WO2022050101A1 - Positive electrode active material, positive electrode, nonaqueous electrolyte power storage element, power storage device, method for producing positive electrode active material, method for producing positive electrode, and method for producing nonaqueous electrolyte power storage element - Google Patents

Positive electrode active material, positive electrode, nonaqueous electrolyte power storage element, power storage device, method for producing positive electrode active material, method for producing positive electrode, and method for producing nonaqueous electrolyte power storage element Download PDF

Info

Publication number
WO2022050101A1
WO2022050101A1 PCT/JP2021/030751 JP2021030751W WO2022050101A1 WO 2022050101 A1 WO2022050101 A1 WO 2022050101A1 JP 2021030751 W JP2021030751 W JP 2021030751W WO 2022050101 A1 WO2022050101 A1 WO 2022050101A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
power storage
group
Prior art date
Application number
PCT/JP2021/030751
Other languages
French (fr)
Japanese (ja)
Inventor
祐介 水野
祐一 池田
克弥 西井
周二 人見
茂樹 山手
智人 福原
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Publication of WO2022050101A1 publication Critical patent/WO2022050101A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material, a positive electrode, a non-aqueous electrolyte power storage element, a power storage device, a method for manufacturing a positive electrode active material, a method for manufacturing a positive electrode, and a method for manufacturing a non-aqueous electrolyte power storage element.
  • Non-aqueous electrolyte secondary batteries represented by lithium-ion secondary batteries are widely used in personal computers, electronic devices such as communication terminals, automobiles, etc. due to their high energy density.
  • the non-aqueous electrolyte secondary battery generally has a pair of electrodes electrically separated by a separator and a non-aqueous electrolyte interposed between the electrodes, and transfers ions between the two electrodes. It is configured to charge and discharge.
  • capacitors such as lithium ion capacitors and electric double layer capacitors are also widely used as non-aqueous electrolyte storage elements other than non-aqueous electrolyte secondary batteries.
  • Various active materials are used for the positive electrode and the negative electrode of the non-aqueous electrolyte power storage element, and various composite oxides are widely used as the positive electrode active material.
  • As one of the positive electrode active materials a transition metal solid solution lithium oxide in which a transition metal element such as Co is dissolved in Li 2 O has been developed (see Patent Documents 1 and 2).
  • a positive electrode active material (Li 2O -based positive electrode active material) in which one or more kinds of elements are solidly dissolved in Li 2 O and Li 2 O is theoretically expected as a positive electrode active material having a large discharge capacity.
  • the conventional Li 2O -based positive electrode active material has the disadvantage of low charge / discharge cycle performance. That is, in the case of the conventional Li 2O -based positive electrode active material, since the discharge capacity is greatly reduced with the charge / discharge cycle, it is difficult to repeatedly charge / discharge with a sufficient amount of electricity many times.
  • the present invention has been made based on the above circumstances, and an object thereof is a positive electrode active material having a large discharge capacity even after a charge / discharge cycle, a positive electrode containing such a positive electrode active material, and a non-aqueous electrolyte storage. It is an object to provide an element and a power storage device, and a method for manufacturing these.
  • One aspect of the present invention contains lithium, oxygen, the first element and element A, and has an inverted fluorite-type crystal structure, and the first element is composed of chromium, manganese, iron, cobalt, nickel and copper.
  • the element A is a positive electrode active material which is at least one selected from the group consisting of nitrogen, sulfur, selenium, fluorine, chlorine, bromine and iodine.
  • Another aspect of the present invention is a positive electrode for a non-aqueous electrolyte power storage element containing a positive electrode active material according to one aspect of the present invention.
  • Another aspect of the present invention is a non-aqueous electrolyte power storage element provided with a positive electrode according to one aspect of the present invention.
  • Another aspect of the present invention is a power storage device including a plurality of non-aqueous electrolyte power storage elements and one or more non-water electrolyte power storage elements according to one aspect of the present invention.
  • Another aspect of the present invention comprises treating a material containing lithium, oxygen, the first element and element A by a mechanochemical method, wherein the first element is chromium, manganese, iron, cobalt, nickel and copper. It is a method for producing a positive electrode active material which is at least one selected from the group consisting of, and the element A is at least one selected from the group consisting of nitrogen, sulfur, selenium, fluorine, chlorine, bromine and iodine.
  • Another aspect of the present invention comprises producing a positive electrode using the positive electrode active material according to one aspect of the present invention or the positive electrode active material obtained by the method for producing a positive electrode active material according to one aspect of the present invention.
  • This is a method for manufacturing a positive electrode for a non-aqueous electrolyte power storage element.
  • Another aspect of the present invention is a method for manufacturing a non-aqueous electrolyte power storage element, which comprises a method for manufacturing a positive electrode according to one aspect of the present invention.
  • a positive electrode active material having a large discharge capacity even after a charge / discharge cycle a positive electrode containing such a positive electrode active material, a non-aqueous electrolyte power storage element and a power storage device, and a method for manufacturing these are used.
  • a positive electrode active material having a large discharge capacity even after a charge / discharge cycle a positive electrode containing such a positive electrode active material, a non-aqueous electrolyte power storage element and a power storage device, and a method for manufacturing these are used.
  • FIG. 1 is an external perspective view showing a non-aqueous electrolyte power storage element according to an embodiment of the present invention.
  • FIG. 2 is a schematic view showing a power storage device configured by assembling a plurality of non-aqueous electrolyte power storage elements according to an embodiment of the present invention.
  • FIG. 3 is an X-ray diffraction diagram using CuK ⁇ rays of each positive electrode active material of Examples 2-1 to 2-3 and Comparative Example 2-1.
  • FIG. 4 is a graph showing the amount of oxygen gas generated with respect to the amount of electricity charged during charging of the non-aqueous electrolyte power storage element including the positive electrode active materials of Examples 2-1 to 2-3 and Comparative Example 2-1.
  • FIG. 5 is a graph showing the amount of electric discharge for each charge / discharge cycle in the non-aqueous electrolyte power storage device including the positive electrode active materials of Examples 2-1 to 2-3 and Comparative Example 2-1.
  • the positive electrode active material according to one aspect of the present invention contains lithium, oxygen, a first element and an element A, and has an inverted fluorite-type crystal structure, and the first element is chromium, manganese, iron, cobalt. , At least one selected from the group consisting of nickel and copper, and the element A is at least one selected from the group consisting of nitrogen, sulfur, selenium, fluorine, chlorine, bromine and iodine ( ⁇ ). ).
  • the positive electrode active material ( ⁇ ) has a large discharge capacity after a charge / discharge cycle, and can be charged / discharged many times with a sufficient amount of electricity. The reason for this is not clear, but the following reasons are presumed.
  • One of the causes of the low charge / discharge cycle performance of the conventional Li 2O -based positive electrode active material is that oxygen is desorbed from the positive electrode active material with repeated charging / discharging.
  • the positive electrode active material ( ⁇ ) according to one aspect of the present invention is a conventional Li 2 O-based positive electrode active material in which a transition metal element is solid-dissolved in Li 2 O having an inverted fluorite-type crystal structure.
  • the element A is contained in the positive electrode active material ( ⁇ ) in this way, desorption of oxygen from the positive electrode active material due to repeated charging and discharging is suppressed, and the crystal structure of the positive electrode active material is maintained. As a result, it is presumed that the state where the discharge capacity is large is maintained even after the charge / discharge cycle.
  • the molar ratio of the content of the element A to the content of oxygen is preferably more than 0.00 and 0.2 or less, preferably 0.1. It is more preferably less than or equal to, more preferably 0.05 or less, and sometimes 0.02 or less. Even in such a case, it can be said that the positive electrode active material contains an appropriate amount of element A, and the discharge capacity of the positive electrode active material ( ⁇ ) after the charge / discharge cycle becomes larger.
  • the first element is preferably cobalt. In such a case, the discharge capacity of the positive electrode active material after the charge / discharge cycle becomes larger.
  • the technique disclosed herein contains lithium, oxygen, the first element, and element A, and has an inverted fluorite-type crystal structure, and the first element is chromium, manganese, iron, cobalt, nickel.
  • the positive electrode active material ( ⁇ ) further contains a second element, and even if the second element is at least one selected from the group consisting of group 13 elements, group 14 elements, phosphorus, antimony, bismuth and tellurium. good.
  • the element A may be nitrogen.
  • the positive electrode active material ( ⁇ ) may be a positive electrode active material represented by the following formula 1.
  • M 1 is at least one selected from the group consisting of Cr, Mn, Fe, Co, Ni and Cu.
  • M 2 is at least one selected from the group consisting of Group 13 elements, Group 14 elements, P, Sb, Bi and Te.
  • a, b, c and d are 1.0 ⁇ a ⁇ 2.0, 0.000 ⁇ b ⁇ 0.5, 0.000 ⁇ c ⁇ 0.2, 0.000 ⁇ d ⁇ 0.2, respectively.
  • the positive electrode active material ( ⁇ ) has a ratio of the integrated intensity of the diffraction peak having a diffraction angle 2 ⁇ near 44 ° to the integrated intensity of the diffraction peak having a diffraction angle 2 ⁇ near 33 °. It may be more than 0.00 and 2 or less.
  • the positive electrode active material according to another aspect of the present invention contains lithium, oxygen, a first element, a second element and an element A, has an inverted fluorite-type crystal structure, and the first element is chromium. , Manganese, iron, cobalt, nickel and at least one selected from the group consisting of copper, and the second element is at least selected from the group consisting of group 13 element, group 14 element, phosphorus, antimony, bismuth and tellurium. It is one kind, and is a positive electrode active material ( ⁇ ) in which the element A is nitrogen.
  • the positive electrode active material ( ⁇ ) When the positive electrode active material ( ⁇ ) is used for a non-aqueous electrolyte power storage element, in addition to the above-mentioned effect that the discharge capacity is large even after the charge / discharge cycle, oxygen gas is generated during charging even when the amount of charging electricity is increased. It is suppressed. That is, the amount of charging electricity leading to the generation of oxygen gas can be increased. The reason for this is not clear, but the following reasons are presumed. Generally, in a Li 2 O positive electrode active material, oxygen gas is generated by excessive oxidation of oxygen atoms in Li 2 O as shown in the following formula.
  • nitrogen is contained as the element A together with the first element, so that it is considered that an M1 - ON mixed orbital is formed.
  • electrons are provided from this hybrid orbital (valence band), that is, electrons are provided from nitrogen atoms in addition to oxygen atoms and the like.
  • the positive electrode active material ( ⁇ ) when the positive electrode active material ( ⁇ ) is charged to the same extent as the Li 2O -based positive electrode active material that does not contain a nitrogen atom, the number of electrons provided from the oxygen atom when the state is reached is reduced. That is, it is presumed that the generation of oxygen gas is less likely to occur because the oxidation number of oxygen atoms is small. Further, since the positive electrode active material ( ⁇ ) suppresses the generation of oxygen gas even when the amount of charging electricity is increased, the effective amount of electricity of the non-aqueous electrolyte power storage element can be increased, and as a result, the energy density. Can be enhanced.
  • the positive electrode active material ( ⁇ ) has a sufficiently large discharge capacity that is maintained even after repeated charge / discharge cycles, and has a sufficient charge / discharge cycle life even when the amount of charging electricity is increased. The reason for this effect is not clear, but even when the amount of electricity charged is increased, the generation of oxygen gas during charging is suppressed, and the presence of nitrogen atoms improves electron conductivity. It is guessed that.
  • the positive electrode active material according to another aspect of the present invention is a positive electrode active material ( ⁇ ) represented by the following formula 1.
  • M 1 is at least one selected from the group consisting of Cr, Mn, Fe, Co, Ni and Cu.
  • M 2 is at least one selected from the group consisting of Group 13 elements, Group 14 elements, P, Sb, Bi and Te.
  • a, b, c and d are 1.0 ⁇ a ⁇ 2.0, 0.000 ⁇ b ⁇ 0.5, 0.000 ⁇ c ⁇ 0.2, 0.000 ⁇ d ⁇ 0.2, respectively.
  • the positive electrode active material ( ⁇ ) When the positive electrode active material ( ⁇ ) is used in a non-aqueous electrolyte power storage element, in addition to the above-mentioned effect that the discharge capacity is large even after the charge / discharge cycle, oxygen gas is generated during charging even when the amount of charging electricity is increased. It is suppressed. That is, the amount of charging electricity leading to the generation of oxygen gas can be increased. Therefore, the positive electrode active material ( ⁇ ) can increase the effective electric amount of the non-aqueous electrolyte power storage element, and as a result, the energy density can be increased even when the charging electric amount is increased. Further, the positive electrode active material ( ⁇ ) has a sufficient charge / discharge cycle life. Although these reasons are not clear, the same reasons as the above-mentioned positive electrode active material ( ⁇ ) are presumed.
  • the composition ratio of the positive electrode active material in the present specification refers to the composition ratio of the positive electrode active material that has not been charged and discharged, or the positive electrode active material that has been completely discharged by the following method.
  • the non-aqueous electrolyte power storage element is constantly charged with a current of 0.05 C until the charge end voltage at the time of normal use is reached, and the state is fully charged. After a 30-minute pause, a constant current discharge is performed with a current of 0.05 C to the lower limit voltage during normal use.
  • Disassemble take out the positive electrode, assemble a half-cell with a metal lithium electrode as the counter electrode, and perform constant current discharge with a current of 10 mA per 1 g of the positive electrode mixture until the terminal voltage becomes 1.5 V, and the positive electrode is in a completely discharged state. Adjust to. Re-disassemble and take out the positive electrode.
  • the components (non-aqueous electrolyte, etc.) adhering to the removed positive electrode are thoroughly washed with dimethyl carbonate, dried under reduced pressure at room temperature for 24 hours, and then the positive electrode active material is collected. The collected positive electrode active material is used for measurement.
  • the work from disassembling the non-aqueous electrolyte power storage element to preparing the sample to be measured is performed in an argon atmosphere having a dew point of ⁇ 76 ° C. or lower.
  • the normal use is a case where the non-aqueous electrolyte storage element is used by adopting the charge / discharge conditions recommended or specified for the non-aqueous electrolyte storage element, and the non-aqueous electrolyte power storage element is used.
  • a charger for this purpose it means a case where the charger is applied to use the non-aqueous electrolyte power storage element.
  • the diffraction peak having a diffraction angle 2 ⁇ near 44 ° with respect to the integrated intensity of the diffraction peak near the diffraction angle 2 ⁇ of 33 °.
  • the ratio of the integrated intensities of is preferably more than 0.00 and 2 or less.
  • the diffraction peak in which the diffraction angle 2 ⁇ is around 44 ° is caused by the inclusion of nitrogen, and its integrated intensity increases as the nitrogen content increases. Therefore, the ratio of the integrated intensity of the diffraction peak with the diffraction angle 2 ⁇ near 44 ° to the integrated intensity of the diffraction peak with the diffraction angle 2 ⁇ around 33 °, which is characteristic of the Li 2O positive electrode active material, is more than 0.00 and 2 or less.
  • the configuration of being means that the nitrogen content in the positive electrode active material ( ⁇ ) and the positive electrode active material ( ⁇ ) is in a suitable range, and when used in a non-aqueous electrolyte power storage element, oxygen during charging is used.
  • the diffraction peak in which the diffraction angle 2 ⁇ is around 44 ° refers to the peak having the strongest diffraction intensity in the range of the diffraction angle 2 ⁇ of 42 ° to 46 °.
  • the positive electrode active material according to one aspect of the present invention preferably satisfies the following formula 2. 1.000 ⁇ a 1 / a 2 ⁇ 1.005 ⁇ ⁇ ⁇ 2
  • a 1 is the lattice constant of the positive electrode active material.
  • a 2 is a lattice constant of a compound having a composition in which all the elements A in the positive electrode active material are replaced with oxygen and having an inverted fluorite-type crystal structure.
  • a compound having a composition in which all the element A in the positive electrode active material is replaced with oxygen and having an inverted fluorite-type crystal structure is simply a compound in which the element A is replaced with the same number of oxygen. It means that the number of positive charges and the number of negative charges do not change before and after the replacement.
  • the positive electrode active material represented by "Li 1.58 Co 0.157 O 0.992 F 0.0157 "
  • the positive electrode active material represented by "Li 1.58 Co 0.157 O 0.992 F 0.0157 "
  • the compound having a composition in which the element A (fluorine) in .58 Co 0.157 O 0.992 F 0.0157 is completely replaced with oxygen is "Li 1.58 Co 0.157 O".
  • the half width of the diffraction peak near the diffraction angle 2 ⁇ of 33 ° is 0.3 ° or more.
  • the diffraction peak in which the diffraction angle 2 ⁇ is around 33 ° refers to the peak having the strongest diffraction intensity in the range of the diffraction angle 2 ⁇ of 30 ° to 35 °.
  • the X-ray diffraction measurement of the positive electrode active material is performed by powder X-ray diffraction measurement using an X-ray diffractometer (manufactured by Rigaku, product name: MiniFlex II) with a CuK ⁇ ray as the radiation source, a tube voltage of 30 kV, and a tube current of 15 mA.
  • the diffracted X-rays pass through a K ⁇ filter having a thickness of 30 ⁇ m and are detected by a high-speed one-dimensional detector (D / teX Ultra 2).
  • the sampling width is 0.02 °
  • the scan speed is 5 ° / min
  • the divergent slit width is 0.625 °
  • the light receiving slit width is 13 mm (OPEN)
  • the scattering slit width is 8 mm.
  • the X-ray diffraction pattern obtained by the above-mentioned X-ray diffraction measurement is automatically analyzed using analysis software (manufactured by Rigaku, product name: PDXL).
  • “precision background” and “automatic” are selected in the work window of the analysis software, and the strength error between the measured pattern and the calculated pattern is refined to 1000 or less. Background processing is performed by this refinement, and the value of the peak intensity of each diffraction line, the value of the half width, and the like are obtained as the values obtained by subtracting the baseline.
  • the lattice constant a (nm) of the positive electrode active material is obtained up to the fourth decimal place, and when evaluating up to the third decimal place, the following processing is performed based on the X-ray diffraction pattern refined by the above analysis software.
  • Can be obtained by The data of "ICDD PDF 00-012-0254" is extracted from the "card information reading" column of the flow bar of the above analysis software, moved to the "crystal phase candidate" column, and “confirmed”.
  • select “Lattice constant refinement” of the flow bar select “lithia” as the phase to be analyzed, and check the "No.” columns of 33 ° and 56 °. By selecting “No correction” in “Angle correction” and “Refining", the value of the lattice constant is output.
  • the lattice constants a 1 and a 2 refer to those obtained based on the results of X-ray diffraction measurement carried out by the following method. Specifically, the powder X-ray diffraction beamline of the large-scale radiation facility "SPring-8" is used for the X-ray diffraction measurement.
  • the measurement sample is previously filled in a mark tube made of Lindemann glass having an inner diameter of 0.6 mm in a glove box having an argon atmosphere and sealed.
  • This mark tube is attached to the measurement holder, the 2 ⁇ range is set to 2 ° to 78 °, and the exposure time of synchrotron radiation is set to 5 minutes for measurement.
  • the wavelength of the X-ray is set to the same set value, the wavelength is slightly different depending on the measurement date, and CeO 2 is used as a standard sample to use the X-ray on each measurement day. The wavelength has been calculated.
  • the lattice constant a 1 of the positive electrode active material and “the lattice constant of the compound having a composition in which all the elements A in the positive electrode active material are replaced with oxygen and having an inverted fluorite-type crystal structure”.
  • a 2 is determined based on the result of X-ray diffraction measurement measured on the same day. Specifically, first, the composition of the positive electrode active material P to be measured is analyzed, and the compound Q having a composition in which all the elements A of the positive electrode active material P are replaced with oxygen and having an inverted fluorite-type crystal structure. To synthesize. X-ray diffraction measurement is performed on the positive electrode active material P and the compound Q with "SPring-8" on the same day.
  • the diffraction angle corresponding to the diffraction index 111 in the space group Fm - 3m of the inverted fluorite type crystal structure is read, and the values of the lattice constants a1 and a2 are calculated.
  • the positive electrode according to one aspect of the present invention is a positive electrode for a non-aqueous electrolyte power storage element containing a positive electrode active material according to one aspect of the present invention. Since the positive electrode contains the positive electrode active material according to one aspect of the present invention, the discharge capacity of the non-aqueous electrolyte power storage element provided with the positive electrode after the charge / discharge cycle is increased, and the positive electrode is charged and discharged many times with a sufficient amount of electricity. Is possible.
  • the non-aqueous electrolyte power storage element is a non-aqueous electrolyte power storage element having a positive electrode according to one aspect of the present invention (hereinafter, may be simply referred to as “storage element”).
  • the power storage element has a large discharge capacity after a charge / discharge cycle, and can be charged / discharged many times with a sufficient amount of electricity.
  • the power storage device is a power storage device including a plurality of non-aqueous electrolyte power storage elements and one or more non-water electrolyte power storage elements according to one aspect of the present invention.
  • the power storage device includes one or more non-aqueous electrolyte power storage elements, the discharge capacity after the charge / discharge cycle is large, and it is possible to charge / discharge a large number of times with a sufficient amount of electricity.
  • the method for producing a positive electrode active material comprises treating a material containing lithium, oxygen, a first element and element A by a mechanochemical method, wherein the first element is chromium, manganese and iron. , Cobalt, nickel and copper, and the element A is at least one selected from the group consisting of nitrogen, sulfur, selenium, fluorine, chlorine, bromine and iodine. It is a manufacturing method of.
  • the method for producing a positive electrode active material comprises treating a material containing lithium, oxygen, a first element, a second element and an element A by a mechanochemical method, wherein the first element is used. , Chromium, manganese, iron, cobalt, nickel and copper, and the second element is selected from the group consisting of group 13 elements, group 14 elements, phosphorus, antimony, bismuth and tellurium. This is a method for producing a positive electrode active material in which the element A is nitrogen.
  • the method for producing a positive electrode active material it is possible to produce a positive electrode active material having a large discharge capacity after a charge / discharge cycle and capable of being charged / discharged many times with a sufficient amount of electricity.
  • a positive electrode is produced using the positive electrode active material according to one aspect of the present invention or the positive electrode active material obtained by the method for producing a positive electrode active material according to one aspect of the present invention. It is a method of manufacturing a positive electrode for a non-aqueous electrolyte power storage element.
  • the positive electrode manufacturing method it is possible to manufacture a positive electrode having a large discharge capacity after a charge / discharge cycle and capable of being charged / discharged many times with a sufficient amount of electricity.
  • the method for manufacturing a non-aqueous electrolyte power storage element according to one aspect of the present invention is a method for manufacturing a non-aqueous electrolyte power storage element including the method for manufacturing a positive electrode according to one aspect of the present invention.
  • the method for manufacturing the non-aqueous electrolyte power storage element it is possible to manufacture a non-water electrolyte power storage element having a large discharge capacity after a charge / discharge cycle and capable of being charged / discharged many times with a sufficient amount of electricity.
  • the positive electrode active material the method for manufacturing the positive electrode active material, the positive electrode, the method for manufacturing the positive electrode, the non-aqueous electrolyte power storage element, the method for manufacturing the non-aqueous electrolyte power storage element, and the power storage device according to the embodiment of the present invention will be described in order. ..
  • the positive electrode active material ( ⁇ ) contains lithium, oxygen, a first element and an element A.
  • the first element is at least one selected from the group consisting of chromium, manganese, iron, cobalt, nickel and copper.
  • the element A is at least one selected from the group consisting of nitrogen, sulfur, selenium, fluorine, chlorine, bromine and iodine.
  • the positive electrode active material ( ⁇ ) has an inverted fluorite-type crystal structure.
  • the element A is an element that can take a negative oxidation number.
  • nitrogen and fluorine having an atomic radius close to oxygen are preferable from the viewpoint of stability of the crystal structure of the positive electrode active material.
  • the molar ratio (A / O) of the content of element A to the content of oxygen in the positive electrode active material ( ⁇ ) may be, for example, more than 0.00 and 0.2 or less, but more than 0.00 and 0.05. The following is preferable, more than 0.00 and 0.02 or less, more preferably 0.001 or more and 0.012 or less, and even more preferably 0.003 or more and 0.010 or less.
  • the molar ratio (A / O) is at least the above lower limit, the effect of containing the element A is remarkable.
  • the molar ratio (A / O) is not more than the above upper limit, the crystal structure of the positive electrode active material is maintained, and the discharge capacity of the positive electrode active material after the charge / discharge cycle becomes larger.
  • the molar ratio of the content of element A to the content of the first element in the positive electrode active material ( ⁇ ) is, for example, more than 0.00 and 0.5 or less. However, it is preferably more than 0.00 and 0.3 or less, more preferably 0.01 or more and 0.2 or less, further preferably 0.02 or more and 0.10 or less, and 0.03 or more and 0.08 or less. It may be even more preferable.
  • the molar ratio (for example, when the first element is cobalt, A / Co) is at least the above lower limit, the effect of containing the element A is remarkable.
  • the molar ratio for example, A / Co when the first element is cobalt
  • the crystal structure of the positive electrode active material is maintained, and the positive electrode active material is discharged after the charge / discharge cycle.
  • the capacity becomes larger.
  • the molar ratio of the content of the first element to the total content of lithium and the first element in the positive electrode active material ( ⁇ ) is, for example. It is preferably 0.01 or more and 0.3 or less, more preferably 0.03 or more and 0.2 or less, and further preferably 0.05 or more and 0.15 or less.
  • the molar ratio (for example, when the first element is cobalt, Co / (Li + Co)) serves as a guide for the amount of the first element dissolved in Li 2O , and the molar ratio (for example, when the first element is cobalt) is a guideline.
  • Co / (Li + Co)) is in the above range, the discharge capacity of the positive electrode active material after the charge / discharge cycle becomes larger.
  • the oxygen content in the positive electrode active material ( ⁇ ) is not particularly limited, and is usually determined from the composition ratio of lithium, the first element, the element A, and the like, the valence of these elements, and the like. However, stoichiometrically, it may be in a state of oxygen deficiency or oxygen excess. Further, the lithium content in the positive electrode active material ( ⁇ ) is not particularly limited, and the composition may be in a state where the lithium content is stoichiometrically excessive or insufficient. Each element constituting the positive electrode active material ( ⁇ ) can be appropriately adjusted as long as it can have an inverted fluorite-type crystal structure.
  • the positive electrode active material ( ⁇ ) may contain lithium, oxygen, the first element, and other elements other than the element A. However, the molar ratio of the contents of the other elements to the total content of all the elements constituting the positive electrode active material ( ⁇ ) is preferably 0.5 or less, preferably 0.3 or less, 0.1 or less, or 0. In some cases, 01 or less is more preferable.
  • the positive electrode active material ( ⁇ ) may be substantially composed of lithium, oxygen, the first element and the element A.
  • composition formula of the positive electrode active material ( ⁇ ) is preferably represented by the following formula 3.
  • M 1 is at least one selected from the group consisting of Cr, Mn, Fe, Co, Ni and Cu.
  • A is at least one selected from the group consisting of N, S, Se, F, Cl, Br and I.
  • a, b, c and d satisfy 0 ⁇ a ⁇ 2, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 1 and 0 ⁇ d ⁇ 0.2, respectively.
  • the lower limit of a in the above formula 3 is preferably 1, more preferably 1.4, and even more preferably 1.5.
  • the upper limit of a is preferably 1.9, more preferably 1.8, and even more preferably 1.7.
  • the lower limit of b in the above formula 3 is preferably 0.01, more preferably 0.05, further preferably 0.1, and even more preferably 0.14.
  • the upper limit of b is preferably 0.4, more preferably 0.3, and even more preferably 0.2.
  • the lower limit of c in the above formula 3 is preferably 0.5, more preferably 0.7, even more preferably 0.9, and even more preferably 0.96.
  • the upper limit of c is preferably 0.999, more preferably 0.99.
  • the lower limit of d in the above formula 3 is preferably 0.001, more preferably 0.003, and even more preferably 0.005.
  • the upper limit of d is preferably 0.1, more preferably 0.05, still more preferably 0.02, and even more preferably 0.01.
  • Co usually exists in a state of valence of +2 or +3, and Co having different valences may coexist. Therefore, the average valence of Co in the positive electrode active material ( ⁇ ) is usually in the range of +2 to +3.
  • the oxidation number of A (element A) in the above formula 3 is "-n"
  • the positive electrode active material ( ⁇ ) contains lithium, oxygen, a first element, a second element and an element A, has an inverted fluorite-type crystal structure, and has the above-mentioned first element.
  • the element is at least one selected from the group consisting of chromium, manganese, iron, cobalt, nickel and copper
  • the second element is a group consisting of group 13 elements, group 14 elements, phosphorus, antimony, bismuth and tellurium.
  • the element A is nitrogen, which is at least one selected from the above.
  • the positive electrode active material ( ⁇ ) is typically the first element (M 1 ), the second element (M 2 ), and the element A (N) with respect to Li 2 O having an inverted fluorite-type crystal structure.
  • the charge / discharge reaction (oxidation-reduction reaction) in a conventional composite oxide in which Co is dissolved in Li 2 O is said to be electron transfer in a Co3d—O2p hybrid orbital.
  • the first element other than Co it is said that a redox reaction occurs by electron transfer in the M 13d - O2p hybrid orbital. That is, the first element is an element for activating the redox reaction of oxygen atoms.
  • the second element is a p-block element that can be a cation and can be dissolved in Li 2 O.
  • the oxygen atom forms an sp hybrid orbital of M 2 sp-O2p, and the bond of this M 2 sp-O2p by the sp hybrid orbital is very strong. Will be. That is, the second element is an element for enhancing the stability of the crystal structure.
  • nitrogen which is an element A, is an element that suppresses the generation of oxygen gas due to excessive oxidation of oxygen atoms, and has the effect of increasing electron conductivity and extending the charge / discharge cycle life. ..
  • the positive electrode active material ( ⁇ ) is usually composed of one or more kinds of oxides.
  • the positive electrode active material ( ⁇ ) may have at least a part having an inverted fluorite-type crystal structure, and has a crystal structure other than the inverted fluorite-type crystal structure or an amorphous portion. May be good.
  • the positive electrode active material ( ⁇ ) preferably has an inverted fluorite-type crystal structure as a main phase. Having an inverted fluorite-type crystal structure as the main phase means that the diffraction intensity of the peak derived from the inverted fluorite-type crystal structure is observed most strongly.
  • the positive electrode active material ( ⁇ ) in an X-ray diffraction diagram using CuK ⁇ rays, a peak having the strongest diffraction intensity is observed in the range where the diffraction angle 2 ⁇ is in the range of 10 ° to 80 ° and the diffraction angle 2 ⁇ is around 33 °.
  • the positive electrode active material ( ⁇ ) is composed of a plurality of types of oxides, it contains an oxide that does not contain one or more of lithium, a first element, a second element, and an element A. It may be.
  • the positive electrode active material ( ⁇ ) may contain a compound or the like other than an oxide.
  • the first element preferably contains cobalt, more preferably cobalt.
  • the first element may consist of only one kind or may consist of two or more kinds.
  • Examples of the Group 13 element in the second element include boron, aluminum, gallium, indium, and thallium.
  • Examples of the Group 14 element include carbon, silicon, germanium, tin, lead and the like.
  • As the second element, a group 13 element and a group 14 element are preferable, a group 14 element is more preferable, and silicon is further preferable.
  • the second element may consist of only one kind or may consist of two or more kinds.
  • the molar ratio of the content of the second element (M 2 ) to the total content of the first element (M 1 ) and the second element (M 2 ) in the positive electrode active material ( ⁇ ) (M 2 / (M 1 ). + M 2 )) is not particularly limited, but is, for example, 0.01 or more and 0.8 or less, preferably 0.05 or more and 0.6 or less, more preferably 0.1 or more and 0.5 or less, and 0.15 or more and 0. In some cases, 0.4 or less is further preferable, and in some cases, 0.2 or more and 0.3 or less is even more preferable.
  • the molar ratio of the total content with and ((M 1 + M 2 ) / (Li + M 1 + M 2 )) is not particularly limited, but for example, it is preferably 0.05 or more and 0.3 or less, and 0.1 or more and 0.2 or less. More preferably, it is more preferably 0.13 or more and 0.16 or less.
  • the above-mentioned molar ratio ((M 1 + M 2 ) / (Li + M 1 + M 2 )) is a guideline for the substitution amount (content) of the first element and the second element with respect to Li, which is a cation of Li 2 O.
  • the molar ratio (N / M 1 ) of the content of the element A (N) to the content of the first element (M 1 ) in the positive electrode active material ( ⁇ ) is not particularly limited, and is, for example, more than 0.00 1. It may be less than 0, but is preferably 0.01 or more and 0.8 or less, more preferably 0.02 or more and 0.5 or less, further preferably 0.03 or more and 0.3 or less, and 0.05 or more and 0. 15 or less is even more preferable.
  • the molar ratio (N / M 1 ) may be more preferably 0.10 or less from the viewpoint of further suppressing the generation of oxygen gas during charging. From the viewpoint of extending the charge / discharge cycle life, the molar ratio (N / M 1 ) may be more preferably 0.10 or more.
  • the molar ratio (N / O) of the content of the element A (N) to the content of oxygen (O) in the positive electrode active material ( ⁇ ) is not particularly limited, and is, for example, more than 0.000 and less than 0.2. However, 0.002 or more and 0.1 or less are preferable, 0.004 or more and 0.08 or less are more preferable, 0.006 or more and 0.05 or less are further preferable, and 0.01 or more and 0.03 or less are more preferable. More preferred.
  • oxygen gas is generated during charging when used in a non-aqueous electrolyte power storage element.
  • the molar ratio (N / O) may be more preferably 0.02 or less from the viewpoint of further suppressing the generation of oxygen gas during charging. From the viewpoint of extending the charge / discharge cycle life, the molar ratio (N / O) may be more preferably 0.02 or more.
  • the positive electrode active material ( ⁇ ) may contain lithium, oxygen, a first element, a second element, and other elements other than element A. However, the molar ratio of the contents of the other elements to the total content of all the elements constituting the positive electrode active material ( ⁇ ) is preferably 0.1 or less, more preferably 0.01 or less.
  • the positive electrode active material ( ⁇ ) may be substantially composed of lithium, oxygen, a first element, a second element and an element A. Since the positive electrode active material ( ⁇ ) is substantially composed of lithium, oxygen, a first element, a second element, and an element A, when used in a non-aqueous electrolyte power storage element, oxygen gas during charging can be used. The generation can be further suppressed and the charge / discharge cycle life can be extended.
  • the oxygen content in the positive electrode active material ( ⁇ ) is not particularly limited, and is usually determined from the composition ratio of lithium, the first element, the second element, the element A, and the like, and the valence of these elements. However, it may be an oxide with insufficient oxygen or excess oxygen in the stoichiometric ratio.
  • composition formula of the positive electrode active material ( ⁇ ) As an example of a preferable composition formula of the positive electrode active material ( ⁇ ), the composition formula of the following formula 1 described later can be mentioned.
  • the positive electrode active material ( ⁇ ) is represented by the following formula 1.
  • the composition formula of the following formula 1 represents the composition of the oxide.
  • the composition formula of the following formula 1 represents the overall composition of the plurality of types of oxides.
  • M 1 is at least one selected from the group consisting of Cr, Mn, Fe, Co, Ni and Cu.
  • M 2 is at least one selected from the group consisting of Group 13 elements, Group 14 elements, P, Sb, Bi and Te.
  • a, b, c and d are 1.0 ⁇ a ⁇ 2.0, 0.000 ⁇ b ⁇ 0.5, 0.000 ⁇ c ⁇ 0.2, 0.000 ⁇ d ⁇ 0.2, respectively.
  • the a in the above formula 1 is preferably 1.1 or more and 1.9 or less, more preferably 1.2 or more and 1.8 or less, further preferably 1.3 or more and 1.7 or less, and 1.4 or more and 1.6. The following is even more preferable, and 1.5 or less is even more preferable.
  • B in the above formula 1 is preferably 0.05 or more and 0.4 or less, more preferably 0.1 or more and 0.3 or less, and further preferably 0.15 or more and 0.25 or less.
  • the c in the above formula 1 is preferably 0.01 or more and 0.15 or less, more preferably 0.02 or more and 0.10 or less, and further preferably 0.03 or more and 0.08 or less.
  • the d in the above formula 1 is preferably 0.002 or more and 0.1 or less, more preferably 0.004 or more and 0.08 or less, further preferably 0.006 or more and 0.05 or less, and 0.01 or more and 0.03. The following are even more preferred. Further, d may be more preferably 0.02 or less, and may be further preferably 0.02 or more.
  • M 1 in the above formula 1 contains Co, and Co is more preferable.
  • Group 13 elements and Group 14 elements are preferable, Group 14 elements are more preferable, and Si is even more preferable.
  • the positive electrode active material ( ⁇ ) may or may not have a crystal structure, but preferably has a crystal structure, and may have an inverted fluorite-type crystal structure. More preferred.
  • the diffraction angle 2 ⁇ is the diffraction angle 2 ⁇ with respect to the integrated intensity of the diffraction peak near 33 °.
  • the ratio of the integrated intensities of the diffraction peaks near 44 ° is preferably more than 0.00 and 2 or less, more preferably 0.05 or more and 1.6 or less, and further preferably 0.1 or more and 1.0 or less.
  • the ratio of the integrated strengths in the above range, when used in a non-aqueous electrolyte power storage element, the generation of oxygen gas during charging can be further suppressed, and the charge / discharge cycle life can be further extended. Further, by setting the ratio of the integrated strength to the upper limit or less, the initial discharge capacity of the positive electrode active material tends to increase.
  • the ratio of the integrated strengths may be more preferably 0.5 or less from the viewpoint of further suppressing the generation of oxygen gas during charging. From the viewpoint of extending the charge / discharge cycle life, the ratio of the integrated strengths may be more preferably 0.5 or more.
  • the lattice constant a of the positive electrode active material ( ⁇ ) and the positive electrode active material ( ⁇ ) according to the embodiment of the present invention is preferably 0.460 nm or more and 0.465 nm or less, more preferably 0.461 nm or more and 0.464 nm or less. It is more preferably 0.462 nm or more and 0.463 nm or less.
  • the volume resistivity of the positive electrode active material ( ⁇ ) and the positive electrode active material ( ⁇ ) according to the embodiment of the present invention is preferably 25 ⁇ ⁇ cm or less, more preferably 20 ⁇ ⁇ cm or less, and more preferably 15 ⁇ ⁇ cm. It is more preferably cm or less.
  • the positive electrode active material ( ⁇ ) and the positive electrode active material ( ⁇ ) are Li 2O -based positive electrode active materials, they may have a sufficiently low volume resistance because they contain nitrogen, which is an element A.
  • the volume resistivity of the positive electrode active material ( ⁇ ) and the positive electrode active material ( ⁇ ) is not more than the above upper limit, the cycle life can be extended, and the input / output performance of the non-aqueous electrolyte power storage element can be improved. ..
  • the volume resistivity of the positive electrode active material ( ⁇ ) and the positive electrode active material ( ⁇ ) may be, for example, 1 ⁇ ⁇ cm or more, or 5 ⁇ ⁇ cm or more.
  • the volume resistivity of the positive electrode active material is measured by using a tablet molding machine with an inner wall surface of 11.25 mm ⁇ , which has an inner wall surface coated with insulation, in a glove box with an argon atmosphere, and is pressed at a pressure of 30 MPa with a hydraulic press machine. In this state, the resistance value is measured with a resistance meter (AC four-terminal method, measurement frequency 1 kHz). First, the measurement is performed without putting the sample in the tablet molder, and the resistance value is defined as the blank resistance.
  • the positive electrode active material powder which is a sample
  • the volume resistivity is calculated from the resistance value obtained by subtracting the blank resistance from the measured resistance value and the thickness of the sample after pressing measured with a caliper.
  • the lattice constant of the positive electrode active material is a 1 , the lattice constant of the compound having a composition in which all the elements A in the positive electrode active material are replaced with oxygen and having an inverted fluorite-type crystal structure.
  • the ratio a 1 / a 2 may be, for example, more than 1.00000, preferably more than 1.0000, and may be more than 1.00005 or more than 1.00010. .
  • the ratio a 1 / a 2 may be 1.001 or less, preferably less than 1.0005, more preferably less than 1.0003, and even more preferably less than 1.0002.
  • the ratio a 1 / a 2 of the lattice constant is in the above range, it means that a sufficient amount of element A is contained within a range in which the stability of the crystal structure is not significantly impaired.
  • the discharge capacity of the positive electrode active material after the charge / discharge cycle becomes larger.
  • the positive electrode active material according to the embodiment of the present invention preferably satisfies the following formula 2. 1.000 ⁇ a 1 / a 2 ⁇ 1.005 ⁇ ⁇ ⁇ 2
  • a 1 is the lattice constant of the positive electrode active material.
  • a2 is a lattice constant of a compound having a composition in which all the elements A in the positive electrode active material are replaced with oxygen and having an inverted fluorite-type crystal structure.
  • the positive electrode active material contains an appropriate amount of element A, and the discharge capacity of the positive electrode active material after the charge / discharge cycle becomes larger.
  • the half width of the diffraction peak near the diffraction angle 2 ⁇ of 33 ° is preferably 0.3 ° or more, preferably 0.5 ° or more. More preferably, 1.0 ° or more is further preferable.
  • the half-value width of the diffraction peak near the diffraction angle 2 ⁇ is 33 ° or more is equal to or greater than the above lower limit, the generation of oxygen gas during charging is further suppressed when used in a non-aqueous electrolyte power storage element, and a more sufficient charge / discharge cycle life is achieved.
