JP5306620B2 - Copper foil for ultrasonic welding and surface treatment method thereof - Google Patents

Copper foil for ultrasonic welding and surface treatment method thereof Download PDF

Info

Publication number
JP5306620B2
JP5306620B2 JP2007235320A JP2007235320A JP5306620B2 JP 5306620 B2 JP5306620 B2 JP 5306620B2 JP 2007235320 A JP2007235320 A JP 2007235320A JP 2007235320 A JP2007235320 A JP 2007235320A JP 5306620 B2 JP5306620 B2 JP 5306620B2
Authority
JP
Japan
Prior art keywords
copper foil
oxide layer
chromium
ultrasonic welding
treatment method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007235320A
Other languages
Japanese (ja)
Other versions
JP2009068042A (en
Inventor
昭利 鈴木
健作 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2007235320A priority Critical patent/JP5306620B2/en
Publication of JP2009068042A publication Critical patent/JP2009068042A/en
Application granted granted Critical
Publication of JP5306620B2 publication Critical patent/JP5306620B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Treatment Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide copper foil which has excellent ultrasonic weldability and can be joined with other copper foil or with other metal, and to provide a surface treatment method for the copper foil. <P>SOLUTION: The copper foil is provided in which at least one surface is coated with a hydrated chromium oxide layer and the coating amount of the hydrated chromium oxide layer to the surface of the copper foil is controlled to 0.5 to 70 &mu;g-Cr/dm<SP>2</SP>. The surface treatment method for copper foil having excellent ultrasonic weldability is provided in which the copper foil is immersed into a chromic acid aqueous solution obtained by dissolving at least one selected from hexavalent chromium compounds into water, and thus the surface of the copper foil is coated with a hydrated chromium oxide layer. Alternatively, the surface treatment method for copper foil having excellent ultrasonic weldability is also provided in which copper foil is subjected to electrolytic treatment with a chromic acid aqueous electrolytic solution obtained by dissolving at least one selected from hexavalent chromium compounds into water, and thus the surface of the copper foil is coated with a hydrated chromium oxide layer. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は銅箔相互、あるいは銅箔と他の金属材料とを超音波溶接法により溶接する、超音波溶接性に優れた銅箔、ならびにその表面処理方法に関するものである。   The present invention relates to a copper foil excellent in ultrasonic weldability, and a surface treatment method thereof, in which copper foils are welded to each other or from a copper foil and another metal material by an ultrasonic welding method.

従来、銅箔等の金属部品を接合する方法の一つとして、超音波溶接が行われている。この超音波溶接装置の一般的なものは図1に示すように、超音波振動ユニットUの前方に突出するホーン1の先端に溶接ヘッド12が下方に設けられており、その先端が溶接チップ(音極)11となっている。その溶接チップ11に対向してアンビル2が設けられており、溶接チップ11とアンビル2の間に被溶接物(例えば銅箔)13を挟んだ状態で加圧するとともに、溶接チップ11に超音波による振動エネルギーを与えて振動させ、その時の溶接チップ11と被溶接物(銅箔)13との間に発生する振動熱(摩擦熱)によって溶接を行う。この超音波溶接は抵抗溶接に比較して接合温度が低いので母材を痛めにくく、特に異種金属同士の接合ではその接合部にもろい生成物がみられず、低コストであるという利点がある。   Conventionally, ultrasonic welding has been performed as one method for joining metal parts such as copper foil. As shown in FIG. 1, a general ultrasonic welding apparatus is provided with a welding head 12 at the front end of a horn 1 projecting forward of an ultrasonic vibration unit U, and the front end of which is a welding tip ( (Sound pole) 11. An anvil 2 is provided so as to face the welding tip 11 and pressurization is performed with an object to be welded (for example, a copper foil) 13 sandwiched between the welding tip 11 and the anvil 2, and the welding tip 11 is ultrasonically applied. Vibrating energy is applied to vibrate, and welding is performed by vibrational heat (frictional heat) generated between the welding tip 11 and the workpiece (copper foil) 13 at that time. Since this ultrasonic welding has a lower joining temperature than resistance welding, it is difficult to damage the base material. In particular, when joining dissimilar metals, there is an advantage that no brittle product is seen at the joint and the cost is low.

超音波溶接は、上述したような利点を有し、その利点を生かすべく、種々の電子部品の組み立てに多用されている。自動車等に用いられる電子部品の場合、近年の高密度化にともない、その電気接続部はより信頼性の高いものが要求され、特に、端子と銅箔等の異種金属同士の接合部については、より確実に接合されることが求められている。   Ultrasonic welding has the advantages as described above, and is often used for assembling various electronic components in order to take advantage of the advantages. In the case of electronic parts used in automobiles and the like, with the recent increase in density, electrical connection parts are required to be more reliable, especially for joints between dissimilar metals such as terminals and copper foil, There is a demand for more reliable joining.

また、リチウムイオン電池の負極集電体の銅箔同士、あるいは銅箔とタブ端子の接続は超音波溶接により行われており、強い接合強度が求められている。   Moreover, the copper foils of the negative electrode current collector of the lithium ion battery, or the connection between the copper foil and the tab terminal is performed by ultrasonic welding, and a strong bonding strength is required.

超音波溶接は、接合面に一定の圧力を加えた状態で超音波振動を印加すると、被接合面が摩擦され、酸化被膜や不純物が機械的にクリーニングされるとともに、原子拡散を誘起させ、相互に接合される。   In ultrasonic welding, when ultrasonic vibration is applied with a constant pressure applied to the joint surface, the joint surface is rubbed, the oxide film and impurities are mechanically cleaned, and atomic diffusion is induced, causing mutual interaction. To be joined.

