmを超えて添加すると銅箔中にタングステンが入りすぎ、引張強度が高くなり過ぎ、或いは伸びが小さくなり、好ましくない性質が現れるためで、添加量は3ppm〜20ppmが好ましい範囲である。   The first purpose of adding the thiourea compound to the electrolytic solution is to incorporate tungsten into the copper foil to obtain a Cu-W alloy foil. As described above, the electrolyte containing chlorine ions cannot take tungsten into the copper foil. However, in the present invention, W was successfully incorporated into the copper foil by adding a thiourea compound. The amount of thiourea compound to be added is 3 ppm to 20 ppm because if 3 ppm or less, a prescribed amount of tungsten cannot be taken into the copper foil, the tensile strength after heating at 300 ° C. for 1 hour is 450 MPa or less, and 20 ppm. If it is added in excess of 1, tungsten enters the copper foil too much, the tensile strength becomes too high, or the elongation becomes small, and undesirable properties appear. Therefore, the addition amount is preferably 3 ppm to 20 ppm.

塩素イオンの添加量は15〜50ppmである。塩素イオンが15ppm以下の添加では、箔にピンホールが多く発生するため好ましくなく、また、塩素イオンを50ppm以上添加すると、表面粗さが著しく大きくなる等の不具合が発現すためで、従って、塩素イオンは15〜50ppmの範囲とすることが好ましく、特に好ましく20〜45ppmである。   The addition amount of chloride ions is 15 to 50 ppm. Addition of chlorine ions of 15 ppm or less is not preferable because many pinholes are generated in the foil, and addition of chlorine ions of 50 ppm or more causes problems such as a marked increase in surface roughness. The ions are preferably in the range of 15 to 50 ppm, particularly preferably 20 to 45 ppm.

電解銅合金箔は、タングステン、チオ尿素系化合物、塩素イオンを上記した規定量添加した硫酸銅溶液を電解液として、貴金属酸化物被覆チタンを陽極に、チタン製回転ドラムを陰極として、電流密度20〜60A/dm、液温30〜75℃の条件で電解処理することで製箔する。このような条件で製箔することでX線回析により得られるピーク強度比I(220)/I(200)を3以上とすることができ、電解銅箔中にWを規定量取り込むことができる。 The electrolytic copper alloy foil has a current density of 20 using, as an electrolyte, a copper sulfate solution containing tungsten, a thiourea compound, and chlorine ions added in the above-described amounts, a noble metal oxide-coated titanium as an anode, and a titanium rotating drum as a cathode. It is made into a foil by electrolytic treatment under the conditions of ˜60 A / dm 2 and a liquid temperature of 30 to 75 ° C. By making the foil under such conditions, the peak intensity ratio I (220) / I (200) obtained by X-ray diffraction can be made 3 or more, and a prescribed amount of W can be taken into the electrolytic copper foil. it can.

以下、本発明を実施例に基づいて詳細に説明する。   Hereinafter, the present invention will be described in detail based on examples.

〈実施例1〜36〉
下記の浴組成を硫酸銅電解液の基本浴組成とした。
Cu=50〜150g/L
2SO4=20〜200g/L
Cl=15〜50ppm
表1に示す有機添加剤=3〜20ppm
<Examples 1-36>
The following bath composition was used as the basic bath composition of the copper sulfate electrolyte.
Cu = 50 to 150 g / L
H 2 SO 4 = 20 to 200 g / L
Cl = 15-50ppm
Organic additives shown in Table 1 = 3 to 20 ppm

上記の浴に、添加剤としてタングステン酸ナトリウム、及び表1に示されるチオ尿素、エチレンチオ尿素、N,N−ジエチルチオ尿素、テトラメチルチオ尿素を表2に示す濃度となるよう添加し、表2に示す電流密度で電解銅合金箔を12μm厚さに製箔した。   To the above bath, sodium tungstate as an additive and thiourea, ethylenethiourea, N, N-diethylthiourea, and tetramethylthiourea shown in Table 1 were added to the concentrations shown in Table 2, and shown in Table 2. An electrolytic copper alloy foil was formed to a thickness of 12 μm at a current density.