  • It can be a positive electrode active material having.
  • the half-value width of such a diffraction peak tends to be large.
  • the half width of the diffraction peak in which the diffraction angle 2 ⁇ is around 33 ° may be, for example, 5 ° or less, 3 ° or less, or 2 ° or less.
  • the positive electrode active material according to one embodiment of the present invention is usually particles (powder).
  • the average particle size of the positive electrode active material is preferably, for example, 0.01 ⁇ m or more and 20 ⁇ m or less. By setting the average particle size of the positive electrode active material to the above lower limit or more, the production or handling of the positive electrode active material becomes easy. By setting the average particle size of the positive electrode active material to be equal to or less than the above upper limit, the electron conductivity when the positive electrode active material layer is formed is improved. When a complex of a positive electrode active material and another material is used, the average particle size of the complex is taken as the average particle size of the positive electrode active material.
  • the "average particle size” means the average value of the particle size measured by extracting 1000 particles from a scanning electron microscope (SEM) image while avoiding extremely large particles and extremely small particles.
  • the particle size of each particle in the measurement from this SEM image is obtained as follows.
  • the shortest diameter passing through the center of the minimum circumscribed circle of each particle is defined as the minor diameter, and the diameter passing through the center and orthogonal to the minor diameter is defined as the major diameter.
  • the average value of the major axis and the minor axis is taken as the particle size of each particle. When there are two or more shortest diameters, the one with the longest orthogonal diameter is the shortest diameter.
  • a crusher, a classifier, etc. are used to obtain powder with a predetermined particle size.
  • the crushing method include a method using a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling airflow type jet mill, a sieve, or the like.
  • wet pulverization in which a non-aqueous solvent (dimethyl carbonate or the like) used for the non-aqueous electrolyte described later or an organic solvent such as N-methylpyrrolidone coexists can also be used.
  • a classification method a sieve, a wind power classifier, or the like is used as needed for both dry and wet types.
  • the positive electrode active material according to the embodiment of the present invention can be produced, for example, by the following production method. That is, the method for producing a positive electrode active material according to an embodiment of the present invention comprises treating a material containing lithium, oxygen, a first element and element A by a mechanochemical method, wherein the first element is chromium or manganese. , At least one selected from the group consisting of iron, cobalt, nickel and copper, and the element A is at least one selected from the group consisting of nitrogen, sulfur, selenium, fluorine, chlorine, bromine and iodine.
  • the method for producing a positive electrode active material comprises treating a material containing lithium, oxygen, a first element, a second element and an element A by a mechanochemical method, and the first element is described above.
  • the first element is described above.
  • the second element is from the group consisting of group 13 element, group 14 element, phosphorus, antimony, bismuth and tellurium. It is at least one selected, and the element A is nitrogen.
  • Specific examples and suitable examples of the positive electrode active material produced by the production method are the same as the specific examples and suitable examples of the positive electrode active material according to the embodiment of the present invention.
  • the mechanochemical method (also referred to as mechanochemical treatment) is a synthetic method using a mechanochemical reaction.
  • the mechanochemical reaction refers to a chemical reaction such as a crystallization reaction, a solid solution reaction, or a phase transition reaction that utilizes high energy locally generated by mechanical energy such as friction and compression in the crushing process of a solid substance.
  • the treatment by the mechanochemical method causes a reaction in which the first element and element A or the first element, the second element and the element A are solid-dissolved in the crystal structure of Li 2O . Will be done.
  • Examples of the apparatus for processing by the mechanochemical method include crushing / dispersing machines such as ball mills, bead mills, vibration mills, turbo mills, mechanofusions, and disc mills. Of these, a ball mill is preferable.
  • balls and mill containers used in the ball mill those made of tungsten carbide (WC), those made of zirconium oxide (ZrO 2 ), and the like can be preferably used.
  • the mill rotation speed during processing can be, for example, 100 rpm or more and 1,000 rpm or less.
  • the processing time can be, for example, 0.1 hour or more and 100 hours or less.
  • this treatment can be carried out in an atmosphere of an inert gas such as argon or an atmosphere of an active gas such as air, but it is preferably carried out in an atmosphere of an inert gas.
  • the inert gas refers to a gas that is inert to the material to be subjected to the ball mill treatment and the obtained positive electrode active material.
  • the positive electrode active material obtained by the production method preferably has an inverted fluorite-type crystal structure.
  • the positive electrode active material obtained by treating with the mechanochemical method as in the production method has a half-value width of a diffraction peak near 33 ° in the diffraction angle 2 ⁇ in an X-ray diffraction diagram using CuK ⁇ rays, which is 0.3 °. It tends to be larger than the above.
  • the material to be treated by the mechanochemical method is usually composed of one kind or two or more kinds of compounds.
  • a material composed of one kind or two or more kinds of compounds lithium, oxygen, the first element and element A or lithium, oxygen, the first element, the second element are used as the elements constituting these compounds.
  • element A may be contained.
  • the compound and the like constituting the above material may be an oxide, a compound other than the oxide, or a simple substance. Further, these compounds and the like may be crystalline or amorphous. Specific examples of the compounds constituting the above materials include lithium oxides such as Li 2O . Lithium-first element composite oxides such as Li 6 CoO 4 , Li 5 CrO 4 , Li 5 FeO 4 , Li 6 NiO 4 , Li 6 CuO 4 , Li 6 MnO 4 , etc. Li 5 AlO 4 , Li 5 GaO 4 , Li 5 InO 4 , Li 4 SiO 4 , Li 4 GeO 4 , Li 4 SnO 4 , Li 3 BO 3 , Li 5 SbO 5 , Li 5 BiO 6 etc.
  • Li 2O Lithium-first element composite oxides such as Li 6 CoO 4 , Li 5 CrO 4 , Li 5 FeO 4 , Li 6 NiO 4 , Li 6 CuO 4 , Li 6 MnO 4 , etc. Li 5 AlO 4
  • Lithium and second element composite oxide Li 5.5 Co 0.5 Al 0.5 O 4 , Li 5.8 Co 0.8 Al 0.2 O 4 , LiCo 0.5 B 0.5 O 2 , LiCo 0.8 B 0.2 O 2 , Li 5.5 Co 0.5 B 0.5 O 4 , Li 5.8 Co 0.8 B 0.2 O 4 , Li 5.8 Co 0.8 Si 0.2 O 4 and other lithium Composite oxide of the first element and the second element, Oxides of the first element such as CoO, Co 3 O 4 , Fe 2 O 3 , MnO 2 , NiO, Cu 2 O, Cu O, etc. Oxides of second elements such as B 2 O 3 , Al 2 O 3 , SiO 2 , GeO 2 , SnO 2 , etc.
  • Li 3 N, Li 3-x Co x N (Li 2.6 Co 0.4 N, etc.), CoN x , CoF 2 , CoCl 2 , CoS, CoS 2 , CoSe, CoTe, CoBr, CoI 2 , Li 2 S , Li 2 Se, LiF, LiCl, LiBr and LiI, Si 3N 4 , BN and other compounds containing element A.
  • Compounds and the like may be used.
  • the positive electrode according to the embodiment of the present invention is a positive electrode for a non-aqueous electrolyte power storage element containing the positive electrode active material according to the above-mentioned embodiment of the present invention.
  • the positive electrode has a positive electrode base material and a positive electrode active material layer arranged directly on the positive electrode base material or via an intermediate layer.
  • the positive electrode base material has conductivity. Having "conductive” means that the volume resistivity measured according to JIS-H-0505 (1975) is 107 ⁇ ⁇ cm or less, and “non-conductive” means. It means that the volume resistivity is more than 107 ⁇ ⁇ cm.
  • metals such as aluminum, titanium, tantalum, and stainless steel or alloys thereof are used. Among these, aluminum and aluminum alloys are preferable from the viewpoint of the balance between potential resistance, high conductivity and cost.
  • examples of the formation form of the positive electrode base material include foil, a vapor-deposited film, and the like, and foil is preferable from the viewpoint of cost. That is, aluminum foil or aluminum alloy foil is preferable as the positive electrode base material. Examples of aluminum or aluminum alloy include A1085P and A3003P specified in JIS-H-4000 (2014).
  • the average thickness of the positive electrode substrate is preferably 3 ⁇ m or more and 50 ⁇ m or less, more preferably 5 ⁇ m or more and 40 ⁇ m or less, further preferably 8 ⁇ m or more and 30 ⁇ m or less, and particularly preferably 10 ⁇ m or more and 25 ⁇ m or less.
  • the "average thickness" of the positive electrode base material and the negative electrode base material described later means a value obtained by dividing the punched mass when punching a base material having a predetermined area by the true density and the punched area of the base material.
  • the intermediate layer is a coating layer on the surface of the positive electrode base material, and contains a conductive agent such as carbon particles to reduce the contact resistance between the positive electrode base material and the positive electrode active material layer.
  • the composition of the intermediate layer is not particularly limited and includes, for example, a binder and a conductive agent.
  • the positive electrode active material layer is formed from a so-called positive electrode mixture containing a positive electrode active material. Further, the positive electrode mixture forming the positive electrode active material layer contains optional components such as a conductive agent, a binder, a thickener, and a filler, if necessary.
  • the positive electrode active material includes the positive electrode active material according to the embodiment of the present invention described above.
  • the positive electrode active material may contain a known positive electrode active material other than the positive electrode active material according to the embodiment of the present invention.
  • the content of the positive electrode active material according to the embodiment of the present invention in the positive electrode active material layer is preferably 10% by mass or more, more preferably 30% by mass or more, further preferably 50% by mass or more, and 70% by mass or more. Especially preferable.
  • the content of the positive electrode active material according to the embodiment of the present invention in the positive electrode active material layer may be 99% by mass or less, 98% by mass or less, 90% by mass or less, or 80% by mass or less.
  • the conductive agent is not particularly limited as long as it is a conductive material.
  • a conductive agent include carbonaceous materials; metals; conductive ceramics and the like.
  • carbonaceous materials include graphite and carbon black.
  • Examples of the type of carbon black include furnace black, acetylene black, and ketjen black. Among these, carbonaceous materials are preferable from the viewpoint of conductivity and coatability. Of these, acetylene black and ketjen black are preferable.
  • Examples of the shape of the conductive agent include powder, sheet, and fibrous.
  • the positive electrode active material and the conductive agent may be combined.
  • Examples of the method of compositing include a method of mechanically milling a mixture containing a positive electrode active material and a conductive agent, which will be described later.
  • the content of the conductive agent in the positive electrode active material layer is preferably 1% by mass or more and 40% by mass or less, more preferably 3% by mass or more and 30% by mass or less, and further preferably 5% by mass or more or 10% by mass or more. ..
  • the energy density of the power storage element can be increased.
  • binder examples include fluororesins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), thermoplastic resins such as polyethylene, polypropylene, and polyimide; ethylene-propylene-diene rubber (EPDM), sulfonated EPDM, and styrene. Elastomers such as butadiene rubber (SBR) and fluororubber; polysaccharide polymers and the like can be mentioned.
  • fluororesins polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.
  • thermoplastic resins such as polyethylene, polypropylene, and polyimide
  • EPDM ethylene-propylene-diene rubber
  • SBR butadiene rubber
  • fluororubber polysaccharide polymers and the like can be mentioned.
  • the content of the binder in the positive electrode active material layer is preferably 1% by mass or more and 10% by mass or less, and more preferably 3% by mass or more and 9% by mass or less. By setting the content of the binder in the above range, the positive electrode active material can be stably held.
  • the thickener examples include polysaccharide polymers such as carboxymethyl cellulose (CMC) and methyl cellulose.
  • CMC carboxymethyl cellulose
  • methyl cellulose examples include polysaccharide polymers such as carboxymethyl cellulose (CMC) and methyl cellulose.
  • Fillers include polyolefins such as polypropylene and polyethylene, silicon dioxide, aluminum oxide, titanium dioxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide, inorganic oxides such as aluminosilicate, magnesium hydroxide, calcium hydroxide, and water.
  • Hydroxides such as aluminum oxide, carbonates such as calcium carbonate, sparingly soluble ion crystals such as calcium fluoride, barium fluoride, barium sulfate, nitrides such as aluminum nitride and silicon nitride, talc, montmorillonite, boehmite and zeolite.
  • Apatite Kaolin, Murite, Spinel, Olivin, Sericite, Bentonite, Mica and other mineral resource-derived substances or man-made products thereof.
  • the positive electrode active material layer is a typical non-metal element such as B, N, P, F, Cl, Br, I, Li, Na, Mg, Al, Si, K, Ca, Zn, Ga, Ge, Sn, Sr, Typical metal elements such as Ba and transition metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Nb and W are used as positive electrode active materials, conductive agents, binders and thickeners. , May be contained as a component other than the filler.
  • the positive electrode according to the embodiment of the present invention can be manufactured by, for example, the following method. That is, the method for producing the positive electrode according to the embodiment of the present invention is the positive electrode active material obtained by the method for producing the positive electrode active material according to the embodiment of the present invention or the positive electrode active material according to the embodiment of the present invention. Provided to be used to make a positive electrode.
  • the positive electrode can be produced, for example, by applying the positive electrode mixture paste directly to the positive electrode base material or via an intermediate layer and drying it to form a positive electrode active material layer.
  • the positive electrode mixture paste contains each component constituting the positive electrode mixture, such as a positive electrode active material and optional components such as a conductive agent and a binder.
  • the positive electrode mixture paste may further contain a dispersion medium.
  • the positive electrode active material layer may be formed by molding a positive electrode mixture containing no dispersion medium.
  • the positive electrode active material and the conductive agent are mixed, it is preferable to mechanically mill the mixture containing the positive electrode active material and the conductive agent.
  • the positive electrode active material according to the embodiment of the present invention is used, sufficient charge / discharge performance and the like are provided by performing the mechanical milling treatment in the state of a mixture containing the positive electrode active material and the conductive agent.
  • a positive electrode that can be used as a non-aqueous electrolyte power storage element can be manufactured with high certainty.
  • the mechanical milling process refers to a process of pulverizing, mixing, or compounding by applying mechanical energy such as impact, shear stress, and friction.
  • the device for performing the mechanical milling process include crushing / dispersing machines such as ball mills, bead mills, vibration mills, turbo mills, mechanofusions, and disc mills. Of these, a ball mill is preferable.
  • the balls and mill containers used in the ball mill those made of tungsten carbide (WC), those made of zirconium oxide (ZrO 2 ), and the like can be preferably used.
  • the mechanical milling treatment referred to here does not need to be accompanied by a mechanochemical reaction. It is presumed that such mechanical milling treatment composites the positive electrode active material and the conductive agent, and improves the conductivity.
  • the mill rotation speed during processing can be, for example, 100 rpm or more and 1,000 rpm or less.
  • the processing time can be, for example, 0.1 hour or more and 100 hours or less.
  • this treatment can be carried out in an inert gas atmosphere such as argon or in an active gas atmosphere, but it is preferably carried out in an inert gas atmosphere.
  • the non-aqueous electrolyte power storage element includes a positive electrode, a negative electrode, and a non-aqueous electrolyte.
  • a non-aqueous electrolyte secondary battery (hereinafter, also simply referred to as “secondary battery”) will be described.
  • the positive electrode and the negative electrode usually form an electrode body that is alternately superposed by laminating or winding through a separator.
  • the electrode body is housed in a container, and the container is filled with a non-aqueous electrolyte.
  • the non-aqueous electrolyte is interposed between the positive electrode and the negative electrode.
  • a known metal container, resin container, or the like usually used as a container for a secondary battery can be used.
  • the positive electrode provided in the secondary battery is the positive electrode according to the above-described embodiment of the present invention.
  • the negative electrode has a negative electrode base material and a negative electrode active material layer arranged directly on the negative electrode base material or via an intermediate layer.
  • the intermediate layer may have the same structure as the intermediate layer of the positive electrode.
  • the negative electrode base material may have the same configuration as the positive electrode base material, but as the material, a metal such as copper, nickel, stainless steel, nickel-plated steel or an alloy thereof is used, and copper or a copper alloy is used. preferable. That is, a copper foil or a copper alloy foil is preferable as the negative electrode base material. Examples of the copper foil include rolled copper foil and electrolytic copper foil.
  • the average thickness of the negative electrode substrate is preferably 2 ⁇ m or more and 35 ⁇ m or less, more preferably 3 ⁇ m or more and 30 ⁇ m or less, further preferably 4 ⁇ m or more and 25 ⁇ m or less, and particularly preferably 5 ⁇ m or more and 20 ⁇ m or less.
  • the negative electrode active material layer is generally formed of a so-called negative electrode mixture containing a negative electrode active material. Further, the negative electrode mixture forming the negative electrode active material layer contains optional components such as a conductive agent, a binder, a thickener, and a filler, if necessary. As any component such as a conductive agent, a binder, a thickener, and a filler, the same one as that of the positive electrode active material layer can be used.
  • the negative electrode active material layer may be a layer substantially composed of only a negative electrode active material such as metallic Li.
  • the negative electrode active material layer includes typical non-metal elements such as B, N, P, F, Cl, Br, I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba and the like.
  • Typical metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Ta, Hf, Nb, W, etc. It may be contained as a component other than the thickener and the filler.
  • the negative electrode active material can be appropriately selected from known negative electrode active materials.
  • a material capable of occluding and releasing lithium ions is usually used.
  • the negative electrode active material include metal Li; metal or semi-metal such as Si and Sn; metal oxide or semi-metal oxide such as Si oxide, Ti oxide and Sn oxide; Li 4 Ti 5 O 12 ; Titanium-containing oxides such as LiTIO 2 and TiNb 2O 7 ; polyphosphate compounds; silicon carbide; carbon materials such as graphite (graphite) and non-graphitric carbon (easy graphitable carbon or non-graphitizable carbon) can be mentioned. Be done. Among these materials, graphite and non-graphitic carbon are preferable. In the negative electrode active material layer, one of these materials may be used alone, or two or more thereof may be mixed and used.
  • Graphite refers to a carbon material having an average lattice spacing (d 002 ) of (002) planes determined by X-ray diffraction method before charging / discharging or in a discharged state of 0.33 nm or more and less than 0.34 nm.
  • Examples of graphite include natural graphite and artificial graphite. Artificial graphite is preferable from the viewpoint that a material having stable physical properties can be obtained.
  • Non-graphitic carbon refers to a carbon material having an average lattice spacing (d 002 ) of the (002) plane determined by the X-ray diffraction method before charging / discharging or in a discharged state of 0.34 nm or more and 0.42 nm or less. ..
  • Examples of non-graphitizable carbon include non-graphitizable carbon and easily graphitizable carbon.
  • the non-planar carbon include a resin-derived material, a petroleum pitch or a petroleum pitch-derived material, a petroleum coke or a petroleum coke-derived material, a plant-derived material, an alcohol-derived material, and the like.
  • the "discharge state" of the carbon material is a state in which the open circuit voltage is 0.7 V or more in a half cell using a negative electrode containing a carbon material as a negative electrode active material as a working electrode and a metal Li as a counter electrode.
  • the open circuit voltage in the single pole battery is substantially the same as the potential of the negative electrode containing the carbon material with respect to the redox potential of Li. .. That is, the fact that the open circuit voltage in the single-pole battery is 0.7 V or more means that the carbon material, which is the negative electrode active material, sufficiently releases lithium ions that can be occluded and discharged by charging and discharging. ..
  • non-graphitizable carbon refers to a carbon material having d 002 of 0.36 nm or more and 0.42 nm or less.
  • the “graphitizable carbon” refers to a carbon material having d 002 of 0.34 nm or more and less than 0.36 nm.
  • the average particle size of the negative electrode active material can be, for example, 1 nm or more and 100 ⁇ m or less.
  • the average particle size thereof may be preferably 1 ⁇ m or more and 100 ⁇ m or less.
  • the negative electrode active material is a metal, a metalloid, a metal oxide, a metalloid oxide, a titanium-containing oxide, a polyphosphate compound or the like, the average particle size thereof may be preferably 1 nm or more and 1 ⁇ m or less.
  • the electron conductivity of the active material layer is improved.
  • a crusher, a classifier, or the like is used to obtain a powder having a predetermined particle size.
  • the negative electrode active material is metallic Li
  • the form may be foil-shaped or plate-shaped.
  • the content of the negative electrode active material in the negative electrode active material layer is preferably 60% by mass or more and 99% by mass or less, more preferably 90% by mass or more and 98% by mass or less, for example, when the negative electrode active material layer is formed of a negative electrode mixture. preferable.
  • the content of the negative electrode active material may be 99% by mass or more, or may be 100% by mass.
  • the separator can be appropriately selected from known separators.
  • a separator composed of only a base material layer a separator having a heat-resistant layer containing heat-resistant particles and a binder formed on one surface or both surfaces of the base material layer can be used.
  • Examples of the form of the base material layer of the separator include woven fabrics, non-woven fabrics, and porous resin films. Among these forms, a porous resin film is preferable from the viewpoint of strength, and a non-woven fabric is preferable from the viewpoint of liquid retention of a non-aqueous electrolyte.
  • polyolefins such as polyethylene and polypropylene are preferable from the viewpoint of shutdown function, and polyimide and aramid are preferable from the viewpoint of oxidative decomposition resistance.
  • base material layer of the separator a material in which these resins are combined may be used.
  • the heat-resistant particles contained in the heat-resistant layer preferably have a mass loss of 5% or less when heated from room temperature to 500 ° C. in the atmosphere, and a mass loss of 5% when heated from room temperature to 800 ° C. in the atmosphere.
  • the following are more preferable.
  • the material of the heat-resistant particles include inorganic compounds.
  • the inorganic compound include oxides such as iron oxide, silicon oxide, aluminum oxide, titanium oxide, zirconium oxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide and aluminosilicate; magnesium hydroxide, calcium hydroxide and water.
  • Hydroxides such as aluminum oxide; nitrides such as aluminum nitride and silicon nitride; carbonates such as calcium carbonate; sulfates such as barium sulfate; sparingly soluble ion crystals such as calcium fluoride, barium fluoride and barium titanate Covalently bonded crystals such as silicon and diamond; talc, montmorillonite, boehmite, zeolite, apatite, kaolin, mulite, spinel, olivine, sericite, bentonite, mica and other mineral resource-derived substances or man-made products thereof. ..
  • the inorganic compound a simple substance or a complex of these substances may be used alone, or two or more kinds thereof may be mixed and used.
  • silicon oxide, aluminum oxide, or aluminosilicate is preferable from the viewpoint of safety of the power storage device.
  • the porosity of the separator is preferably 80% by volume or less from the viewpoint of strength, and preferably 20% by volume or more from the viewpoint of discharge performance.
  • the "porosity" is a volume-based value and means a measured value with a mercury porosity meter.
  • a polymer gel composed of a polymer and a non-aqueous electrolyte may be used.
  • the polymer include polyacrylonitrile, polyethylene oxide, polypropylene oxide, polymethyl methacrylate, polyvinyl acetate, polyvinylpyrrolidone, polyvinylidene fluoride and the like.
  • the use of polymer gel has the effect of suppressing liquid leakage.
  • a polymer gel may be used in combination with a porous resin film or a non-woven fabric as described above.
  • Non-water electrolyte As the non-aqueous electrolyte, a known non-aqueous electrolyte can be appropriately selected. A non-aqueous electrolyte solution may be used as the non-aqueous electrolyte.
  • the non-aqueous electrolyte solution contains a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • the non-aqueous solvent can be appropriately selected from known non-aqueous solvents.
  • the non-aqueous solvent include cyclic carbonates, chain carbonates, carboxylic acid esters, phosphoric acid esters, sulfonic acid esters, ethers, amides, nitriles and the like.
  • a solvent in which some of the hydrogen atoms contained in these compounds are replaced with halogen may be used.
  • cyclic carbonate examples include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), vinyl ethylene carbonate (VEC), chloroethylene carbonate, fluoroethylene carbonate (FEC), and difluoroethylene carbonate.
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • VC vinylene carbonate
  • VEC vinyl ethylene carbonate
  • FEC fluoroethylene carbonate
  • DFEC difluoroethylene carbonate
  • styrene carbonate 1-phenylvinylene carbonate
  • 1,2-diphenylvinylene carbonate and the like can be mentioned.
  • EC is preferable.
  • chain carbonate examples include diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), diphenyl carbonate, trifluoroethylmethyl carbonate, bis (trifluoroethyl) carbonate and the like.
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • EMC ethylmethyl carbonate
  • diphenyl carbonate trifluoroethylmethyl carbonate
  • bis (trifluoroethyl) carbonate bis (trifluoroethyl) carbonate and the like.
  • DMC and EMC are preferable.
  • the cyclic carbonate and the chain carbonate are used as the non-aqueous solvent, and it is more preferable to use the cyclic carbonate and the chain carbonate in combination.
  • the cyclic carbonate By using the cyclic carbonate, the dissociation of the electrolyte salt can be promoted and the ionic conductivity of the non-aqueous electrolyte solution can be improved.
  • the chain carbonate By using the chain carbonate, the viscosity of the non-aqueous electrolytic solution can be kept low.
  • the volume ratio of the cyclic carbonate to the chain carbonate is preferably in the range of, for example, 5:95 to 50:50.
  • Lithium salt is used as the electrolyte salt.
  • Sodium salt, potassium salt, magnesium salt, onium salt and the like may be used in combination.
  • Lithium salts include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 , LiN (SO 2 F) 2 , LiSO 3 CF 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 ). C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , LiC (SO 2 C 2 F 5 ) 3 and other halogenated hydrocarbon groups Examples thereof include lithium salts having. Among these, an inorganic lithium salt is preferable, and LiPF 6 is more preferable.
  • the content of the electrolyte salt in the non-aqueous electrolyte solution is preferably 0.1 mol / dm 3 or more and 2.5 mol / dm 3 or less, and more preferably 0.3 mol / dm 3 or more and 2.0 mol / dm 3 or less. , 0.5 mol / dm 3 or more and 1.7 mol / dm 3 or less is more preferable, and 0.7 mol / dm 3 or more and 1.5 mol / dm 3 or less is particularly preferable.
  • the non-aqueous electrolytic solution may contain an additive.
  • the additive include aromatic compounds such as biphenyl, alkyl biphenyl, terphenyl, and partially hydrides of turphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, and dibenzofuran; 2-fluorobiphenyl, o.
  • -Partial halides of the above aromatic compounds such as cyclohexylfluorobenzene and p-cyclohexylfluorobenzene; such as 2,4-difluoroanisole, 2,5-difluoroanisole, 2,6-difluoroanisole, 3,5-difluoroanisole and the like.
  • Halogenized anisole compounds succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, cyclohexanedicarboxylic acid anhydride; ethylene sulfone, propylene sulfite, dimethyl sulfite, dimethyl sulfate, ethylene sulfate, Sulfone, dimethyl sulfone, diethyl sulfone, dimethyl sulfoxide, diethyl sulfoxide, tetramethylene sulfoxide, diphenyl sulfide, 4,4'-bis (2,2-dioxo-1,3,2-dioxathiolane), 4-methylsulfonyloxymethyl- Examples thereof include 2,2-dioxo-1,3,2-dioxathiolane, thioanisole, diphenyldisulfide, dipyridinium disulf
  • the content of the additive contained in the non-aqueous electrolytic solution is preferably 0.01% by mass or more and 10% by mass or less, and more preferably 0.1% by mass or more and 7% by mass or less with respect to the total mass of the non-aqueous electrolytic solution. , 0.2% by mass or more and 5% by mass or less is more preferable, and 0.3% by mass or more and 3% by mass or less is particularly preferable.
  • non-aqueous electrolyte a solid electrolyte may be used, or a non-aqueous electrolyte solution and a solid electrolyte may be used in combination.
  • the solid electrolyte can be selected from any material having lithium ion conductivity and being solid at room temperature (for example, 15 ° C to 25 ° C).
  • the solid electrolyte may further have ionic conductivity such as sodium and potassium.
  • Examples of the solid electrolyte include a sulfide solid electrolyte, an oxide solid electrolyte, an oxynitride solid electrolyte, a polymer solid electrolyte and the like.
  • lithium ion secondary battery examples include Li 2 SP 2 S 5 , LiI-Li 2 SP 2 S 5 , Li 10 Ge-P 2 S 12 and the like as the sulfide solid electrolyte.
  • the shape of the non-aqueous electrolyte power storage element of the present embodiment is not particularly limited, and examples thereof include a cylindrical battery, a square battery, a flat battery, a coin battery, and a button battery.
  • FIG. 1 shows a non-aqueous electrolyte power storage element 1 as an example of a square battery.
  • the figure is a perspective view of the inside of the container.
  • the electrode body 2 having the positive electrode and the negative electrode wound around the separator is housed in the square container 3.
  • the positive electrode is electrically connected to the positive electrode terminal 4 via the positive electrode lead 41.
  • the negative electrode is electrically connected to the negative electrode terminal 5 via the negative electrode lead 51.
  • the non-aqueous electrolyte power storage element of the present embodiment is a power source for automobiles such as an electric vehicle (EV), a hybrid vehicle (HEV), and a plug-in hybrid vehicle (PHEV), a power source for electronic devices such as a personal computer and a communication terminal, or a power source. It can be mounted on a storage power source or the like as a power storage unit (battery module) composed of a plurality of non-aqueous electrolyte power storage elements 1 assembled together. In this case, the technique according to the embodiment of the present invention may be applied to at least one non-aqueous electrolyte power storage element included in the power storage unit.
  • the power storage device is a power storage device including a plurality of non-aqueous electrolyte power storage elements and one or more non-water electrolyte power storage elements according to one aspect of the present invention.
  • FIG. 2 shows an example of a power storage device 30 in which a power storage unit 20 in which two or more electrically connected non-aqueous electrolyte power storage elements 1 are assembled is further assembled.
  • the power storage device 30 includes a bus bar (not shown) for electrically connecting two or more non-aqueous electrolyte power storage elements 1, a bus bar (not shown) for electrically connecting two or more power storage units 20 and the like. May be good.
  • the power storage unit 20 or the power storage device 30 may include a condition monitoring device (not shown) for monitoring the state of one or more non-aqueous electrolyte power storage elements.
  • the non-aqueous electrolyte power storage device can be manufactured by using the positive electrode according to the embodiment of the present invention.
  • the method for manufacturing a non-aqueous electrolyte power storage element according to an embodiment of the present invention includes a method for manufacturing a positive electrode according to an embodiment of the present invention.
  • the method for manufacturing the non-aqueous electrolyte power storage element includes producing the above-mentioned positive electrode, producing a negative electrode, preparing a non-aqueous electrolyte, and laminating or winding a positive electrode and a negative electrode via a separator. It comprises forming the electrode bodies alternately superimposed, accommodating the positive electrode body and the negative electrode body (electrode body) in a container, and injecting the non-aqueous electrolyte into the container. After the injection, the non-aqueous electrolyte power storage element can be obtained by sealing the injection port.
  • the present invention is not limited to the above embodiment, and various modifications may be made without departing from the gist of the present invention.
  • the configuration of one embodiment can be added to the configuration of another embodiment, and a part of the configuration of one embodiment can be replaced with the configuration of another embodiment or a well-known technique.
  • some of the configurations of certain embodiments can be deleted.
  • a well-known technique can be added to the configuration of a certain embodiment.
  • non-aqueous electrolyte storage element is used as a chargeable / dischargeable non-aqueous electrolyte secondary battery (for example, a lithium ion secondary battery) has been described.
  • the capacity etc. are arbitrary.
  • the non-aqueous electrolyte power storage element of the present invention can also be applied to capacitors such as various non-aqueous electrolyte secondary batteries, electric double layer capacitors and lithium ion capacitors.
  • the electrode body in which the positive electrode and the negative electrode are laminated via the separator has been described, but the electrode body does not have to be provided with the separator.
  • the positive electrode and the negative electrode may be in direct contact with each other in a state where a non-conductive layer is formed on the active material layer of the positive electrode or the negative electrode.
  • Example 1 In an argon atmosphere, Li 2 O, Co 3 O 4 and Li 3 N were mixed at a molar ratio of 4.98: 0.33: 0.05, and an internal volume containing 250 g of a tungsten carbide ball having a diameter of 5 mm was contained. It was placed in an 80 mL tungsten carbide mill container and covered. This was set in a planetary ball mill device (“pulveristte 6” manufactured by FRITSCH), and dried at a revolution speed of 500 rpm for 12 hours. By such treatment by the mechanochemical method, the positive electrode active material (Li 1.58 Co 0.157 O 0.988 N 0.0078 ) of Example 1-1 was obtained.
  • Examples 1-2 to 1-5 and Comparative Example 1-1 are the same as in Example 1-1 except that the types of materials used and the mixing amount ratio (molar ratio) thereof are as shown in Tables 1 and 2. Each positive electrode active material of -1 was obtained. Tables 1 and 2 also show the composition formulas and the like of the obtained positive electrode active material.
  • each positive electrode active material of the above-mentioned example a compound having a composition in which element A (nitrogen or fluorine) is completely replaced with oxygen and having an inverted fluorite-type crystal structure (that is, the positive electrode activity of Comparative Example 1-1).
  • the ratio (a 1 / a 2 ) of the substance) to the lattice constant a 2 is also shown in Tables 1 and 2.
  • the lattice constants of the positive electrode active materials of Examples and Comparative Examples in Table 1 were obtained based on the X-ray diffraction pattern measured on the same day, and the lattice constants of the positive electrode active materials of Examples and Comparative Examples in Table 2 were obtained.
  • the constants were also obtained based on the X-ray diffraction pattern measured on the same day, but the lattice constants of the positive electrode active materials of Examples and Comparative Examples in Table 1 and the positive electrode active materials of Examples and Comparative Examples in Table 2 were obtained. Each lattice constant is obtained based on an X-ray diffractogram measured on another day. Therefore, as described above, the values of the lattice constants are different even for the positive electrode active materials of Comparative Example 1-1 having the same composition, for example. As shown in Tables 1 and 2, it can be confirmed that the lattice constant ratio (a 1 / a 2 ) increases as the content of the element A (nitrogen or fluorine) increases.
  • LiPF 6 was dissolved in a non-aqueous solvent in which EC and EMC were mixed at a volume ratio of 30:70 at a concentration of 1 mol / dm 3 to prepare a non-aqueous electrolyte. Further, a metallic lithium having a diameter of 15 mm was prepared as a negative electrode, and a polypropylene microporous film was prepared as a separator. Using these, a non-aqueous electrolyte power storage device (evaluation cell) was manufactured. All the operations from the production of the positive electrode to the production of the evaluation cell were performed in an argon atmosphere. In addition, two non-aqueous electrolyte power storage elements (evaluation cells) using the positive electrode active material of Comparative Example 1-1 were produced.
  • the evaluation cells obtained using the positive electrode active materials of Examples 1-4 and Comparative Example 1-1 were subjected to a charge / discharge test in a glove box under an argon atmosphere in an environment of 25 ° C.
  • the current density was 100 mA / g per mass of the positive electrode active material contained in the positive electrode, and constant current (CC) charging / discharging was performed.
  • the charging was started, and the charging was terminated when the upper limit electric amount of 300 mAh / g per mass of the positive electrode active material was reached.
  • the discharge was terminated when the lower limit voltage of 1.5 V was reached.
  • This charge / discharge cycle was repeated 20 cycles. Table 2 shows the discharge capacity at the 20th cycle.
  • Example 2-1 After mixing the obtained Li 6 CoO 4 (1.6351 g), the obtained Li 4 SiO 4 (0.3402 g) and Li 3 N (0.0247 g), it is made of tungsten carbide (WC) under an argon atmosphere. It was put into a WC mill container together with a ball, and treated with a planetary ball mill device (“pulveristte 5” manufactured by FRITSCH) at a rotation speed of 400 rpm for 2 hours. By such treatment by the mechanochemical method, the positive electrode active material of Example 2-1 (Li 1.431 Co 0.194 Si 0.056 ON 0.014 ) was obtained.
  • Example 2-2, 2-3, Comparative Example 2-1 The positive electrode active materials of Examples 2-2, 2-3 and Comparative Example 2-1 were obtained in the same manner as in Example 2-1 except that the materials used were as shown in Table 3. Table 3 also shows the composition formulas of the obtained positive electrode active material.
  • the diffraction angle 2 ⁇ of each positive electrode active material obtained from the X-ray diffraction measurement is the half-value width of the diffraction peak near 33 °
  • the diffraction angle 2 ⁇ is the diffraction around 44 ° with respect to the integrated intensity of the diffraction peak near 33 °.
  • Table 3 shows the ratio of the integrated intensity of the peaks and the lattice constant a.
  • a positive electrode was produced by the following procedure. Under an argon atmosphere, 1.125 g of the positive electrode active material and 0.300 g of Ketjen black were mixed, placed in a WC mill container having an internal volume of 80 mL containing 250 g of WC balls having a diameter of 5 mm, and covered. This was set in the same planetary ball mill device as above, and dried and mixed at a revolution speed of 200 rpm for 30 minutes to prepare a mixed powder of the positive electrode active material and Ketjen black.
  • the positive electrode and a 25 mm square metal lithium negative electrode are laminated via a polypropylene microporous film separator, stored in an exterior body made of a metal resin composite film, and filled with 300 ⁇ L of non-aqueous electrolyte.
  • the non-aqueous electrolyte used was prepared by dissolving LiPF 6 at a concentration of 1 mol / dm 3 in a non-aqueous solvent in which EC, DMC and EMC were mixed at a volume ratio of 30:35:35.
  • the exterior body made of a metal resin composite film is provided with an opening at the upper part so that the non-aqueous electrolyte does not leak, and the non-water container is provided with a gas inlet and a gas discharge port and has an internal volume of 0.5 dm 3 .
  • the entire electrolyte storage element was enclosed, and the inside of the container was sufficiently replaced with He gas. He gas was introduced from the gas inlet at a flow rate of 5 ⁇ 10 -3 dm 3 / min, and the outflow gas from the gas outlet was introduced into the gas chromatograph mass spectrometry (GC-MS) apparatus from the sample inlet.
  • GC-MS gas chromatograph mass spectrometry
  • the capillary column used in the gas chromatograph (GC) section of the GC-MS apparatus was a dummy column having no gas component separation function, and the column temperature was 80 ° C.
  • the outflow gas which may be a state in which a plurality of gas components are mixed, is introduced into the mass spectrometer (MS) section with the component composition as it is, and the plurality of gas components are simultaneously present in real time in the MS section.
  • MS mass spectrometer
  • Each of the obtained non-aqueous electrolyte power storage elements was charged with a constant current (CC) at a current density of 50 mA / g per mass of the positive electrode active material contained in the positive electrode under an environment of 25 ° C.
  • CC constant current
  • Table 3 shows the amount of charging electricity (oxygen gas generation start point) at the time when the generation of oxygen gas is confirmed in each non-aqueous electrolyte power storage element.
  • a charge / discharge cycle test was performed using the positive electrode active materials of Examples 2-1 to 2-3 and Comparative Example 2-1.
  • a positive electrode was prepared by the same procedure as the above-mentioned oxygen gas generation test during charging.
  • metallic lithium having a diameter of 22 mm ⁇ was used as a negative electrode, laminated via a polypropylene microporous membrane separator and stored in a container, and 300 ⁇ L of non-aqueous electrolyte was injected to prepare a non-aqueous electrolyte power storage element.
  • the non-aqueous electrolyte power storage element was manufactured in a glove box having an argon atmosphere.
  • the non-aqueous electrolyte As the non-aqueous electrolyte, the one having the same composition as that used in the oxygen gas generation test during charging was prepared and used. The following charge / discharge cycle test was performed on each of the obtained non-aqueous electrolyte power storage elements in a glove box having an argon atmosphere in an environment of 25 ° C. For the charging current and the discharging current, a current density of 50 mA / g per mass of the positive electrode active material contained in the positive electrode was adopted. The charge / discharge test started from charging, and charging was premised on constant current constant voltage (CCCV) charging with a charging upper limit voltage of 3.4 V.
  • CCCV constant current constant voltage
  • the charge termination condition is when the amount of charge electricity per mass of the positive electrode active material reaches 500 mAh / g during the constant current (CC) mode, or when 10 hours have passed after the transition to the constant voltage (CV) mode. did.
  • the discharge was a constant current (CC) discharge
  • the discharge termination condition was the time when the amount of electricity discharged per mass of the positive electrode active material reached 500 mAh / g or the lower limit voltage of the discharge reached 1.5 V.
  • FIG. 5 shows a graph showing the amount of discharge electricity for each charge / discharge cycle in each non-aqueous electrolyte power storage element.
  • Table 3 shows the number of charge / discharge cycles in which the discharge electricity amount of 200 mAh / g or more was maintained in the non-aqueous electrolyte power storage elements of each Example and Comparative Example as “cycle life”.
  • each of the positive electrode active materials of Examples 2-1 to 2-3 containing oxygen as an element A together with cobalt as a first element and silicon as a second element was used.
  • the water electrolyte storage element had a large amount of charging electricity (oxygen gas generation starting point) at the time when the generation of oxygen gas was confirmed, and the generation of oxygen gas was suppressed even when the amount of charging electricity was increased.
  • the non-aqueous electrolyte power storage element using each positive electrode active material of Examples 2-1 to 2-3 is charged with a discharge electricity amount of 200 mAh / g or more maintained. It had a large number of discharge cycles and had a sufficient charge / discharge cycle life.
  • the present invention can be applied to electronic devices such as personal computers and communication terminals, non-aqueous electrolyte power storage elements used as power sources for automobiles, and positive electrodes and positive electrode active materials provided therein.
  • Non-aqueous electrolyte power storage element 1
  • Electrode body 3
  • Container 4
  • Positive terminal 4
  • Negative terminal 51
  • Negative lead 20
  • Power storage unit 30
  • Power storage device