本発明者らは、銅箔の超音波溶接を行う際に、銅箔表面に設けた防錆処理層の厚さと銅箔の表面粗さにより、超音波溶接性(接合強度)が大きく影響されることを見出し、本発明を完成するに至った。   When performing ultrasonic welding of copper foil, the present inventors have a great influence on ultrasonic weldability (bonding strength) due to the thickness of the anticorrosive treatment layer provided on the surface of the copper foil and the surface roughness of the copper foil. As a result, the present invention has been completed.

銅箔の場合、防錆処理を施さない方が溶接性は優れる。しかし、防錆処理を施さない状態では大気中で容易に酸化してしまい実用には適さない。これを防ぐため、酸性浴(pH1〜2)でクロメート処理を行い、クロメート被膜と呼ばれる、クロム水和酸化物膜を形成することが一般的である。クロム水和酸化物膜を酸性浴によりクロメート処理するのは、防錆層を比較的厚めに被着させて防錆効果を充分に発揮させるためである。   In the case of copper foil, the weldability is better when the rust preventive treatment is not applied. However, it is not suitable for practical use because it easily oxidizes in the atmosphere without rust prevention treatment. In order to prevent this, it is common to perform a chromate treatment in an acidic bath (pH 1-2) to form a chromium hydrated oxide film called a chromate film. The reason why the chromium hydrated oxide film is chromated with an acidic bath is that the rust preventive layer is deposited relatively thick to sufficiently exhibit the rust preventive effect.

このようにクロメート被膜を施した銅箔は、大気中で変色しにくいが、一方でクロメート被膜の厚さが厚い場合、超音波溶接による接合強度が充分でない場合が発生する。   The copper foil coated with the chromate film is not easily discolored in the air, but on the other hand, when the thickness of the chromate film is thick, there are cases where the bonding strength by ultrasonic welding is not sufficient.

これは、防錆被膜が銅箔表面を覆っているため、超音波振動を印加しても、表面がクリーニングされにくく、純銅が表面に出てこないため、原子拡散が起こり難く、接合力が弱められるためであると考えられる。   This is because the surface of the copper foil covers the surface of the copper foil, so even if ultrasonic vibration is applied, the surface is difficult to clean, and pure copper does not come out on the surface. It is thought that this is because

また本発明者等の実験により、銅箔の超音波溶接による接合力には、銅箔の表面の粗さも影響が大きいことが判明した。即ち、表面粗さの粗い銅箔に超音波振動を印加して相互を接合した場合、表面粗さの粗い銅箔は接合強度が弱い。これは、粗さが粗いため接合時の接触が局部的になり、凹凸の凸の部分では接合が起こるが、凹の部分では接合が起こらず、接合強度が小さくなると推定される。   Moreover, it became clear by experiment of this inventor that the roughness of the surface of copper foil has a big influence on the joining force by ultrasonic welding of copper foil. That is, when ultrasonic vibration is applied to a copper foil having a rough surface to bond the copper foils to each other, the copper foil having a rough surface has a low bonding strength. This is presumed that since the roughness is rough, the contact at the time of bonding becomes local, and bonding occurs in the convex and concave portions, but bonding does not occur in the concave portions and the bonding strength decreases.

上記課題を解決するために、本発明は、超音波溶接で銅箔同士、あるいは銅箔と他の金属とを接合する場合、超音波溶接性に優れた銅箔と、該銅箔の表面処理方法とを提供するものである。   In order to solve the above-described problems, the present invention provides a copper foil excellent in ultrasonic weldability and a surface treatment of the copper foil when joining copper foils or a copper foil and another metal by ultrasonic welding. And a method.

本発明の超音波溶接銅箔は、少なくとも片面にクロム水和酸化物層が被覆されている銅箔であって、該クロム水和酸化物層が被覆されている面のRz(JISB0601−1994で規定する10点平均粗さ)が2.0μm以下であり、前記クロム水和酸化物層の前記銅箔表面への被覆量が0.5〜70μg−Cr/dmである銅箔である。 The copper foil for ultrasonic welding of the present invention is a copper foil coated with a chromium hydrated oxide layer on at least one surface, and Rz (JISB0601-1994) on the surface coated with the chromium hydrated oxide layer. 10 point average roughness) is 2.0 μm or less, and the coating amount of the chromium hydrated oxide layer on the surface of the copper foil is 0.5 to 70 μg-Cr / dm 2. .

本発明の第一の超音波溶接銅箔の表面処理方法は、表面のRzが2.0μm以下の銅箔を、6価クロム化合物の内の少なくとも1種を水に溶解したクロム酸水溶液に浸漬し、前記銅箔の表面に被覆量が0.5〜70μg−Cr/dmであるクロム水和酸化物層を被覆する表面処理方法である。 The surface treatment method of the copper foil for ultrasonic welding of the present invention is a chromic acid aqueous solution in which at least one of hexavalent chromium compounds is dissolved in water with a copper foil having a surface Rz of 2.0 μm or less. It is a surface treatment method in which the surface of the copper foil is immersed and a hydrated chromium layer having a coating amount of 0.5 to 70 μg-Cr / dm 2 is coated.

本発明の第二の超音波溶接銅箔の表面処理方法は、表面のRzが2.0μm以下の銅箔を、6価クロム化合物の内の少なくとも1種を水に溶解したクロム酸水溶液により電解処理して、前記銅箔の表面に、被覆量が0.5〜70μg−Cr/dmのクロム水和酸化物層を被覆する表面処理方法である。 The surface treatment method of the second copper foil for ultrasonic welding according to the present invention comprises a copper foil having a surface Rz of 2.0 μm or less and a chromic acid aqueous solution in which at least one of hexavalent chromium compounds is dissolved in water. In this surface treatment method, the surface of the copper foil is electrolytically coated with a chromium hydrated oxide layer having a coating amount of 0.5 to 70 μg-Cr / dm 2 .