このようにして製箔した電解銅合金箔に下記条件で防錆処理を施した。
製箔した電解銅合金箔(未処理銅合金箔)をCrO;1g/l水溶液に5秒間浸漬して、クロメート処理を施し、水洗後乾燥させた。
なお、ここでは、クロメート処理を行ったが、ベンゾトリアゾール系処理、或いはシランカップリング剤処理、又はクロメート処理後にシランカップリング剤処理を行ってもよいことは勿論である。
このようにして作成した銅合金箔につき以下の各種測定、試験を行い、その結果を表2に示した。
The electrolytic copper alloy foil thus formed was subjected to rust prevention treatment under the following conditions.
The formed electrolytic copper alloy foil (untreated copper alloy foil) was immersed in a CrO 3 ; 1 g / l aqueous solution for 5 seconds, subjected to chromate treatment, washed with water and dried.
Although the chromate treatment is performed here, it goes without saying that the silane coupling agent treatment may be performed after the benzotriazole-based treatment, the silane coupling agent treatment, or the chromate treatment.
The copper alloy foil thus prepared was subjected to the following various measurements and tests, and the results are shown in Table 2.

Figure 2013185228
Figure 2013185228

(1)結晶方位測定(XRD)
銅箔の結晶方位は、X線回折(XRD)により測定した。
使用機器 : RAD−B (理学電機)
条件 CuKα
スキャン法 θ―2θ
管電圧 40kV
管電流 20mA
測定範囲 20〜100°
(1) Crystal orientation measurement (XRD)
The crystal orientation of the copper foil was measured by X-ray diffraction (XRD).
Equipment used: RAD-B (Rigaku)
Condition CuKα
Scan method θ-2θ
Tube voltage 40 kV
Tube current 20mA
Measurement range 20-100 °

(2)箔中のW濃度の測定(ICP)
銅箔中のW濃度は、一定量の銅箔を酸で溶解し、その後蒸留水で希釈したサンプルに対して、誘導結合プラズマ(ICP)発光分析装置を使用して測定を行った。
使用機器 : ICPS−7000 (島津製作所)
(2) Measurement of W concentration in foil (ICP)
The W concentration in the copper foil was measured using an inductively coupled plasma (ICP) emission spectrometer on a sample obtained by dissolving a certain amount of copper foil with an acid and then diluting with distilled water.
Equipment used: ICPS-7000 (Shimadzu Corporation)

(3)引張強度測定
銅箔の引張強度は、IPC−TM−650に基づいて箔の加熱前と加熱後に付き測定し、 使用機器 ; AG−I (島津製作所)
(3) Tensile strength measurement Tensile strength of copper foil is measured before and after heating the foil based on IPC-TM-650. Equipment used: AG-I (Shimadzu Corporation)

(4)電池性能試験
次に実施例で製箔した電解銅箔を集電体として、リチウム二次電池を作成し、サイクル寿命試験を行った。
粉末状のSi合金系活物質(平均粒径0.1μm〜10μm)を85、バインダー(ポリイミド)を15の比率(重量比)で混合し、N−メチルピロリドン(溶剤)に分散させて活物質スラリーとした。
次いで、このスラリーを、実施例で作成した12μm厚の電解銅箔両面に塗布し、乾燥後ローラープレス機で圧縮形成し、その後、窒素雰囲気下で300℃、1時間焼結し、負極とした。この負極は、成形後の負極合剤の膜厚が両面共に20μmと同一であった。
(4) Battery Performance Test Next, a lithium secondary battery was prepared using the electrolytic copper foil produced in the example as a current collector, and a cycle life test was performed.
Powdered Si alloy-based active material (average particle size 0.1 μm to 10 μm) is mixed in a ratio (weight ratio) of 85 and binder (polyimide) at 15 (weight ratio), and dispersed in N-methylpyrrolidone (solvent). A slurry was obtained.
Next, this slurry was applied to both sides of a 12 μm-thick electrolytic copper foil prepared in the Examples, dried and compressed by a roller press, and then sintered at 300 ° C. for 1 hour in a nitrogen atmosphere to form a negative electrode. . In this negative electrode, the negative electrode mixture after molding had the same film thickness of 20 μm on both sides.