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

One embodiment of the present invention provides a positive electrode active material which contains lithium, oxygen, a first element and an element A, while having an anti-fluorite crystal structure, wherein: the first element is composed of at least one element that is selected from the group consisting of chromium, manganese, iron, cobalt, nickel and copper; and the element A is composed of at least one element that is selected from the group consisting of nitrogen, sulfur, selenium, fluorine, chlorine, bromine and iodine.

Description

正極活物質、正極、非水電解質蓄電素子、蓄電装置、正極活物質の製造方法、正極の製造方法、及び非水電解質蓄電素子の製造方法Positive electrode active material, positive electrode, non-aqueous electrolyte power storage element, power storage device, positive electrode active material manufacturing method, positive electrode manufacturing method, and non-aqueous electrolyte power storage element manufacturing method
 本発明は、正極活物質、正極、非水電解質蓄電素子、蓄電装置、正極活物質の製造方法、正極の製造方法、及び非水電解質蓄電素子の製造方法に関する。 The present invention relates to a positive electrode active material, a positive electrode, a non-aqueous electrolyte power storage element, a power storage device, a method for manufacturing a positive electrode active material, a method for manufacturing a positive electrode, and a method for manufacturing a non-aqueous electrolyte power storage element.
 リチウムイオン二次電池に代表される非水電解質二次電池は、エネルギー密度の高さから、パーソナルコンピュータ、通信端末等の電子機器、自動車等に多用されている。上記非水電解質二次電池は、一般的には、セパレータで電気的に隔離された一対の電極と、この電極間に介在する非水電解質とを有し、両電極間でイオンの受け渡しを行うことで充放電するよう構成される。また、非水電解質二次電池以外の非水電解質蓄電素子として、リチウムイオンキャパシタや電気二重層キャパシタ等のキャパシタも広く普及している。 Non-aqueous electrolyte secondary batteries represented by lithium-ion secondary batteries are widely used in personal computers, electronic devices such as communication terminals, automobiles, etc. due to their high energy density. The non-aqueous electrolyte secondary battery generally has a pair of electrodes electrically separated by a separator and a non-aqueous electrolyte interposed between the electrodes, and transfers ions between the two electrodes. It is configured to charge and discharge. In addition, capacitors such as lithium ion capacitors and electric double layer capacitors are also widely used as non-aqueous electrolyte storage elements other than non-aqueous electrolyte secondary batteries.
 非水電解質蓄電素子の正極及び負極には、各種活物質が採用されており、正極活物質としては、様々な複合酸化物が広く用いられている。正極活物質の一つとして、LiOにCo等の遷移金属元素を固溶させた遷移金属固溶リチウム酸化物が開発されている(特許文献1、2参照)。 Various active materials are used for the positive electrode and the negative electrode of the non-aqueous electrolyte power storage element, and various composite oxides are widely used as the positive electrode active material. As one of the positive electrode active materials, a transition metal solid solution lithium oxide in which a transition metal element such as Co is dissolved in Li 2 O has been developed (see Patent Documents 1 and 2).
特開2019-003907号公報Japanese Unexamined Patent Publication No. 2019-003907 国際公開第2017/183653号International Publication No. 2017/183653
 LiO及びLiOに1種又は複数種の元素が固溶された正極活物質(LiO系正極活物質)は、理論上放電容量が大きい正極活物質として期待される。しかし、従来のLiO系正極活物質は、充放電サイクル性能が低いという不都合を有する。すなわち、従来のLiO系正極活物質の場合、充放電サイクルに伴って放電容量が大きく低下するため、充放電を十分な電気量で多数回繰り返し行って使用することが難しい。 A positive electrode active material (Li 2O -based positive electrode active material) in which one or more kinds of elements are solidly dissolved in Li 2 O and Li 2 O is theoretically expected as a positive electrode active material having a large discharge capacity. However, the conventional Li 2O -based positive electrode active material has the disadvantage of low charge / discharge cycle performance. That is, in the case of the conventional Li 2O -based positive electrode active material, since the discharge capacity is greatly reduced with the charge / discharge cycle, it is difficult to repeatedly charge / discharge with a sufficient amount of electricity many times.
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、充放電サイクル後も放電容量が大きい正極活物質、このような正極活物質を含有する正極、非水電解質蓄電素子及び蓄電装置、並びにこれらの製造方法を提供することである。 The present invention has been made based on the above circumstances, and an object thereof is a positive electrode active material having a large discharge capacity even after a charge / discharge cycle, a positive electrode containing such a positive electrode active material, and a non-aqueous electrolyte storage. It is an object to provide an element and a power storage device, and a method for manufacturing these.
 本発明の一態様は、リチウム、酸素、第一元素及び元素Aを含み、かつ逆蛍石型の結晶構造を有し、上記第一元素が、クロム、マンガン、鉄、コバルト、ニッケル及び銅からなる群より選ばれる少なくとも1種であり、上記元素Aが、窒素、硫黄、セレン、フッ素、塩素、臭素及びヨウ素からなる群より選ばれる少なくとも1種である正極活物質である。 One aspect of the present invention contains lithium, oxygen, the first element and element A, and has an inverted fluorite-type crystal structure, and the first element is composed of chromium, manganese, iron, cobalt, nickel and copper. The element A is a positive electrode active material which is at least one selected from the group consisting of nitrogen, sulfur, selenium, fluorine, chlorine, bromine and iodine.
 本発明の他の一態様は、本発明の一態様に係る正極活物質を含有する非水電解質蓄電素子用の正極である。 Another aspect of the present invention is a positive electrode for a non-aqueous electrolyte power storage element containing a positive electrode active material according to one aspect of the present invention.
 本発明の他の一態様は、本発明の一態様に係る正極を備える非水電解質蓄電素子である。 Another aspect of the present invention is a non-aqueous electrolyte power storage element provided with a positive electrode according to one aspect of the present invention.
 本発明の他の一態様は、非水電解質蓄電素子を複数個備え、且つ本発明の一態様に係る非水電解質蓄電素子を一以上備える蓄電装置である。 Another aspect of the present invention is a power storage device including a plurality of non-aqueous electrolyte power storage elements and one or more non-water electrolyte power storage elements according to one aspect of the present invention.
 本発明の他の一態様は、リチウム、酸素、第一元素及び元素Aを含む材料をメカノケミカル法により処理することを備え、上記第一元素が、クロム、マンガン、鉄、コバルト、ニッケル及び銅からなる群より選ばれる少なくとも1種であり、上記元素Aが、窒素、硫黄、セレン、フッ素、塩素、臭素及びヨウ素からなる群より選ばれる少なくとも1種である正極活物質の製造方法である。 Another aspect of the present invention comprises treating a material containing lithium, oxygen, the first element and element A by a mechanochemical method, wherein the first element is chromium, manganese, iron, cobalt, nickel and copper. It is a method for producing a positive electrode active material which is at least one selected from the group consisting of, and the element A is at least one selected from the group consisting of nitrogen, sulfur, selenium, fluorine, chlorine, bromine and iodine.
 本発明の他の一態様は、本発明の一態様に係る正極活物質又は本発明の一態様に係る正極活物質の製造方法で得られた正極活物質を用いて正極を作製することを備える非水電解質蓄電素子用の正極の製造方法である。 Another aspect of the present invention comprises producing a positive electrode using the positive electrode active material according to one aspect of the present invention or the positive electrode active material obtained by the method for producing a positive electrode active material according to one aspect of the present invention. This is a method for manufacturing a positive electrode for a non-aqueous electrolyte power storage element.
 本発明の他の一態様は、本発明の一態様に係る正極の製造方法を備える非水電解質蓄電素子の製造方法である。 Another aspect of the present invention is a method for manufacturing a non-aqueous electrolyte power storage element, which comprises a method for manufacturing a positive electrode according to one aspect of the present invention.
 本発明のいずれかの態様によれば、充放電サイクル後も放電容量が大きい正極活物質、このような正極活物質を含有する正極、非水電解質蓄電素子及び蓄電装置、並びにこれらの製造方法を提供することができる。 According to any aspect of the present invention, a positive electrode active material having a large discharge capacity even after a charge / discharge cycle, a positive electrode containing such a positive electrode active material, a non-aqueous electrolyte power storage element and a power storage device, and a method for manufacturing these are used. Can be provided.
図1は、本発明の一実施形態に係る非水電解質蓄電素子を示す外観斜視図である。FIG. 1 is an external perspective view showing a non-aqueous electrolyte power storage element according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る非水電解質蓄電素子を複数個集合して構成した蓄電装置を示す概略図である。FIG. 2 is a schematic view showing a power storage device configured by assembling a plurality of non-aqueous electrolyte power storage elements according to an embodiment of the present invention. 図3は、実施例2-1から2-3及び比較例2-1の各正極活物質のCuKα線を用いたエックス線回折図である。FIG. 3 is an X-ray diffraction diagram using CuKα rays of each positive electrode active material of Examples 2-1 to 2-3 and Comparative Example 2-1. 図4は、実施例2-1から2-3及び比較例2-1の各正極活物質を備える非水電解質蓄電素子の充電時の充電電気量に対する酸素ガスの発生量を表すグラフである。FIG. 4 is a graph showing the amount of oxygen gas generated with respect to the amount of electricity charged during charging of the non-aqueous electrolyte power storage element including the positive electrode active materials of Examples 2-1 to 2-3 and Comparative Example 2-1. 図5は、実施例2-1から2-3及び比較例2-1の各正極活物質を備える非水電解質蓄電素子における充放電サイクル毎の放電電気量を表すグラフである。FIG. 5 is a graph showing the amount of electric discharge for each charge / discharge cycle in the non-aqueous electrolyte power storage device including the positive electrode active materials of Examples 2-1 to 2-3 and Comparative Example 2-1.
 初めに、本明細書によって開示される正極活物質、正極、非水電解質蓄電素子、蓄電装置、正極活物質の製造方法、正極の製造方法、及び非水電解質蓄電素子の製造方法の概要について説明する。 First, an outline of a positive electrode active material, a positive electrode, a non-aqueous electrolyte power storage element, a power storage device, a positive electrode active material manufacturing method, a positive electrode manufacturing method, and a non-aqueous electrolyte power storage element manufacturing method disclosed in the present specification will be described. do.
 本発明の一態様に係る正極活物質は、リチウム、酸素、第一元素及び元素Aを含み、かつ逆蛍石型の結晶構造を有し、上記第一元素が、クロム、マンガン、鉄、コバルト、ニッケル及び銅からなる群より選ばれる少なくとも1種であり、上記元素Aが、窒素、硫黄、セレン、フッ素、塩素、臭素及びヨウ素からなる群より選ばれる少なくとも1種である正極活物質(α)である。 The positive electrode active material according to one aspect of the present invention contains lithium, oxygen, a first element and an element A, and has an inverted fluorite-type crystal structure, and the first element is chromium, manganese, iron, cobalt. , At least one selected from the group consisting of nickel and copper, and the element A is at least one selected from the group consisting of nitrogen, sulfur, selenium, fluorine, chlorine, bromine and iodine (α). ).
 本発明の一態様に係る正極活物質(α)は、充放電サイクル後の放電容量が大きく、十分な電気量での多数回の充放電が可能である。この理由は定かではないが、以下の理由が推測される。従来のLiO系正極活物質において充放電サイクル性能が低い原因の一つとして、充放電の繰り返しに伴って正極活物質から酸素が脱離することが挙げられる。一方、本発明の一態様に係る正極活物質(α)は、逆蛍石型の結晶構造を有するLiOに対して遷移金属元素が固溶された従来のLiO系正極活物質に対して、さらに酸素の一部が元素Aに置換された構造を有する。当該正極活物質(α)においては、このように元素Aが含有されていることによって、充放電の繰り返しに伴う正極活物質からの酸素の脱離が抑制され、正極活物質の結晶構造が維持される結果、充放電サイクル後も放電容量が大きい状態が維持されているものと推測される。 The positive electrode active material (α) according to one aspect of the present invention has a large discharge capacity after a charge / discharge cycle, and can be charged / discharged many times with a sufficient amount of electricity. The reason for this is not clear, but the following reasons are presumed. One of the causes of the low charge / discharge cycle performance of the conventional Li 2O -based positive electrode active material is that oxygen is desorbed from the positive electrode active material with repeated charging / discharging. On the other hand, the positive electrode active material (α) according to one aspect of the present invention is a conventional Li 2 O-based positive electrode active material in which a transition metal element is solid-dissolved in Li 2 O having an inverted fluorite-type crystal structure. On the other hand, it has a structure in which a part of oxygen is further substituted with the element A. Since the element A is contained in the positive electrode active material (α) in this way, desorption of oxygen from the positive electrode active material due to repeated charging and discharging is suppressed, and the crystal structure of the positive electrode active material is maintained. As a result, it is presumed that the state where the discharge capacity is large is maintained even after the charge / discharge cycle.
 本発明の一態様に係る正極活物質(α)においては、上記酸素の含有量に対する上記元素Aの含有量のモル比が、0.00超0.2以下であることが好ましく、0.1以下であることがより好ましく、0.05以下であることがさらに好ましく、0.02以下が好ましいこともある。このような場合も、正極活物質に適度な量の元素Aが含有されているといえ、当該正極活物質(α)の充放電サイクル後の放電容量はより大きくなる。 In the positive electrode active material (α) according to one aspect of the present invention, the molar ratio of the content of the element A to the content of oxygen is preferably more than 0.00 and 0.2 or less, preferably 0.1. It is more preferably less than or equal to, more preferably 0.05 or less, and sometimes 0.02 or less. Even in such a case, it can be said that the positive electrode active material contains an appropriate amount of element A, and the discharge capacity of the positive electrode active material (α) after the charge / discharge cycle becomes larger.
 本発明の一態様に係る正極活物質(α)においては、上記第一元素はコバルトであることが好ましい。このような場合、当該正極活物質の充放電サイクル後の放電容量はより大きくなる。 In the positive electrode active material (α) according to one aspect of the present invention, the first element is preferably cobalt. In such a case, the discharge capacity of the positive electrode active material after the charge / discharge cycle becomes larger.
 ここに開示される技術によると、リチウム、酸素、第一元素、及び元素Aを含み、かつ逆蛍石型の結晶構造を有し、上記第一元素が、クロム、マンガン、鉄、コバルト、ニッケル及び銅からなる群より選ばれる少なくとも1種であり、上記元素Aが、窒素、硫黄、セレン、フッ素、塩素、臭素及びヨウ素からなる群より選ばれる少なくとも1種である正極活物質(α)が提供される。
 この正極活物質(α)は、さらに第二元素を含み、上記第二元素が、13族元素、14族元素、リン、アンチモン、ビスマス及びテルルからなる群より選ばれる少なくとも1種であってもよい。
  上記正極活物質(α)は、上記元素Aが窒素であってもよい。
 上記正極活物質(α)は、下記式1で表される正極活物質であってもよい。
 Li ON ・・・1
 ここで式1中、Mは、Cr、Mn、Fe、Co、Ni及びCuからなる群より選ばれる少なくとも1種である。Mは、13族元素、14族元素、P、Sb、Bi及びTeからなる群より選ばれる少なくとも1種である。a、b、c及びdは、それぞれ、1.0<a<2.0、0.000<b<0.5、0.000<c<0.2、0.000<d<0.2を満たす。
 上記正極活物質(α)は、CuKα線を用いたエックス線回折図において、回折角2θが33°付近の回折ピークの積分強度に対する回折角2θが44°付近の回折ピークの積分強度の比が、0.00超2以下であってもよい。
According to the technique disclosed herein, it contains lithium, oxygen, the first element, and element A, and has an inverted fluorite-type crystal structure, and the first element is chromium, manganese, iron, cobalt, nickel. The positive electrode active material (α), which is at least one selected from the group consisting of copper and copper, and the element A is at least one selected from the group consisting of nitrogen, sulfur, selenium, fluorine, chlorine, bromine and iodine. Provided.
The positive electrode active material (α) further contains a second element, and even if the second element is at least one selected from the group consisting of group 13 elements, group 14 elements, phosphorus, antimony, bismuth and tellurium. good.
In the positive electrode active material (α), the element A may be nitrogen.
The positive electrode active material (α) may be a positive electrode active material represented by the following formula 1.
Li a M 1 b M 2 c ON d ... 1
Here, in Equation 1, M 1 is at least one selected from the group consisting of Cr, Mn, Fe, Co, Ni and Cu. M 2 is at least one selected from the group consisting of Group 13 elements, Group 14 elements, P, Sb, Bi and Te. a, b, c and d are 1.0 <a <2.0, 0.000 <b <0.5, 0.000 <c <0.2, 0.000 <d <0.2, respectively. Meet.
In the X-ray diffraction diagram using CuKα rays, the positive electrode active material (α) has a ratio of the integrated intensity of the diffraction peak having a diffraction angle 2θ near 44 ° to the integrated intensity of the diffraction peak having a diffraction angle 2θ near 33 °. It may be more than 0.00 and 2 or less.
 本発明の他の一側面に係る正極活物質は、リチウム、酸素、第一元素、第二元素及び元素Aを含み、かつ逆蛍石型の結晶構造を有し、上記第一元素が、クロム、マンガン、鉄、コバルト、ニッケル及び銅からなる群より選ばれる少なくとも1種であり、上記第二元素が、13族元素、14族元素、リン、アンチモン、ビスマス及びテルルからなる群より選ばれる少なくとも1種であり、上記元素Aが窒素である正極活物質(β)である。 The positive electrode active material according to another aspect of the present invention contains lithium, oxygen, a first element, a second element and an element A, has an inverted fluorite-type crystal structure, and the first element is chromium. , Manganese, iron, cobalt, nickel and at least one selected from the group consisting of copper, and the second element is at least selected from the group consisting of group 13 element, group 14 element, phosphorus, antimony, bismuth and tellurium. It is one kind, and is a positive electrode active material (β) in which the element A is nitrogen.
 当該正極活物質(β)は、非水電解質蓄電素子に用いた際、充放電サイクル後も放電容量が大きいという上記効果に加え、充電電気量を大きくした場合でも充電時の酸素ガスの発生が抑制されている。即ち、酸素ガス発生に至るまでの充電電気量を大きくすることができる。この理由は定かではないが、以下の理由が推測される。一般的にLiO系正極活物質においては、酸素ガスは、下記式に示されるようにLiO内の酸素原子が過剰に酸化されることにより発生する。
 2Li
 →Li+2Li+2e
 →LiO+3Li+3e
 →O+4Li+4e
 一方、当該正極活物質(β)においては、第一元素と共に元素Aとして窒素が含有されているため、M-O-N混成軌道が形成されていると考えられる。そして充電時には、この混成軌道(価電子帯)から電子が提供される、すなわち酸素原子等に加えて、窒素原子からも電子が提供される。よって、当該正極活物質(β)に対して窒素原子を含有しないLiO系正極活物質と同程度にまで充電を行う場合、その状態に到達したときの酸素原子からの提供電子数が低減する、すなわち酸素原子の酸化数が小さいため、酸素ガスの発生が生じ難くなっているものと推測される。また、当該正極活物質(β)は、充電電気量を大きくした場合でも酸素ガスの発生が抑制されるため、非水電解質蓄電素子の実効電気量を大きくすることができ、その結果、エネルギー密度を高めることができる。
 また、当該正極活物質(β)は、十分に大きい放電容量が充放電サイクルを繰り返しても持続され、充電電気量を大きくした場合でも十分な充放電サイクル寿命を有する。このような効果が生じる理由も定かではないが、充電電気量を大きくした場合でも充電時の酸素ガスの発生が抑制されていることに加え、窒素原子の存在により電子伝導性が向上していることなどが推測される。
When the positive electrode active material (β) is used for a non-aqueous electrolyte power storage element, in addition to the above-mentioned effect that the discharge capacity is large even after the charge / discharge cycle, oxygen gas is generated during charging even when the amount of charging electricity is increased. It is suppressed. That is, the amount of charging electricity leading to the generation of oxygen gas can be increased. The reason for this is not clear, but the following reasons are presumed. Generally, in a Li 2 O positive electrode active material, oxygen gas is generated by excessive oxidation of oxygen atoms in Li 2 O as shown in the following formula.
2Li 2 O
→ Li 2 O 2 + 2Li + + 2e
→ LiO 2 + 3Li + + 3e-
→ O 2 + 4Li + + 4e-
On the other hand, in the positive electrode active material (β), nitrogen is contained as the element A together with the first element, so that it is considered that an M1 - ON mixed orbital is formed. At the time of charging, electrons are provided from this hybrid orbital (valence band), that is, electrons are provided from nitrogen atoms in addition to oxygen atoms and the like. Therefore, when the positive electrode active material (β) is charged to the same extent as the Li 2O -based positive electrode active material that does not contain a nitrogen atom, the number of electrons provided from the oxygen atom when the state is reached is reduced. That is, it is presumed that the generation of oxygen gas is less likely to occur because the oxidation number of oxygen atoms is small. Further, since the positive electrode active material (β) suppresses the generation of oxygen gas even when the amount of charging electricity is increased, the effective amount of electricity of the non-aqueous electrolyte power storage element can be increased, and as a result, the energy density. Can be enhanced.
Further, the positive electrode active material (β) has a sufficiently large discharge capacity that is maintained even after repeated charge / discharge cycles, and has a sufficient charge / discharge cycle life even when the amount of charging electricity is increased. The reason for this effect is not clear, but even when the amount of electricity charged is increased, the generation of oxygen gas during charging is suppressed, and the presence of nitrogen atoms improves electron conductivity. It is guessed that.
 本発明の他の一側面に係る正極活物質は、下記式1で表される正極活物質(γ)である。
 Li ON ・・・1
 式1中、Mは、Cr、Mn、Fe、Co、Ni及びCuからなる群より選ばれる少なくとも1種である。Mは、13族元素、14族元素、P、Sb、Bi及びTeからなる群より選ばれる少なくとも1種である。a、b、c及びdは、それぞれ、1.0<a<2.0、0.000<b<0.5、0.000<c<0.2、0.000<d<0.2を満たす。
The positive electrode active material according to another aspect of the present invention is a positive electrode active material (γ) represented by the following formula 1.
Li a M 1 b M 2 c ON d ... 1
In formula 1, M 1 is at least one selected from the group consisting of Cr, Mn, Fe, Co, Ni and Cu. M 2 is at least one selected from the group consisting of Group 13 elements, Group 14 elements, P, Sb, Bi and Te. a, b, c and d are 1.0 <a <2.0, 0.000 <b <0.5, 0.000 <c <0.2, 0.000 <d <0.2, respectively. Meet.
 当該正極活物質(γ)は、非水電解質蓄電素子に用いた際、充放電サイクル後も放電容量が大きいという上記効果に加え、充電電気量を大きくした場合でも充電時の酸素ガスの発生が抑制されている。即ち、酸素ガス発生に至るまでの充電電気量を大きくすることができる。このため、当該正極活物質(γ)は、非水電解質蓄電素子の実効電気量を大きくすることができ、その結果、充電電気量を大きくした場合でもエネルギー密度を高めることができる。また、当該正極活物質(γ)は、十分な充放電サイクル寿命を有する。これらの理由も定かではないが、上記した正極活物質(β)と同様の理由が推測される。 When the positive electrode active material (γ) is used in a non-aqueous electrolyte power storage element, in addition to the above-mentioned effect that the discharge capacity is large even after the charge / discharge cycle, oxygen gas is generated during charging even when the amount of charging electricity is increased. It is suppressed. That is, the amount of charging electricity leading to the generation of oxygen gas can be increased. Therefore, the positive electrode active material (γ) can increase the effective electric amount of the non-aqueous electrolyte power storage element, and as a result, the energy density can be increased even when the charging electric amount is increased. Further, the positive electrode active material (γ) has a sufficient charge / discharge cycle life. Although these reasons are not clear, the same reasons as the above-mentioned positive electrode active material (β) are presumed.
 なお、本明細書における正極活物質の組成比は、充放電を行っていない正極活物質、あるいは次の方法により完全放電状態とした正極活物質における組成比をいう。まず、非水電解質蓄電素子を、0.05Cの電流で通常使用時の充電終止電圧となるまで定電流充電し、満充電状態とする。30分の休止後、0.05Cの電流で通常使用時の下限電圧まで定電流放電する。解体し、正極を取り出し、金属リチウム電極を対極とした半電池を組み立て、正極合剤1gあたり10mAの電流で、端子間電圧が1.5Vとなるまで定電流放電を行い、正極を完全放電状態に調整する。再解体し、正極を取り出す。ジメチルカーボネートを用いて、取り出した正極に付着した成分(非水電解質等)を十分に洗浄し、室温にて24時間減圧乾燥後、正極活物質を採取する。採取した正極活物質を測定に供する。非水電解質蓄電素子の解体から測定に供する試料の作製までの作業は、露点-76℃以下のアルゴン雰囲気中で行う。ここで、通常使用時とは、当該非水電解質蓄電素子について推奨され、又は指定される充放電条件を採用して当該非水電解質蓄電素子を使用する場合であり、当該非水電解質蓄電素子のための充電器が用意されている場合は、その充電器を適用して当該非水電解質蓄電素子を使用する場合をいう。 The composition ratio of the positive electrode active material in the present specification refers to the composition ratio of the positive electrode active material that has not been charged and discharged, or the positive electrode active material that has been completely discharged by the following method. First, the non-aqueous electrolyte power storage element is constantly charged with a current of 0.05 C until the charge end voltage at the time of normal use is reached, and the state is fully charged. After a 30-minute pause, a constant current discharge is performed with a current of 0.05 C to the lower limit voltage during normal use. Disassemble, take out the positive electrode, assemble a half-cell with a metal lithium electrode as the counter electrode, and perform constant current discharge with a current of 10 mA per 1 g of the positive electrode mixture until the terminal voltage becomes 1.5 V, and the positive electrode is in a completely discharged state. Adjust to. Re-disassemble and take out the positive electrode. The components (non-aqueous electrolyte, etc.) adhering to the removed positive electrode are thoroughly washed with dimethyl carbonate, dried under reduced pressure at room temperature for 24 hours, and then the positive electrode active material is collected. The collected positive electrode active material is used for measurement. The work from disassembling the non-aqueous electrolyte power storage element to preparing the sample to be measured is performed in an argon atmosphere having a dew point of −76 ° C. or lower. Here, the normal use is a case where the non-aqueous electrolyte storage element is used by adopting the charge / discharge conditions recommended or specified for the non-aqueous electrolyte storage element, and the non-aqueous electrolyte power storage element is used. When a charger for this purpose is prepared, it means a case where the charger is applied to use the non-aqueous electrolyte power storage element.
 当該正極活物質(β)及び当該正極活物質(γ)のCuKα線を用いたエックス線回折図において、回折角2θが33°付近の回折ピークの積分強度に対する回折角2θが44°付近の回折ピークの積分強度の比が、0.00超2以下であることが好ましい。 In the X-ray diffraction diagram using the CuKα rays of the positive electrode active material (β) and the positive electrode active material (γ), the diffraction peak having a diffraction angle 2θ near 44 ° with respect to the integrated intensity of the diffraction peak near the diffraction angle 2θ of 33 °. The ratio of the integrated intensities of is preferably more than 0.00 and 2 or less.
 回折角2θが44°付近の回折ピークは、窒素が含有されていることにより生じ、その積分強度は窒素の含有量の増加と共に増加する。従って、LiO系正極活物質に特徴的な回折角2θが33°付近の回折ピークの積分強度に対する回折角2θが44°付近の回折ピークの積分強度の比が0.00超2以下であるという構成は、当該正極活物質(β)及び当該正極活物質(γ)における窒素の含有量が好適な範囲であることを意味し、非水電解質蓄電素子に用いた際、充電時の酸素ガスの発生をより抑制し、充放電サイクル寿命をより長くすることができる。回折角2θが44°付近の回折ピークとは、回折角2θが42°から46°の範囲内で最も回折強度が強いピークを指す。 The diffraction peak in which the diffraction angle 2θ is around 44 ° is caused by the inclusion of nitrogen, and its integrated intensity increases as the nitrogen content increases. Therefore, the ratio of the integrated intensity of the diffraction peak with the diffraction angle 2θ near 44 ° to the integrated intensity of the diffraction peak with the diffraction angle 2θ around 33 °, which is characteristic of the Li 2O positive electrode active material, is more than 0.00 and 2 or less. The configuration of being means that the nitrogen content in the positive electrode active material (β) and the positive electrode active material (γ) is in a suitable range, and when used in a non-aqueous electrolyte power storage element, oxygen during charging is used. It is possible to further suppress the generation of gas and extend the charge / discharge cycle life. The diffraction peak in which the diffraction angle 2θ is around 44 ° refers to the peak having the strongest diffraction intensity in the range of the diffraction angle 2θ of 42 ° to 46 °.
 本発明の一態様に係る正極活物質は、下記式2を満たすことが好ましい。
 1.0000<a/a<1.0005 ・・・2
 式2中、aは上記正極活物質の格子定数である。aは、上記正極活物質中の上記元素Aを全て酸素に置換した組成からなり、かつ逆蛍石型の結晶構造を有する化合物の格子定数である。
The positive electrode active material according to one aspect of the present invention preferably satisfies the following formula 2.
1.000 <a 1 / a 2 <1.005 ・ ・ ・ 2
In Equation 2, a 1 is the lattice constant of the positive electrode active material. a 2 is a lattice constant of a compound having a composition in which all the elements A in the positive electrode active material are replaced with oxygen and having an inverted fluorite-type crystal structure.
 逆蛍石型の結晶構造を有するLiOに対して第一元素が固溶された正極活物質において、酸素の一部が元素Aに置換された場合、この元素Aの置換量(含有量)に応じて、格子定数が大きくなることを発明者らは確認した。すなわち、上記式2を満たす場合、正極活物質に適度な量の元素Aが含有されていることを表し、当該正極活物質の充放電サイクル後の放電容量はより大きくなる。 In a positive electrode active material in which the first element is solid-solved in Li 2 O having an inverted fluorite-type crystal structure, when a part of oxygen is replaced with element A, the substitution amount (content) of this element A ), The inventors confirmed that the lattice constant increased. That is, when the above formula 2 is satisfied, it means that the positive electrode active material contains an appropriate amount of element A, and the discharge capacity of the positive electrode active material after the charge / discharge cycle becomes larger.
 なお、「上記正極活物質中の上記元素Aを全て酸素に置換した組成からなり、かつ逆蛍石型の結晶構造を有する化合物」とは、単に元素Aを同じ数の酸素に置換したものではなく、置換の前後で正電荷の数及び負電荷の数が変わらないように置換したものをいう。例えば、「Li1.58Co0.1570.9920.0157」で表される正極活物質の場合、2個のFを1個のOに置換することとなるため、「Li1.58Co0.1570.9920.0157中の元素A(フッ素)を全て酸素に置換した組成からなる化合物」は「Li1.58Co0.157O」となる。 In addition, "a compound having a composition in which all the element A in the positive electrode active material is replaced with oxygen and having an inverted fluorite-type crystal structure" is simply a compound in which the element A is replaced with the same number of oxygen. It means that the number of positive charges and the number of negative charges do not change before and after the replacement. For example, in the case of the positive electrode active material represented by "Li 1.58 Co 0.157 O 0.992 F 0.0157 ", since two Fs are replaced with one O, "Li 1 " is used. The compound having a composition in which the element A (fluorine) in .58 Co 0.157 O 0.992 F 0.0157 is completely replaced with oxygen is "Li 1.58 Co 0.157 O".
 当該正極活物質のCuKα線を用いたエックス線回折図において、回折角2θが33°付近の回折ピークの半値幅が0.3°以上であることが好ましい。 In the X-ray diffraction diagram using CuKα rays of the positive electrode active material, it is preferable that the half width of the diffraction peak near the diffraction angle 2θ of 33 ° is 0.3 ° or more.
 このような構成によれば、非水電解質蓄電素子に用いた際、充電時の酸素ガスの発生が抑制され、十分な充放電サイクル寿命を有するLiO系の正極活物質を確実性高く提供することができる。回折角2θが33°付近の回折ピークとは、回折角2θが30°から35°の範囲内で最も回折強度が強いピークを指す。 According to such a configuration, when used in a non-aqueous electrolyte power storage element, generation of oxygen gas during charging is suppressed, and a Li 2O -based positive electrode active material having a sufficient charge / discharge cycle life is provided with high certainty. can do. The diffraction peak in which the diffraction angle 2θ is around 33 ° refers to the peak having the strongest diffraction intensity in the range of the diffraction angle 2θ of 30 ° to 35 °.
 正極活物質のエックス線回折測定は、エックス線回折装置(Rigaku社製、品名:MiniFlex II)を用いた粉末エックス線回折測定によって、線源をCuKα線、管電圧を30kV、管電流を15mAとして行う。このとき、回折エックス線は、厚さ30μmのKβフィルターを通り、高速一次元検出器(D/teX Ultra 2)にて検出される。また、サンプリング幅は0.02°、スキャンスピードは5°/min、発散スリット幅は0.625°、受光スリット幅は13mm(OPEN)、散乱スリット幅は8mmとする。上記エックス線回折測定により得られたエックス線回折図を解析ソフト(Rigaku社製、品名:PDXL)を用いて自動解析処理する。ここで、上記解析ソフトの作業ウィンドウで「バックグラウンドを精密化する」及び「自動」を選択し、実測パターンと計算パターンの強度誤差が1000以下になるように精密化する。この精密化によってバックグラウンド処理がされ、ベースラインを差し引いた値として、各回折線のピーク強度の値、及び半値幅の値、等が得られる。 The X-ray diffraction measurement of the positive electrode active material is performed by powder X-ray diffraction measurement using an X-ray diffractometer (manufactured by Rigaku, product name: MiniFlex II) with a CuKα ray as the radiation source, a tube voltage of 30 kV, and a tube current of 15 mA. At this time, the diffracted X-rays pass through a Kβ filter having a thickness of 30 μm and are detected by a high-speed one-dimensional detector (D / teX Ultra 2). The sampling width is 0.02 °, the scan speed is 5 ° / min, the divergent slit width is 0.625 °, the light receiving slit width is 13 mm (OPEN), and the scattering slit width is 8 mm. The X-ray diffraction pattern obtained by the above-mentioned X-ray diffraction measurement is automatically analyzed using analysis software (manufactured by Rigaku, product name: PDXL). Here, "precision background" and "automatic" are selected in the work window of the analysis software, and the strength error between the measured pattern and the calculated pattern is refined to 1000 or less. Background processing is performed by this refinement, and the value of the peak intensity of each diffraction line, the value of the half width, and the like are obtained as the values obtained by subtracting the baseline.