本発明により、超音波溶接による銅箔同士、あるいは銅箔と他の金属との溶接性に優れた超音波溶接用銅箔を提供することができる。
また、本発明の超音波溶接銅箔の表面処理方法は、超音波溶接による銅箔同士、あるいは銅箔と他の金属との溶接性に優れた超音波溶接用銅箔を容易に製造することができる。
By this invention, the copper foil for ultrasonic welding excellent in the weldability of the copper foils by ultrasonic welding or the copper foil and another metal can be provided.
Moreover, the surface treatment method of the copper foil for ultrasonic welding of this invention easily manufactures the copper foil for ultrasonic welding excellent in the weldability of the copper foils by ultrasonic welding, or copper foil and another metal. be able to.

以下本発明を詳細に説明する。なお、本発明において、無水クロム酸、クロム酸塩、重クロム酸塩を個別に表現する必要がないときは、これらを総称して6価クロム化合物と表現する。
また、本発明において、電解銅箔、圧延銅箔を個別に表現する必要がないときは、これらを総称して銅箔と表現する。
The present invention will be described in detail below. In addition, in this invention, when it is not necessary to express chromic anhydride, chromate, and dichromate separately, these are generically expressed as a hexavalent chromium compound.
Moreover, in this invention, when it is not necessary to express an electrolytic copper foil and a rolled copper foil separately, these are generically expressed as a copper foil.

本発明の銅箔は、銅箔の少なくとも片面におけるクロム水和酸化物の被覆量が、0.5〜70μg−Cr/dmである。
また、本発明の銅箔はその表面粗さが、JISB0601−1994で規定する10点平均粗さ(Rz)で2.0μm以下である銅箔である。
In the copper foil of the present invention, the coating amount of the chromium hydrated oxide on at least one surface of the copper foil is 0.5 to 70 μg-Cr / dm 2 .
Moreover, the copper foil of this invention is a copper foil whose surface roughness is 2.0 micrometers or less by 10-point average roughness (Rz) prescribed | regulated by JISB0601-1994.

前記クロム皮膜のクロム水和酸化物被覆量が0.5〜70μg−Cr/dmである理由は、0.5μg−Cr/dmを下回ると、接合強度は良好であるが、銅箔表面が酸化変色しやすく実用的でないためである。また70μg−Cr/dmを超えると変色はし難くなるが、接合強度が落ちるためである。 Why hydrated chromium oxide coated amount of the chromium coating is a 0.5~70μg-Cr / dm 2 is below the 0.5μg-Cr / dm 2, the bonding strength is good, the surface of the copper foil Is oxidatively discolored and is not practical. Further, if it exceeds 70 μg-Cr / dm 2 , discoloration is difficult, but the bonding strength is lowered.

クロム水和酸化物被覆量が溶接性に影響する理由は、前述のようにクロム水和酸化物被膜が銅箔表面を覆っているため、被覆厚さが厚い場合には、超音波振動を印加しても、表面がクリーニングされ難く、純銅が表面に出てこないため、原子拡散が起こり難く、接合力が弱いと考えられる。   The reason why the amount of chromium hydrated oxide coating affects weldability is that, as described above, the chromium hydrated oxide coating covers the copper foil surface, so when the coating thickness is thick, ultrasonic vibration is applied. Even so, the surface is difficult to clean and pure copper does not come out on the surface, so that it is difficult for atomic diffusion to occur and the bonding force is considered weak.

また接合力には、銅箔の表面の粗さも影響する。JISB0601−1994で規定する10点平均粗さ(Rz)で2.0μmを超える銅箔に超音波振動を印加した場合、接合強度が小さくなる。
Rzで2.0μmを超える銅箔相互を超音波接合し、その銅箔の接合部断面を観察すると、ボイドの発生が多い。これは、粗さが粗いため接合時の接触が局部的になり、凹凸の凸の部分では接合が起こるが、凹の部分では接合が起こらず、その部分がボイドとなり、接合強度が小さくなると考えられる。
Also, the surface roughness of the copper foil affects the bonding force. When ultrasonic vibration is applied to a copper foil having a 10-point average roughness (Rz) specified by JISB0601-1994 exceeding 2.0 μm, the bonding strength is reduced.
When the copper foils having an Rz of more than 2.0 μm are ultrasonically bonded and the cross section of the copper foil is observed, voids are often generated. This is because the contact at the time of joining becomes local because of the roughness, and joining occurs at the convex and concave portions of the unevenness, but joining does not occur at the concave portions, and the portion becomes a void and the joining strength is reduced. It is done.

クロム水和酸化物被覆層の生成方法は、電解銅箔の場合、表面が酸化していない場合は、特に何の前処理も行わない。表面が酸化している場合は酸洗いし、水洗、ないしは水洗・乾燥処理を行う。この後、銅箔を三酸化クロム,クロム酸塩,重クロム酸塩の群から選ばれる少なくとも1種を水に溶解して成るクロム酸水溶液に浸漬し、クロム水和酸化物層を被着する。   In the case of the electrolytic copper foil, the method for producing the chromium hydrated oxide coating layer does not particularly perform any pretreatment when the surface is not oxidized. If the surface is oxidized, pickle, wash with water, or wash and dry. Thereafter, the copper foil is immersed in an aqueous chromic acid solution in which at least one selected from the group of chromium trioxide, chromate, and dichromate is dissolved in water, and a chromium hydrated oxide layer is deposited. .