リチウム二次電池の作成
アルゴン雰囲気下のグローブボックス内で、以下の構成で評価用三極式セルを構築した。
負極:上記で作製のSi合金系負極
対極、参照極:リチウム箔
電解液:1mol/L LiPF/EC+DEC(3:7vol%)
Creation of Lithium Secondary Battery A three-electrode cell for evaluation was constructed with the following configuration in a glove box under an argon atmosphere.
Negative electrode: Si alloy negative electrode prepared above Counter electrode, reference electrode: Lithium foil Electrolytic solution: 1 mol / L LiPF 6 / EC + DEC (3: 7 vol%)

構築したセルをボックスから大気中に取り出し、25℃の雰囲気下で充放電測定を実施した。
充電はLiの標準単極電位基準に対して0.02VまでCC(定電流)で行い、その後はCV(定電位のまま)電流が0.05C低下した時点で充電終了とした。放電はCC(定電流)にて0.1Cで1.5V(Li基準)まで行った。同じ0.1C相当電流で充放電を繰り返した。
充放電性能の評価として、放電容量が1サイクル目の放電容量の70%に達するまでのサイクル数を測定し、サイクル数が100回以上の電極を実用上使用可能と判断し、合格レベルとした。各条件で製造した電極のサイクル数を表2及び表4に示す。
The constructed cell was taken out from the box into the atmosphere, and charge / discharge measurement was performed in an atmosphere at 25 ° C.
Charging was carried out at CC (constant current) up to 0.02 V with respect to the Li standard unipolar potential reference, and thereafter, charging was terminated when the CV (still at constant potential) current decreased by 0.05 C. Discharge was performed at CC (constant current) at 0.1 C to 1.5 V (Li standard). The charge and discharge were repeated with the same current equivalent to 0.1 C.
As an evaluation of the charge / discharge performance, the number of cycles until the discharge capacity reaches 70% of the discharge capacity of the first cycle was determined, and it was determined that an electrode having a cycle number of 100 or more could be used practically, and was regarded as an acceptable level. . Tables 2 and 4 show the cycle numbers of the electrodes manufactured under each condition.

また、充放電試験終了後電池を分解し、負極集電体材料として用いた電極(銅箔)について変形の有無を観察した。その結果をシワ等の変形がないものに対して「○」を、シワ等の変形が生じたものは不合格とし「×」を付した。   Moreover, the battery was decomposed | disassembled after completion | finish of a charging / discharging test, and the presence or absence of a deformation | transformation was observed about the electrode (copper foil) used as a negative electrode collector material. The results were marked with “◯” for those without deformation such as wrinkles, and with “x” for those with deformation such as wrinkles.

(比較例1〜15)
下記の浴組成を硫酸銅電解液の基本浴組成とした。
Cu=50〜150g/L
2SO4=20〜200g/L
Cl=15〜50ppm
表3に示す有機添加剤=3〜20ppm
(Comparative Examples 1-15)
The following bath composition was used as the basic bath composition of the copper sulfate electrolyte.
Cu = 50 to 150 g / L
H 2 SO 4 = 20 to 200 g / L
Cl = 15-50ppm
Organic additives shown in Table 3 = 3 to 20 ppm

Figure 2013185228
Figure 2013185228

上記の浴に、実施例と同様に、添加剤としてタングステン酸ナトリウム、及びチオ尿素、エチレンチオ尿素、N,N−ジエチルチオ尿素、ニカワを表4に示す濃度となるよう添加し、表4に示す電流密度で電解銅箔を12μm厚さに製箔した。   In the same manner as in the examples, sodium tungstate and thiourea, ethylenethiourea, N, N-diethylthiourea, and glue were added to the above baths at the concentrations shown in Table 4, and currents shown in Table 4 were added. An electrolytic copper foil having a density of 12 μm was formed.

製箔した銅箔に対して実施例と同様の評価を行い、箔の結晶方位、箔中のW濃度、加熱処理前後の引張強度、電池特性を測定し、表4にその結果を示した。   Evaluation similar to the Example was performed with respect to the produced copper foil, the crystal orientation of the foil, the W concentration in the foil, the tensile strength before and after the heat treatment, and the battery characteristics were measured, and the results are shown in Table 4.

Figure 2013185228
Figure 2013185228

表2に、実施例1〜36で作製した銅箔の評価結果を示す。各サンプルは、添加剤濃度や電流密度の変化により、X線回折より得られるピーク強度比I(220)/I(200)が変化していることを確認することができる。表2に示される銅箔は、X線回折より得られるピーク強度比、I(220)/I(200)、が全て3以上であり、タングステンが取り込まれやすい結晶方位に制御されていることで、箔中にはタングステンが15ppm以上540ppm以下取り込まれている。   In Table 2, the evaluation result of the copper foil produced in Examples 1-36 is shown. In each sample, it can be confirmed that the peak intensity ratio I (220) / I (200) obtained by X-ray diffraction changes due to changes in additive concentration and current density. In the copper foil shown in Table 2, the peak intensity ratio obtained from X-ray diffraction, I (220) / I (200), is all 3 or more, and the crystal orientation in which tungsten is easily incorporated is controlled. In the foil, 15 ppm or more and 540 ppm or less of tungsten is incorporated.