 正極活物質の格子定数a(nm)は、小数点第四位まで求め、小数点第三位までを評価する場合は、上記解析ソフトにより精密化されたエックス線回折図に基づき、以下の処理を行うことにより得ることができる。上記解析ソフトのフローバーの「カード情報読み込み」欄から、「ICDD PDF 00-012-0254」のデータを抽出し、「結晶相候補」欄に移動して「確定」する。つぎに、フローバーの「格子定数精密化」を選択し、解析対象相で「lithia」を選択し、33°および56°の「No.」欄にチェックを入れる。「角度補正」で「補正しない」を選択し、「精密化」することで、格子定数の値が出力される。 The lattice constant a (nm) of the positive electrode active material is obtained up to the fourth decimal place, and when evaluating up to the third decimal place, the following processing is performed based on the X-ray diffraction pattern refined by the above analysis software. Can be obtained by The data of "ICDD PDF 00-012-0254" is extracted from the "card information reading" column of the flow bar of the above analysis software, moved to the "crystal phase candidate" column, and "confirmed". Next, select "Lattice constant refinement" of the flow bar, select "lithia" as the phase to be analyzed, and check the "No." columns of 33 ° and 56 °. By selecting "No correction" in "Angle correction" and "Refining", the value of the lattice constant is output.
 但し、上記格子定数a、a(nm)から格子定数の比(a/a)を求める場合は、格子定数a、a(nm)を小数点第五位まで求め、小数点第四位までを評価する。この場合の格子定数a、aは、以下の方法で実施したエックス線回折測定結果に基づいて求められるものを指す。具体的には、エックス線回折測定には、大型放射光施設「SPring-8」の粉末エックス線回折用ビームラインを用いる。測定試料は、あらかじめアルゴン雰囲気のグローブボックス内にて内径0.6mmのリンデマンガラス製のマークチューブに試料を充填して密封する。このマークチューブを測定ホルダーに取り付け、2θ範囲を2°から78°とし、放射光の露光時間を5分間として測定を実施する。
 なお、「SPring-8」でのエックス線回折測定の場合、エックス線の波長を同じ設定値にした場合でも、測定日によって波長が僅かに異なり、標準試料としてCeOを用いてそれぞれの測定日のエックス線波長が計算されている。このため、「当該正極活物質の格子定数a」と、「当該正極活物質中の上記元素Aを全て酸素に置換した組成からなり、かつ逆蛍石型の結晶構造を有する化合物の格子定数a」とは、同日に測定されたエックス線回折測定結果に基づいて求めることとする。具体的には、まず、測定対象の正極活物質Pの組成分析をし、この正極活物質Pの元素Aを全て酸素に置換した組成からなり、かつ逆蛍石型の結晶構造を有する化合物Qを合成する。正極活物質Pと化合物Qとに対して、同日に「SPring-8」でエックス線回折測定を行う。
 得られたエックス線回折図において、逆蛍石型の結晶構造の空間群Fm-3mにおける回折指数111に対応する回折角を読み取り、格子定数a、aの値を計算する。
However, when the ratio of the lattice constants (a 1 / a 2 ) is obtained from the above lattice constants a 1 and a 2 (nm), the lattice constants a 1 and a 2 (nm) are obtained up to the fifth decimal place, and the decimal point is the fifth. Evaluate up to 4th place. In this case, the lattice constants a 1 and a 2 refer to those obtained based on the results of X-ray diffraction measurement carried out by the following method. Specifically, the powder X-ray diffraction beamline of the large-scale radiation facility "SPring-8" is used for the X-ray diffraction measurement. The measurement sample is previously filled in a mark tube made of Lindemann glass having an inner diameter of 0.6 mm in a glove box having an argon atmosphere and sealed. This mark tube is attached to the measurement holder, the 2θ range is set to 2 ° to 78 °, and the exposure time of synchrotron radiation is set to 5 minutes for measurement.
In the case of X-ray diffraction measurement with "SPring-8", even if the wavelength of the X-ray is set to the same set value, the wavelength is slightly different depending on the measurement date, and CeO 2 is used as a standard sample to use the X-ray on each measurement day. The wavelength has been calculated. Therefore, "the lattice constant a 1 of the positive electrode active material" and "the lattice constant of the compound having a composition in which all the elements A in the positive electrode active material are replaced with oxygen and having an inverted fluorite-type crystal structure". “A 2 ” is determined based on the result of X-ray diffraction measurement measured on the same day. Specifically, first, the composition of the positive electrode active material P to be measured is analyzed, and the compound Q having a composition in which all the elements A of the positive electrode active material P are replaced with oxygen and having an inverted fluorite-type crystal structure. To synthesize. X-ray diffraction measurement is performed on the positive electrode active material P and the compound Q with "SPring-8" on the same day.
In the obtained X-ray diffraction diagram, the diffraction angle corresponding to the diffraction index 111 in the space group Fm - 3m of the inverted fluorite type crystal structure is read, and the values of the lattice constants a1 and a2 are calculated.
 本発明の一態様に係る正極は、本発明の一態様に係る正極活物質を含有する非水電解質蓄電素子用の正極である。当該正極は本発明の一態様に係る正極活物質を含有するため、当該正極を備える非水電解質蓄電素子の充放電サイクル後の放電容量を大きくし、十分な電気量での多数回の充放電が可能となる。 The positive electrode according to one aspect of the present invention is a positive electrode for a non-aqueous electrolyte power storage element containing a positive electrode active material according to one aspect of the present invention. Since the positive electrode contains the positive electrode active material according to one aspect of the present invention, the discharge capacity of the non-aqueous electrolyte power storage element provided with the positive electrode after the charge / discharge cycle is increased, and the positive electrode is charged and discharged many times with a sufficient amount of electricity. Is possible.
 本発明の一態様に係る非水電解質蓄電素子は、本発明の一態様に係る正極を備える非水電解質蓄電素子(以下、単に「蓄電素子」ということもある。)である。当該蓄電素子は、充放電サイクル後の放電容量が大きく、十分な電気量での多数回の充放電が可能である。 The non-aqueous electrolyte power storage element according to one aspect of the present invention is a non-aqueous electrolyte power storage element having a positive electrode according to one aspect of the present invention (hereinafter, may be simply referred to as “storage element”). The power storage element has a large discharge capacity after a charge / discharge cycle, and can be charged / discharged many times with a sufficient amount of electricity.
 本発明の一態様に係る蓄電装置は、非水電解質蓄電素子を複数個備え、且つ本発明の一態様に係る非水電解質蓄電素子を一以上備える蓄電装置である。 The power storage device according to one aspect of the present invention is a power storage device including a plurality of non-aqueous electrolyte power storage elements and one or more non-water electrolyte power storage elements according to one aspect of the present invention.
 当該蓄電装置は、当該非水電解質蓄電素子を一以上備えるので、充放電サイクル後の放電容量が大きく、十分な電気量での多数回の充放電が可能である。 Since the power storage device includes one or more non-aqueous electrolyte power storage elements, the discharge capacity after the charge / discharge cycle is large, and it is possible to charge / discharge a large number of times with a sufficient amount of electricity.
 本発明の一態様に係る正極活物質の製造方法は、リチウム、酸素、第一元素及び元素Aを含む材料をメカノケミカル法により処理することを備え、上記第一元素が、クロム、マンガン、鉄、コバルト、ニッケル及び銅からなる群より選ばれる少なくとも1種であり、上記元素Aが、窒素、硫黄、セレン、フッ素、塩素、臭素及びヨウ素からなる群より選ばれる少なくとも1種である正極活物質の製造方法である。 The method for producing a positive electrode active material according to one aspect of the present invention comprises treating a material containing lithium, oxygen, a first element and element A by a mechanochemical method, wherein the first element is chromium, manganese and iron. , Cobalt, nickel and copper, and the element A is at least one selected from the group consisting of nitrogen, sulfur, selenium, fluorine, chlorine, bromine and iodine. It is a manufacturing method of.
 本発明の他の一態様に係る正極活物質の製造方法は、リチウム、酸素、第一元素、第二元素及び元素Aを含む材料をメカノケミカル法により処理することを備え、上記第一元素が、クロム、マンガン、鉄、コバルト、ニッケル及び銅からなる群より選ばれる少なくとも1種であり、上記第二元素が、13族元素、14族元素、リン、アンチモン、ビスマス及びテルルからなる群より選ばれる少なくとも1種であり、上記元素Aが窒素である正極活物質の製造方法である。 The method for producing a positive electrode active material according to another aspect of the present invention comprises treating a material containing lithium, oxygen, a first element, a second element and an element A by a mechanochemical method, wherein the first element is used. , Chromium, manganese, iron, cobalt, nickel and copper, and the second element is selected from the group consisting of group 13 elements, group 14 elements, phosphorus, antimony, bismuth and tellurium. This is a method for producing a positive electrode active material in which the element A is nitrogen.
 当該正極活物質の製造方法によれば、充放電サイクル後の放電容量が大きく、十分な電気量での多数回の充放電が可能な正極活物質を製造することができる。 According to the method for producing a positive electrode active material, it is possible to produce a positive electrode active material having a large discharge capacity after a charge / discharge cycle and capable of being charged / discharged many times with a sufficient amount of electricity.
 本発明の一態様に係る正極の製造方法は、本発明の一態様に係る正極活物質又は本発明の一態様に係る正極活物質の製造方法で得られた正極活物質を用いて正極を作製することを備える非水電解質蓄電素子用の正極の製造方法である。 In the method for producing a positive electrode according to one aspect of the present invention, a positive electrode is produced using the positive electrode active material according to one aspect of the present invention or the positive electrode active material obtained by the method for producing a positive electrode active material according to one aspect of the present invention. It is a method of manufacturing a positive electrode for a non-aqueous electrolyte power storage element.
 当該正極の製造方法によれば、充放電サイクル後の放電容量が大きく、十分な電気量での多数回の充放電が可能な正極を製造することができる。 According to the positive electrode manufacturing method, it is possible to manufacture a positive electrode having a large discharge capacity after a charge / discharge cycle and capable of being charged / discharged many times with a sufficient amount of electricity.
 本発明の一態様に係る非水電解質蓄電素子の製造方法は、本発明の一態様に係る正極の製造方法を備える非水電解質蓄電素子の製造方法である。 The method for manufacturing a non-aqueous electrolyte power storage element according to one aspect of the present invention is a method for manufacturing a non-aqueous electrolyte power storage element including the method for manufacturing a positive electrode according to one aspect of the present invention.
 当該非水電解質蓄電素子の製造方法によれば、充放電サイクル後の放電容量が大きく、十分な電気量での多数回の充放電が可能な非水電解質蓄電素子を製造することができる。 According to the method for manufacturing the non-aqueous electrolyte power storage element, it is possible to manufacture a non-water electrolyte power storage element having a large discharge capacity after a charge / discharge cycle and capable of being charged / discharged many times with a sufficient amount of electricity.
 以下、本発明の一実施形態に係る正極活物質、正極活物質の製造方法、正極、正極の製造方法、非水電解質蓄電素子、非水電解質蓄電素子の製造方法及び蓄電装置について、順に説明する。 Hereinafter, the positive electrode active material, the method for manufacturing the positive electrode active material, the positive electrode, the method for manufacturing the positive electrode, the non-aqueous electrolyte power storage element, the method for manufacturing the non-aqueous electrolyte power storage element, and the power storage device according to the embodiment of the present invention will be described in order. ..
<正極活物質>
 本発明の一実施形態に係る正極活物質(α)は、リチウム、酸素、第一元素及び元素Aを含む。上記第一元素は、クロム、マンガン、鉄、コバルト、ニッケル及び銅からなる群より選ばれる少なくとも1種である。上記元素Aは、窒素、硫黄、セレン、フッ素、塩素、臭素及びヨウ素からなる群より選ばれる少なくとも1種である。当該正極活物質(α)は、逆蛍石型の結晶構造を有する。
<Positive electrode active material>
The positive electrode active material (α) according to the embodiment of the present invention contains lithium, oxygen, a first element and an element A. The first element is at least one selected from the group consisting of chromium, manganese, iron, cobalt, nickel and copper. The element A is at least one selected from the group consisting of nitrogen, sulfur, selenium, fluorine, chlorine, bromine and iodine. The positive electrode active material (α) has an inverted fluorite-type crystal structure.
 上記元素Aは、負の酸化数をとることができる元素である。元素Aの中でも、正極活物質の結晶構造の安定性等の点から、原子半径が酸素に近い窒素及びフッ素が好ましい。 The element A is an element that can take a negative oxidation number. Among the elements A, nitrogen and fluorine having an atomic radius close to oxygen are preferable from the viewpoint of stability of the crystal structure of the positive electrode active material.
 当該正極活物質(α)における酸素の含有量に対する元素Aの含有量のモル比(A/O)は、例えば0.00超0.2以下であればよいが、0.00超0.05以下が好ましく、0.00超0.02以下がより好ましく、0.001以上0.012以下がさらに好ましい場合もあり、0.003以上0.010以下がよりさらに好ましい場合もある。上記モル比(A/O)が上記下限以上であることで、元素Aを含有させることによる効果が顕著に生じる。一方、上記モル比(A/O)が上記上限以下であることで、正極活物質の結晶構造が維持され、当該正極活物質の充放電サイクル後の放電容量がより大きくなる。 The molar ratio (A / O) of the content of element A to the content of oxygen in the positive electrode active material (α) may be, for example, more than 0.00 and 0.2 or less, but more than 0.00 and 0.05. The following is preferable, more than 0.00 and 0.02 or less, more preferably 0.001 or more and 0.012 or less, and even more preferably 0.003 or more and 0.010 or less. When the molar ratio (A / O) is at least the above lower limit, the effect of containing the element A is remarkable. On the other hand, when the molar ratio (A / O) is not more than the above upper limit, the crystal structure of the positive electrode active material is maintained, and the discharge capacity of the positive electrode active material after the charge / discharge cycle becomes larger.
 当該正極活物質(α)における上記第一元素の含有量に対する元素Aの含有量のモル比(例えば上記第一元素がコバルトの場合、A/Co)は、例えば0.00超0.5以下であればよいが、0.00超0.3以下が好ましく、0.01以上0.2以下がより好ましく、0.02以上0.10以下がさらに好ましく、0.03以上0.08以下がよりさらに好ましい場合もある。上記モル比(例えば上記第一元素がコバルトの場合、A/Co)が上記下限以上であることで、元素Aを含有させることによる効果が顕著に生じる。一方、上記モル比(例えば上記第一元素がコバルトの場合、A/Co)が上記上限以下であることで、正極活物質の結晶構造が維持され、当該正極活物質の充放電サイクル後の放電容量がより大きくなる。 The molar ratio of the content of element A to the content of the first element in the positive electrode active material (α) (for example, A / Co when the first element is cobalt) is, for example, more than 0.00 and 0.5 or less. However, it is preferably more than 0.00 and 0.3 or less, more preferably 0.01 or more and 0.2 or less, further preferably 0.02 or more and 0.10 or less, and 0.03 or more and 0.08 or less. It may be even more preferable. When the molar ratio (for example, when the first element is cobalt, A / Co) is at least the above lower limit, the effect of containing the element A is remarkable. On the other hand, when the molar ratio (for example, A / Co when the first element is cobalt) is not more than the above upper limit, the crystal structure of the positive electrode active material is maintained, and the positive electrode active material is discharged after the charge / discharge cycle. The capacity becomes larger.
 当該正極活物質(α)におけるリチウムと上記第一元素との合計含有量に対する上記第一元素の含有量のモル比(例えば上記第一元素がコバルトの場合、Co/(Li+Co))は、例えば0.01以上0.3以下が好ましく、0.03以上0.2以下がより好ましく、0.05以上0.15以下がさらに好ましい。上記モル比(例えば上記第一元素がコバルトの場合、Co/(Li+Co))は、LiOに対する第一元素の固溶量の目安となり、上記モル比(例えば上記第一元素がコバルトの場合Co/(Li+Co))が上記範囲であることで、当該正極活物質の充放電サイクル後の放電容量がより大きくなる。 The molar ratio of the content of the first element to the total content of lithium and the first element in the positive electrode active material (α) (for example, when the first element is cobalt, Co / (Li + Co)) is, for example. It is preferably 0.01 or more and 0.3 or less, more preferably 0.03 or more and 0.2 or less, and further preferably 0.05 or more and 0.15 or less. The molar ratio (for example, when the first element is cobalt, Co / (Li + Co)) serves as a guide for the amount of the first element dissolved in Li 2O , and the molar ratio (for example, when the first element is cobalt) is a guideline. When Co / (Li + Co)) is in the above range, the discharge capacity of the positive electrode active material after the charge / discharge cycle becomes larger.
 当該正極活物質(α)における酸素の含有量としては特に限定されず、通常、リチウム、第一元素及び元素A等の組成比やこれらの元素の価数などから決定される。但し、化学量論的に酸素不足又は酸素過多の状態となっていてもよい。また、当該正極活物質(α)におけるリチウムの含有量についても特に限定されるものではなく、化学量論的にリチウムの含有量が過剰又は不足した組成の状態となっていてもよい。当該正極活物質(α)を構成する各元素は、逆蛍石型の結晶構造を有することができる範囲で適宜調整できる。 The oxygen content in the positive electrode active material (α) is not particularly limited, and is usually determined from the composition ratio of lithium, the first element, the element A, and the like, the valence of these elements, and the like. However, stoichiometrically, it may be in a state of oxygen deficiency or oxygen excess. Further, the lithium content in the positive electrode active material (α) is not particularly limited, and the composition may be in a state where the lithium content is stoichiometrically excessive or insufficient. Each element constituting the positive electrode active material (α) can be appropriately adjusted as long as it can have an inverted fluorite-type crystal structure.
 当該正極活物質(α)は、リチウム、酸素、第一元素及び元素A以外の他の元素を含んでいてもよい。但し、当該正極活物質(α)を構成する全元素の合計含有量に対する上記他の元素の含有量のモル比率は、0.5以下が好ましく、0.3以下、0.1以下又は0.01以下がより好ましい場合もある。当該正極活物質(α)は、リチウム、酸素、第一元素及び元素Aから実質的に構成されていてよい。 The positive electrode active material (α) may contain lithium, oxygen, the first element, and other elements other than the element A. However, the molar ratio of the contents of the other elements to the total content of all the elements constituting the positive electrode active material (α) is preferably 0.5 or less, preferably 0.3 or less, 0.1 or less, or 0. In some cases, 01 or less is more preferable. The positive electrode active material (α) may be substantially composed of lithium, oxygen, the first element and the element A.
 当該正極活物質(α)の組成式は、下記式3で表されることが好ましい。
 Li  ・・・3
 上記式3中、Mは、Cr、Mn、Fe、Co、Ni及びCuからなる群より選ばれる少なくとも1種である。Aは、N、S、Se、F、Cl、Br及びIからなる群より選ばれる少なくとも1種である。a、b、c及びdは、それぞれ、0<a<2、0<b<0.5、0<c<1及び0<d<0.2を満たす。
The composition formula of the positive electrode active material (α) is preferably represented by the following formula 3.
Li a M 1 b O c Ad ... 3
In the above formula 3, M 1 is at least one selected from the group consisting of Cr, Mn, Fe, Co, Ni and Cu. A is at least one selected from the group consisting of N, S, Se, F, Cl, Br and I. a, b, c and d satisfy 0 <a <2, 0 <b <0.5, 0 <c <1 and 0 <d <0.2, respectively.
 上記式3中のaの下限は、1が好ましく、1.4がより好ましく、1.5がさらに好ましい。上記aの上限は、1.9が好ましく、1.8がより好ましく、1.7がさらに好ましい。 The lower limit of a in the above formula 3 is preferably 1, more preferably 1.4, and even more preferably 1.5. The upper limit of a is preferably 1.9, more preferably 1.8, and even more preferably 1.7.
 上記式3中のbの下限は、0.01が好ましく、0.05がより好ましく、0.1がさらに好ましく、0.14がよりさらに好ましい。上記bの上限は、0.4が好ましく、0.3がより好ましく、0.2がさらに好ましい。 The lower limit of b in the above formula 3 is preferably 0.01, more preferably 0.05, further preferably 0.1, and even more preferably 0.14. The upper limit of b is preferably 0.4, more preferably 0.3, and even more preferably 0.2.
 上記式3中のcの下限は、0.5が好ましく、0.7がより好ましく、0.9がさらに好ましく、0.96がよりさらに好ましい。上記cの上限は、0.999が好ましく、0.99がより好ましい。 The lower limit of c in the above formula 3 is preferably 0.5, more preferably 0.7, even more preferably 0.9, and even more preferably 0.96. The upper limit of c is preferably 0.999, more preferably 0.99.
 上記式3中のdの下限は、0.001が好ましく、0.003がより好ましく、0.005がさらに好ましい。上記dの上限は、0.1が好ましく、0.05がより好ましく、0.02がさらに好ましく、0.01がよりさらに好ましい場合もある。 The lower limit of d in the above formula 3 is preferably 0.001, more preferably 0.003, and even more preferably 0.005. The upper limit of d is preferably 0.1, more preferably 0.05, still more preferably 0.02, and even more preferably 0.01.
 当該正極活物質(α)は、LiOに対して、Liの一部が第一元素で置換され、Oの一部が元素Aで置換された構造を有すると推測される。そこで、第一元素がCoの場合、Coの平均価数を+mとしたとき、上記式3中のa及びbに関し、a+mb=2の関係が成り立っていてよい。なお、当該正極活物質(α)中において、Coは通常+2又は+3の価数の状態で存在し、価数の異なるCoが混在する場合もある。従って、当該正極活物質(α)中のCoの平均価数は、通常+2から+3の範囲内である。また、上記式3中のA(元素A)の酸化数が「-n」である場合、c及びdの関係に関し、c+(n/2)d=1の関係が成り立っていてよい。 It is presumed that the positive electrode active material (α) has a structure in which a part of Li is substituted with the first element and a part of O is substituted with the element A with respect to Li 2 O. Therefore, when the first element is Co, when the average valence of Co is + m, the relationship of a + mb = 2 may be established with respect to a and b in the above formula 3. In the positive electrode active material (α), Co usually exists in a state of valence of +2 or +3, and Co having different valences may coexist. Therefore, the average valence of Co in the positive electrode active material (α) is usually in the range of +2 to +3. Further, when the oxidation number of A (element A) in the above formula 3 is "-n", the relationship of c + (n / 2) d = 1 may be established with respect to the relationship of c and d.
 本発明の他の一実施形態に係る正極活物質(β)は、リチウム、酸素、第一元素、第二元素及び元素Aを含み、かつ逆蛍石型の結晶構造を有し、上記第一元素が、クロム、マンガン、鉄、コバルト、ニッケル及び銅からなる群より選ばれる少なくとも1種であり、上記第二元素が、13族元素、14族元素、リン、アンチモン、ビスマス及びテルルからなる群より選ばれる少なくとも1種であり、上記元素Aが窒素である。 The positive electrode active material (β) according to another embodiment of the present invention contains lithium, oxygen, a first element, a second element and an element A, has an inverted fluorite-type crystal structure, and has the above-mentioned first element. The element is at least one selected from the group consisting of chromium, manganese, iron, cobalt, nickel and copper, and the second element is a group consisting of group 13 elements, group 14 elements, phosphorus, antimony, bismuth and tellurium. The element A is nitrogen, which is at least one selected from the above.
 当該正極活物質(β)は、典型的には、逆蛍石型の結晶構造を有するLiOに対して、第一元素(M)と第二元素(M)と元素A(N)とが固溶された複合酸化物である。ここで、例えば従来のLiOにCoが固溶された複合酸化物における充放電反応(酸化還元反応)は、Co3d-O2p混成軌道での電子授受であるとされる。Co以外の第一元素が固溶された場合も同様に、M3d-O2p混成軌道での電子授受により酸化還元反応が生じるとされる。すなわち、第一元素は、酸素原子の酸化還元反応を活性化させるための元素である。また、第二元素は、カチオンとなることができ、LiOに固溶可能なp-ブロック元素である。LiOに第二元素が固溶された場合、酸素原子がMsp-O2pのsp混成軌道を形成すると推測され、このMsp-O2pのsp混成軌道による結合は非常に強固なものとなる。すなわち、第二元素は、結晶構造の安定性を高めるための元素である。元素Aである窒素は、上記したように、酸素原子が過剰に酸化されることによる酸素ガスの発生を抑制し、また、電子伝導性を高めて充放電サイクル寿命を延ばす効果のある元素である。 The positive electrode active material (β) is typically the first element (M 1 ), the second element (M 2 ), and the element A (N) with respect to Li 2 O having an inverted fluorite-type crystal structure. ) Is a solid-dissolved composite oxide. Here, for example, the charge / discharge reaction (oxidation-reduction reaction) in a conventional composite oxide in which Co is dissolved in Li 2 O is said to be electron transfer in a Co3d—O2p hybrid orbital. Similarly, when the first element other than Co is dissolved, it is said that a redox reaction occurs by electron transfer in the M 13d - O2p hybrid orbital. That is, the first element is an element for activating the redox reaction of oxygen atoms. The second element is a p-block element that can be a cation and can be dissolved in Li 2 O. When the second element is dissolved in Li 2 O, it is presumed that the oxygen atom forms an sp hybrid orbital of M 2 sp-O2p, and the bond of this M 2 sp-O2p by the sp hybrid orbital is very strong. Will be. That is, the second element is an element for enhancing the stability of the crystal structure. As described above, nitrogen, which is an element A, is an element that suppresses the generation of oxygen gas due to excessive oxidation of oxygen atoms, and has the effect of increasing electron conductivity and extending the charge / discharge cycle life. ..
 当該正極活物質(β)は、通常、1種又は複数種の酸化物から構成されるものである。当該正極活物質(β)は、少なくとも一部に逆蛍石型の結晶構造を有していればよく、逆蛍石型の結晶構造以外の結晶構造や、非晶質部分を有していてもよい。当該正極活物質(β)は、逆蛍石型の結晶構造を主相として有することが好ましい。逆蛍石型の結晶構造を主相として有するとは、逆蛍石型の結晶構造に由来するピークの回折強度が最も強く観察されるものであることをいう。このような正極活物質は、CuKα線を用いたエックス線回折図において、回折角2θが10°から80°の範囲において、回折角2θが33°付近に最も回折強度が強いピークが観察される。また、当該正極活物質(β)が、複数種の酸化物から構成されるものである場合、リチウム、第一元素、第二元素及び元素Aのうちの一つ以上を含まない酸化物が含まれていてもよい。当該正極活物質(β)は、酸化物以外の化合物等が含有されていてもよい。 The positive electrode active material (β) is usually composed of one or more kinds of oxides. The positive electrode active material (β) may have at least a part having an inverted fluorite-type crystal structure, and has a crystal structure other than the inverted fluorite-type crystal structure or an amorphous portion. May be good. The positive electrode active material (β) preferably has an inverted fluorite-type crystal structure as a main phase. Having an inverted fluorite-type crystal structure as the main phase means that the diffraction intensity of the peak derived from the inverted fluorite-type crystal structure is observed most strongly. In such a positive electrode active material, in an X-ray diffraction diagram using CuKα rays, a peak having the strongest diffraction intensity is observed in the range where the diffraction angle 2θ is in the range of 10 ° to 80 ° and the diffraction angle 2θ is around 33 °. When the positive electrode active material (β) is composed of a plurality of types of oxides, it contains an oxide that does not contain one or more of lithium, a first element, a second element, and an element A. It may be. The positive electrode active material (β) may contain a compound or the like other than an oxide.
 第一元素としては、コバルトを含むことが好ましく、コバルトであることがより好ましい。第一元素は、1種のみからなっていてもよく、2種以上からなっていてもよい。 The first element preferably contains cobalt, more preferably cobalt. The first element may consist of only one kind or may consist of two or more kinds.
 第二元素における13族元素としては、ホウ素、アルミニウム、ガリウム、インジウム、タリウム等を挙げることができる。14族元素としては、炭素、ケイ素、ゲルマニウム、スズ、鉛等を挙げることができる。第二元素としては、13族元素及び14族元素が好ましく、14族元素がより好ましく、ケイ素がさらに好ましい。第二元素は、1種のみからなっていてもよく、2種以上からなっていてもよい。 Examples of the Group 13 element in the second element include boron, aluminum, gallium, indium, and thallium. Examples of the Group 14 element include carbon, silicon, germanium, tin, lead and the like. As the second element, a group 13 element and a group 14 element are preferable, a group 14 element is more preferable, and silicon is further preferable. The second element may consist of only one kind or may consist of two or more kinds.
 当該正極活物質(β)中の第一元素(M)と第二元素(M)との合計含有量に対する第二元素(M)の含有量のモル比率(M/(M+M))は特に限定されないが、例えば0.01以上0.8以下であり、0.05以上0.6以下が好ましく、0.1以上0.5以下がより好ましく、0.15以上0.4以下がさらに好ましい場合もあり、0.2以上0.3以下がよりさらに好ましい場合もある。上記モル比率(M/(M+M))を上記範囲とすることで、結晶構造の安定性等を高めることができる。 The molar ratio of the content of the second element (M 2 ) to the total content of the first element (M 1 ) and the second element (M 2 ) in the positive electrode active material (β) (M 2 / (M 1 ). + M 2 )) is not particularly limited, but is, for example, 0.01 or more and 0.8 or less, preferably 0.05 or more and 0.6 or less, more preferably 0.1 or more and 0.5 or less, and 0.15 or more and 0. In some cases, 0.4 or less is further preferable, and in some cases, 0.2 or more and 0.3 or less is even more preferable. By setting the molar ratio (M 2 / (M 1 + M 2 )) in the above range, the stability of the crystal structure and the like can be improved.
 当該正極活物質(β)中のリチウム(Li)と第一元素(M)と第二元素(M)との合計含有量に対する第一元素(M)と第二元素(M)との合計含有量のモル比率((M+M)/(Li+M+M))は特に限定されないが、例えば0.05以上0.3以下が好ましく、0.1以上0.2以下がより好ましく、0.13以上0.16以下がさらに好ましい。上記モル比率((M+M)/(Li+M+M))は、LiOのカチオンであるLiに対する第一元素と第二元素との置換量(含有量)の目安となる。上記モル比率((M+M)/(Li+M+M))を上記範囲とすることで、充放電性能等を高めることができる。 The first element (M 1 ) and the second element (M 2 ) with respect to the total content of lithium (Li), the first element (M 1 ) and the second element (M 2 ) in the positive electrode active material (β). The molar ratio of the total content with and ((M 1 + M 2 ) / (Li + M 1 + M 2 )) is not particularly limited, but for example, it is preferably 0.05 or more and 0.3 or less, and 0.1 or more and 0.2 or less. More preferably, it is more preferably 0.13 or more and 0.16 or less. The above-mentioned molar ratio ((M 1 + M 2 ) / (Li + M 1 + M 2 )) is a guideline for the substitution amount (content) of the first element and the second element with respect to Li, which is a cation of Li 2 O. By setting the molar ratio ((M 1 + M 2 ) / (Li + M 1 + M 2 )) in the above range, the charge / discharge performance and the like can be improved.
 当該正極活物質(β)中の第一元素(M)の含有量に対する元素A(N)の含有量のモル比率(N/M)は特に限定されず、例えば0.00超1.0未満であってもよいが、0.01以上0.8以下が好ましく、0.02以上0.5以下がより好ましく、0.03以上0.3以下がさらに好ましく、0.05以上0.15以下がよりさらに好ましい。上記第一元素(M)の含有量に対する元素A(N)の含有量のモル比率(N/M)を上記範囲とすることで、非水電解質蓄電素子に用いた際、充電時の酸素ガスの発生をより抑制し、充放電サイクル寿命をより長くすることができる。また、上記モル比率(N/M)を上記上限以下とすることで、初期の放電容量が大きくなる傾向にある。非水電解質蓄電素子に用いた際、充電時の酸素ガスの発生をより抑制する観点等からは、上記モル比率(N/M)は0.10以下がよりさらに好ましい場合もある。充放電サイクル寿命をより長くする観点等からは、上記モル比率(N/M)は0.10以上がよりさらに好ましい場合もある。 The molar ratio (N / M 1 ) of the content of the element A (N) to the content of the first element (M 1 ) in the positive electrode active material (β) is not particularly limited, and is, for example, more than 0.00 1. It may be less than 0, but is preferably 0.01 or more and 0.8 or less, more preferably 0.02 or more and 0.5 or less, further preferably 0.03 or more and 0.3 or less, and 0.05 or more and 0. 15 or less is even more preferable. By setting the molar ratio (N / M 1 ) of the content of the element A (N) to the content of the first element (M 1 ) in the above range, when it is used for a non-aqueous electrolyte power storage element, it is charged. It is possible to further suppress the generation of oxygen gas and extend the charge / discharge cycle life. Further, by setting the molar ratio (N / M 1 ) to the upper limit or less, the initial discharge capacity tends to increase. When used in a non-aqueous electrolyte power storage element, the molar ratio (N / M 1 ) may be more preferably 0.10 or less from the viewpoint of further suppressing the generation of oxygen gas during charging. From the viewpoint of extending the charge / discharge cycle life, the molar ratio (N / M 1 ) may be more preferably 0.10 or more.
 当該正極活物質(β)中の酸素(O)の含有量に対する元素A(N)の含有量のモル比率(N/O)は特に限定されず、例えば0.000超0.2未満であってもよいが、0.002以上0.1以下が好ましく、0.004以上0.08以下がより好ましく、0.006以上0.05以下がさらに好ましく、0.01以上0.03以下がよりさらに好ましい。上記酸素(O)の含有量に対する元素A(N)の含有量のモル比率(N/O)を上記範囲とすることで、非水電解質蓄電素子に用いた際、充電時の酸素ガスの発生をより抑制し、充放電サイクル寿命をより長くすることができる。また、上記モル比率(N/O)を上記上限以下とすることで、初期の放電容量が大きくなる傾向にある。非水電解質蓄電素子に用いた際、充電時の酸素ガスの発生をより抑制する観点等からは、上記モル比率(N/O)は0.02以下がよりさらに好ましい場合もある。充放電サイクル寿命をより長くする観点等からは、上記モル比率(N/O)は0.02以上がよりさらに好ましい場合もある。 The molar ratio (N / O) of the content of the element A (N) to the content of oxygen (O) in the positive electrode active material (β) is not particularly limited, and is, for example, more than 0.000 and less than 0.2. However, 0.002 or more and 0.1 or less are preferable, 0.004 or more and 0.08 or less are more preferable, 0.006 or more and 0.05 or less are further preferable, and 0.01 or more and 0.03 or less are more preferable. More preferred. By setting the molar ratio (N / O) of the content of element A (N) to the content of oxygen (O) in the above range, oxygen gas is generated during charging when used in a non-aqueous electrolyte power storage element. Can be further suppressed and the charge / discharge cycle life can be extended. Further, by setting the molar ratio (N / O) to be equal to or lower than the upper limit, the initial discharge capacity tends to increase. When used in a non-aqueous electrolyte power storage element, the molar ratio (N / O) may be more preferably 0.02 or less from the viewpoint of further suppressing the generation of oxygen gas during charging. From the viewpoint of extending the charge / discharge cycle life, the molar ratio (N / O) may be more preferably 0.02 or more.
 当該正極活物質(β)は、リチウム、酸素、第一元素、第二元素及び元素A以外の他の元素を含んでいてもよい。但し、当該正極活物質(β)を構成する全元素の合計含有量に対する上記他の元素の含有量のモル比率は、0.1以下が好ましく、0.01以下がより好ましい。当該正極活物質(β)は、リチウム、酸素、第一元素、第二元素及び元素Aから実質的に構成されていてもよい。当該正極活物質(β)が、リチウム、酸素、第一元素、第二元素及び元素Aから実質的に構成されていることで、非水電解質蓄電素子に用いた際、充電時の酸素ガスの発生をより抑制し、充放電サイクル寿命をより長くすることができる。 The positive electrode active material (β) may contain lithium, oxygen, a first element, a second element, and other elements other than element A. However, the molar ratio of the contents of the other elements to the total content of all the elements constituting the positive electrode active material (β) is preferably 0.1 or less, more preferably 0.01 or less. The positive electrode active material (β) may be substantially composed of lithium, oxygen, a first element, a second element and an element A. Since the positive electrode active material (β) is substantially composed of lithium, oxygen, a first element, a second element, and an element A, when used in a non-aqueous electrolyte power storage element, oxygen gas during charging can be used. The generation can be further suppressed and the charge / discharge cycle life can be extended.