圧延銅箔の場合は、表面に残る圧延油を脱脂処理し、脱脂後の銅箔を水洗、ないしは水洗・乾燥処理し、該脱脂後の銅箔を三酸化クロム,クロム酸塩,重クロム酸塩の群から選ばれる少なくとも1種を水に溶解して成るクロム酸水溶液に浸漬し、クロム水和酸化物層を被着する。   In the case of rolled copper foil, degrease the rolling oil remaining on the surface, wash the degreased copper foil with water, or wash with water and dry, and remove the degreased copper foil with chromium trioxide, chromate, dichromic acid. A chromium hydrated oxide layer is deposited by immersing in a chromic acid aqueous solution prepared by dissolving at least one selected from the group of salts in water.

クロム水和酸化物層生成のもう一つの方法は、銅箔を必要により酸洗い、 脱脂後水洗、ないしは水洗・乾燥処理し、該銅箔を、三酸化クロム,クロム酸塩,重クロム酸塩の群から選ばれる少なくとも1種を水に溶解して成るクロム酸水溶液を電解液として電解処理し、クロム水和酸化物層を被着する。   Another method for producing the chromium hydrated oxide layer is that the copper foil is pickled if necessary, degreased, washed with water, or washed with water and dried, and the copper foil is treated with chromium trioxide, chromate, dichromate. An aqueous chromic acid solution prepared by dissolving at least one selected from the group of the above in water is used as an electrolytic solution, and a chromium hydrated oxide layer is deposited.

クロム酸水溶液による銅箔の表面処理を行う前の処理方法として、酸洗いは、HSO=5〜200g/l、温度=10℃〜80℃の希硫酸に浸漬する方法が効果的である。
また、脱脂の場合は、NaOH=5〜200g/l、温度=10℃〜80℃の水溶液中で、電流密度=1〜10A/dm、0.1分〜5分で陰極又は/及び陽極電解脱脂を行うのが効果的である。
As a treatment method prior to the surface treatment of the copper foil with an aqueous chromic acid solution, pickling is effective by immersing in dilute sulfuric acid at H 2 SO 4 = 5 to 200 g / l and temperature = 10 ° C. to 80 ° C. is there.
In the case of degreasing, the cathode or / and the anode in an aqueous solution of NaOH = 5-200 g / l, temperature = 10 ° C.-80 ° C., current density = 1-10 A / dm 2 , 0.1 min-5 min It is effective to perform electrolytic degreasing.

クロム酸水溶液としては、6価クロム(無水クロム酸、クロム酸塩、あるいは重クロム酸塩のいずれか1種)を1〜10g/l、水酸化ナトリウムを10〜50g/l、pHを13程度に調整し、該(アルカリ性の)クロム酸水溶液に脱脂処理後の銅箔を浸漬してクロム水和酸化物層を被覆する。被覆厚は浸漬時間を調整することで制御することができる。   As the chromic acid aqueous solution, 1 to 10 g / l of hexavalent chromium (any one of chromic anhydride, chromate or dichromate), 10 to 50 g / l of sodium hydroxide, and pH of about 13 The copper hydrated oxide layer is coated by immersing the degreased copper foil in the (alkaline) chromic acid aqueous solution. The coating thickness can be controlled by adjusting the immersion time.

クロム酸電解液による銅箔の電解表面処理方法は、先ず必要に応じて銅箔を酸洗い、脱脂処理を行う。酸洗い、脱脂処理方法は前記と同様である。
次いで前処理した銅箔を、6価クロム化合物を水に溶解したクロム酸電解液で陰極電解処理する。電解処理条件は、陰極に被処理銅箔、陽極に酸化イリジウム被覆チタン板、陰極電解電流密度を0.1〜10A/dmとする。
クロム酸電解液としては、6価クロム化合物(無水クロム酸、クロム酸塩、あるいは重クロム酸塩のいずれか1種)を1〜10g/l、水酸化ナトリウムを10〜50g/l、pHを13程度に調整し、該(アルカリ性)クロム酸電解液に必要により前処理した銅箔を陰極としてクロム水和酸化物層を被覆する。被覆厚は電解時間を調整することで制御することができる。
In the electrolytic surface treatment method of the copper foil with the chromic acid electrolytic solution, the copper foil is first pickled and degreased as necessary. The pickling and degreasing treatment methods are the same as described above.
Next, the pretreated copper foil is subjected to cathodic electrolysis with a chromic acid electrolyte obtained by dissolving a hexavalent chromium compound in water. Electrolysis conditions, to be treated copper foil on the cathode, anode iridium oxide coated titanium plate, the cathode electrolysis current density and 0.1 to 10 A / dm 2.
As chromic acid electrolyte, 1-10 g / l of hexavalent chromium compound (any one of chromic anhydride, chromate, or dichromate), 10-50 g / l of sodium hydroxide, pH The chromium hydrated oxide layer is coated with a copper foil that is adjusted to about 13 and pretreated with the (alkaline) chromic acid electrolyte as necessary. The coating thickness can be controlled by adjusting the electrolysis time.

以下本発明を具体例(実施例)により説明する。   Hereinafter, the present invention will be described with reference to specific examples (examples).