電解浴中のタングステン量を増加させると箔中へのタングステン取り込み量も増加する傾向にあることが分かる。また、加熱後の引張強度(MPa)は450MPa以上であり耐熱性に優れていることが分かった。
300℃、1時間加熱の引張強度(MPa)をみると、全ての箔において450MPa以上と耐熱性に優れており、サイクル試験後の箔の変形も全ての条件において確認することができなかった。より好ましくは、タングステン取り込み量15ppm以上となる条件においては、300℃、1時間加熱後の引張強度が450MPa以上とより耐熱性に優れており、電池のサイクル数は実用上使用可能な100以上と好ましい特性を示した。さらに、その中でタングステン取り込み量が540ppm以上の箔においては、箔が切れやすく製箔が困難であるため、箔中のタングステンの取り込み量は500ppm以下であることが最も好ましい。
It can be seen that increasing the amount of tungsten in the electrolytic bath tends to increase the amount of tungsten taken into the foil. Moreover, the tensile strength (MPa) after a heating was 450 MPa or more, and it turned out that it is excellent in heat resistance.
When the tensile strength (MPa) heated at 300 ° C. for 1 hour was observed, all foils were excellent in heat resistance of 450 MPa or more, and deformation of the foil after the cycle test could not be confirmed under all conditions. More preferably, under the condition that the tungsten uptake amount is 15 ppm or more, the tensile strength after heating at 300 ° C. for 1 hour is 450 MPa or more, which is more excellent in heat resistance, and the battery cycle number is 100 or more that can be used practically. Preferred properties were shown. Furthermore, in a foil having a tungsten uptake amount of 540 ppm or more, it is most preferable that the tungsten uptake amount in the foil is 500 ppm or less because the foil is easily cut and difficult to produce.

一方、表4に比較例1〜15の評価結果を示す。
比較例1〜6の銅箔は、実施例と同様の電解液を使用し、異なる電析条件(電流密度)で作製したサンプルの結果であるが、X線回折より得られるピーク強度比、I(220)/I(200)、が3以下であり、タングステンの取り込みに寄与すると考えられる結晶方位を示していないことが確認された。また、タングステンの取り込み量は、電解浴中のタングステン濃度に関らず全て10ppm未満とタングステンはほとんど取り込まれておらず、300℃、1時間加熱後の引張強度は450MPa以下と耐熱性が非常に低いことが明らかとなった。
On the other hand, Table 4 shows the evaluation results of Comparative Examples 1-15.
The copper foils of Comparative Examples 1 to 6 are the results of samples prepared under different electrodeposition conditions (current density) using the same electrolytic solution as in Examples, but the peak intensity ratio obtained from X-ray diffraction, I (220) / I (200) was 3 or less, and it was confirmed that the crystal orientation considered to contribute to tungsten uptake was not shown. The tungsten uptake is less than 10 ppm regardless of the tungsten concentration in the electrolytic bath, and tungsten is hardly taken up. The tensile strength after heating at 300 ° C. for 1 hour is 450 MPa or less, and the heat resistance is very high. It became clear that it was low.

また、添加剤として一般的に使用されるニカワを添加して製箔した比較例7〜15の銅箔は、どの電解条件においても、X線回折より得られるピーク強度比、I(220)/I(200)、が3以上になるような結晶方位を示すことはなく、全てのサンプルでタングステンの取り込み量は0ppmであり、加熱後の引張強度は250MPa以下と非常に低い耐熱性を示した。
比較例の箔を集電体とした電池は、サイクル試験後、全ての箔に変形が見られた。また、電池のサイクル数も85以下であり、好ましい特性ではなかった。
In addition, the copper foils of Comparative Examples 7 to 15 made by adding glue commonly used as an additive, the peak intensity ratio obtained by X-ray diffraction, I (220) / The crystal orientation in which I (200) is 3 or more is not exhibited, all samples have a tungsten uptake of 0 ppm, and the tensile strength after heating is very low, 250 MPa or less. .
In the battery using the foil of the comparative example as a current collector, all the foils were deformed after the cycle test. Moreover, the cycle number of the battery was 85 or less, which was not a preferable characteristic.