 当該正極活物質(β)における酸素の含有量としては特に限定されず、通常、リチウム、第一元素、第二元素及び元素A等の組成比やこれらの元素の価数などから決定される。但し、化学量論比において酸素不足又は酸素過多の酸化物となっていてもよい。 The oxygen content in the positive electrode active material (β) is not particularly limited, and is usually determined from the composition ratio of lithium, the first element, the second element, the element A, and the like, and the valence of these elements. However, it may be an oxide with insufficient oxygen or excess oxygen in the stoichiometric ratio.
 当該正極活物質(β)の好ましい組成式の一例としては、後述する下記式1の組成式が挙げられる。 As an example of a preferable composition formula of the positive electrode active material (β), the composition formula of the following formula 1 described later can be mentioned.
 本発明の他の一実施形態に係る正極活物質(γ)は、下記式1で表される。なお、当該正極活物質(γ)が1種の酸化物から構成される場合、下記式1の組成式はその酸化物の組成を表す。当該正極活物質(γ)が複数種の酸化物から構成される場合、下記式1の組成式は、複数種の酸化物の全体の組成を表す。
 Li ON ・・・1
 式1中、Mは、Cr、Mn、Fe、Co、Ni及びCuからなる群より選ばれる少なくとも1種である。Mは、13族元素、14族元素、P、Sb、Bi及びTeからなる群より選ばれる少なくとも1種である。a、b、c及びdは、それぞれ、1.0<a<2.0、0.000<b<0.5、0.000<c<0.2、0.000<d<0.2を満たす。
The positive electrode active material (γ) according to another embodiment of the present invention is represented by the following formula 1. When the positive electrode active material (γ) is composed of one kind of oxide, the composition formula of the following formula 1 represents the composition of the oxide. When the positive electrode active material (γ) is composed of a plurality of types of oxides, the composition formula of the following formula 1 represents the overall composition of the plurality of types of oxides.
Li a M 1 b M 2 c ON d ... 1
In formula 1, M 1 is at least one selected from the group consisting of Cr, Mn, Fe, Co, Ni and Cu. M 2 is at least one selected from the group consisting of Group 13 elements, Group 14 elements, P, Sb, Bi and Te. a, b, c and d are 1.0 <a <2.0, 0.000 <b <0.5, 0.000 <c <0.2, 0.000 <d <0.2, respectively. Meet.
 上記式1中のaは、1.1以上1.9以下が好ましく、1.2以上1.8以下がより好ましく、1.3以上1.7以下がさらに好ましく、1.4以上1.6以下がよりさらに好ましく、なかでも1.5以下がよりさらに好ましい。 The a in the above formula 1 is preferably 1.1 or more and 1.9 or less, more preferably 1.2 or more and 1.8 or less, further preferably 1.3 or more and 1.7 or less, and 1.4 or more and 1.6. The following is even more preferable, and 1.5 or less is even more preferable.
 上記式1中のbは、0.05以上0.4以下が好ましく、0.1以上0.3以下がより好ましく、0.15以上0.25以下がさらに好ましい。 B in the above formula 1 is preferably 0.05 or more and 0.4 or less, more preferably 0.1 or more and 0.3 or less, and further preferably 0.15 or more and 0.25 or less.
 上記式1中のcは、0.01以上0.15以下が好ましく、0.02以上0.10以下がより好ましく、0.03以上0.08以下がさらに好ましい。 The c in the above formula 1 is preferably 0.01 or more and 0.15 or less, more preferably 0.02 or more and 0.10 or less, and further preferably 0.03 or more and 0.08 or less.
 上記式1中のdは、0.002以上0.1以下が好ましく、0.004以上0.08以下がより好ましく、0.006以上0.05以下がさらに好ましく、0.01以上0.03以下がよりさらに好ましい。また、dは0.02以下がよりさらに好ましい場合もあり、0.02以上がよりさらに好ましい場合もある。 The d in the above formula 1 is preferably 0.002 or more and 0.1 or less, more preferably 0.004 or more and 0.08 or less, further preferably 0.006 or more and 0.05 or less, and 0.01 or more and 0.03. The following are even more preferred. Further, d may be more preferably 0.02 or less, and may be further preferably 0.02 or more.
 上記aからdをそれぞれ上記範囲内とすることで、非水電解質蓄電素子に用いた際、充電時の酸素ガスの発生をより抑制し、充放電サイクル寿命をより長くすることなどができる。 By setting each of the above a to d within the above range, it is possible to further suppress the generation of oxygen gas during charging and extend the charge / discharge cycle life when used in a non-aqueous electrolyte power storage element.
 上記式1中のMとしては、Coを含むことが好ましく、Coがより好ましい。 It is preferable that M 1 in the above formula 1 contains Co, and Co is more preferable.
 上記式1中のMとしては、13族元素及び14族元素が好ましく、14族元素がより好ましく、Siがさらに好ましい。 As M 2 in the above formula 1, Group 13 elements and Group 14 elements are preferable, Group 14 elements are more preferable, and Si is even more preferable.
 当該正極活物質(γ)は、結晶構造を有していてもよく、結晶構造を有していなくてもよいが、結晶構造を有することが好ましく、逆蛍石型の結晶構造を有することがより好ましい。 The positive electrode active material (γ) may or may not have a crystal structure, but preferably has a crystal structure, and may have an inverted fluorite-type crystal structure. More preferred.
 本発明の一実施形態に係る正極活物質(β)及び正極活物質(γ)のCuKα線を用いたエックス線回折図において、回折角2θが33°付近の回折ピークの積分強度に対する回折角2θが44°付近の回折ピークの積分強度の比は、0.00超2以下が好ましく、0.05以上1.6以下がより好ましく、0.1以上1.0以下がさらに好ましい。上記積分強度の比を上記範囲とすることで、非水電解質蓄電素子に用いた際、充電時の酸素ガスの発生をより抑制し、充放電サイクル寿命をより長くすることができる。また、上記積分強度の比を上記上限以下とすることで、正極活物質の初期の放電容量が大きくなる傾向にある。非水電解質蓄電素子に用いた際、充電時の酸素ガスの発生をより抑制する観点等からは、上記積分強度の比は0.5以下がよりさらに好ましい場合もある。充放電サイクル寿命をより長くする観点等からは、上記積分強度の比は0.5以上がよりさらに好ましい場合もある。 In the X-ray diffraction diagram using CuKα rays of the positive electrode active material (β) and the positive electrode active material (γ) according to the embodiment of the present invention, the diffraction angle 2θ is the diffraction angle 2θ with respect to the integrated intensity of the diffraction peak near 33 °. The ratio of the integrated intensities of the diffraction peaks near 44 ° is preferably more than 0.00 and 2 or less, more preferably 0.05 or more and 1.6 or less, and further preferably 0.1 or more and 1.0 or less. By setting the ratio of the integrated strengths in the above range, when used in a non-aqueous electrolyte power storage element, the generation of oxygen gas during charging can be further suppressed, and the charge / discharge cycle life can be further extended. Further, by setting the ratio of the integrated strength to the upper limit or less, the initial discharge capacity of the positive electrode active material tends to increase. When used in a non-aqueous electrolyte power storage element, the ratio of the integrated strengths may be more preferably 0.5 or less from the viewpoint of further suppressing the generation of oxygen gas during charging. From the viewpoint of extending the charge / discharge cycle life, the ratio of the integrated strengths may be more preferably 0.5 or more.
 本発明の一実施形態に係る正極活物質(β)及び正極活物質(γ)の格子定数aは、0.460nm以上0.465nm以下が好ましく、0.461nm以上0.464nm以下がより好ましく、0.462nm以上0.463nm以下がさらに好ましい。格子定数aが上記範囲である場合、第一元素、第二元素及び元素Aの含有量が適度な範囲であると推測され、非水電解質蓄電素子に用いた際、充電時の酸素ガスの発生をより抑制し、充放電サイクル寿命をより長くすることができる。 The lattice constant a of the positive electrode active material (β) and the positive electrode active material (γ) according to the embodiment of the present invention is preferably 0.460 nm or more and 0.465 nm or less, more preferably 0.461 nm or more and 0.464 nm or less. It is more preferably 0.462 nm or more and 0.463 nm or less. When the lattice constant a is in the above range, it is presumed that the contents of the first element, the second element and the element A are in an appropriate range, and when used in a non-aqueous electrolyte power storage element, oxygen gas is generated during charging. Can be further suppressed and the charge / discharge cycle life can be extended.
 本発明の一実施形態に係る正極活物質(β)及び正極活物質(γ)の体積抵抗率は、25Ω・cm以下であることが好ましく、20Ω・cm以下であることがより好ましく、15Ω・cm以下であることがさらに好ましい。当該正極活物質(β)及び当該正極活物質(γ)は、LiO系正極活物質でありながら、元素Aである窒素を含むことなどにより、体積抵抗率が十分に低いものとなり得る。当該正極活物質(β)及び当該正極活物質(γ)の体積抵抗率が上記上限以下であることによりサイクル寿命が長くなり、また、非水電解質蓄電素子の入出力性能等を高めることができる。なお、当該正極活物質(β)及び当該正極活物質(γ)の体積抵抗率は、例えば1Ω・cm以上であってもよく、5Ω・cm以上であってもよい。
 正極活物質の体積抵抗率の測定は、アルゴン雰囲気のグローブボックス内にて、内壁面を絶縁塗装した内径11.25mmφの錠剤成型器を用い、油圧プレス機にて30MPaの圧力でプレスしている状態で、抵抗計(交流四端子法、測定周波数1kHz)にて抵抗値を測定する方法により行う。まず、錠剤成形器に試料を入れずに測定し、その抵抗値をブランク抵抗とする。次に、錠剤成型器に試料である正極活物質粉末を130mg投入し、抵抗値を測定する。測定された抵抗値からブランク抵抗を差し引いた抵抗値と、ノギスで計測したプレス後の試料の厚さから、体積抵抗率を算出する。
The volume resistivity of the positive electrode active material (β) and the positive electrode active material (γ) according to the embodiment of the present invention is preferably 25 Ω · cm or less, more preferably 20 Ω · cm or less, and more preferably 15 Ω · cm. It is more preferably cm or less. Although the positive electrode active material (β) and the positive electrode active material (γ) are Li 2O -based positive electrode active materials, they may have a sufficiently low volume resistance because they contain nitrogen, which is an element A. When the volume resistivity of the positive electrode active material (β) and the positive electrode active material (γ) is not more than the above upper limit, the cycle life can be extended, and the input / output performance of the non-aqueous electrolyte power storage element can be improved. .. The volume resistivity of the positive electrode active material (β) and the positive electrode active material (γ) may be, for example, 1 Ω · cm or more, or 5 Ω · cm or more.
The volume resistivity of the positive electrode active material is measured by using a tablet molding machine with an inner wall surface of 11.25 mmφ, which has an inner wall surface coated with insulation, in a glove box with an argon atmosphere, and is pressed at a pressure of 30 MPa with a hydraulic press machine. In this state, the resistance value is measured with a resistance meter (AC four-terminal method, measurement frequency 1 kHz). First, the measurement is performed without putting the sample in the tablet molder, and the resistance value is defined as the blank resistance. Next, 130 mg of the positive electrode active material powder, which is a sample, is put into the tablet molder, and the resistance value is measured. The volume resistivity is calculated from the resistance value obtained by subtracting the blank resistance from the measured resistance value and the thickness of the sample after pressing measured with a caliper.
 本発明の一実施形態に係る正極活物質の格子定数をa、当該正極活物質中の元素Aを全て酸素に置換した組成からなり、かつ逆蛍石型の結晶構造を有する化合物の格子定数をaとした場合、比a/aは、例えば1.00000超であればよいが、1.0000超であることが好ましく、1.00005超又は1.00010超であってもよい。一方、この比a/aは、1.001以下であってもよいが、1.0005未満が好ましく、1.0003未満がより好ましく、1.0002未満がさらに好ましい場合もある。 The lattice constant of the positive electrode active material according to the embodiment of the present invention is a 1 , the lattice constant of the compound having a composition in which all the elements A in the positive electrode active material are replaced with oxygen and having an inverted fluorite-type crystal structure. When is a 2 , the ratio a 1 / a 2 may be, for example, more than 1.00000, preferably more than 1.0000, and may be more than 1.00005 or more than 1.00010. .. On the other hand, the ratio a 1 / a 2 may be 1.001 or less, preferably less than 1.0005, more preferably less than 1.0003, and even more preferably less than 1.0002.
 格子定数の比a/aが上記範囲である場合、結晶構造の安定性が大きく損なわれない範囲で十分な量の元素Aが含有されていることを意味し、このような場合、当該正極活物質の充放電サイクル後の放電容量がより大きくなる。 When the ratio a 1 / a 2 of the lattice constant is in the above range, it means that a sufficient amount of element A is contained within a range in which the stability of the crystal structure is not significantly impaired. The discharge capacity of the positive electrode active material after the charge / discharge cycle becomes larger.
 本発明の一実施形態に係る正極活物質は、下記式2を満たすことが好ましい。
 1.0000<a/a<1.0005 ・・・2
 式2中、aは上記正極活物質の格子定数である。aは、上記正極活物質中の上記元素Aを全て酸素に置換した組成からなり、かつ逆蛍石型の結晶構造を有する化合物の格子定数である。
The positive electrode active material according to the embodiment of the present invention preferably satisfies the following formula 2.
1.000 <a 1 / a 2 <1.005 ・ ・ ・ 2
In Equation 2, a 1 is the lattice constant of the positive electrode active material. a2 is a lattice constant of a compound having a composition in which all the elements A in the positive electrode active material are replaced with oxygen and having an inverted fluorite-type crystal structure.
 上記式2を満たす場合、正極活物質に適度な量の元素Aが含有されていることを表し、当該正極活物質の充放電サイクル後の放電容量はより大きくなる。 When the above formula 2 is satisfied, it means that the positive electrode active material contains an appropriate amount of element A, and the discharge capacity of the positive electrode active material after the charge / discharge cycle becomes larger.
 本発明の一実施形態に係る正極活物質のCuKα線を用いたエックス線回折図において、回折角2θが33°付近の回折ピークの半値幅は0.3°以上が好ましく、0.5°以上がより好ましく、1.0°以上がさらに好ましい。回折角2θが33°付近の回折ピークの半値幅が上記下限以上である場合、非水電解質蓄電素子に用いた際、充電時の酸素ガスの発生がより抑制され、より十分な充放電サイクル寿命を有する正極活物質とすることができる。なお、後述するメカノケミカル法により処理する製造方法によって当該正極活物質を製造することで、このような回折ピークの半値幅が大きいものとなる傾向がある。回折角2θが33°付近の回折ピークの半値幅は、例えば5°以下であってもよく、3°以下であってもよく、2°以下であってもよい。 In the X-ray diffraction diagram using CuKα rays of the positive electrode active material according to the embodiment of the present invention, the half width of the diffraction peak near the diffraction angle 2θ of 33 ° is preferably 0.3 ° or more, preferably 0.5 ° or more. More preferably, 1.0 ° or more is further preferable. When the half-value width of the diffraction peak near the diffraction angle 2θ is 33 ° or more is equal to or greater than the above lower limit, the generation of oxygen gas during charging is further suppressed when used in a non-aqueous electrolyte power storage element, and a more sufficient charge / discharge cycle life is achieved. It can be a positive electrode active material having. By manufacturing the positive electrode active material by a manufacturing method that is treated by the mechanochemical method described later, the half-value width of such a diffraction peak tends to be large. The half width of the diffraction peak in which the diffraction angle 2θ is around 33 ° may be, for example, 5 ° or less, 3 ° or less, or 2 ° or less.
 本発明の一実施形態に係る正極活物質は、通常、粒子(粉体)である。正極活物質の平均粒径は、例えば、0.01μm以上20μm以下とすることが好ましい。正極活物質の平均粒径を上記下限以上とすることで、正極活物質の製造又は取り扱いが容易になる。正極活物質の平均粒径を上記上限以下とすることで、正極活物質層を形成したときの電子伝導性が向上する。なお、正極活物質と他の材料との複合体を用いる場合、該複合体の平均粒径を正極活物質の平均粒径とする。「平均粒径」とは、走査電子顕微鏡(SEM)画像から、極端に大きい粒子及び極端に小さい粒子を避けて1000個の粒子を抽出して測定した粒径の平均値を意味する。なお、このSEM画像からの測定における各粒子の粒径は次のようにして求める。各粒子の最小外接円の中心を通り最も短い径を短径とし、上記中心を通り短径に直交する径を長径とする。長径と短径との平均値を各粒子の粒径とする。最も短い径が2本以上存在する場合、直交する径が最も長いものを短径とする。 The positive electrode active material according to one embodiment of the present invention is usually particles (powder). The average particle size of the positive electrode active material is preferably, for example, 0.01 μm or more and 20 μm or less. By setting the average particle size of the positive electrode active material to the above lower limit or more, the production or handling of the positive electrode active material becomes easy. By setting the average particle size of the positive electrode active material to be equal to or less than the above upper limit, the electron conductivity when the positive electrode active material layer is formed is improved. When a complex of a positive electrode active material and another material is used, the average particle size of the complex is taken as the average particle size of the positive electrode active material. The "average particle size" means the average value of the particle size measured by extracting 1000 particles from a scanning electron microscope (SEM) image while avoiding extremely large particles and extremely small particles. The particle size of each particle in the measurement from this SEM image is obtained as follows. The shortest diameter passing through the center of the minimum circumscribed circle of each particle is defined as the minor diameter, and the diameter passing through the center and orthogonal to the minor diameter is defined as the major diameter. The average value of the major axis and the minor axis is taken as the particle size of each particle. When there are two or more shortest diameters, the one with the longest orthogonal diameter is the shortest diameter.
 粉体を所定の粒径で得るためには粉砕機や分級機等が用いられる。粉砕方法として、例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェットミル、旋回気流型ジェットミル又は篩等を用いる方法が挙げられる。粉砕時には後述する非水電解質に用いる非水溶媒(ジメチルカーボネート等)やN-メチルピロリドン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、篩や風力分級機等が、乾式、湿式ともに必要に応じて用いられる。 A crusher, a classifier, etc. are used to obtain powder with a predetermined particle size. Examples of the crushing method include a method using a mortar, a ball mill, a sand mill, a vibrating ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling airflow type jet mill, a sieve, or the like. At the time of pulverization, wet pulverization in which a non-aqueous solvent (dimethyl carbonate or the like) used for the non-aqueous electrolyte described later or an organic solvent such as N-methylpyrrolidone coexists can also be used. As a classification method, a sieve, a wind power classifier, or the like is used as needed for both dry and wet types.
<正極活物質の製造方法>
 本発明の一実施形態に係る正極活物質は、例えば以下の製造方法により製造することができる。すなわち本発明の一実施形態に係る正極活物質の製造方法は、リチウム、酸素、第一元素及び元素Aを含む材料をメカノケミカル法により処理することを備え、上記第一元素が、クロム、マンガン、鉄、コバルト、ニッケル及び銅からなる群より選ばれる少なくとも1種であり、上記元素Aが、窒素、硫黄、セレン、フッ素、塩素、臭素及びヨウ素からなる群より選ばれる少なくとも1種である。
<Manufacturing method of positive electrode active material>
The positive electrode active material according to the embodiment of the present invention can be produced, for example, by the following production method. That is, the method for producing a positive electrode active material according to an embodiment of the present invention comprises treating a material containing lithium, oxygen, a first element and element A by a mechanochemical method, wherein the first element is chromium or manganese. , At least one selected from the group consisting of iron, cobalt, nickel and copper, and the element A is at least one selected from the group consisting of nitrogen, sulfur, selenium, fluorine, chlorine, bromine and iodine.
 本発明の他の一実施形態に係る正極活物質の製造方法は、リチウム、酸素、第一元素、第二元素及び元素Aを含む材料をメカノケミカル法により処理することを備え、上記第一元素が、クロム、マンガン、鉄、コバルト、ニッケル及び銅からなる群より選ばれる少なくとも1種であり、上記第二元素が、13族元素、14族元素、リン、アンチモン、ビスマス及びテルルからなる群より選ばれる少なくとも1種であり、上記元素Aが窒素である。 The method for producing a positive electrode active material according to another embodiment of the present invention comprises treating a material containing lithium, oxygen, a first element, a second element and an element A by a mechanochemical method, and the first element is described above. Is at least one selected from the group consisting of chromium, manganese, iron, cobalt, nickel and copper, and the second element is from the group consisting of group 13 element, group 14 element, phosphorus, antimony, bismuth and tellurium. It is at least one selected, and the element A is nitrogen.
 当該製造方法によって製造される正極活物質の具体例及び好適例は、本発明の一実施形態に係る正極活物質の具体例及び好適例と同様である。 Specific examples and suitable examples of the positive electrode active material produced by the production method are the same as the specific examples and suitable examples of the positive electrode active material according to the embodiment of the present invention.
 メカノケミカル法(メカノケミカル処理などともいう。)とは、メカノケミカル反応を利用した合成法をいう。メカノケミカル反応とは、固体物質の破砕過程での摩擦、圧縮等の機械的エネルギーにより局部的に生じる高いエネルギーを利用する結晶化反応、固溶反応、相転移反応等の化学反応をいう。当該製造方法においては、メカノケミカル法による処理によって、LiOの結晶構造中に第一元素及び元素A若しくは第一元素、第二元素及び元素Aが固溶する反応などが生じていると推測される。メカノケミカル法による処理を行う装置としては、ボールミル、ビーズミル、振動ミル、ターボミル、メカノフュージョン、ディスクミルなどの粉砕・分散機が挙げられる。これらの中でもボールミルが好ましい。ボールミルに用いるボール及びミル容器としては、タングステンカーバイド(WC)製のものや、酸化ジルコニウム(ZrO)製のものなどを好適に用いることができる。 The mechanochemical method (also referred to as mechanochemical treatment) is a synthetic method using a mechanochemical reaction. The mechanochemical reaction refers to a chemical reaction such as a crystallization reaction, a solid solution reaction, or a phase transition reaction that utilizes high energy locally generated by mechanical energy such as friction and compression in the crushing process of a solid substance. In this production method, it is presumed that the treatment by the mechanochemical method causes a reaction in which the first element and element A or the first element, the second element and the element A are solid-dissolved in the crystal structure of Li 2O . Will be done. Examples of the apparatus for processing by the mechanochemical method include crushing / dispersing machines such as ball mills, bead mills, vibration mills, turbo mills, mechanofusions, and disc mills. Of these, a ball mill is preferable. As the balls and mill containers used in the ball mill, those made of tungsten carbide (WC), those made of zirconium oxide (ZrO 2 ), and the like can be preferably used.
 ボールミルにより処理する場合、処理の際のミル回転数としては例えば100rpm以上1,000rpm以下とすることができる。また、処理時間としては、例えば0.1時間以上100時間以下とすることができる。また、この処理は、アルゴン等の不活性ガス雰囲気下又は空気等の活性ガス雰囲気下で行うことができるが、不活性ガス雰囲気下で行うことが好ましい。ここで、不活性ガスとは、ボールミル処理に供される材料、及び得られる正極活物質に対して不活性なガスをいう。 When processing with a ball mill, the mill rotation speed during processing can be, for example, 100 rpm or more and 1,000 rpm or less. The processing time can be, for example, 0.1 hour or more and 100 hours or less. Further, this treatment can be carried out in an atmosphere of an inert gas such as argon or an atmosphere of an active gas such as air, but it is preferably carried out in an atmosphere of an inert gas. Here, the inert gas refers to a gas that is inert to the material to be subjected to the ball mill treatment and the obtained positive electrode active material.
 当該製造方法により得られる正極活物質は、逆蛍石型の結晶構造を有することが好ましい。当該製造方法のようにメカノケミカル法により処理することで、得られる正極活物質は、CuKα線を用いたエックス線回折図において、回折角2θが33°付近の回折ピークの半値幅が0.3°以上と大きくなる傾向にある。 The positive electrode active material obtained by the production method preferably has an inverted fluorite-type crystal structure. The positive electrode active material obtained by treating with the mechanochemical method as in the production method has a half-value width of a diffraction peak near 33 ° in the diffraction angle 2θ in an X-ray diffraction diagram using CuKα rays, which is 0.3 °. It tends to be larger than the above.
 メカノケミカル法による処理に供される材料は、通常、1種又は2種以上の化合物等から構成される。1種又は2種以上の化合物等から構成される材料の中に、これらの化合物等を構成する元素として、リチウム、酸素、第一元素及び元素A若しくはリチウム、酸素、第一元素、第二元素及び元素Aが含まれていればよい。 The material to be treated by the mechanochemical method is usually composed of one kind or two or more kinds of compounds. In a material composed of one kind or two or more kinds of compounds, lithium, oxygen, the first element and element A or lithium, oxygen, the first element, the second element are used as the elements constituting these compounds. And element A may be contained.
 上記材料を構成する化合物等は、酸化物であってもよく、酸化物以外の化合物であってもよく、単体であってもよい。また、これらの化合物等は、結晶質であってもよく、非結晶質であってもよい。上記材料を構成する化合物等の具体例としては、例えば
 LiO等のリチウムの酸化物、
 LiCoO、LiCrO、LiFeO、LiNiO、LiCuO、LiMnO等のリチウムと第一元素との複合酸化物、
 LiAlO、LiGaO、LiInO、LiSiO、LiGeO、LiSnO、LiBO、LiSbO、LiBiO、LiTeO等のリチウムと第二元素との複合酸化物、
 Li5.5Co0.5Al0.5、Li5.8Co0.8Al0.2、LiCo0.50.5、LiCo0.80.2、Li5.5Co0.50.5、Li5.8Co0.80.2、Li5.8Co0.8Si0.2等のリチウムと第一元素と第二元素との複合酸化物、
 CoO、Co、Fe、MnO、NiO、CuO、CuO等の第一元素の酸化物、
 B、Al、SiO、GeO、SnO等の第二元素の酸化物、
 LiN、Li3-xCoN(Li2.6Co0.4N等)、CoN、CoF、CoCl、CoS、CoS、CoSe、CoTe、CoBr、CoI、LiS、LiSe、LiF、LiCl、LiBr及びLiI、Si、BN等の元素Aを含む化合物などを挙げることができる。
 その他、第一元素と第二元素との化合物、リチウム、第一元素、第二元素及び元素Aの少なくとも1種と、リチウム、酸素、第一元素、第二元素及び元素A以外の元素との化合物等を用いてもよい。
The compound and the like constituting the above material may be an oxide, a compound other than the oxide, or a simple substance. Further, these compounds and the like may be crystalline or amorphous. Specific examples of the compounds constituting the above materials include lithium oxides such as Li 2O .
Lithium-first element composite oxides such as Li 6 CoO 4 , Li 5 CrO 4 , Li 5 FeO 4 , Li 6 NiO 4 , Li 6 CuO 4 , Li 6 MnO 4 , etc.
Li 5 AlO 4 , Li 5 GaO 4 , Li 5 InO 4 , Li 4 SiO 4 , Li 4 GeO 4 , Li 4 SnO 4 , Li 3 BO 3 , Li 5 SbO 5 , Li 5 BiO 6 etc. Lithium and second element composite oxide,
Li 5.5 Co 0.5 Al 0.5 O 4 , Li 5.8 Co 0.8 Al 0.2 O 4 , LiCo 0.5 B 0.5 O 2 , LiCo 0.8 B 0.2 O 2 , Li 5.5 Co 0.5 B 0.5 O 4 , Li 5.8 Co 0.8 B 0.2 O 4 , Li 5.8 Co 0.8 Si 0.2 O 4 and other lithium Composite oxide of the first element and the second element,
Oxides of the first element such as CoO, Co 3 O 4 , Fe 2 O 3 , MnO 2 , NiO, Cu 2 O, Cu O, etc.
Oxides of second elements such as B 2 O 3 , Al 2 O 3 , SiO 2 , GeO 2 , SnO 2 , etc.
Li 3 N, Li 3-x Co x N (Li 2.6 Co 0.4 N, etc.), CoN x , CoF 2 , CoCl 2 , CoS, CoS 2 , CoSe, CoTe, CoBr, CoI 2 , Li 2 S , Li 2 Se, LiF, LiCl, LiBr and LiI, Si 3N 4 , BN and other compounds containing element A.
In addition, at least one of a compound of a first element and a second element, lithium, a first element, a second element and an element A, and an element other than lithium, oxygen, the first element, the second element and the element A. Compounds and the like may be used.
<正極>
 本発明の一実施形態に係る正極は、上述した本発明の一実施形態に係る正極活物質を含有する非水電解質蓄電素子用の正極である。当該正極は、正極基材、及びこの正極基材に直接又は中間層を介して配される正極活物質層を有する。
<Positive electrode>
The positive electrode according to the embodiment of the present invention is a positive electrode for a non-aqueous electrolyte power storage element containing the positive electrode active material according to the above-mentioned embodiment of the present invention. The positive electrode has a positive electrode base material and a positive electrode active material layer arranged directly on the positive electrode base material or via an intermediate layer.
 上記正極基材は、導電性を有する。「導電性」を有するとは、JIS-H-0505(1975年)に準拠して測定される体積抵抗率が10Ω・cm以下であることを意味し、「非導電性」とは、上記体積抵抗率が10Ω・cm超であることを意味する。正極基材の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼等の金属又はそれらの合金が用いられる。これらの中でも、耐電位性、導電性の高さ及びコストのバランスからアルミニウム及びアルミニウム合金が好ましい。また、正極基材の形成形態としては、箔、蒸着膜等が挙げられ、コストの面から箔が好ましい。つまり、正極基材としてはアルミニウム箔又はアルミニウム合金箔が好ましい。なお、アルミニウム又はアルミニウム合金としては、JIS-H-4000(2014年)に規定されるA1085P、A3003P等が例示できる。 The positive electrode base material has conductivity. Having "conductive" means that the volume resistivity measured according to JIS-H-0505 (1975) is 107 Ω · cm or less, and "non-conductive" means. It means that the volume resistivity is more than 107 Ω · cm. As the material of the positive electrode base material, metals such as aluminum, titanium, tantalum, and stainless steel or alloys thereof are used. Among these, aluminum and aluminum alloys are preferable from the viewpoint of the balance between potential resistance, high conductivity and cost. Further, examples of the formation form of the positive electrode base material include foil, a vapor-deposited film, and the like, and foil is preferable from the viewpoint of cost. That is, aluminum foil or aluminum alloy foil is preferable as the positive electrode base material. Examples of aluminum or aluminum alloy include A1085P and A3003P specified in JIS-H-4000 (2014).
 正極基材の平均厚さは、3μm以上50μm以下が好ましく、5μm以上40μm以下がより好ましく、8μm以上30μm以下がさらに好ましく、10μm以上25μm以下が特に好ましい。正極基材の平均厚さを上記の範囲とすることで、正極基材の強度を高めつつ、蓄電素子の体積当たりのエネルギー密度を高めることができる。正極基材及び後述する負極基材の「平均厚さ」とは、所定の面積の基材を打ち抜いた際の打ち抜き質量を、基材の真密度及び打ち抜き面積で除した値をいう。 The average thickness of the positive electrode substrate is preferably 3 μm or more and 50 μm or less, more preferably 5 μm or more and 40 μm or less, further preferably 8 μm or more and 30 μm or less, and particularly preferably 10 μm or more and 25 μm or less. By setting the average thickness of the positive electrode base material in the above range, it is possible to increase the strength of the positive electrode base material and the energy density per volume of the power storage element. The "average thickness" of the positive electrode base material and the negative electrode base material described later means a value obtained by dividing the punched mass when punching a base material having a predetermined area by the true density and the punched area of the base material.
 中間層は、正極基材の表面の被覆層であり、炭素粒子等の導電剤を含むことで正極基材と正極活物質層との接触抵抗を低減する。中間層の構成は特に限定されず、例えばバインダー及び導電剤を含む。 The intermediate layer is a coating layer on the surface of the positive electrode base material, and contains a conductive agent such as carbon particles to reduce the contact resistance between the positive electrode base material and the positive electrode active material layer. The composition of the intermediate layer is not particularly limited and includes, for example, a binder and a conductive agent.
 正極活物質層は、正極活物質を含むいわゆる正極合剤から形成される。また、正極活物質層を形成する正極合剤は、必要に応じて導電剤、バインダー、増粘剤、フィラー等の任意成分を含む。 The positive electrode active material layer is formed from a so-called positive electrode mixture containing a positive electrode active material. Further, the positive electrode mixture forming the positive electrode active material layer contains optional components such as a conductive agent, a binder, a thickener, and a filler, if necessary.
 上記正極活物質として、上述した本発明の一実施形態に係る正極活物質を含む。正極活物質としては、本発明の一実施形態に係る正極活物質以外の公知の正極活物質が含まれていてもよい。上記正極活物質層における本発明の一実施形態に係る正極活物質の含有量は、10質量%以上が好ましく、30質量%以上がより好ましく、50質量%以上がさらに好ましく、70質量%以上が特に好ましい。このように、正極活物質層中の当該正極活物質の含有割合を高めることで、当該正極活物質を用いる効果が特に十分に発揮される。一方、正極活物質層における本発明の一実施形態に係る正極活物質の含有量は、99質量%以下、98質量%以下、90質量%以下、又は80質量%以下であってもよい。 The positive electrode active material includes the positive electrode active material according to the embodiment of the present invention described above. The positive electrode active material may contain a known positive electrode active material other than the positive electrode active material according to the embodiment of the present invention. The content of the positive electrode active material according to the embodiment of the present invention in the positive electrode active material layer is preferably 10% by mass or more, more preferably 30% by mass or more, further preferably 50% by mass or more, and 70% by mass or more. Especially preferable. As described above, by increasing the content ratio of the positive electrode active material in the positive electrode active material layer, the effect of using the positive electrode active material is particularly sufficiently exhibited. On the other hand, the content of the positive electrode active material according to the embodiment of the present invention in the positive electrode active material layer may be 99% by mass or less, 98% by mass or less, 90% by mass or less, or 80% by mass or less.
 上記導電剤としては、導電性を有する材料であれば特に限定されない。このような導電剤としては、例えば、炭素質材料;金属;導電性セラミックス等が挙げられる。炭素質材料としては、黒鉛やカーボンブラックが挙げられる。カーボンブラックの種類としては、ファーネスブラック、アセチレンブラック、ケッチェンブラック等が挙げられる。これらの中でも、導電性及び塗工性の観点より、炭素質材料が好ましい。なかでも、アセチレンブラックやケッチェンブラックが好ましい。導電剤の形状としては、粉状、シート状、繊維状等が挙げられる。 The conductive agent is not particularly limited as long as it is a conductive material. Examples of such a conductive agent include carbonaceous materials; metals; conductive ceramics and the like. Examples of carbonaceous materials include graphite and carbon black. Examples of the type of carbon black include furnace black, acetylene black, and ketjen black. Among these, carbonaceous materials are preferable from the viewpoint of conductivity and coatability. Of these, acetylene black and ketjen black are preferable. Examples of the shape of the conductive agent include powder, sheet, and fibrous.
 上記正極活物質と導電剤とは複合化されていてもよい。複合化する方法としては、後述するような、正極活物質と導電剤を含む混合物をメカニカルミリング処理する方法等が挙げられる。 The positive electrode active material and the conductive agent may be combined. Examples of the method of compositing include a method of mechanically milling a mixture containing a positive electrode active material and a conductive agent, which will be described later.