<実施例1>
電解銅箔:厚さ=10μm ;古河サーキットフォイル(株)製WS箔
光沢面側(陰極ドラム側)表面粗さ:Rz=1.43μm
粗面側(電解浴側)表面粗さ:Rz=1.69μm

電解銅箔を無水クロム酸のアルカリ溶液(無水クロム酸:5g/l ;水酸化ナトリウム:30g/l ;pH:13.0;浴温:25℃)からなるクロム酸水溶液に10秒間浸漬した後、水洗、乾燥して銅箔の両面にクロム水和酸化物層を形成させた。クロム水和酸化物層の厚みは、光沢面側(陰極ドラム側)が35μg−Cr/dm、粗面側(電解浴側)が29μg−Cr/dmであった。なお、クロム水和酸化物層の厚みは蛍光X線分析装置により測定した。皮膜を形成した銅箔につき下記の項目につき特性評価を行った。結果を表1に示す。
<Example 1>
Electrolytic copper foil: thickness = 10 μm; WS foil gloss side (cathode drum side) surface roughness manufactured by Furukawa Circuit Foil Co., Ltd .: Rz = 1.43 μm
Rough surface side (electrolytic bath side) surface roughness: Rz = 1.69 μm

After immersing the electrolytic copper foil in an aqueous chromic acid solution consisting of an alkaline solution of chromic anhydride (chromic anhydride: 5 g / l; sodium hydroxide: 30 g / l; pH: 13.0; bath temperature: 25 ° C.) for 10 seconds Then, it was washed with water and dried to form a chromium hydrated oxide layer on both sides of the copper foil. The thickness of the hydrated chromium oxide layer is shiny side (cathode drum side) 35μg-Cr / dm 2, the matte side (electrolytic bath side) was 29μg-Cr / dm 2. The thickness of the chromium hydrated oxide layer was measured with a fluorescent X-ray analyzer. The copper foil on which the film was formed was evaluated for the following items. The results are shown in Table 1.

<実施例2>
実施例1に示す電解銅箔を使い、実施例1と同じ組成のクロム酸水溶液を電解液として、陰極電解処理(陰極:被処理銅箔、陽極(対極):酸化イリジウム被覆チタン板、陰極電解電流密度:0.5A/dm 、処理時間:5秒)を行った。処理後の銅箔を水洗、乾燥して銅箔の両面にクロム水和酸化物層を形成させた。皮膜を形成した銅箔につき実施例1と同様の特性評価を行った。結果を表1に示す。なお、得られた皮膜の厚みは、光沢面側(陰極ドラム側)が62mg−Cr/dm、粗面側(電解浴側)が50mg−Cr/dmであった。
<Example 2>
Cathodic electrolytic treatment (cathode: copper foil to be treated, anode (counter electrode): iridium oxide-coated titanium plate, cathode electrolysis using the electrolytic copper foil shown in Example 1 and an aqueous chromic acid solution having the same composition as in Example 1 as the electrolyte. Current density: 0.5 A / dm 2 , treatment time: 5 seconds). The treated copper foil was washed with water and dried to form a chromium hydrated oxide layer on both sides of the copper foil. The characteristic evaluation similar to Example 1 was performed about the copper foil in which the membrane | film | coat was formed. The results are shown in Table 1. The thickness of the resulting coating, shiny side (cathode drum side) 62mg-Cr / dm 2, the matte side (electrolytic bath side) was 50mg-Cr / dm 2.

<実施例3>
電解銅箔:厚さ=10μm ;古河サーキットフォイル(株)製WS箔
光沢面側(陰極ドラム側)表面粗さ:Rz=0.57μm
粗面側(電解浴側)表面粗さ:Rz=0.78μm

無水クロム酸のアルカリ溶液(無水クロム酸:5g/l ;水酸化ナトリウム:30/l ;pH:13.0;浴温:25℃)に10秒間浸漬した後、水洗、乾燥して銅箔の両面にクロム水和酸化物層を形成させた。クロム水和酸化物層の厚みは、光沢面側(陰極ドラム側)が20μg−Cr/dm、粗面側(電解浴側)が18μg−Cr/dmであった。この銅箔について実施例1と同様な特性評価を行った。結果を表1に示す。
<Example 3>
Electrolytic copper foil: thickness = 10 μm; WS foil gloss surface side (cathode drum side) manufactured by Furukawa Circuit Foil Co., Ltd. surface roughness: Rz = 0.57 μm
Rough surface side (electrolytic bath side) surface roughness: Rz = 0.78 μm

After immersing in an alkaline solution of chromic anhydride (chromic anhydride: 5 g / l; sodium hydroxide: 30 / l; pH: 13.0; bath temperature: 25 ° C.) for 10 seconds, washing with water and drying, Chromium hydrated oxide layers were formed on both sides. The thickness of the hydrated chromium oxide layer is shiny side (cathode drum side) 20μg-Cr / dm 2, the matte side (electrolytic bath side) was 18μg-Cr / dm 2. The copper foil was evaluated for the same characteristics as in Example 1. The results are shown in Table 1.

<実施例4>
圧延銅箔厚さ:10μm
A面粗さ:Rz=0.65μm
B面粗さ:Rz=0.72μm
銅箔コイルの外側の面をA面、内側の面をB面とする。

無水クロム酸のアルカリ溶液(無水クロム酸:5g/l ;水酸化ナトリウム:30g/l ;pH:13.0;浴温:25℃)に10秒間浸漬した後、水洗、乾燥して銅箔の両面にクロム水和酸化物層を形成させた。クロム水和酸化物層の厚みは、A面側が20μg−Cr/dm、B面側が21μg−Cr/dmであった。この銅箔について実施例1と同様な特性評価を行った。結果を表1に示す。
<Example 4>
Rolled copper foil thickness: 10 μm
A surface roughness: Rz = 0.65 μm
B surface roughness: Rz = 0.72 μm
The outer surface of the copper foil coil is the A surface, and the inner surface is the B surface.

After immersing in an alkaline solution of chromic anhydride (chromic anhydride: 5 g / l; sodium hydroxide: 30 g / l; pH: 13.0; bath temperature: 25 ° C.) for 10 seconds, washing with water and drying, Chromium hydrated oxide layers were formed on both sides. The thickness of the hydrated chromium oxide layer, A side is 20μg-Cr / dm 2, B side was 21μg-Cr / dm 2. The copper foil was evaluated for the same characteristics as in Example 1. The results are shown in Table 1.