上記特性のW−Cu合金箔により、ケイ素系又は錫合金系活物質の大きな膨張、収縮に対して、集電体(銅箔)と活物質との密着性を保持しながら、集電体(銅箔)が破断しない電解銅箔を提供でき、該電解銅箔を負極集電体とすることで、優れたリチウム二次電池を提供することができる、優れた効果を有するものである。   With the W-Cu alloy foil having the above characteristics, the current collector (copper foil) and the active material are kept in close contact with the current collector (copper foil) against the large expansion and contraction of the silicon-based or tin-alloy active material. The copper foil) can provide an electrolytic copper foil that does not break, and by using the electrolytic copper foil as a negative electrode current collector, an excellent lithium secondary battery can be provided.

Claims (6)

X線回折より得られたピーク強度比
I(220)/I(200)
が3以上で、箔中にタングステンを含有する電解銅箔。
Peak intensity ratio I (220) / I (200) obtained by X-ray diffraction
Is an electrolytic copper foil having 3 or more and containing tungsten in the foil.
箔中のタングステン濃度が15ppm以上である請求項1に記載の電解銅箔。   The electrolytic copper foil according to claim 1, wherein the tungsten concentration in the foil is 15 ppm or more. 箔中のタングステン濃度が15ppm以上、540ppm以下である請求項1に記載の電解銅箔。   The electrolytic copper foil according to claim 1, wherein the tungsten concentration in the foil is 15 ppm or more and 540 ppm or less. 初期の引張強度が600MPa以上である請求項1〜3のいずれかに記載の電解銅箔。   The electrolytic copper foil according to any one of claims 1 to 3, wherein an initial tensile strength is 600 MPa or more. 初期の引張強度が600MPa以上で、300℃、1時間加熱後の引張強度が450MPa以上である請求項1〜3のいずれかに記載の電解銅箔。   The electrolytic copper foil according to any one of claims 1 to 3, wherein the initial tensile strength is 600 MPa or more, and the tensile strength after heating at 300 ° C for 1 hour is 450 MPa or more. 請求項1〜5のいずれかに記載の電解銅箔を用いた二次電池用負極集電体。   The negative electrode collector for secondary batteries using the electrolytic copper foil in any one of Claims 1-5.
JP2012052765A 2011-07-29 2012-03-09 Electrolytic copper foil and negative electrode collector for secondary battery Withdrawn JP2013185228A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2012052765A JP2013185228A (en) 2012-03-09 2012-03-09 Electrolytic copper foil and negative electrode collector for secondary battery
KR1020157022124A KR20150097821A (en) 2011-07-29 2012-07-30 Electrolytic copper alloy foil, method for producing same, electrolytic solution used for production of same, negative electrode collector for secondary batteries using same, secondary battery, and electrode of secondary battery
EP12819841.3A EP2660359A4 (en) 2011-07-29 2012-07-30 Electrolytic copper alloy foil, method for producing same, electrolytic solution used for production of same, negative electrode collector for secondary batteries using same, secondary battery, and electrode of secondary battery
PCT/JP2012/069368 WO2013018773A1 (en) 2011-07-29 2012-07-30 Electrolytic copper alloy foil, method for producing same, electrolytic solution used for production of same, negative electrode collector for secondary batteries using same, secondary battery, and electrode of secondary battery
KR1020137006252A KR101669087B1 (en) 2011-07-29 2012-07-30 Electrolytic copper alloy foil, method for producing same, electrolytic solution used for production of same, negative electrode collector for secondary batteries using same, secondary battery, and electrode of secondary battery
CN201280004436.7A CN103348041B (en) 2011-07-29 2012-07-30 Electrolyte used in cathode copper Alloy Foil, its preparation method, preparation, use secondary battery cathode collector body, secondary cell and the electrode thereof of this cathode copper Alloy Foil
TW101127554A TWI496954B (en) 2011-07-29 2012-07-30 An electrolytic copper alloy foil manufacturing method, an electrolytic solution for the production of the alloy foil, a negative electrode current collector for a secondary battery, a secondary battery and an electrode
US13/965,291 US9890463B2 (en) 2011-07-29 2013-08-13 Electrolysis copper-alloy foil, method of the same, electrolytic-solution using the production, negative electrode aggregation used the same, secondary battery, and electrode of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012052765A JP2013185228A (en) 2012-03-09 2012-03-09 Electrolytic copper foil and negative electrode collector for secondary battery

Publications (2)

Publication Number Publication Date
JP2013185228A true JP2013185228A (en) 2013-09-19
JP2013185228A5 JP2013185228A5 (en) 2014-02-06

Family

ID=49386925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012052765A Withdrawn JP2013185228A (en) 2011-07-29 2012-03-09 Electrolytic copper foil and negative electrode collector for secondary battery