 正極活物質層における導電剤の含有量は、1質量%以上40質量%以下が好ましく、3質量%以上30質量%以下がより好ましく、5質量%以上又は10質量%以上がさらに好ましい場合もある。導電剤の含有量を上記の範囲とすることで、蓄電素子のエネルギー密度を高めることができる。 The content of the conductive agent in the positive electrode active material layer is preferably 1% by mass or more and 40% by mass or less, more preferably 3% by mass or more and 30% by mass or less, and further preferably 5% by mass or more or 10% by mass or more. .. By setting the content of the conductive agent in the above range, the energy density of the power storage element can be increased.
 上記バインダーとしては、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等)、ポリエチレン、ポリプロピレン、ポリイミド等の熱可塑性樹脂;エチレン-プロピレン-ジエンゴム(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のエラストマー;多糖類高分子などが挙げられる。 Examples of the binder include fluororesins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), thermoplastic resins such as polyethylene, polypropylene, and polyimide; ethylene-propylene-diene rubber (EPDM), sulfonated EPDM, and styrene. Elastomers such as butadiene rubber (SBR) and fluororubber; polysaccharide polymers and the like can be mentioned.
 正極活物質層におけるバインダーの含有量は、1質量%以上10質量%以下が好ましく、3質量%以上9質量%以下がより好ましい。バインダーの含有量を上記の範囲とすることで、正極活物質を安定して保持することができる。 The content of the binder in the positive electrode active material layer is preferably 1% by mass or more and 10% by mass or less, and more preferably 3% by mass or more and 9% by mass or less. By setting the content of the binder in the above range, the positive electrode active material can be stably held.
 上記増粘剤としては、カルボキシメチルセルロース(CMC)、メチルセルロース等の多糖類高分子が挙げられる。また、増粘剤がリチウムと反応する官能基を有する場合、予めメチル化等によりこの官能基を失活させておくことが好ましい。 Examples of the thickener include polysaccharide polymers such as carboxymethyl cellulose (CMC) and methyl cellulose. When the thickener has a functional group that reacts with lithium, it is preferable to inactivate this functional group by methylation or the like in advance.
 上記フィラーは、特に限定されない。フィラーとしては、ポリプロピレン、ポリエチレン等のポリオレフィン、二酸化ケイ素、酸化アルミニウム、二酸化チタン、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マグネシウム、アルミノケイ酸塩等の無機酸化物、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム等の水酸化物、炭酸カルシウム等の炭酸塩、フッ化カルシウム、フッ化バリウム、硫酸バリウム等の難溶性のイオン結晶、窒化アルミニウム、窒化ケイ素等の窒化物、タルク、モンモリロナイト、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカ等の鉱物資源由来物質又はこれらの人造物等が挙げられる。 The above filler is not particularly limited. Fillers include polyolefins such as polypropylene and polyethylene, silicon dioxide, aluminum oxide, titanium dioxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide, inorganic oxides such as aluminosilicate, magnesium hydroxide, calcium hydroxide, and water. Hydroxides such as aluminum oxide, carbonates such as calcium carbonate, sparingly soluble ion crystals such as calcium fluoride, barium fluoride, barium sulfate, nitrides such as aluminum nitride and silicon nitride, talc, montmorillonite, boehmite and zeolite. , Apatite, Kaolin, Murite, Spinel, Olivin, Sericite, Bentonite, Mica and other mineral resource-derived substances or man-made products thereof.
 正極活物質層は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、Si、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Nb、W等の遷移金属元素を正極活物質、導電剤、バインダー、増粘剤、フィラー以外の成分として含有してもよい。 The positive electrode active material layer is a typical non-metal element such as B, N, P, F, Cl, Br, I, Li, Na, Mg, Al, Si, K, Ca, Zn, Ga, Ge, Sn, Sr, Typical metal elements such as Ba and transition metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Nb and W are used as positive electrode active materials, conductive agents, binders and thickeners. , May be contained as a component other than the filler.
<正極の製造方法>
 本発明の一実施形態に係る正極は、例えば以下の方法により製造することができる。すなわち、本発明の一実施形態に係る正極の製造方法は、本発明の一実施形態に係る正極活物質又は本発明の一実施形態に係る正極活物質の製造方法で得られた正極活物質を用いて正極を作製することを備える。
<Manufacturing method of positive electrode>
The positive electrode according to the embodiment of the present invention can be manufactured by, for example, the following method. That is, the method for producing the positive electrode according to the embodiment of the present invention is the positive electrode active material obtained by the method for producing the positive electrode active material according to the embodiment of the present invention or the positive electrode active material according to the embodiment of the present invention. Provided to be used to make a positive electrode.
 上記正極の作製は、例えば正極基材に直接又は中間層を介して、正極合剤ペーストを塗布し、乾燥させることによって正極活物質層を形成することにより行うことができる。上記正極合剤ペーストには、正極活物質、及び任意成分である導電剤、バインダー等、正極合剤を構成する各成分が含まれる。正極合剤ペーストには、分散媒がさらに含まれていてよい。また、分散媒を含まない正極合剤を成型することなどによって正極活物質層を形成してもよい。 The positive electrode can be produced, for example, by applying the positive electrode mixture paste directly to the positive electrode base material or via an intermediate layer and drying it to form a positive electrode active material layer. The positive electrode mixture paste contains each component constituting the positive electrode mixture, such as a positive electrode active material and optional components such as a conductive agent and a binder. The positive electrode mixture paste may further contain a dispersion medium. Further, the positive electrode active material layer may be formed by molding a positive electrode mixture containing no dispersion medium.
 上記正極の作製において、上記正極活物質と導電剤とを混合する際に、上記正極活物質と導電剤を含む混合物をメカニカルミリング処理することが好ましい。このように、本発明の一実施形態に係る正極活物質を用いる場合に、当該正極活物質と導電剤とを含む混合物の状態でメカニカルミリング処理することにより、十分な充放電性能等を備えた非水電解質蓄電素子とすることのできる正極を確実性高く製造することができる。 In the production of the positive electrode, when the positive electrode active material and the conductive agent are mixed, it is preferable to mechanically mill the mixture containing the positive electrode active material and the conductive agent. As described above, when the positive electrode active material according to the embodiment of the present invention is used, sufficient charge / discharge performance and the like are provided by performing the mechanical milling treatment in the state of a mixture containing the positive electrode active material and the conductive agent. A positive electrode that can be used as a non-aqueous electrolyte power storage element can be manufactured with high certainty.
 ここで、メカニカルミリング処理とは、衝撃、ずり応力、摩擦等の機械的エネルギーを与えて、粉砕、混合、又は複合化する処理をいう。メカニカルミリング処理を行う装置としては、ボールミル、ビーズミル、振動ミル、ターボミル、メカノフュージョン、ディスクミルなどの粉砕・分散機が挙げられる。これらの中でもボールミルが好ましい。ボールミルに用いるボール及びミル容器としては、タングステンカーバイド(WC)製のものや、酸化ジルコニウム(ZrO)製のものなどを好適に用いることができる。なお、ここでいうメカニカルミリング処理は、メカノケミカル反応を伴うことを要しない。このようなメカニカルミリング処理により、正極活物質と導電剤とが複合化され、導電性が改善されると推測される。 Here, the mechanical milling process refers to a process of pulverizing, mixing, or compounding by applying mechanical energy such as impact, shear stress, and friction. Examples of the device for performing the mechanical milling process include crushing / dispersing machines such as ball mills, bead mills, vibration mills, turbo mills, mechanofusions, and disc mills. Of these, a ball mill is preferable. As the balls and mill containers used in the ball mill, those made of tungsten carbide (WC), those made of zirconium oxide (ZrO 2 ), and the like can be preferably used. The mechanical milling treatment referred to here does not need to be accompanied by a mechanochemical reaction. It is presumed that such mechanical milling treatment composites the positive electrode active material and the conductive agent, and improves the conductivity.
 ボールミルにより処理する場合、処理の際のミル回転数としては例えば100rpm以上1,000rpm以下とすることができる。また、処理時間としては、例えば0.1時間以上100時間以下とすることができる。また、この処理は、アルゴン等の不活性ガス雰囲気下又は活性ガス雰囲気下で行うことができるが、不活性ガス雰囲気下で行うことが好ましい。 When processing with a ball mill, the mill rotation speed during processing can be, for example, 100 rpm or more and 1,000 rpm or less. The processing time can be, for example, 0.1 hour or more and 100 hours or less. Further, this treatment can be carried out in an inert gas atmosphere such as argon or in an active gas atmosphere, but it is preferably carried out in an inert gas atmosphere.
<非水電解質蓄電素子>
 本発明の一実施形態に係る非水電解質蓄電素子は、正極、負極及び非水電解質を備える。以下、非水電解質蓄電素子の一例として、非水電解質二次電池(以下、単に「二次電池」ともいう。)について説明する。上記正極及び負極は、通常、セパレータを介して積層又は巻回により交互に重畳された電極体を形成する。この電極体は容器に収納され、この容器内に非水電解質が充填される。上記非水電解質は、正極と負極との間に介在する。また、上記容器としては、二次電池の容器として通常用いられる公知の金属容器、樹脂容器等を用いることができる。
<Non-water electrolyte power storage element>
The non-aqueous electrolyte power storage element according to the embodiment of the present invention includes a positive electrode, a negative electrode, and a non-aqueous electrolyte. Hereinafter, as an example of the non-aqueous electrolyte power storage element, a non-aqueous electrolyte secondary battery (hereinafter, also simply referred to as “secondary battery”) will be described. The positive electrode and the negative electrode usually form an electrode body that is alternately superposed by laminating or winding through a separator. The electrode body is housed in a container, and the container is filled with a non-aqueous electrolyte. The non-aqueous electrolyte is interposed between the positive electrode and the negative electrode. Further, as the container, a known metal container, resin container, or the like usually used as a container for a secondary battery can be used.
(正極)
 当該二次電池に備わる正極は、上述した本発明の一実施形態に係る正極である。
(Positive electrode)
The positive electrode provided in the secondary battery is the positive electrode according to the above-described embodiment of the present invention.
(負極)
 上記負極は、負極基材、及びこの負極基材に直接又は中間層を介して配される負極活物質層を有する。上記中間層は正極の中間層と同様の構成とすることができる。
(Negative electrode)
The negative electrode has a negative electrode base material and a negative electrode active material layer arranged directly on the negative electrode base material or via an intermediate layer. The intermediate layer may have the same structure as the intermediate layer of the positive electrode.
 上記負極基材は、正極基材と同様の構成とすることができるが、材質としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属又はそれらの合金が用いられ、銅又は銅合金が好ましい。つまり、負極基材としては銅箔又は銅合金箔が好ましい。銅箔としては、圧延銅箔、電解銅箔等が例示される。 The negative electrode base material may have the same configuration as the positive electrode base material, but as the material, a metal such as copper, nickel, stainless steel, nickel-plated steel or an alloy thereof is used, and copper or a copper alloy is used. preferable. That is, a copper foil or a copper alloy foil is preferable as the negative electrode base material. Examples of the copper foil include rolled copper foil and electrolytic copper foil.
 負極基材の平均厚さは、2μm以上35μm以下が好ましく、3μm以上30μm以下がより好ましく、4μm以上25μm以下がさらに好ましく、5μm以上20μm以下が特に好ましい。負極基材の平均厚さを上記の範囲とすることで、負極基材の強度を高めつつ、非水電解質蓄電素子の体積当たり及び質量当たりのエネルギー密度を高めることができる。 The average thickness of the negative electrode substrate is preferably 2 μm or more and 35 μm or less, more preferably 3 μm or more and 30 μm or less, further preferably 4 μm or more and 25 μm or less, and particularly preferably 5 μm or more and 20 μm or less. By setting the average thickness of the negative electrode base material in the above range, it is possible to increase the energy density per volume and mass of the non-aqueous electrolyte power storage element while increasing the strength of the negative electrode base material.
 上記負極活物質層は、一般的に負極活物質を含むいわゆる負極合剤から形成される。また、負極活物質層を形成する負極合剤は、必要に応じて導電剤、バインダー、増粘剤、フィラー等の任意成分を含む。導電剤、バインダー、増粘剤、フィラー等の任意成分は、正極活物質層と同様のものを用いることができる。負極活物質層は、実質的に金属Li等の負極活物質のみからなる層であってもよい。 The negative electrode active material layer is generally formed of a so-called negative electrode mixture containing a negative electrode active material. Further, the negative electrode mixture forming the negative electrode active material layer contains optional components such as a conductive agent, a binder, a thickener, and a filler, if necessary. As any component such as a conductive agent, a binder, a thickener, and a filler, the same one as that of the positive electrode active material layer can be used. The negative electrode active material layer may be a layer substantially composed of only a negative electrode active material such as metallic Li.
 負極活物質層は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge、Sn、Sr、Ba等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Ta、Hf、Nb、W等の遷移金属元素を負極活物質、導電剤、バインダー、増粘剤、フィラー以外の成分として含有してもよい。 The negative electrode active material layer includes typical non-metal elements such as B, N, P, F, Cl, Br, I, Li, Na, Mg, Al, K, Ca, Zn, Ga, Ge, Sn, Sr, Ba and the like. Typical metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Ta, Hf, Nb, W, etc. It may be contained as a component other than the thickener and the filler.
 負極活物質としては、公知の負極活物質の中から適宜選択できる。例えばリチウムイオン二次電池用の負極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材料が用いられる。負極活物質としては、例えば、金属Li;Si、Sn等の金属又は半金属;Si酸化物、Ti酸化物、Sn酸化物等の金属酸化物又は半金属酸化物;LiTi12、LiTiO2、TiNb等のチタン含有酸化物;ポリリン酸化合物;炭化ケイ素;黒鉛(グラファイト)、非黒鉛質炭素(易黒鉛化性炭素又は難黒鉛化性炭素)等の炭素材料等が挙げられる。これらの材料の中でも、黒鉛及び非黒鉛質炭素が好ましい。負極活物質層においては、これら材料の1種を単独で用いてもよく、2種以上を混合して用いてもよい。 The negative electrode active material can be appropriately selected from known negative electrode active materials. For example, as a negative electrode active material for a lithium ion secondary battery, a material capable of occluding and releasing lithium ions is usually used. Examples of the negative electrode active material include metal Li; metal or semi-metal such as Si and Sn; metal oxide or semi-metal oxide such as Si oxide, Ti oxide and Sn oxide; Li 4 Ti 5 O 12 ; Titanium-containing oxides such as LiTIO 2 and TiNb 2O 7 ; polyphosphate compounds; silicon carbide; carbon materials such as graphite (graphite) and non-graphitric carbon (easy graphitable carbon or non-graphitizable carbon) can be mentioned. Be done. Among these materials, graphite and non-graphitic carbon are preferable. In the negative electrode active material layer, one of these materials may be used alone, or two or more thereof may be mixed and used.
 「黒鉛」とは、充放電前又は放電状態において、エックス線回折法により決定される(002)面の平均格子面間隔(d002)が0.33nm以上0.34nm未満の炭素材料をいう。黒鉛としては、天然黒鉛、人造黒鉛が挙げられる。安定した物性の材料を入手できるという観点で、人造黒鉛が好ましい。 “Graphite” refers to a carbon material having an average lattice spacing (d 002 ) of (002) planes determined by X-ray diffraction method before charging / discharging or in a discharged state of 0.33 nm or more and less than 0.34 nm. Examples of graphite include natural graphite and artificial graphite. Artificial graphite is preferable from the viewpoint that a material having stable physical properties can be obtained.
 「非黒鉛質炭素」とは、充放電前又は放電状態においてエックス線回折法により決定される(002)面の平均格子面間隔(d002)が0.34nm以上0.42nm以下の炭素材料をいう。非黒鉛質炭素としては、難黒鉛化性炭素や、易黒鉛化性炭素が挙げられる。非黒鉛質炭素としては、例えば、樹脂由来の材料、石油ピッチまたは石油ピッチ由来の材料、石油コークスまたは石油コークス由来の材料、植物由来の材料、アルコール由来の材料等が挙げられる。 "Non-graphitic carbon" refers to a carbon material having an average lattice spacing (d 002 ) of the (002) plane determined by the X-ray diffraction method before charging / discharging or in a discharged state of 0.34 nm or more and 0.42 nm or less. .. Examples of non-graphitizable carbon include non-graphitizable carbon and easily graphitizable carbon. Examples of the non-planar carbon include a resin-derived material, a petroleum pitch or a petroleum pitch-derived material, a petroleum coke or a petroleum coke-derived material, a plant-derived material, an alcohol-derived material, and the like.
 ここで、炭素材料の「放電状態」とは、負極活物質として炭素材料を含む負極を作用極として、金属Liを対極として用いた半電池において、開回路電圧が0.7V以上である状態をいう。開回路状態での金属Li対極の電位は、Liの酸化還元電位とほぼ等しいため、上記単極電池における開回路電圧は、Liの酸化還元電位に対する炭素材料を含む負極の電位とほぼ同等である。つまり、上記単極電池における開回路電圧が0.7V以上であることは、負極活物質である炭素材料から、充放電に伴い吸蔵放出可能なリチウムイオンが十分に放出されていることを意味する。 Here, the "discharge state" of the carbon material is a state in which the open circuit voltage is 0.7 V or more in a half cell using a negative electrode containing a carbon material as a negative electrode active material as a working electrode and a metal Li as a counter electrode. say. Since the potential of the metal Li counter electrode in the open circuit state is substantially equal to the redox potential of Li, the open circuit voltage in the single pole battery is substantially the same as the potential of the negative electrode containing the carbon material with respect to the redox potential of Li. .. That is, the fact that the open circuit voltage in the single-pole battery is 0.7 V or more means that the carbon material, which is the negative electrode active material, sufficiently releases lithium ions that can be occluded and discharged by charging and discharging. ..
 「難黒鉛化性炭素」とは、上記d002が0.36nm以上0.42nm以下の炭素材料をいう。 The “non-graphitizable carbon” refers to a carbon material having d 002 of 0.36 nm or more and 0.42 nm or less.
 「易黒鉛化性炭素」とは、上記d002が0.34nm以上0.36nm未満の炭素材料をいう。 The “graphitizable carbon” refers to a carbon material having d 002 of 0.34 nm or more and less than 0.36 nm.
 負極活物質の形態が粒子(粉体)の場合、負極活物質の平均粒径は、例えば、1nm以上100μm以下とすることができる。負極活物質が例えば炭素材料である場合、その平均粒径は1μm以上100μm以下が好ましい場合がある。負極活物質が、金属、半金属、金属酸化物、半金属酸化物、チタン含有酸化物、ポリリン酸化合物等である場合、その平均粒径は、1nm以上1μm以下が好ましい場合がある。負極活物質の平均粒径を上記下限以上とすることで、負極活物質の製造又は取り扱いが容易になる。負極活物質の平均粒径を上記上限以下とすることで、活物質層の電子伝導性が向上する。粉体を所定の粒径で得るためには粉砕機や分級機等が用いられる。また、負極活物質が金属Liの場合、その形態は箔状又は板状であってもよい。 When the form of the negative electrode active material is particles (powder), the average particle size of the negative electrode active material can be, for example, 1 nm or more and 100 μm or less. When the negative electrode active material is, for example, a carbon material, the average particle size thereof may be preferably 1 μm or more and 100 μm or less. When the negative electrode active material is a metal, a metalloid, a metal oxide, a metalloid oxide, a titanium-containing oxide, a polyphosphate compound or the like, the average particle size thereof may be preferably 1 nm or more and 1 μm or less. By setting the average particle size of the negative electrode active material to be equal to or higher than the above lower limit, the production or handling of the negative electrode active material becomes easy. By setting the average particle size of the negative electrode active material to the above upper limit or less, the electron conductivity of the active material layer is improved. A crusher, a classifier, or the like is used to obtain a powder having a predetermined particle size. When the negative electrode active material is metallic Li, the form may be foil-shaped or plate-shaped.
 負極活物質層における負極活物質の含有量は、例えば負極活物質層が負極合剤から形成されている場合、60質量%以上99質量%以下が好ましく、90質量%以上98質量%以下がより好ましい。負極活物質の含有量を上記の範囲とすることで、負極活物質層の高エネルギー密度化と製造性を両立できる。負極活物質が金属Liである場合、負極活物質層における負極活物質の含有量は99質量%以上であってもよく、100質量%であってもよい。 The content of the negative electrode active material in the negative electrode active material layer is preferably 60% by mass or more and 99% by mass or less, more preferably 90% by mass or more and 98% by mass or less, for example, when the negative electrode active material layer is formed of a negative electrode mixture. preferable. By setting the content of the negative electrode active material within the above range, it is possible to achieve both high energy density and manufacturability of the negative electrode active material layer. When the negative electrode active material is metallic Li, the content of the negative electrode active material in the negative electrode active material layer may be 99% by mass or more, or may be 100% by mass.
(セパレータ)
 セパレータは、公知のセパレータの中から適宜選択できる。セパレータとして、例えば、基材層のみからなるセパレータ、基材層の一方の面又は双方の面に耐熱粒子とバインダーとを含む耐熱層が形成されたセパレータ等を使用することができる。セパレータの基材層の形態としては、例えば、織布、不織布、多孔質樹脂フィルム等が挙げられる。これらの形態の中でも、強度の観点から多孔質樹脂フィルムが好ましく、非水電解質の保液性の観点から不織布が好ましい。セパレータの基材層の材料としては、シャットダウン機能の観点から例えばポリエチレン、ポリプロピレン等のポリオレフィンが好ましく、耐酸化分解性の観点から例えばポリイミドやアラミド等が好ましい。セパレータの基材層として、これらの樹脂を複合した材料を用いてもよい。
(Separator)
The separator can be appropriately selected from known separators. As the separator, for example, a separator composed of only a base material layer, a separator having a heat-resistant layer containing heat-resistant particles and a binder formed on one surface or both surfaces of the base material layer can be used. Examples of the form of the base material layer of the separator include woven fabrics, non-woven fabrics, and porous resin films. Among these forms, a porous resin film is preferable from the viewpoint of strength, and a non-woven fabric is preferable from the viewpoint of liquid retention of a non-aqueous electrolyte. As the material of the base material layer of the separator, polyolefins such as polyethylene and polypropylene are preferable from the viewpoint of shutdown function, and polyimide and aramid are preferable from the viewpoint of oxidative decomposition resistance. As the base material layer of the separator, a material in which these resins are combined may be used.
 耐熱層に含まれる耐熱粒子は、大気下で室温から500℃まで加熱したときの質量減少が5%以下であるものが好ましく、大気下で室温から800℃まで加熱したときの質量減少が5%以下であるものがさらに好ましい。耐熱粒子の材料として無機化合物が挙げられる。無機化合物として、例えば、酸化鉄、酸化ケイ素、酸化アルミニウム、酸化チタン、酸化ジルコニウム、酸化カルシウム、酸化ストロンチウム、酸化バリウム、酸化マグネシウム、アルミノケイ酸塩等の酸化物;水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム等の水酸化物;窒化アルミニウム、窒化ケイ素等の窒化物;炭酸カルシウム等の炭酸塩;硫酸バリウム等の硫酸塩;フッ化カルシウム、フッ化バリウム、チタン酸バリウム等の難溶性のイオン結晶;シリコン、ダイヤモンド等の共有結合性結晶;タルク、モンモリロナイト、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカ等の鉱物資源由来物質又はこれらの人造物等が挙げられる。無機化合物として、これらの物質の単体又は複合体を単独で用いてもよく、2種以上を混合して用いてもよい。これらの無機化合物の中でも、蓄電素子の安全性の観点から、酸化ケイ素、酸化アルミニウム、又はアルミノケイ酸塩が好ましい。 The heat-resistant particles contained in the heat-resistant layer preferably have a mass loss of 5% or less when heated from room temperature to 500 ° C. in the atmosphere, and a mass loss of 5% when heated from room temperature to 800 ° C. in the atmosphere. The following are more preferable. Examples of the material of the heat-resistant particles include inorganic compounds. Examples of the inorganic compound include oxides such as iron oxide, silicon oxide, aluminum oxide, titanium oxide, zirconium oxide, calcium oxide, strontium oxide, barium oxide, magnesium oxide and aluminosilicate; magnesium hydroxide, calcium hydroxide and water. Hydroxides such as aluminum oxide; nitrides such as aluminum nitride and silicon nitride; carbonates such as calcium carbonate; sulfates such as barium sulfate; sparingly soluble ion crystals such as calcium fluoride, barium fluoride and barium titanate Covalently bonded crystals such as silicon and diamond; talc, montmorillonite, boehmite, zeolite, apatite, kaolin, mulite, spinel, olivine, sericite, bentonite, mica and other mineral resource-derived substances or man-made products thereof. .. As the inorganic compound, a simple substance or a complex of these substances may be used alone, or two or more kinds thereof may be mixed and used. Among these inorganic compounds, silicon oxide, aluminum oxide, or aluminosilicate is preferable from the viewpoint of safety of the power storage device.
 セパレータの空孔率は、強度の観点から80体積%以下が好ましく、放電性能の観点から20体積%以上が好ましい。ここで、「空孔率」とは、体積基準の値であり、水銀ポロシメータでの測定値を意味する。 The porosity of the separator is preferably 80% by volume or less from the viewpoint of strength, and preferably 20% by volume or more from the viewpoint of discharge performance. Here, the "porosity" is a volume-based value and means a measured value with a mercury porosity meter.
 セパレータとして、ポリマーと非水電解質とで構成されるポリマーゲルを用いてもよい。ポリマーとして、例えば、ポリアクリロニトリル、ポリエチレンオキシド、ポリプロピレンオキシド、ポリメチルメタアクリレート、ポリビニルアセテート、ポリビニルピロリドン、ポリフッ化ビニリデン等が挙げられる。ポリマーゲルを用いると、漏液を抑制する効果がある。セパレータとして、上述したような多孔質樹脂フィルム又は不織布等とポリマーゲルを併用してもよい。 As the separator, a polymer gel composed of a polymer and a non-aqueous electrolyte may be used. Examples of the polymer include polyacrylonitrile, polyethylene oxide, polypropylene oxide, polymethyl methacrylate, polyvinyl acetate, polyvinylpyrrolidone, polyvinylidene fluoride and the like. The use of polymer gel has the effect of suppressing liquid leakage. As the separator, a polymer gel may be used in combination with a porous resin film or a non-woven fabric as described above.
(非水電解質)
 非水電解質としては、公知の非水電解質の中から適宜選択できる。非水電解質には、非水電解液を用いてもよい。非水電解液は、非水溶媒と、この非水溶媒に溶解されている電解質塩とを含む。
(Non-water electrolyte)
As the non-aqueous electrolyte, a known non-aqueous electrolyte can be appropriately selected. A non-aqueous electrolyte solution may be used as the non-aqueous electrolyte. The non-aqueous electrolyte solution contains a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
 非水溶媒としては、公知の非水溶媒の中から適宜選択できる。非水溶媒としては、環状カーボネート、鎖状カーボネート、カルボン酸エステル、リン酸エステル、スルホン酸エステル、エーテル、アミド、ニトリル等が挙げられる。非水溶媒として、これらの化合物に含まれる水素原子の一部がハロゲンに置換されたものを用いてもよい。 The non-aqueous solvent can be appropriately selected from known non-aqueous solvents. Examples of the non-aqueous solvent include cyclic carbonates, chain carbonates, carboxylic acid esters, phosphoric acid esters, sulfonic acid esters, ethers, amides, nitriles and the like. As the non-aqueous solvent, a solvent in which some of the hydrogen atoms contained in these compounds are replaced with halogen may be used.
 環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、クロロエチレンカーボネート、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネート(DFEC)、スチレンカーボネート、1-フェニルビニレンカーボネート、1,2-ジフェニルビニレンカーボネート等が挙げられる。これらの中でもECが好ましい。 Examples of the cyclic carbonate include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), vinyl ethylene carbonate (VEC), chloroethylene carbonate, fluoroethylene carbonate (FEC), and difluoroethylene carbonate. (DFEC), styrene carbonate, 1-phenylvinylene carbonate, 1,2-diphenylvinylene carbonate and the like can be mentioned. Among these, EC is preferable.
 鎖状カーボネートとしては、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジフェニルカーボネート、トリフルオロエチルメチルカーボネート、ビス(トリフルオロエチル)カーボネート等が挙げられる。これらの中でもDMC及びEMCが好ましい。 Examples of the chain carbonate include diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), diphenyl carbonate, trifluoroethylmethyl carbonate, bis (trifluoroethyl) carbonate and the like. Among these, DMC and EMC are preferable.
 非水溶媒として、環状カーボネート及び鎖状カーボネートの少なくとも一方を用いることが好ましく、環状カーボネートと鎖状カーボネートとを併用することがより好ましい。環状カーボネートを用いることで、電解質塩の解離を促進して非水電解液のイオン伝導度を向上させることができる。鎖状カーボネートを用いることで、非水電解液の粘度を低く抑えることができる。環状カーボネートと鎖状カーボネートとを併用する場合、環状カーボネートと鎖状カーボネートとの体積比率(環状カーボネート:鎖状カーボネート)としては、例えば、5:95から50:50の範囲とすることが好ましい。 It is preferable to use at least one of the cyclic carbonate and the chain carbonate as the non-aqueous solvent, and it is more preferable to use the cyclic carbonate and the chain carbonate in combination. By using the cyclic carbonate, the dissociation of the electrolyte salt can be promoted and the ionic conductivity of the non-aqueous electrolyte solution can be improved. By using the chain carbonate, the viscosity of the non-aqueous electrolytic solution can be kept low. When the cyclic carbonate and the chain carbonate are used in combination, the volume ratio of the cyclic carbonate to the chain carbonate (cyclic carbonate: chain carbonate) is preferably in the range of, for example, 5:95 to 50:50.
 電解質塩としては、リチウム塩が用いられる。ナトリウム塩、カリウム塩、マグネシウム塩、オニウム塩等を併用してもよい。 Lithium salt is used as the electrolyte salt. Sodium salt, potassium salt, magnesium salt, onium salt and the like may be used in combination.
 リチウム塩としては、LiPF、LiPO、LiBF、LiClO、LiN(SOF)等の無機リチウム塩、LiSOCF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiC(SOCF、LiC(SO等のハロゲン化炭化水素基を有するリチウム塩等が挙げられる。これらの中でも、無機リチウム塩が好ましく、LiPFがより好ましい。 Lithium salts include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiClO 4 , LiN (SO 2 F) 2 , LiSO 3 CF 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 ). C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , LiC (SO 2 C 2 F 5 ) 3 and other halogenated hydrocarbon groups Examples thereof include lithium salts having. Among these, an inorganic lithium salt is preferable, and LiPF 6 is more preferable.
 非水電解液における電解質塩の含有量は、0.1mol/dm以上2.5mol/dm以下であると好ましく、0.3mol/dm以上2.0mol/dm以下であるとより好ましく、0.5mol/dm以上1.7mol/dm以下であるとさらに好ましく、0.7mol/dm以上1.5mol/dm以下であると特に好ましい。電解質塩の含有量を上記の範囲とすることで、非水電解液のイオン伝導度を高めることができる。 The content of the electrolyte salt in the non-aqueous electrolyte solution is preferably 0.1 mol / dm 3 or more and 2.5 mol / dm 3 or less, and more preferably 0.3 mol / dm 3 or more and 2.0 mol / dm 3 or less. , 0.5 mol / dm 3 or more and 1.7 mol / dm 3 or less is more preferable, and 0.7 mol / dm 3 or more and 1.5 mol / dm 3 or less is particularly preferable. By setting the content of the electrolyte salt in the above range, the ionic conductivity of the non-aqueous electrolyte solution can be increased.
 非水電解液は、添加剤を含んでもよい。添加剤としては、例えばビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2-フルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン等の上記芳香族化合物の部分ハロゲン化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソール、2,6-ジフルオロアニソール、3,5-ジフルオロアニソール等のハロゲン化アニソール化合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物;亜硫酸エチレン、亜硫酸プロピレン、亜硫酸ジメチル、硫酸ジメチル、硫酸エチレン、スルホラン、ジメチルスルホン、ジエチルスルホン、ジメチルスルホキシド、ジエチルスルホキシド、テトラメチレンスルホキシド、ジフェニルスルフィド、4,4’-ビス(2,2-ジオキソ-1,3,2-ジオキサチオラン)、4-メチルスルホニルオキシメチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、チオアニソール、ジフェニルジスルフィド、ジピリジニウムジスルフィド、パーフルオロオクタン、ホウ酸トリストリメチルシリル、リン酸トリストリメチルシリル、チタン酸テトラキストリメチルシリル等が挙げられる。これら添加剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。 The non-aqueous electrolytic solution may contain an additive. Examples of the additive include aromatic compounds such as biphenyl, alkyl biphenyl, terphenyl, and partially hydrides of turphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, and dibenzofuran; 2-fluorobiphenyl, o. -Partial halides of the above aromatic compounds such as cyclohexylfluorobenzene and p-cyclohexylfluorobenzene; such as 2,4-difluoroanisole, 2,5-difluoroanisole, 2,6-difluoroanisole, 3,5-difluoroanisole and the like. Halogenized anisole compounds; succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, cyclohexanedicarboxylic acid anhydride; ethylene sulfone, propylene sulfite, dimethyl sulfite, dimethyl sulfate, ethylene sulfate, Sulfone, dimethyl sulfone, diethyl sulfone, dimethyl sulfoxide, diethyl sulfoxide, tetramethylene sulfoxide, diphenyl sulfide, 4,4'-bis (2,2-dioxo-1,3,2-dioxathiolane), 4-methylsulfonyloxymethyl- Examples thereof include 2,2-dioxo-1,3,2-dioxathiolane, thioanisole, diphenyldisulfide, dipyridinium disulfide, perfluorooctane, tristrimethylsilyl borate, tristrimethylsilyl phosphate, tetrakistrimethylsilyl titanate and the like. These additives may be used alone or in combination of two or more.
 非水電解液に含まれる添加剤の含有量は、非水電解液全体の質量に対して0.01質量%以上10質量%以下が好ましく、0.1質量%以上7質量%以下がより好ましく、0.2質量%以上5質量%以下がさらに好ましく、0.3質量%以上3質量%以下が特に好ましい。添加剤の含有量を上記の範囲とすることで、高温保存後の容量維持性能又は充放電サイクル性能を向上させたり、安全性をより向上させたりすることができる。 The content of the additive contained in the non-aqueous electrolytic solution is preferably 0.01% by mass or more and 10% by mass or less, and more preferably 0.1% by mass or more and 7% by mass or less with respect to the total mass of the non-aqueous electrolytic solution. , 0.2% by mass or more and 5% by mass or less is more preferable, and 0.3% by mass or more and 3% by mass or less is particularly preferable. By setting the content of the additive in the above range, it is possible to improve the capacity maintenance performance or charge / discharge cycle performance after high temperature storage, and further improve the safety.
 非水電解質には、固体電解質を用いてもよく、非水電解液と固体電解質とを併用してもよい。 As the non-aqueous electrolyte, a solid electrolyte may be used, or a non-aqueous electrolyte solution and a solid electrolyte may be used in combination.