参考例1
電解銅箔:厚さ=10μm ;古河サーキットフォイル(株)製MPL箔
光沢面側(陰極ドラム側)表面粗さ:Rz=2.10μm
粗面側(電解浴側)表面粗さ:Rz=2.54μm
実施例1と同じ無水クロム酸のアルカリ溶液(クロム酸水溶液)に10秒間浸漬した後、水洗、乾燥して銅箔の両面にクロム水和酸化物層を形成させた。クロム水和酸化物層の厚みは、光沢面側(陰極ドラム側)が38μg−Cr/dm、粗面側(電解浴側)が57μg−Cr/dmであった。この銅箔について実施例1と同様な特性評価を行った。結果を表1に示す。
< Reference Example 1 >
Electrolytic copper foil: thickness = 10 μm; MPL foil manufactured by Furukawa Circuit Foil Co., Ltd. Glossy surface side (cathode drum side) Surface roughness: Rz = 2.10 μm
Rough surface side (electrolytic bath side) surface roughness: Rz = 2.54 μm
After immersing in the same chromic anhydride alkaline solution (chromic acid aqueous solution) as in Example 1 for 10 seconds, it was washed with water and dried to form a chromium hydrated oxide layer on both sides of the copper foil. The thickness of the hydrated chromium oxide layer is shiny side (cathode drum side) 38μg-Cr / dm 2, the matte side (electrolytic bath side) was 57μg-Cr / dm 2. The copper foil was evaluated for the same characteristics as in Example 1. The results are shown in Table 1.

<比較例1>
実施例1に示した電解銅箔と同じ電解銅箔を使用し、クロメート処理浴を酸性浴(無水クロム酸:5g/l ;pH:1.5;浴温:25℃)を用いて、陰極電解処理(陰極:被処理銅箔、対極陽極:酸化イリジウム被覆チタン板、陰極電解電流密度:0.5A/dm 、処理時間:5秒)を行った。処理後の銅箔を水洗、乾燥しクロメート防錆処理を施した銅箔を作製し、実施例1と同様の特性評価を行った。結果を表1に示す。なお、得られた皮膜の厚みは、光沢面側(陰極ドラム側)が82mg−Cr/dm、粗面側(電解浴側)が74mg−Cr/dmであった。
<Comparative Example 1>
The same electrolytic copper foil as that shown in Example 1 was used, and the chromate treatment bath was an acid bath (chromic anhydride: 5 g / l; pH: 1.5; bath temperature: 25 ° C.). Electrolytic treatment (cathode: copper foil to be treated, counter electrode: iridium oxide-coated titanium plate, cathode electrolytic current density: 0.5 A / dm 2 , treatment time: 5 seconds) was performed. The copper foil after the treatment was washed with water and dried to prepare a chromate antirust treatment, and the same characteristics evaluation as in Example 1 was performed. The results are shown in Table 1. The thickness of the resulting coating, shiny side (cathode drum side) 82mg-Cr / dm 2, the matte side (electrolytic bath side) was 74mg-Cr / dm 2.

<比較例2>
実施例1に示した電解銅箔と同じ電解銅箔を使用し、実施例1と同じクロ酸水溶液を更に10倍希釈した処理液に、10秒間浸漬を行った。処理後の銅箔を水洗、乾燥し、実施例1と同様の特性評価を行った。結果を表1に示す。得られた皮膜の厚みは、光沢面側(陰極ドラム側)が0.4μg−Cr/dm、粗面側(電解浴側)が0.3μg−Cr/dmであった。
<Comparative example 2>
The same electrolytic copper foil as the electrolytic copper foil shown in Example 1 was used, and immersion was performed for 10 seconds in a treatment solution obtained by further diluting the same chloric acid aqueous solution as in Example 1 10 times. The treated copper foil was washed with water and dried, and the same characteristic evaluation as in Example 1 was performed. The results are shown in Table 1. The thickness of the resulting coating, shiny side (cathode drum side) 0.4μg-Cr / dm 2, the matte side (electrolytic bath side) was 0.3 μg-Cr / dm 2.

Figure 0005306620
Figure 0005306620

上記実施例、比較例で表面処理した銅箔につきその特性を下記の項目についてそれぞれ測定・評価した。   The characteristics of the copper foils surface-treated in the above Examples and Comparative Examples were measured and evaluated for the following items.

(1)防錆力:銅箔を恒温恒湿槽(温度:40℃;相対湿度:90%に設定)の中に72時間入れ、酸化変色及び錆の発生程度の経時変化を目視観察した。評価は、変色が無く最も良好なものをAとし、酸化変色の程度に応じて(酸化変色なし)A>B>C(酸化変色あり)の順に評価付けした。 (1) Rust prevention power: The copper foil was placed in a constant temperature and humidity chamber (temperature: 40 ° C .; relative humidity: set to 90%) for 72 hours, and changes with time in the degree of oxidation discoloration and rust generation were visually observed. The evaluation was evaluated as A, which is the best one with no discoloration, in the order of A> B> C (with oxidation discoloration) according to the degree of oxidation discoloration (no oxidation discoloration).