Country Status (1)

Country Link
JP (1) JP2013185228A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014101581A (en) * 2013-12-25 2014-06-05 Furukawa Electric Co Ltd:The Electrolytic copper alloy foil, its manufacturing method, electrolyte used for its manufacturing, negative electrode collector for secondary battery, secondary battery and its electrode
WO2014115681A1 (en) * 2013-01-24 2014-07-31 古河電気工業株式会社 Electrolytic copper foil and method for producing same
JP6067910B1 (en) * 2015-11-04 2017-01-25 古河電気工業株式会社 Electrolytic copper foil and lithium ion secondary battery using the electrolytic copper foil

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115681A1 (en) * 2013-01-24 2014-07-31 古河電気工業株式会社 Electrolytic copper foil and method for producing same
JP5706045B2 (en) * 2013-01-24 2015-04-22 古河電気工業株式会社 Electrolytic copper foil and manufacturing method thereof
JP2014101581A (en) * 2013-12-25 2014-06-05 Furukawa Electric Co Ltd:The Electrolytic copper alloy foil, its manufacturing method, electrolyte used for its manufacturing, negative electrode collector for secondary battery, secondary battery and its electrode
JP6067910B1 (en) * 2015-11-04 2017-01-25 古河電気工業株式会社 Electrolytic copper foil and lithium ion secondary battery using the electrolytic copper foil
WO2017078125A1 (en) * 2015-11-04 2017-05-11 古河電気工業株式会社 Electrolytic copper foil, and lithium ion secondary battery using same

Similar Documents

Publication Publication Date Title
JP5379928B2 (en) Electrolytic copper foil, method for producing the electrolytic copper foil, and lithium ion secondary battery using the electrolytic copper foil as a current collector
JP5730742B2 (en) Electrolytic copper foil for lithium ion secondary battery and method for producing the same
WO2013018773A1 (en) Electrolytic copper alloy foil, method for producing same, electrolytic solution used for production of same, negative electrode collector for secondary batteries using same, secondary battery, and electrode of secondary battery
TWI767910B (en) Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and printed wiring board
JP6529646B2 (en) Electrodeposited copper foil and surface treated copper foil obtained using the electrodeposited copper foil
TWI596827B (en) Method for producing negative electrode material of lithium ion secondary cell and negative electrode material for lithium ion secondary cell
JP6975782B2 (en) Electrolytic copper foil for secondary batteries and its manufacturing method
JP6304681B2 (en) Metal film and method for forming metal film
JP5810249B1 (en) Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, printed wiring board, and electromagnetic shielding material
TWI468284B (en) Surface treatment copper foil, surface treatment copper foil manufacturing method, cathode current collector and non-aqueous secondary battery cathode material
JP6975783B2 (en) Manufacturing method of electrolytic copper foil for secondary batteries
JP2022050471A (en) Electrolytic copper foil for secondary battery, having excellent flexural resistance, and method for producing the same
JP2013185228A (en) Electrolytic copper foil and negative electrode collector for secondary battery
TWI588301B (en) Electrodeposited copper foil, electrode for lithium ion secondary battery using the same, and lithium ion secondary battery using the same
KR101851515B1 (en) Electrolytic copper foil, lithium ion secondary battery using the electrolytic copper foil
JP2013095954A (en) Copper alloy foil, manufacturing method of the same, electrode for lithium ion secondary battery with copper alloy foil as collector, and lithium ion secondary battery
JP6248233B1 (en) Electrolytic copper foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery and printed wiring board
JP5503814B1 (en) Electrolytic copper foil and method for producing the same, negative electrode of lithium ion secondary battery, and lithium ion secondary battery
JP2014101581A (en) Electrolytic copper alloy foil, its manufacturing method, electrolyte used for its manufacturing, negative electrode collector for secondary battery, secondary battery and its electrode
JP2023504161A (en) Surface-treated copper foil, method for producing the same, and negative electrode for secondary battery including the same
CN110172713A (en) A kind of tin plating copper foil processing method of high shielding properties
JP5697051B2 (en) Electrolytic copper alloy foil, method for producing the same, electrolyte used for the production, negative electrode current collector for secondary battery, secondary battery and electrode thereof
KR20130127031A (en) Metal alloy electrode for lithium anode of secondary battery and the preparation method thereof
WO2019031091A1 (en) Resin current collector and method for producing resin current collector
JP2010205659A (en) Negative electrode material for lithium-ion secondary battery and method of manufacturing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131217

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20140715