 固体電解質としては、リチウムイオン伝導性を有し、常温(例えば15℃から25℃)において固体である任意の材料から選択できる。固体電解質は、さらにナトリウム、カリウム等のイオン伝導性を有していてもよい。固体電解質としては、例えば、硫化物固体電解質、酸化物固体電解質、酸窒化物固体電解質、ポリマー固体電解質等が挙げられる。 The solid electrolyte can be selected from any material having lithium ion conductivity and being solid at room temperature (for example, 15 ° C to 25 ° C). The solid electrolyte may further have ionic conductivity such as sodium and potassium. Examples of the solid electrolyte include a sulfide solid electrolyte, an oxide solid electrolyte, an oxynitride solid electrolyte, a polymer solid electrolyte and the like.
 硫化物固体電解質としては、リチウムイオン二次電池の場合、例えば、LiS-P、LiI-LiS-P、Li10Ge-P12等が挙げられる。 Examples of the lithium ion secondary battery include Li 2 SP 2 S 5 , LiI-Li 2 SP 2 S 5 , Li 10 Ge-P 2 S 12 and the like as the sulfide solid electrolyte.
 本実施形態の非水電解質蓄電素子の形状については特に限定されるものではなく、例えば、円筒型電池、角型電池、扁平型電池、コイン型電池、ボタン型電池等が挙げられる。 The shape of the non-aqueous electrolyte power storage element of the present embodiment is not particularly limited, and examples thereof include a cylindrical battery, a square battery, a flat battery, a coin battery, and a button battery.
 図1に角型電池の一例としての非水電解質蓄電素子1を示す。なお、同図は、容器内部を透視した図としている。セパレータを挟んで巻回された正極及び負極を有する電極体2が角型の容器3に収納される。正極は正極リード41を介して正極端子4と電気的に接続されている。負極は負極リード51を介して負極端子5と電気的に接続されている。 FIG. 1 shows a non-aqueous electrolyte power storage element 1 as an example of a square battery. The figure is a perspective view of the inside of the container. The electrode body 2 having the positive electrode and the negative electrode wound around the separator is housed in the square container 3. The positive electrode is electrically connected to the positive electrode terminal 4 via the positive electrode lead 41. The negative electrode is electrically connected to the negative electrode terminal 5 via the negative electrode lead 51.
<蓄電装置>
 本実施形態の非水電解質蓄電素子は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源、パーソナルコンピュータ、通信端末等の電子機器用電源、又は電力貯蔵用電源等に、複数の非水電解質蓄電素子1を集合して構成した蓄電ユニット(バッテリーモジュール)として搭載することができる。この場合、蓄電ユニットに含まれる少なくとも一つの非水電解質蓄電素子に対して、本発明の一実施形態に係る技術が適用されていればよい。
<Power storage device>
The non-aqueous electrolyte power storage element of the present embodiment is a power source for automobiles such as an electric vehicle (EV), a hybrid vehicle (HEV), and a plug-in hybrid vehicle (PHEV), a power source for electronic devices such as a personal computer and a communication terminal, or a power source. It can be mounted on a storage power source or the like as a power storage unit (battery module) composed of a plurality of non-aqueous electrolyte power storage elements 1 assembled together. In this case, the technique according to the embodiment of the present invention may be applied to at least one non-aqueous electrolyte power storage element included in the power storage unit.
 本発明の一実施形態に係る蓄電装置は、非水電解質蓄電素子を複数個備え、且つ本発明の一態様に係る非水電解質蓄電素子を一以上備える蓄電装置である。図2に、電気的に接続された二以上の非水電解質蓄電素子1が集合した蓄電ユニット20をさらに集合した蓄電装置30の一例を示す。蓄電装置30は、二以上の非水電解質蓄電素子1を電気的に接続するバスバ(図示せず)、二以上の蓄電ユニット20を電気的に接続するバスバ(図示せず)等を備えていてもよい。蓄電ユニット20又は蓄電装置30は、一以上の非水電解質蓄電素子の状態を監視する状態監視装置(図示せず)を備えていてもよい。 The power storage device according to an embodiment of the present invention is a power storage device including a plurality of non-aqueous electrolyte power storage elements and one or more non-water electrolyte power storage elements according to one aspect of the present invention. FIG. 2 shows an example of a power storage device 30 in which a power storage unit 20 in which two or more electrically connected non-aqueous electrolyte power storage elements 1 are assembled is further assembled. The power storage device 30 includes a bus bar (not shown) for electrically connecting two or more non-aqueous electrolyte power storage elements 1, a bus bar (not shown) for electrically connecting two or more power storage units 20 and the like. May be good. The power storage unit 20 or the power storage device 30 may include a condition monitoring device (not shown) for monitoring the state of one or more non-aqueous electrolyte power storage elements.
<非水電解質蓄電素子の製造方法>
 本発明の一実施形態に係る非水電解質蓄電素子は、本発明の一実施形態に係る正極を用いることにより製造することができる。本発明の一実施形態に係る非水電解質蓄電素子の製造方法は、本発明の一実施形態に係る正極の製造方法を備える。
<Manufacturing method of non-aqueous electrolyte power storage element>
The non-aqueous electrolyte power storage device according to the embodiment of the present invention can be manufactured by using the positive electrode according to the embodiment of the present invention. The method for manufacturing a non-aqueous electrolyte power storage element according to an embodiment of the present invention includes a method for manufacturing a positive electrode according to an embodiment of the present invention.
 例えば、当該非水電解質蓄電素子の製造方法は、上述した正極を作製すること、負極を作製すること、非水電解質を調製すること、セパレータを介して正極及び負極を積層又は巻回することにより交互に重畳された電極体を形成すること、正極及び負極(電極体)を容器に収容すること、並びに上記容器に上記非水電解質を注入することを備える。注入後、注入口を封止することにより当該非水電解質蓄電素子を得ることができる。 For example, the method for manufacturing the non-aqueous electrolyte power storage element includes producing the above-mentioned positive electrode, producing a negative electrode, preparing a non-aqueous electrolyte, and laminating or winding a positive electrode and a negative electrode via a separator. It comprises forming the electrode bodies alternately superimposed, accommodating the positive electrode body and the negative electrode body (electrode body) in a container, and injecting the non-aqueous electrolyte into the container. After the injection, the non-aqueous electrolyte power storage element can be obtained by sealing the injection port.
<その他の実施形態>
 本発明は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加えてもよい。例えば、ある実施形態の構成に他の実施形態の構成を追加することができ、また、ある実施形態の構成の一部を他の実施形態の構成又は周知技術に置き換えることができる。さらに、ある実施形態の構成の一部を削除することができる。また、ある実施形態の構成に対して周知技術を付加することができる。
<Other embodiments>
The present invention is not limited to the above embodiment, and various modifications may be made without departing from the gist of the present invention. For example, the configuration of one embodiment can be added to the configuration of another embodiment, and a part of the configuration of one embodiment can be replaced with the configuration of another embodiment or a well-known technique. In addition, some of the configurations of certain embodiments can be deleted. Further, a well-known technique can be added to the configuration of a certain embodiment.
 上記実施形態では、非水電解質蓄電素子が充放電可能な非水電解質二次電池(例えばリチウムイオン二次電池)として用いられる場合について説明したが、非水電解質蓄電素子の種類、形状、寸法、容量等は任意である。本発明の非水電解質蓄電素子は、種々の非水電解質二次電池、電気二重層キャパシタ又はリチウムイオンキャパシタ等のキャパシタにも適用できる。 In the above embodiment, the case where the non-aqueous electrolyte storage element is used as a chargeable / dischargeable non-aqueous electrolyte secondary battery (for example, a lithium ion secondary battery) has been described. The capacity etc. are arbitrary. The non-aqueous electrolyte power storage element of the present invention can also be applied to capacitors such as various non-aqueous electrolyte secondary batteries, electric double layer capacitors and lithium ion capacitors.
 上記実施形態では、正極及び負極がセパレータを介して積層された電極体について説明したが、電極体は、セパレータを備えなくてもよい。例えば、正極又は負極の活物質層上に導電性を有さない層が形成された状態で、正極及び負極が直接接してもよい。 In the above embodiment, the electrode body in which the positive electrode and the negative electrode are laminated via the separator has been described, but the electrode body does not have to be provided with the separator. For example, the positive electrode and the negative electrode may be in direct contact with each other in a state where a non-conductive layer is formed on the active material layer of the positive electrode or the negative electrode.
 以下、実施例によって本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to the following examples.
[実施例1]
[実施例1-1]
 アルゴン雰囲気下において、LiOとCoとLiNとを4.98:0.33:0.05のモル比で混合し、直径5mmのタングステンカーバイド製ボールが250g入った内容積80mLのタングステンカーバイド製ミル容器に投入し、蓋をした。これを遊星型ボールミル装置(FRITSCH社の「pulverisette 6」)にセットし、公転回転数500rpmで12時間乾式処理した。このようなメカノケミカル法による処理により、実施例1-1の正極活物質(Li1.58Co0.1570.9880.0078)を得た。
[Example 1]
[Example 1-1]
In an argon atmosphere, Li 2 O, Co 3 O 4 and Li 3 N were mixed at a molar ratio of 4.98: 0.33: 0.05, and an internal volume containing 250 g of a tungsten carbide ball having a diameter of 5 mm was contained. It was placed in an 80 mL tungsten carbide mill container and covered. This was set in a planetary ball mill device (“pulveristte 6” manufactured by FRITSCH), and dried at a revolution speed of 500 rpm for 12 hours. By such treatment by the mechanochemical method, the positive electrode active material (Li 1.58 Co 0.157 O 0.988 N 0.0078 ) of Example 1-1 was obtained.
[実施例1-2から1-5、及び比較例1-1]
 用いた材料の種類及びその混合量比(モル比)を表1、2に示す通りとしたこと以外は実施例1-1と同様にして、実施例1-2から1-5及び比較例1-1の各正極活物質を得た。表1、2には、得られた正極活物質の組成式等をあわせて示す。
[Examples 1-2 to 1-5 and Comparative Example 1-1]
Examples 1-2 to 1-5 and Comparative Example 1 are the same as in Example 1-1 except that the types of materials used and the mixing amount ratio (molar ratio) thereof are as shown in Tables 1 and 2. Each positive electrode active material of -1 was obtained. Tables 1 and 2 also show the composition formulas and the like of the obtained positive electrode active material.
(正極活物質のエックス線回折測定)
 上記実施例及び比較例で得られた各正極活物質について、上記したSPring-8の粉末エックス線回折用ビームラインを用いた方法にてエックス線回折測定を行った。いずれも、LiOと同様の結晶構造(逆蛍石型結晶構造)を主相として有することが確認できた。上記実施例及び上記比較例の各正極活物質の格子定数aを表1、2に示す。また、上記実施例の各正極活物質について、元素A(窒素又はフッ素)を全て酸素に置換した組成からなり、かつ逆蛍石型の結晶構造を有する化合物(すなわち比較例1-1の正極活物質)の格子定数aに対する比(a/a)をあわせて表1、2に示す。なお、表1の実施例及び比較例の正極活物質の各格子定数は同日に測定したエックス線回折図に基づいて求めたものであり、表2の実施例及び比較例の正極活物質の各格子定数も同日に測定したエックス線回折図に基づいて求めたものであるが、表1の実施例及び比較例の正極活物質の各格子定数と、表2の実施例及び比較例の正極活物質の各格子定数とは、別の日に測定したエックス線回折図に基づいて求めたものである。従って、上記したように、例えば同じ組成の比較例1-1の正極活物質であっても格子定数の値が異なっている。表1,2に示されるように、元素A(窒素又はフッ素)の含有量が増えるにつれて、格子定数比(a/a)が大きくなっていることが確認できる。
(X-ray diffraction measurement of positive electrode active material)
For each positive electrode active material obtained in the above Examples and Comparative Examples, X-ray diffraction measurement was performed by the method using the above-mentioned SPring-8 powder X-ray diffraction beamline. It was confirmed that all of them had the same crystal structure (reverse fluorite type crystal structure) as Li 2 O as the main phase. Tables 1 and 2 show the lattice constants a1 of the positive electrode active materials of the above-mentioned Examples and the above-mentioned Comparative Examples. Further, for each positive electrode active material of the above-mentioned example, a compound having a composition in which element A (nitrogen or fluorine) is completely replaced with oxygen and having an inverted fluorite-type crystal structure (that is, the positive electrode activity of Comparative Example 1-1). The ratio (a 1 / a 2 ) of the substance) to the lattice constant a 2 is also shown in Tables 1 and 2. The lattice constants of the positive electrode active materials of Examples and Comparative Examples in Table 1 were obtained based on the X-ray diffraction pattern measured on the same day, and the lattice constants of the positive electrode active materials of Examples and Comparative Examples in Table 2 were obtained. The constants were also obtained based on the X-ray diffraction pattern measured on the same day, but the lattice constants of the positive electrode active materials of Examples and Comparative Examples in Table 1 and the positive electrode active materials of Examples and Comparative Examples in Table 2 were obtained. Each lattice constant is obtained based on an X-ray diffractogram measured on another day. Therefore, as described above, the values of the lattice constants are different even for the positive electrode active materials of Comparative Example 1-1 having the same composition, for example. As shown in Tables 1 and 2, it can be confirmed that the lattice constant ratio (a 1 / a 2 ) increases as the content of the element A (nitrogen or fluorine) increases.
(正極の作製)
 アルゴン雰囲気下において、各実施例及び比較例で得られた正極活物質とケッチェンブラックとPTFEとを質量比75:20:5で乳鉢を用いて混合し、成型することにより、直径6mmの正極合剤シートを作製した。この正極合剤シートを正極基材としてのメッシュ状のアルミニウムに圧着して正極を得た。
(Preparation of positive electrode)
Under an argon atmosphere, the positive electrode active material obtained in each Example and Comparative Example, Ketchen Black, and PTFE are mixed using a mortar at a mass ratio of 75:20: 5, and molded to form a positive electrode having a diameter of 6 mm. A mixture sheet was prepared. This positive electrode mixture sheet was pressure-bonded to mesh-shaped aluminum as a positive electrode base material to obtain a positive electrode.
(非水電解質蓄電素子(評価セル)の作製)
 ECとEMCとを30:70の体積比で混合した非水溶媒に、1mol/dmの濃度でLiPFを溶解させ、非水電解質を調製した。また、負極として、直径15mmの金属リチウムを用意し、セパレータとして、ポリプロピレン製微多孔膜を用意した。これらを用いて、非水電解質蓄電素子(評価セル)を作製した。上記正極の作製から評価セルの作製までの操作は、全て、アルゴン雰囲気下にて行った。また、比較例1-1の正極活物質を用いた非水電解質蓄電素子(評価セル)は、2個作製した。
(Manufacturing of non-aqueous electrolyte power storage element (evaluation cell))
LiPF 6 was dissolved in a non-aqueous solvent in which EC and EMC were mixed at a volume ratio of 30:70 at a concentration of 1 mol / dm 3 to prepare a non-aqueous electrolyte. Further, a metallic lithium having a diameter of 15 mm was prepared as a negative electrode, and a polypropylene microporous film was prepared as a separator. Using these, a non-aqueous electrolyte power storage device (evaluation cell) was manufactured. All the operations from the production of the positive electrode to the production of the evaluation cell were performed in an argon atmosphere. In addition, two non-aqueous electrolyte power storage elements (evaluation cells) using the positive electrode active material of Comparative Example 1-1 were produced.
(充放電試験)
 実施例1-1から1-3及び比較例1-1の各正極活物質を用いて得られた評価セルについて、アルゴン雰囲気下のグローブボックス内において、25℃の環境下で充放電試験を行った。電流密度は、正極が含有する正極活物質の質量あたり30mA/gとし、定電流(CC)充放電を行った。充電から開始し、充電は、正極活物質の質量あたりの上限電気量300mAh/gに到達した時点で終了とした。放電は、下限電圧1.5Vに到達した時点で終了とした。この充放電のサイクルを20サイクル繰り返した。20サイクル目の放電容量を表1に示す。
(Charging / discharging test)
The evaluation cells obtained using the positive electrode active materials of Examples 1-1 to 1-3 and Comparative Example 1-1 were subjected to a charge / discharge test in a glove box under an argon atmosphere in an environment of 25 ° C. rice field. The current density was 30 mA / g per mass of the positive electrode active material contained in the positive electrode, and constant current (CC) charging / discharging was performed. The charging was started, and the charging was terminated when the upper limit electric amount of 300 mAh / g per mass of the positive electrode active material was reached. The discharge was terminated when the lower limit voltage of 1.5 V was reached. This charge / discharge cycle was repeated 20 cycles. Table 1 shows the discharge capacity at the 20th cycle.
 実施例1-4及び比較例1-1の各正極活物質を用いて得られた評価セルについて、アルゴン雰囲気下のグローブボックス内において、25℃の環境下で充放電試験を行った。電流密度は、正極が含有する正極活物質の質量あたり100mA/gとし、定電流(CC)充放電を行った。充電から開始し、充電は、正極活物質の質量あたりの上限電気量300mAh/gに到達した時点で終了とした。放電は、下限電圧1.5Vに到達した時点で終了とした。この充放電のサイクルを20サイクル繰り返した。20サイクル目の放電容量を表2に示す。 The evaluation cells obtained using the positive electrode active materials of Examples 1-4 and Comparative Example 1-1 were subjected to a charge / discharge test in a glove box under an argon atmosphere in an environment of 25 ° C. The current density was 100 mA / g per mass of the positive electrode active material contained in the positive electrode, and constant current (CC) charging / discharging was performed. The charging was started, and the charging was terminated when the upper limit electric amount of 300 mAh / g per mass of the positive electrode active material was reached. The discharge was terminated when the lower limit voltage of 1.5 V was reached. This charge / discharge cycle was repeated 20 cycles. Table 2 shows the discharge capacity at the 20th cycle.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1、2に示されるように、元素A(窒素又はフッ素)が含有された実施例1-1から1-4の各正極活物質を用いた非水電解質蓄電素子においては、元素Aが含有されていない比較例1-1の正極活物質を用いた非水電解質蓄電素子に対して充放電サイクル後の放電容量が大きくなっていることが確認できた。 As shown in Tables 1 and 2, in the non-aqueous electrolyte power storage element using each positive electrode active material of Examples 1-1 to 1-4 containing the element A (nitrogen or fluorine), the element A is contained. It was confirmed that the discharge capacity after the charge / discharge cycle was larger than that of the non-aqueous electrolyte power storage element using the positive electrode active material of Comparative Example 1-1, which was not used.
[実施例2]
[合成例1]LiCoOの合成
 LiOとCoOとを3:1のモル比で混合した後、窒素雰囲気下、900℃で20時間焼成し、LiCoOを合成した。
[Example 2]
[Synthesis Example 1] Synthesis of Li 6 CoO 4 Li 2 O and CoO were mixed at a molar ratio of 3: 1 and then fired at 900 ° C. for 20 hours under a nitrogen atmosphere to synthesize Li 6 CoO 4 .
[合成例2]LiSiOの合成
 LiOとSiOとを2:1のモル比で混合した後、窒素雰囲気下、900℃で20時間焼成し、LiSiOを得た。
[Synthesis Example 2] Synthesis of Li 4 SiO 4 Li 2 O and SiO 2 were mixed at a molar ratio of 2: 1 and then calcined at 900 ° C. for 20 hours under a nitrogen atmosphere to obtain Li 4 SiO 4 .
[実施例2-1]
 得られたLiCoO(1.6351g)、得られたLiSiO(0.3402g)、及びLiN(0.0247g)を混合した後、アルゴン雰囲気下でタングステンカーバイド(WC)製ボールと共にWC製ミル容器に投入し、遊星型ボールミル装置(FRITSCH社の「pulverisette 5」)にて、回転数400rpmで2時間処理した。このようなメカノケミカル法による処理により、実施例2-1の正極活物質(Li1.431Co0.194Si0.056ON0.014)を得た。
[Example 2-1]
After mixing the obtained Li 6 CoO 4 (1.6351 g), the obtained Li 4 SiO 4 (0.3402 g) and Li 3 N (0.0247 g), it is made of tungsten carbide (WC) under an argon atmosphere. It was put into a WC mill container together with a ball, and treated with a planetary ball mill device (“pulveristte 5” manufactured by FRITSCH) at a rotation speed of 400 rpm for 2 hours. By such treatment by the mechanochemical method, the positive electrode active material of Example 2-1 (Li 1.431 Co 0.194 Si 0.056 ON 0.014 ) was obtained.
[実施例2-2、2-3、比較例2-1]
 用いた材料を表3に示す通りとしたこと以外は実施例2-1と同様にして、実施例2-2、2-3及び比較例2-1の各正極活物質を得た。表3には、得られた正極活物質の組成式をあわせて示す。
[Examples 2-2, 2-3, Comparative Example 2-1]
The positive electrode active materials of Examples 2-2, 2-3 and Comparative Example 2-1 were obtained in the same manner as in Example 2-1 except that the materials used were as shown in Table 3. Table 3 also shows the composition formulas of the obtained positive electrode active material.
(正極活物質のエックス線回折測定)
 実施例2-1から2-3及び比較例2-1の各正極活物質について、CuKα線を用いたエックス線回折測定を行った。気密性のエックス線回折測定用試料ホルダーを用い、アルゴン雰囲気下で各正極活物質の粉末試料を充填した。用いたエックス線回折装置、測定条件、及びデータ処理方法は上記の通りとした。いずれも、LiOと同様の結晶構造(逆蛍石型の結晶構造)を主相として有することが確認できた。図3に各正極活物質のエックス線回折図を示す。また、エックス線回折測定から求めた各正極活物質における回折角2θが33°付近の回折ピークの半値幅、回折角2θが33°付近の回折ピークの積分強度に対する回折角2θが44°付近の回折ピークの積分強度の比、及び格子定数aを表3に示す。
(X-ray diffraction measurement of positive electrode active material)
X-ray diffraction measurements using CuKα rays were performed on each of the positive electrode active materials of Examples 2-1 to 2-3 and Comparative Example 2-1. Using an airtight sample holder for X-ray diffraction measurement, a powder sample of each positive electrode active material was filled under an argon atmosphere. The X-ray diffractometer used, the measurement conditions, and the data processing method were as described above. It was confirmed that all of them had the same crystal structure (inverted fluorite type crystal structure) as Li 2 O as the main phase. FIG. 3 shows an X-ray diffraction diagram of each positive electrode active material. Further, the diffraction angle 2θ of each positive electrode active material obtained from the X-ray diffraction measurement is the half-value width of the diffraction peak near 33 °, and the diffraction angle 2θ is the diffraction around 44 ° with respect to the integrated intensity of the diffraction peak near 33 °. Table 3 shows the ratio of the integrated intensity of the peaks and the lattice constant a.
(正極活物質の体積抵抗率測定)
 上記した方法により、実施例2-2及び比較例2-1の各正極活物質の体積抵抗率を測定した。実施例2-2の正極活物質の体積抵抗率は9.5Ω・cmであり、比較例2-1の体積抵抗率は32.3Ω・cmであった。窒素を含有させることで正極活物質の電子伝導性が向上することが確認できた。
(Measurement of volume resistivity of positive electrode active material)
By the above method, the volume resistivity of each positive electrode active material of Example 2-2 and Comparative Example 2-1 was measured. The volume resistivity of the positive electrode active material of Example 2-2 was 9.5 Ω · cm, and the volume resistivity of Comparative Example 2-1 was 32.3 Ω · cm. It was confirmed that the electron conductivity of the positive electrode active material was improved by containing nitrogen.
(充電時酸素ガス発生試験)
 実施例2-1から2-3及び比較例2-1の各正極活物質を用い、充電時酸素ガス発生試験を行った。
 まず、次の手順で、正極を作製した。アルゴン雰囲気下にて、正極活物質1.125g、及びケッチェンブラック0.300gを混合し、直径5mmのWC製ボールが250g入った内容積80mLのWC製ミル容器に投入し、蓋をした。これを上記と同じ遊星型ボールミル装置にセットし、公転回転数200rpmで30分間乾式混合することで、正極活物質とケッチェンブラックとの混合粉末を調製した。上記各混合粉末95質量部と、ポリテトラフルオロエチレン粉末5質量部を瑪瑙乳鉢で混錬し、シート状に成型した。このシートを直径12mmφの円盤状に打ち抜き、質量約0.01gの正極シートを作製した。上記各正極シートをアルミニウムメッシュ製の正極基材(直径21mmφ)の片面に圧着し、正極を得た。
 次に、充電時酸素ガス発生試験用の非水電解質蓄電素子を作製した。アルゴン雰囲気のグローブボックス内で、上記正極と、25mm角の金属リチウム負極とをポリプロピレン製微多孔膜セパレータを介して積層し、金属樹脂複合フィルム製の外装体に収納し、非水電解質を300μL封入した。上記非水電解質は、ECとDMCとEMCとを30:35:35の体積比で混合した非水溶媒に、1mol/dmの濃度でLiPFを溶解させて調製したものを用いた。金属樹脂複合フィルム製の外装体には、非水電解質が漏出しない程度の開口部を上部に設け、ガス導入口及びガス排出口が設けられた内容積0.5dmの容器に、前記非水電解質蓄電素子全体を封入し、容器内をHeガスで十分置換した。上記ガス導入口からHeガスを5×10-3dm/minの流量で導入し、上記ガス排出口からの流出ガスをガスクロマトグラフ質量分析(GC-MS)装置へ試料注入口から導入した。上記GC-MS装置のガスクロマトグラフ(GC)部に用いるキャピラリーカラムは、ガス成分の分離機能を有さないダミーカラムとし、カラム温度は80℃とした。このような構成によって、複数のガス成分が混合された状態でありうる上記流出ガスがその成分組成のまま質量分析計(MS)部に導入され、MS部にて複数のガス成分が同時にリアルタイムで分析される。
 得られた各非水電解質蓄電素子に対して、25℃の環境下で、上記正極が含有する正極活物質の質量あたり50mA/gの電流密度で定電流(CC)充電を行った。充電中の上記流出ガスについて、MS部にて酸素ガスに起因するm/z=32の強度を連続的に計測した。m/z=32の強度が著しく増加し始める時点を酸素ガスの発生が確認された時点として、その時点の充電電気量を「酸素ガス発生開始点」とした。上記充電は、酸素ガス発生開始点が判定できる時点まで継続した。各非水電解質蓄電素子の充電時の充電電気量に対するm/z=32の強度変化(O gas evolution)を表すグラフを図4に示す。また、各非水電解質蓄電素子において、酸素ガスの発生が確認された時点での充電電気量(酸素ガス発生開始点)を表3に示す。
(Oxygen gas generation test during charging)
An oxygen gas generation test during charging was performed using each of the positive electrode active materials of Examples 2-1 to 2-3 and Comparative Example 2-1.
First, a positive electrode was produced by the following procedure. Under an argon atmosphere, 1.125 g of the positive electrode active material and 0.300 g of Ketjen black were mixed, placed in a WC mill container having an internal volume of 80 mL containing 250 g of WC balls having a diameter of 5 mm, and covered. This was set in the same planetary ball mill device as above, and dried and mixed at a revolution speed of 200 rpm for 30 minutes to prepare a mixed powder of the positive electrode active material and Ketjen black. 95 parts by mass of each of the above mixed powders and 5 parts by mass of polytetrafluoroethylene powder were kneaded in an agate mortar and molded into a sheet. This sheet was punched into a disk shape having a diameter of 12 mmφ to prepare a positive electrode sheet having a mass of about 0.01 g. Each of the above positive electrode sheets was pressure-bonded to one side of a positive electrode base material (diameter 21 mmφ) made of aluminum mesh to obtain a positive electrode.
Next, a non-aqueous electrolyte power storage element for an oxygen gas generation test during charging was manufactured. In a glove box with an argon atmosphere, the positive electrode and a 25 mm square metal lithium negative electrode are laminated via a polypropylene microporous film separator, stored in an exterior body made of a metal resin composite film, and filled with 300 μL of non-aqueous electrolyte. did. The non-aqueous electrolyte used was prepared by dissolving LiPF 6 at a concentration of 1 mol / dm 3 in a non-aqueous solvent in which EC, DMC and EMC were mixed at a volume ratio of 30:35:35. The exterior body made of a metal resin composite film is provided with an opening at the upper part so that the non-aqueous electrolyte does not leak, and the non-water container is provided with a gas inlet and a gas discharge port and has an internal volume of 0.5 dm 3 . The entire electrolyte storage element was enclosed, and the inside of the container was sufficiently replaced with He gas. He gas was introduced from the gas inlet at a flow rate of 5 × 10 -3 dm 3 / min, and the outflow gas from the gas outlet was introduced into the gas chromatograph mass spectrometry (GC-MS) apparatus from the sample inlet. The capillary column used in the gas chromatograph (GC) section of the GC-MS apparatus was a dummy column having no gas component separation function, and the column temperature was 80 ° C. With such a configuration, the outflow gas, which may be a state in which a plurality of gas components are mixed, is introduced into the mass spectrometer (MS) section with the component composition as it is, and the plurality of gas components are simultaneously present in real time in the MS section. Be analyzed.
Each of the obtained non-aqueous electrolyte power storage elements was charged with a constant current (CC) at a current density of 50 mA / g per mass of the positive electrode active material contained in the positive electrode under an environment of 25 ° C. For the outflow gas during charging, the intensity of m / z = 32 caused by oxygen gas was continuously measured by the MS unit. The time when the intensity of m / z = 32 began to increase remarkably was defined as the time when the generation of oxygen gas was confirmed, and the amount of electricity charged at that time was defined as the "starting point of oxygen gas generation". The above charging was continued until the oxygen gas generation start point could be determined. FIG. 4 shows a graph showing a change in intensity (O 2 gas evolution) of m / z = 32 with respect to the amount of electricity charged during charging of each non-aqueous electrolyte power storage element. Table 3 shows the amount of charging electricity (oxygen gas generation start point) at the time when the generation of oxygen gas is confirmed in each non-aqueous electrolyte power storage element.
(充放電サイクル試験)
 実施例2-1から2-3及び比較例2-1の各正極活物質を用い、充放電サイクル試験を行った。
 まず、上記充電時酸素ガス発生試験と同様の手順で正極を作製した。得られた正極を用い、直径22mmφの金属リチウムを負極とし、ポリプロピレン製微多孔膜セパレータを介して積層して容器に収納し、非水電解質を300μL注入して非水電解質蓄電素子を作製した。非水電解質蓄電素子の作製は、アルゴン雰囲気のグローブボックス内にて行った。また、非水電解質は、充電時酸素ガス発生試験で用いたものと同じ組成のものを調製して用いた。
 得られた各非水電解質蓄電素子について、アルゴン雰囲気のグローブボックス内において、25℃の環境下で以下の充放電サイクル試験を行った。充電電流及び放電電流は、正極が含有する正極活物質の質量あたり50mA/gの電流密度を採用した。充放電試験は、充電から開始し、充電は、充電上限電圧3.4Vの定電流定電圧(CCCV)充電を前提とした。ただし、充電終止条件は、定電流(CC)モード中に正極活物質の質量あたりの充電電気量が500mAh/gに到達するか、又は定電圧(CV)モードに移行後10時間経過した時点とした。放電は、定電流(CC)放電とし、放電終止条件は、正極活物質の質量あたりの放電電気量が500mAh/gに到達するか、又は放電下限電圧1.5Vに到達した時点とした。各非水電解質蓄電素子における充放電サイクル毎の放電電気量を表すグラフを図5に示す。また、各実施例及び比較例の非水電解質蓄電素子において200mAh/g以上の放電電気量が維持された充放電サイクル数を「サイクル寿命」として表3に示す。
(Charge / discharge cycle test)
A charge / discharge cycle test was performed using the positive electrode active materials of Examples 2-1 to 2-3 and Comparative Example 2-1.
First, a positive electrode was prepared by the same procedure as the above-mentioned oxygen gas generation test during charging. Using the obtained positive electrode, metallic lithium having a diameter of 22 mmφ was used as a negative electrode, laminated via a polypropylene microporous membrane separator and stored in a container, and 300 μL of non-aqueous electrolyte was injected to prepare a non-aqueous electrolyte power storage element. The non-aqueous electrolyte power storage element was manufactured in a glove box having an argon atmosphere. As the non-aqueous electrolyte, the one having the same composition as that used in the oxygen gas generation test during charging was prepared and used.
The following charge / discharge cycle test was performed on each of the obtained non-aqueous electrolyte power storage elements in a glove box having an argon atmosphere in an environment of 25 ° C. For the charging current and the discharging current, a current density of 50 mA / g per mass of the positive electrode active material contained in the positive electrode was adopted. The charge / discharge test started from charging, and charging was premised on constant current constant voltage (CCCV) charging with a charging upper limit voltage of 3.4 V. However, the charge termination condition is when the amount of charge electricity per mass of the positive electrode active material reaches 500 mAh / g during the constant current (CC) mode, or when 10 hours have passed after the transition to the constant voltage (CV) mode. did. The discharge was a constant current (CC) discharge, and the discharge termination condition was the time when the amount of electricity discharged per mass of the positive electrode active material reached 500 mAh / g or the lower limit voltage of the discharge reached 1.5 V. FIG. 5 shows a graph showing the amount of discharge electricity for each charge / discharge cycle in each non-aqueous electrolyte power storage element. Table 3 shows the number of charge / discharge cycles in which the discharge electricity amount of 200 mAh / g or more was maintained in the non-aqueous electrolyte power storage elements of each Example and Comparative Example as “cycle life”.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3及び図4に示されるように、第一元素であるコバルト及び第二元素であるケイ素と共に元素Aである窒素を含む実施例2-1から2-3の各正極活物質を用いた非水電解質蓄電素子は、酸素ガスの発生が確認された時点での充電電気量(酸素ガス発生開始点)が大きく、充電電気量を大きくした場合でも酸素ガスの発生が抑制されていた。また、表3及び図5に示されるように、実施例2-1から2-3の各正極活物質を用いた非水電解質蓄電素子は、200mAh/g以上の放電電気量が維持された充放電サイクル数が多く、十分な充放電サイクル寿命を有するものであった。また、表3に示されるように、元素Aである窒素の含有量に応じて、回折角2θが33°付近の回折ピークの積分強度に対する回折角2θが44°付近の回折ピークの積分強度の比、及び格子定数aが大きくなることが確認できた。 As shown in Table 3 and FIG. 4, each of the positive electrode active materials of Examples 2-1 to 2-3 containing oxygen as an element A together with cobalt as a first element and silicon as a second element was used. The water electrolyte storage element had a large amount of charging electricity (oxygen gas generation starting point) at the time when the generation of oxygen gas was confirmed, and the generation of oxygen gas was suppressed even when the amount of charging electricity was increased. Further, as shown in Table 3 and FIG. 5, the non-aqueous electrolyte power storage element using each positive electrode active material of Examples 2-1 to 2-3 is charged with a discharge electricity amount of 200 mAh / g or more maintained. It had a large number of discharge cycles and had a sufficient charge / discharge cycle life. Further, as shown in Table 3, depending on the content of nitrogen as an element A, the integrated intensity of the diffraction peak having a diffraction angle 2θ near 44 ° with respect to the integral intensity of the diffraction peak near 33 °. It was confirmed that the ratio and the lattice constant a became large.
 本発明は、パーソナルコンピュータ、通信端末等の電子機器、自動車などの電源として使用される非水電解質蓄電素子、及びこれに備わる正極、正極活物質などに適用できる。 The present invention can be applied to electronic devices such as personal computers and communication terminals, non-aqueous electrolyte power storage elements used as power sources for automobiles, and positive electrodes and positive electrode active materials provided therein.
1  非水電解質蓄電素子
2  電極体
3  容器
4  正極端子
41 正極リード
5  負極端子
51 負極リード
20 蓄電ユニット
30 蓄電装置
 