(2)溶接性1:ブランソン社株式会社の超音波溶接機により、銅箔を10枚重ねて溶接を行った。溶接性の評価は接合強度を測定した。接合強度については、(強)A>B>C(弱)の順に評価付けした。
(3)溶接性2:ブランソン社株式会社の超音波溶接機により、銅箔とリチウムイオン電池負極集電体のタブ端子とを重ねて溶接を行った。溶接性の評価は前記と同様接合強度を測定し強度により、(強)A>B>C(弱)の順に評価付けした。
(2) Weldability 1: Ten copper foils were stacked and welded by an ultrasonic welding machine manufactured by Branson Co., Ltd. The weld strength was evaluated by measuring the joint strength. The bonding strength was evaluated in the order of (strong) A>B> C (weak).
(3) Weldability 2: Using a Branson Co., Ltd. ultrasonic welder, the copper foil and the tab terminal of the negative electrode current collector of the lithium ion battery were overlapped and welded. The weldability was evaluated in the order of (strong) A>B> C (weak) by measuring the joint strength and measuring the strength in the same manner as described above.

なお、表1において、「溶接性」は、溶接性1,2の特性が両者同じ傾向であったため、総合評価として示している。
また、「総合評価」の欄は、防錆力、溶接性を総合評価してランク付けした。
表1から明らかなように、各実施例の表面処理銅箔は超音波溶接における溶接性に優れ、かつ、防錆機能も発揮している。なお、実施例2の溶接性をBと評価したが、実施例1と比較してやや劣る程度である。
参考例1は未処理銅箔の表面粗さが粗であるために、接着強度がやや劣っている。しかし、溶接強度の重要度によっては実用性がある強度を示しているのでBと評価した。
一方、比較例1の表面処理銅箔は防錆層の厚みが厚いためと思われが、溶接性が劣っている。
また、比較例2の表面処理銅箔は防錆層の厚みが薄いため、溶接性には優れているが防錆機能が劣っている。
In Table 1, “weldability” is shown as a comprehensive evaluation because the characteristics of weldability 1 and 2 have the same tendency.
Moreover, the column of “Comprehensive evaluation” was ranked by comprehensively evaluating rust prevention power and weldability.
As is apparent from Table 1, the surface-treated copper foil of each example is excellent in weldability in ultrasonic welding and exhibits a rust prevention function. In addition, although the weldability of Example 2 was evaluated as B, it is a little inferior compared with Example 1 .
In Reference Example 1, since the surface roughness of the untreated copper foil is rough, the adhesive strength is slightly inferior. However, depending on the importance of the welding strength, it was evaluated as B because it showed practical strength.
On the other hand, although the surface-treated copper foil of Comparative Example 1 seems to be due to the thick rust preventive layer, the weldability is inferior.
Moreover, since the thickness of a rust prevention layer is thin, the surface treatment copper foil of the comparative example 2 is excellent in weldability, but is inferior in the rust prevention function.

以上詳述したように、本発明の超音波溶接性に優れた銅箔は、超音波溶接による銅箔同士、あるいは銅箔と他の金属との溶接性に優れた銅箔である。
また、本発明の超音波溶接性に優れた銅箔の表面処理方法は、超音波溶接による銅箔同士、あるいは銅箔と他の金属との溶接性に優れた銅箔を容易に製造することができる。
As described above in detail, the copper foil excellent in ultrasonic weldability of the present invention is a copper foil excellent in weldability between copper foils by ultrasonic welding or between the copper foil and another metal.
Moreover, the surface treatment method of the copper foil excellent in ultrasonic weldability of the present invention is to easily produce copper foils excellent in weldability between copper foils by ultrasonic welding or between copper foil and other metals. Can do.

超音波溶接装置の要部を示す説明図である。It is explanatory drawing which shows the principal part of an ultrasonic welding apparatus.

符号の説明Explanation of symbols

U 超音波振動ユニット
1 ホーン
2 アンビル
11 溶接チップ
12 溶接ヘッド
13 銅箔
U ultrasonic vibration unit 1 horn 2 anvil 11 welding tip 12 welding head 13 copper foil

Claims (3)

少なくとも片面にクロム水和酸化物層が被覆されている銅箔であって、該クロム水和酸化物層が被覆されている面のRz(JISB0601−1994で規定する10点平均粗さ)が2.0μm以下であり、前記クロム水和酸化物層の前記銅箔表面への被覆量が0.5〜70μg−Cr/dmである超音波溶接銅箔。 The copper foil is coated with a chromium hydrated oxide layer on at least one surface, and the surface coated with the chromium hydrated oxide layer has an Rz (10-point average roughness defined by JISB0601-1994) of 2 The copper foil for ultrasonic welding which is 0.0 micrometer or less and the coating amount to the said copper foil surface of the said chromium hydrated oxide layer is 0.5-70 microgram-Cr / dm < 2 >. 表面のRz(JISB0601−1994で規定する10点平均粗さ)が2.0μm以下の銅箔を、6価クロム化合物の内の少なくとも1種を水に溶解したクロム酸水溶液に浸漬し、銅箔の表面に被覆量が0.5〜70μg−Cr/dmであるクロム水和酸化物層を被覆する超音波溶接銅箔の表面処理方法。 A copper foil having a surface Rz (10-point average roughness specified by JISB0601-1994) of 2.0 μm or less is immersed in an aqueous chromic acid solution in which at least one of hexavalent chromium compounds is dissolved in water, and the copper foil The surface treatment method of the copper foil for ultrasonic welding which coat | covers the chromium hydrated oxide layer whose coating amount is 0.5-70 microgram-Cr / dm < 2 > on the surface of this. 表面のRz(JISB0601−1994で規定する10点平均粗さ)が2.0μm以下の銅箔を、6価クロム化合物の内の少なくとも1種を水に溶解したクロム酸水溶液により電解処理して、前記銅箔の表面に、被覆量が0.5〜70μg−Cr/dmのクロム水和酸化物層を被覆する超音波溶接銅箔の表面処理方法。 A copper foil having a surface Rz (10-point average roughness specified by JISB0601-1994) of 2.0 μm or less is electrolytically treated with a chromic acid aqueous solution in which at least one hexavalent chromium compound is dissolved in water, wherein the surface of the copper foil, the surface treatment method of ultrasonic welding for copper foil coating amount to coat the hydrated chromium oxide layer of 0.5~70μg-Cr / dm 2.
JP2007235320A 2007-09-11 2007-09-11 Copper foil for ultrasonic welding and surface treatment method thereof Active JP5306620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007235320A JP5306620B2 (en) 2007-09-11 2007-09-11 Copper foil for ultrasonic welding and surface treatment method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007235320A JP5306620B2 (en) 2007-09-11 2007-09-11 Copper foil for ultrasonic welding and surface treatment method thereof

Publications (2)

Publication Number Publication Date
JP2009068042A JP2009068042A (en) 2009-04-02
JP5306620B2 true JP5306620B2 (en) 2013-10-02

Family

ID=40604618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007235320A Active JP5306620B2 (en) 2007-09-11 2007-09-11 Copper foil for ultrasonic welding and surface treatment method thereof

Country Status (1)

Country Link
JP (1) JP5306620B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120258281A1 (en) * 2009-12-25 2012-10-11 Furukawa Electric Co., Ltd. Copper foil and method for producing copper foil
WO2012141178A1 (en) * 2011-04-12 2012-10-18 三井金属鉱業株式会社 Copper foil for negative electrode current collector with chromate film, and negative electrode member using copper foil for negative electrode current collector with chromate film
CN104204299B (en) 2012-07-23 2016-02-24 古河电气工业株式会社 Surface treatment copper foil and manufacture method, electrode for lithium ion secondary battery and lithium-ion secondary cell
KR102136784B1 (en) * 2015-07-24 2020-07-22 케이씨에프테크놀로지스 주식회사 Electrolytic copper foil for lithium secondary battery and Lithium secondary battery comprising the same
JP6925109B2 (en) * 2016-09-02 2021-08-25 株式会社エンビジョンAescジャパン Electrode junction for lithium ion secondary battery
JP6611751B2 (en) 2017-03-31 2019-11-27 Jx金属株式会社 Rolled copper foil for lithium ion battery current collector and lithium ion battery
JP2019175802A (en) 2018-03-29 2019-10-10 Jx金属株式会社 Rolled copper foil for lithium ion battery current collector and lithium ion battery

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5687694A (en) * 1979-12-19 1981-07-16 Nippon Mining Co Ltd Manufacture of copper foil for printed circuit
JPS61288095A (en) * 1985-06-13 1986-12-18 Nippon Denkai Kk Copper foil for printed circuit and its production
JP3742144B2 (en) * 1996-05-08 2006-02-01 ソニー株式会社 Nonaqueous electrolyte secondary battery and planar current collector for nonaqueous electrolyte secondary battery
US5942314A (en) * 1997-04-17 1999-08-24 Mitsui Mining & Smelting Co., Ltd. Ultrasonic welding of copper foil
JPH11158652A (en) * 1997-11-25 1999-06-15 Furukawa Circuit Foil Kk Production of electrode material for secondary battery
JP3581784B2 (en) * 1998-03-19 2004-10-27 古河電気工業株式会社 Copper foil for negative electrode current collector of non-aqueous solvent secondary battery
JP2004171999A (en) * 2002-11-21 2004-06-17 Hitachi Maxell Ltd Nonaqueous electrolyte secondary battery
JP2004243402A (en) * 2003-02-17 2004-09-02 Mitsui Chemicals Inc Metal foil joining method, and metal foil connecting device
JP4911870B2 (en) * 2003-02-25 2012-04-04 ソニー株式会社 Non-aqueous electrolyte battery

Also Published As

Publication number Publication date
JP2009068042A (en) 2009-04-02

Similar Documents

Publication Publication Date Title
JP5306620B2 (en) Copper foil for ultrasonic welding and surface treatment method thereof
KR101108312B1 (en) Plated steel sheet for can and process for producing the same
JP5675325B2 (en) Surface-treated copper foil and method for producing surface-treated copper foil
KR20080082677A (en) Composite coated metal sheet, treatment agent and method of manufacturing composite coated metal sheet
JP2010242195A (en) Surface treated metallic material excellent in anti-corrosion property against dissimilar metal contact corrosion and dissimilar material joint body including the same
JP2009001851A (en) Steel sheet for vessel, and method for producing the same
JP5079103B2 (en) Multifunctional coating on aluminum parts
JP5186816B2 (en) Steel plate for containers and manufacturing method thereof
JP2009001854A (en) Steel sheet for vessel
JP5773093B2 (en) Steel plate for containers
JP4365667B2 (en) Dissimilar metal joint member excellent in corrosion resistance and manufacturing method
JP6098709B2 (en) Steel plate for containers
JP6984240B2 (en) Aluminum member with laser weld
JP2576570B2 (en) Pretreatment method for electrolytic chromate treated steel sheet
JP5549615B2 (en) Chemical conversion treatment method for steel member, method for producing steel coating member subjected to electrodeposition coating, and steel coating member
JP5554455B1 (en) Surface-treated copper foil and method for producing the same, electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2014156362A1 (en) Surface-treated copper foil
JPS6330998B2 (en)
KR100695593B1 (en) Joined material of different kinds of metal excellent in corrosion resistance and its manufacturing method
CA2507806C (en) Dissimilar metal joint member with good corrosion resistance and method for manufacturing same
JP2010000532A (en) Method of manufacturing composite material
WO2014156361A1 (en) Surface-treated copper foil
US20060261137A1 (en) Dissimilar metal joint member with good corrosion resistance and method for manufacturing same
JPS6318676B2 (en)
JPS59205494A (en) Preparation of steel plate for welded can

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130626

R151 Written notification of patent or utility model registration

Ref document number: 5306620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350