1 Non-aqueous electrolyte power storage element 2 Electrode body 3 Container 4 Positive terminal 41 Positive lead 5 Negative terminal 51 Negative lead 20 Power storage unit 30 Power storage device

Claims (15)

  1.  リチウム、酸素、第一元素、及び元素Aを含み、かつ逆蛍石型の結晶構造を有し、
     上記第一元素が、クロム、マンガン、鉄、コバルト、ニッケル及び銅からなる群より選ばれる少なくとも1種であり、
     上記元素Aが、窒素、硫黄、セレン、フッ素、塩素、臭素及びヨウ素からなる群より選ばれる少なくとも1種である正極活物質。
    It contains lithium, oxygen, the first element, and element A, and has an inverted fluorite-type crystal structure.
    The first element is at least one selected from the group consisting of chromium, manganese, iron, cobalt, nickel and copper.
    A positive electrode active material in which the element A is at least one selected from the group consisting of nitrogen, sulfur, selenium, fluorine, chlorine, bromine and iodine.
  2.  上記酸素の含有量に対する上記元素Aの含有量のモル比が、0.00超0.2以下である請求項1に記載の正極活物質。 The positive electrode active material according to claim 1, wherein the molar ratio of the content of the element A to the oxygen content is more than 0.00 and 0.2 or less.
  3.  上記第一元素がコバルトである、請求項1又は請求項2に記載の正極活物質。 The positive electrode active material according to claim 1 or 2, wherein the first element is cobalt.
  4.  リチウム、酸素、第一元素、第二元素及び元素Aを含み、かつ逆蛍石型の結晶構造を有し、
     上記第一元素が、クロム、マンガン、鉄、コバルト、ニッケル及び銅からなる群より選ばれる少なくとも1種であり、
     上記第二元素が、13族元素、14族元素、リン、アンチモン、ビスマス及びテルルからなる群より選ばれる少なくとも1種であり、
     上記元素Aが窒素である正極活物質。
    It contains lithium, oxygen, first element, second element and element A, and has an inverted fluorite-type crystal structure.
    The first element is at least one selected from the group consisting of chromium, manganese, iron, cobalt, nickel and copper.
    The second element is at least one selected from the group consisting of Group 13 elements, Group 14 elements, phosphorus, antimony, bismuth and tellurium.
    A positive electrode active material in which the element A is nitrogen.
  5.  下記式1で表される正極活物質。
     Li ON ・・・1
     式1中、Mは、Cr、Mn、Fe、Co、Ni及びCuからなる群より選ばれる少なくとも1種である。Mは、13族元素、14族元素、P、Sb、Bi及びTeからなる群より選ばれる少なくとも1種である。
     a、b、c及びdは、それぞれ、1.0<a<2.0、0.000<b<0.5、0.000<c<0.2、0.000<d<0.2を満たす。
    Positive electrode active material represented by the following formula 1.
    Li a M 1 b M 2 c ON d ... 1
    In formula 1, M 1 is at least one selected from the group consisting of Cr, Mn, Fe, Co, Ni and Cu. M 2 is at least one selected from the group consisting of Group 13 elements, Group 14 elements, P, Sb, Bi and Te.
    a, b, c and d are 1.0 <a <2.0, 0.000 <b <0.5, 0.000 <c <0.2, 0.000 <d <0.2, respectively. Meet.
  6.  CuKα線を用いたエックス線回折図において、回折角2θが33°付近の回折ピークの積分強度に対する回折角2θが44°付近の回折ピークの積分強度の比が、0.00超2以下である請求項4又は請求項5に記載の正極活物質。 In the X-ray diffraction diagram using CuKα rays, the ratio of the integrated intensity of the diffraction peak having a diffraction angle 2θ of 44 ° to the integrated intensity of the diffraction peak having a diffraction angle 2θ of 33 ° is more than 0.00 and 2 or less. Item 4 or the positive electrode active material according to claim 5.
  7.  下記式2を満たす請求項1から請求項6のいずれか1項に記載の正極活物質。
     1.0000<a/a<1.0005 ・・・2
     式2中、aは上記正極活物質の格子定数である。aは、上記正極活物質中の上記元素Aを全て酸素に置換した組成からなり、かつ逆蛍石型の結晶構造を有する化合物の格子定数である。
    The positive electrode active material according to any one of claims 1 to 6, which satisfies the following formula 2.
    1.000 <a 1 / a 2 <1.005 ・ ・ ・ 2
    In Equation 2, a 1 is the lattice constant of the positive electrode active material. a2 is a lattice constant of a compound having a composition in which all the elements A in the positive electrode active material are replaced with oxygen and having an inverted fluorite-type crystal structure.
  8.  CuKα線を用いたエックス線回折図において、回折角2θが33°付近の回折ピークの半値幅が0.3°以上である請求項1から請求項7のいずれか1項に記載の正極活物質。 The positive electrode active material according to any one of claims 1 to 7, wherein in the X-ray diffraction diagram using CuKα rays, the half width of the diffraction peak near the diffraction angle 2θ of 33 ° is 0.3 ° or more.
  9.  請求項1から請求項8のいずれか1項に記載の正極活物質を含有する非水電解質蓄電素子用の正極。 A positive electrode for a non-aqueous electrolyte power storage element containing the positive electrode active material according to any one of claims 1 to 8.
  10.  請求項9に記載の正極を備える非水電解質蓄電素子。 A non-aqueous electrolyte power storage element provided with the positive electrode according to claim 9.
  11.  非水電解質蓄電素子を複数個備え、且つ請求項10に記載の非水電解質蓄電素子を一以上備える蓄電装置。 A power storage device including a plurality of non-aqueous electrolyte power storage elements and one or more of the non-water electrolyte power storage elements according to claim 10.
  12.  リチウム、酸素、第一元素及び元素Aを含む材料をメカノケミカル法により処理することを備え、
     上記第一元素が、クロム、マンガン、鉄、コバルト、ニッケル及び銅からなる群より選ばれる少なくとも1種であり
     上記元素Aが、窒素、硫黄、セレン、フッ素、塩素、臭素及びヨウ素からなる群より選ばれる少なくとも1種である正極活物質の製造方法。
    It comprises treating materials containing lithium, oxygen, the first element and element A by the mechanochemical method.
    The first element is at least one selected from the group consisting of chromium, manganese, iron, cobalt, nickel and copper, and the element A is from the group consisting of nitrogen, sulfur, selenium, fluorine, chlorine, bromine and iodine. A method for producing a positive electrode active material, which is at least one selected.
  13.  リチウム、酸素、第一元素、第二元素及び元素Aを含む材料をメカノケミカル法により処理することを備え、
     上記第一元素が、クロム、マンガン、鉄、コバルト、ニッケル及び銅からなる群より選ばれる少なくとも1種であり、
     上記第二元素が、13族元素、14族元素、リン、アンチモン、ビスマス及びテルルからなる群より選ばれる少なくとも1種であり、
     上記元素Aが窒素である正極活物質の製造方法。
    It comprises treating materials containing lithium, oxygen, first element, second element and element A by the mechanochemical method.
    The first element is at least one selected from the group consisting of chromium, manganese, iron, cobalt, nickel and copper.
    The second element is at least one selected from the group consisting of Group 13 elements, Group 14 elements, phosphorus, antimony, bismuth and tellurium.
    A method for producing a positive electrode active material in which the element A is nitrogen.
  14.  請求項1から請求項9のいずれか1項に記載の正極活物質又は請求項12若しくは請求項13に記載の正極活物質の製造方法で得られた正極活物質を用いて正極を作製することを備える非水電解質蓄電素子用の正極の製造方法。 A positive electrode is produced using the positive electrode active material according to any one of claims 1 to 9 or the positive electrode active material obtained by the method for producing a positive electrode active material according to claim 12 or 13. A method for manufacturing a positive electrode for a non-aqueous electrolyte power storage element.
  15.  請求項14に記載の正極の製造方法を備える非水電解質蓄電素子の製造方法。 A method for manufacturing a non-aqueous electrolyte power storage element according to claim 14, wherein the method for manufacturing a positive electrode is provided.
PCT/JP2021/030751 2020-09-01 2021-08-23 Positive electrode active material, positive electrode, nonaqueous electrolyte power storage element, power storage device, method for producing positive electrode active material, method for producing positive electrode, and method for producing nonaqueous electrolyte power storage element WO2022050101A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-147072 2020-09-01
JP2020147072 2020-09-01
JP2021051667 2021-03-25
JP2021-051667 2021-03-25

Publications (1)

Publication Number Publication Date
WO2022050101A1 true WO2022050101A1 (en) 2022-03-10

Family

ID=80490888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030751 WO2022050101A1 (en) 2020-09-01 2021-08-23 Positive electrode active material, positive electrode, nonaqueous electrolyte power storage element, power storage device, method for producing positive electrode active material, method for producing positive electrode, and method for producing nonaqueous electrolyte power storage element

Country Status (1)

Country Link
WO (1) WO2022050101A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068302A (en) * 2001-08-29 2003-03-07 Hitachi Ltd Positive material for secondary lithium ion battery and secondary lithium ion battery having positive pole made of positive material
JP2010232174A (en) * 2009-03-12 2010-10-14 Belenos Clean Power Holding Ag Nitride and carbide anode materials
WO2015115052A1 (en) * 2014-01-31 2015-08-06 三洋電機株式会社 Nonaqueous-electrolyte secondary battery and method for manufacturing nonaqueous-electrolyte secondary battery
JP2017069099A (en) * 2015-09-30 2017-04-06 国立大学法人 東京大学 Active material
JP2019029344A (en) * 2017-07-27 2019-02-21 パナソニックIpマネジメント株式会社 Cathode active material, and battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068302A (en) * 2001-08-29 2003-03-07 Hitachi Ltd Positive material for secondary lithium ion battery and secondary lithium ion battery having positive pole made of positive material
JP2010232174A (en) * 2009-03-12 2010-10-14 Belenos Clean Power Holding Ag Nitride and carbide anode materials
WO2015115052A1 (en) * 2014-01-31 2015-08-06 三洋電機株式会社 Nonaqueous-electrolyte secondary battery and method for manufacturing nonaqueous-electrolyte secondary battery
JP2017069099A (en) * 2015-09-30 2017-04-06 国立大学法人 東京大学 Active material
JP2019029344A (en) * 2017-07-27 2019-02-21 パナソニックIpマネジメント株式会社 Cathode active material, and battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CABANA JORDI, LING CHRISTOPHER D., ORÓ-SOLÉ JUDITH, GAUTIER DAMIEN, TOBÍAS GERARD, ADAMS STEFAN, CANADELL ENRIC, PALACÍN M. ROSA: "Antifluorite-Type Lithium Chromium Oxide Nitrides: Synthesis, Structure, Order, and Electrochemical Properties", INORGANIC CHEMISTRY, AMERICAN CHEMICAL SOCIETY, EASTON , US, vol. 43, no. 22, 1 November 2004 (2004-11-01), Easton , US , pages 7050 - 7060, XP055907434, ISSN: 0020-1669, DOI: 10.1021/ic049138z *

Similar Documents

Publication Publication Date Title
JP5649492B2 (en) Battery active material, non-aqueous electrolyte battery and battery pack
JP6659282B2 (en) Active material for battery, negative electrode, non-aqueous electrolyte battery, battery pack and car
JP5908650B2 (en) Battery active material, non-aqueous electrolyte battery and battery pack
KR101789005B1 (en) Active material for battery, nonaqueous electrolyte battery and battery pack
JP6767100B2 (en) Active materials for batteries, electrodes, non-aqueous electrolyte batteries, battery packs, and automobiles
JP2014225474A (en) Active material for battery, nonaqueous electrolyte battery, and battery pack
JP7294313B2 (en) Positive electrode active material, positive electrode, non-aqueous electrolyte storage element, method for manufacturing positive electrode active material, method for manufacturing positive electrode, and method for manufacturing non-aqueous electrolyte storage element
JP2012124182A (en) Battery active material, nonaqueous electrolyte battery, and battery pack
JP7459877B2 (en) Positive electrode active material, positive electrode, and non-aqueous electrolyte storage element
JP7006108B2 (en) Negative electrode active material, negative electrode, and non-aqueous electrolyte storage element
JP6325678B2 (en) Nonaqueous electrolyte secondary battery and battery pack provided with the same
WO2015140964A1 (en) Battery electrode material, nonaqueous electrolyte battery, and battery pack
JP7024386B2 (en) Method for manufacturing negative electrode active material, negative electrode, non-aqueous electrolyte storage element, and non-aqueous electrolyte storage element
WO2022050101A1 (en) Positive electrode active material, positive electrode, nonaqueous electrolyte power storage element, power storage device, method for producing positive electrode active material, method for producing positive electrode, and method for producing nonaqueous electrolyte power storage element
JP6609217B2 (en) Composite oxide, positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing composite oxide
JP7276310B2 (en) Positive electrode active material, positive electrode, non-aqueous electrolyte storage element, method for manufacturing positive electrode active material, and method for manufacturing non-aqueous electrolyte storage element
JP2017216211A (en) Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery
WO2022024675A1 (en) Method for selecting substitution elements, positive electrode active material, positive electrode, non-aqueous electrolyte power storage element, power storage device, method for manufacturing positive electrode active material, method for manufacturing positive electrode, and method for manufacturing non-aqueous electrolyte power storage element
WO2021177258A1 (en) Positive-electrode active material, positive electrode, nonaqueous-electrolyte power storage element, power storage device, method for producing positive-electrode active material, method for producing positive electrode, and method for producing nonaqueous-electrolyte power storage element
JP6132945B2 (en) Battery pack and automobile
JP7354821B2 (en) Positive electrode active material for power storage element, positive electrode for power storage element, power storage element, and manufacturing method of power storage element
JP2023066692A (en) Non-aqueous electrolyte storage element
JP2023066693A (en) Paste, electrode for non-aqueous electrolyte power storage element and non-aqueous electrolyte power storage element
JP2014067731A (en) Nonaqueous electrolyte battery, and battery pack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21864159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP