JP2003068302A - Positive material for secondary lithium ion battery and secondary lithium ion battery having positive pole made of positive material - Google Patents

Positive material for secondary lithium ion battery and secondary lithium ion battery having positive pole made of positive material

Info

Publication number
JP2003068302A
JP2003068302A JP2001259494A JP2001259494A JP2003068302A JP 2003068302 A JP2003068302 A JP 2003068302A JP 2001259494 A JP2001259494 A JP 2001259494A JP 2001259494 A JP2001259494 A JP 2001259494A JP 2003068302 A JP2003068302 A JP 2003068302A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode material
charge
mah
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001259494A
Other languages
Japanese (ja)
Other versions
JP3685109B2 (en
Inventor
Takahiro Yamaki
孝博 山木
Masahiro Kasai
昌弘 葛西
Seiji Takeuchi
瀞士 武内
Akihiro Goto
明弘 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001259494A priority Critical patent/JP3685109B2/en
Publication of JP2003068302A publication Critical patent/JP2003068302A/en
Application granted granted Critical
Publication of JP3685109B2 publication Critical patent/JP3685109B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Iron (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a positive material that can increase the charging and discharging capacity of a secondary lithium ion battery and can improve the charging and discharging cycle characteristics thereof. SOLUTION: The positive material comprises an oxide having reverse fluorite crystal structure including lithium and at least two kinds of cation other than lithium. At least one kind of the cation other than lithium is a transition metal shown by general formula Lix Mey Mz O4-a Aa (Me is at least a kind of transition metal, M a cation other than lithium and transition metal, A an anion other than oxygen, 3<=x<=7, 0.5<=y<=3, 0<=z<=2, 0<=a<=1 and 4<x+y+z<=8).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムイオン二
次電池用の正極材料及びリチウムイオン二次電池に関す
る。
TECHNICAL FIELD The present invention relates to a positive electrode material for a lithium ion secondary battery and a lithium ion secondary battery.

【0002】[0002]

【従来の技術】近年二次電池は、携帯電話、PDAやノー
ト型パソコンなどの携帯型電子機器や情報通信機器など
の電源としてなくてはならない構成要素のひとつとなっ
ている。このような携帯用電子機器などの分野では、ハ
ードディスクの高性能化や液晶表示用バックライトなど
の長時間駆動などのため、二次電池の高容量化が求めら
れている。
2. Description of the Related Art In recent years, a secondary battery has become one of the essential components as a power source for portable electronic equipment such as mobile phones, PDAs and notebook computers, and information communication equipment. In the field of such portable electronic devices and the like, there is a demand for higher capacity secondary batteries due to higher performance of hard disks and long-term driving of liquid crystal display backlights.

【0003】これに対して、非水電解質を用い、Liを
電池反応に利用するリチウムイオン二次電池が、高容量
化が期待しうること、さらに軽量であることなどから注
目されている。リチウムイオン二次電池の正極材料とし
ては、一般に、コバルト酸リチウム(LiCoO)等
の層状酸化物や、マンガン酸リチウム(LiMn
)で代表されるスピネル系複合酸化物が使用され
ている。これらのLiCoO 及びLiMnは、
その放電電位が金属Li基準で4V程度を発現する。ま
た、正極材単位重量あたりの放電容量は、LiMn
でその理論値が約145mAh/g、LiCoO
はその理論値は約270mAh/gであるが、可逆的に
利用可能な容量は約150mAh/gである。
On the other hand, using a non-aqueous electrolyte,
High capacity lithium-ion secondary battery used for battery reaction
Note that it can be expected to be made more compact, and it is even lighter.
Is being watched. As a positive electrode material for lithium-ion secondary batteries
In general, lithium cobalt oxide (LiCoOTwo)etc
Layered oxides and lithium manganate (LiMn
TwoO Four) Represented by
ing. These LiCoO TwoAnd LiMnTwoOFourIs
The discharge potential develops about 4 V on the basis of metallic Li. Well
The discharge capacity per unit weight of the positive electrode material is LiMn.TwoO
FourAnd its theoretical value is about 145 mAh / g, LiCoOTwoso
Has a theoretical value of about 270 mAh / g, but reversibly
The available capacity is about 150 mAh / g.

【0004】ところで、これらのスピネル系複合酸化物
を正極材料よりもさらにリチウムイオン二次電池を高容
量化できることが期待される正極材料として、Li
oO 、LiFeO、LiMnOなどのリチウム
と1種の遷移金属元素とを含有する逆蛍石型の結晶構造
を有する酸化物が、Solid State Ioni
cs、122巻、59頁、(1999)に開示されてい
る。この材料は放電電位が金属Li基準で2から3V程
度を発現し、材料中にLiを多数有することから、電気
量すなわち放電容量を多くとりだせる。
By the way, these spinel type composite oxides
The lithium-ion secondary battery has a higher capacity than the positive electrode material.
As a positive electrode material expected to be quantified, Li6C
oO Four, Li5FeOFour, Li6MnOFourSuch as lithium
Inverted Fluorite-Type Crystal Structure Containing Alkali and One Transition Metal Element
Oxide with Solid State Ioni
cs, 122, 59, (1999).
It This material has a discharge potential of about 2 to 3 V based on metallic Li.
Of high power and a large amount of Li in the material,
A large amount, that is, discharge capacity can be taken out.

【0005】逆蛍石型結晶構造とは、負電荷を有するア
ニオンによって構成される面心立方格子の四面体サイト
に正電荷を有するカチオンが入る構造である。すなわ
ち、単位格子あたり4個のアニオンで構成されており、
かつ最大で8個のカチオンの原子が入り得る。逆蛍石型
結晶構造を有する酸化物としては、LiO、Na
O、KOなどのアルカリ金属酸化物が知られている
が、上記のリチウムイオン二次電池の正極材料として用
いる逆蛍石型結晶構造を有する酸化物では、アニオンと
して酸素を、カチオンとして主にLiを有し、さらに充
放電の際のLiの脱離及び挿入を補償するためにMn、
CoまたはFeを含有している。
The inverse fluorite crystal structure is a structure in which a cation having a positive charge enters a tetrahedral site of a face-centered cubic lattice composed of anions having a negative charge. That is, it is composed of four anions per unit cell,
And up to 8 cation atoms can enter. Examples of the oxide having an inverted fluorite type crystal structure include Li 2 O and Na
Alkali metal oxides such as 2 O and K 2 O are known, but in the oxide having an inverted fluorite crystal structure used as the positive electrode material of the above lithium ion secondary battery, oxygen is used as an anion and oxygen is used as a cation. It mainly has Li, and further Mn in order to compensate desorption and insertion of Li during charge and discharge,
It contains Co or Fe.

【0006】このような逆蛍石型結晶構造を有する酸化
物からなる正極材料を含む正極を形成して充放電した際
の反応式を、LiCoOを例として以下に示す。す
なわち、充放電時の正極での反応は、充電時にカチオン
を構成するLiが脱離し、放電時にLiが挿入されるも
のである。このとき電荷中性の法則からCoの酸化数す
なわち原子価が変化する。 LiCoO=Li6−αCoO+Liα
A reaction formula when a positive electrode containing a positive electrode material made of an oxide having such an inverted fluorite type crystal structure is formed and charged and discharged is shown below by taking Li 6 CoO 4 as an example. That is, the reaction at the positive electrode during charging / discharging is such that Li constituting a cation is desorbed during charging and Li is inserted during discharging. At this time, the oxidation number of Co, that is, the valence changes from the law of charge neutrality. Li 6 CoO 4 = Li 6-α CoO 4 + Li α

【発明が解決しようとする課題】しかし、このような従
来の逆蛍石型結晶構造を有する酸化物からなる正極材料
では、リチウムイオン二次電池の充放電容量を増大する
ことはできるが、充放電を繰り返すことにより充放電容
量が低下するサイクル劣化の点で問題がある。つまり、
従来の逆蛍石型結晶構造を有する酸化物からなる正極材
料では、充放電の繰り返しによる充放電容量の低下が比
較的激しいため、サイクル劣化を低減して充放電サイク
ル特性を向上する必要がある。
However, such a positive electrode material composed of an oxide having an inverted fluorite type crystal structure in the related art can increase the charge / discharge capacity of a lithium ion secondary battery. There is a problem in terms of cycle deterioration in which charge and discharge capacity is reduced by repeating discharge. That is,
In the case of the conventional positive electrode material made of an oxide having an inverted fluorite type crystal structure, the charge / discharge capacity is relatively sharply reduced by repeated charge / discharge, so it is necessary to reduce cycle deterioration and improve charge / discharge cycle characteristics. .

【0007】ここで、サイクル劣化は、充放電によるL
iの脱離と挿入を繰返すことで、結晶格子の膨張収縮が
繰返され結晶構造の変化つまり相変化が生じ、次第に可
逆的に脱離・挿入可能なLi量が減少することにより起
こる。したがって、充放電サイクル特性を向上するため
には、結晶構造の相変化を防ぐために脱離・挿入するL
i量を制限することが考えられるが、脱離・挿入するL
i量を制限することは充放電容量を制限することに他な
らず、このような方法を採ることはできない。
[0007] Here, the cycle deterioration is L due to charging and discharging.
By repeating the desorption and insertion of i, the expansion and contraction of the crystal lattice is repeated to cause a change in the crystal structure, that is, a phase change, and the amount of Li that can be desorbed and inserted reversibly decreases gradually. Therefore, in order to improve the charge / discharge cycle characteristics, L which is desorbed / inserted in order to prevent the phase change of the crystal structure.
It is possible to limit the amount of i, but L to be detached / inserted
Limiting the amount of i is nothing but limiting the charge / discharge capacity, and such a method cannot be adopted.

【0008】本発明の課題は、リチウムイオン二次電池
の充放電容量を増大し、かつ充放電サイクル特性を向上
することにある。
An object of the present invention is to increase the charge / discharge capacity of a lithium ion secondary battery and improve the charge / discharge cycle characteristics.

【0009】[0009]

【課題を解決するための手段】本発明のリチウムイオン
二次電池用正極材料は、Liと、少なくとも2種のLi
以外のカチオンとを含む逆蛍石型結晶構造を有する酸化
物からなり、Li以外のカチオンのうち、少なくとも1
種が遷移金属元素である構成とすることにより上記課題
を解決する。
The positive electrode material for a lithium ion secondary battery of the present invention comprises Li and at least two kinds of Li.
Of an oxide having an inverted fluorite crystal structure containing a cation other than Li, and at least 1 of cations other than Li
The above problem is solved by adopting a constitution in which the seed is a transition metal element.

【0010】また、一般式LiMe4−a
(但し、Meは少なくとも1種の遷移金属元素、Mは
Li及び遷移金属以外のカチオン、Aは酸素以外のアニ
オンで、3≦x≦7、0.5≦y≦3、0≦z≦2、0
≦a≦1でかつ4<x+y+z≦8)で示される構成と
する。
Further, the general formula Li x Me y M z O 4-a A
a (however, Me is at least one kind of transition metal element, M is a cation other than Li and a transition metal, A is an anion other than oxygen, and 3 ≦ x ≦ 7, 0.5 ≦ y ≦ 3, 0 ≦ z ≦ 2,0
≦ a ≦ 1 and 4 <x + y + z ≦ 8).

【0011】さらに、正極が上記いずれかの正極材料を
含んむ構成のリチウムイオン二次電池とする。
Further, the lithium ion secondary battery is constructed such that the positive electrode contains any one of the above positive electrode materials.

【0012】このようにすれば、逆蛍石型結晶構造を有
する酸化物であることから、リチウムイオン二次電池の
充放電容量を増大することができ、さらに、カチオンと
して少なくとも1種の遷移金属元素を含むことで、Li
の脱離・挿入の際の電荷補償し、加えてLi以外に遷移
金属元素を含めて少なくとも2種以上のカチオンを含む
ことで、結晶格子の膨張収縮を繰返すことにおける結晶
構造の相変化を抑制できる。すなわち、充放電容量を制
限することなく結晶構造の相変化を抑制して充放電サイ
クル特性を向上できるため、リチウムイオン二次電池の
充放電容量を増大し、かつ充放電サイクル特性を向上で
きる。
In this case, since the oxide has an inverted fluorite type crystal structure, the charge / discharge capacity of the lithium ion secondary battery can be increased, and at least one transition metal is used as a cation. By including the element, Li
Suppresses the phase change of the crystal structure due to repeated expansion and contraction of the crystal lattice by compensating for the charge at the time of desorption / insertion and additionally containing at least two kinds of cations including transition metal elements in addition to Li. it can. That is, since the phase change of the crystal structure can be suppressed and the charge / discharge cycle characteristics can be improved without limiting the charge / discharge capacity, the charge / discharge capacity of the lithium ion secondary battery can be increased and the charge / discharge cycle characteristics can be improved.

【0013】[0013]

【発明の実施の形態】以下、本発明を適用してなるリチ
ウムイオン二次電池用の正極材料、及びその正極材料で
正極を形成したリチウムイオン二次電池の一実施形態に
ついて図1乃至図3を参照して説明する。図1は、本発
明を適用してなる正極材料である逆蛍石型結晶構造を有
する酸化物の構造を示す模式図である。図2は、本発明
を適用してなる正極材料を用いて正極を形成したリチウ
ムイオン二次電池の概略構成を示す部分断面図である。
図3は、正極材料の電気化学的特性を調べるための電気
化学セルの概略構成を示す部分断面図である。
BEST MODE FOR CARRYING OUT THE INVENTION One embodiment of a positive electrode material for a lithium ion secondary battery, to which the present invention is applied, and a lithium ion secondary battery in which a positive electrode is formed of the positive electrode material will be described with reference to FIGS. Will be described with reference to. FIG. 1 is a schematic diagram showing the structure of an oxide having an inverted fluorite type crystal structure, which is a positive electrode material to which the present invention is applied. FIG. 2 is a partial cross-sectional view showing a schematic configuration of a lithium ion secondary battery in which a positive electrode is formed using a positive electrode material to which the present invention is applied.
FIG. 3 is a partial cross-sectional view showing a schematic configuration of an electrochemical cell for examining the electrochemical characteristics of the positive electrode material.

【0014】本発明のリチウムイオン二次電池用の正極
材料は、図1に示すように、逆蛍石型結晶構造を有する
酸化物である。逆蛍石型結晶構造とは、面心立方格子を
構成する負電荷を有するアニオン1と、これらのアニオ
ン1によって構成される四面体サイトに正電荷を有する
カチオン3がはいる構造を有する。すなわち、単位格子
あたり4個のアニオン1で構成されており、かつ最大で
8個のカチオン3の原子が入り得るものである。本発明
の正極材料では、アニオン1が、主として酸素で構成さ
れており、カチオン3が、Li、Li以外の少なくとも
2種のカチオン元素、そしてLi以外の少なくとも2種
のカチオンのうち、少なくとも1種が遷移金属元素、ま
たは、Li以外の複数のカチオンの全てが遷移金属元素
で構成されたものである。すなわち、従来の逆蛍石型結
晶構造を有する酸化物からなる正極材料は、カチオン
が、LiとLi以外の1種の遷移金属元素で構成される
のに対して、本発明の逆蛍石型結晶構造を有する酸化物
からなる正極材料は、カチオンがLiと1種以上の遷移
金属元素を含む2種以上のカチオン元素とで構成されて
いるか、または、カチオンがLiと複数の遷移金属元素
とで構成されている。
The positive electrode material for a lithium ion secondary battery of the present invention is an oxide having an inverted fluorite crystal structure, as shown in FIG. The inverted fluorite type crystal structure has a structure in which an anion 1 having a negative charge forming a face-centered cubic lattice and a cation 3 having a positive charge is inserted in a tetrahedral site formed by these anions 1. That is, it is composed of 4 anions 1 per unit cell, and can contain a maximum of 8 atoms of cation 3. In the positive electrode material of the present invention, the anion 1 is mainly composed of oxygen, and the cation 3 is at least one of Li, at least two kinds of cation elements other than Li, and at least two kinds of cations other than Li. Is a transition metal element, or all of a plurality of cations other than Li are composed of a transition metal element. That is, in the conventional positive electrode material made of an oxide having an inverted fluorite type crystal structure, the cation is composed of Li and one kind of transition metal element other than Li, while the inverted fluorite type of the present invention is used. The positive electrode material composed of an oxide having a crystal structure has a cation composed of Li and two or more kinds of cation elements containing one or more kinds of transition metal elements, or a cation of Li and a plurality of transition metal elements. It is composed of.

【0015】本発明の逆蛍石型結晶構造を有する酸化物
からなる正極材料のカチオンとして含まれる少なくとも
1種の遷移金属元素は、Liの脱離・挿入の際の電荷補
償ための元素となる。したがって、正極材料のカチオン
として含まれる遷移金属元素は、特に限定はされない
が、Mn、Fe、Coから選択すれば、電荷補償されて
いること、また、正極材料を作り易いこと、遷移金属元
素の中では比較的軽いものであることなどから望まし
い。
At least one transition metal element contained as a cation in the positive electrode material composed of an oxide having an inverted fluorite type crystal structure of the present invention becomes an element for charge compensation at the time of desorption / insertion of Li. . Therefore, the transition metal element contained as the cation of the positive electrode material is not particularly limited, but if selected from Mn, Fe, and Co, it is charge-compensated, that the positive electrode material is easy to make, and the transition metal element Among them, it is desirable because it is relatively light.

【0016】本発明の逆蛍石型結晶構造を有する酸化物
からなる正極材料がLiと遷移金属元素以外の正電荷を
とる元素を含む構成の場合、このLiと遷移金属元素以
外のカチオンは、特に限定はされないが、アルカリ金属
以外の元素から選択すれば、Liに近い酸化還元電位を
有する元素を避け、サイクル性や充放電反応を低下させ
るのを防ぐことができると考えられるため望ましい。さ
らに、Liと遷移金属元素以外のカチオンは、正極材料
中で酸化数が+3以下となる元素から選択すれば、挿入
されるLiの数が減少し難くいこと、また、結晶構造が
安定化し易いことなどからより望ましい。
When the positive electrode material of the present invention made of an oxide having an inverted fluorite crystal structure contains Li and an element having a positive charge other than a transition metal element, the cation other than Li and the transition metal element is Although not particularly limited, it is desirable to select from elements other than alkali metals, because it is considered that elements having an oxidation-reduction potential close to Li can be avoided, and cycle characteristics and charge / discharge reactions can be prevented from being lowered. Furthermore, if the cations other than Li and the transition metal element are selected from the elements having an oxidation number of +3 or less in the positive electrode material, the number of inserted Li is difficult to decrease, and the crystal structure is easily stabilized. It is more desirable because of things.

【0017】本発明の正極材料のように、逆蛍石型結晶
構造を有する酸化物におけるLi以外のカチオンを、遷
移金属元素を含めた複数種で構成することで、結晶格子
の膨張収縮を繰返す際の結晶構造の変化、すなわち相変
化が抑制することができる。さらに、Li以外の複数種
のカチオンが充放電における電荷補償に関与しない場
合、すなわち酸化数が変化しないカチオン、例えばAl
などのような典型元素である場合、酸化数変化によるイ
オン半径変化が起きないため、より強固な結晶構造を構
成できるものと考えられる。
Like the positive electrode material of the present invention, the cations other than Li in the oxide having an inverted fluorite type crystal structure are composed of plural kinds including transition metal elements, whereby expansion and contraction of the crystal lattice is repeated. A change in crystal structure at the time, that is, a phase change can be suppressed. Furthermore, when a plurality of types of cations other than Li do not participate in charge compensation during charge / discharge, that is, a cation whose oxidation number does not change, such as Al
In the case of a typical element such as, the ionic radius does not change due to a change in the oxidation number, so it is considered that a stronger crystal structure can be formed.

【0018】本実施形態の逆蛍石型正極材料は、カチオ
ンがLiと1種以上の遷移金属元素を含む2種以上のカ
チオン元素とで構成されているか、または、カチオンが
Liと複数の遷移金属元素とで構成されているものであ
り、一般式LiMe4−a(但し、Me
は少なくとも1種の遷移金属元素、Mは前記Li及び遷
移金属以外のカチオン、Aは酸素以外のアニオンで、3
≦x≦7、0.5≦y≦3、0≦z≦2、0≦a≦1で
かつ4<x+y+z≦8の範囲)で示すことができる。
ここで、xの値は、Liの組成を示すもので、x<3で
は逆蛍石型結晶構造の酸化物を合成することが難しく、
またx>7では、電荷補償に必要な遷移金属元素Meの
量が少なくなる。このため、xの範囲は、3≦x≦7で
あることが望ましい。
In the reverse fluorite type positive electrode material of the present embodiment, the cation is composed of Li and two or more kinds of cation elements containing one or more kinds of transition metal elements, or the cation is Li and a plurality of transitions. It is composed of a metal element and has a general formula of Li x Me y M z O 4-a A a (however, Me.
Is at least one transition metal element, M is a cation other than Li and the transition metal, A is an anion other than oxygen, and 3
≦ x ≦ 7, 0.5 ≦ y ≦ 3, 0 ≦ z ≦ 2, 0 ≦ a ≦ 1, and 4 <x + y + z ≦ 8).
Here, the value of x indicates the composition of Li, and when x <3, it is difficult to synthesize an oxide having an inverted fluorite type crystal structure,
When x> 7, the amount of the transition metal element Me required for charge compensation becomes small. Therefore, the range of x is preferably 3 ≦ x ≦ 7.

【0019】yの値は、遷移金属元素Meの組成を示す
もので、y<0.5では、電荷補償に必要なMeの量が
少ないため必要な充放電容量が得られず、またy>3で
は逆蛍石型結晶構造の酸化物を合成することが難しくな
る。このため、yの範囲は0.5≦y≦3である。zの
値は、Li及び遷移金属元素以外のカチオンMの組成を
示すもので、遷移金属元素が1種の場合はMを含む必要
があるためz>0となり、2種以上の遷移金属元素を含
む場合はMを含むことは必ずしも必須ではないためz≧
0となる。一方、z>2では逆蛍石型結晶構造の酸化物
を合成することが難しくなる。このため、zの範囲は0
≦z≦2であることが望ましい。また、aの値は、逆蛍
石型結晶構造を構成する酸素以外のアニオンAの組成を
示すものである。a>1では逆蛍石型結晶構造の酸化物
を合成することが難しくなることから、aの範囲は0≦
a≦1であることが望ましい。
The value of y indicates the composition of the transition metal element Me. When y <0.5, the required charge / discharge capacity cannot be obtained because the amount of Me required for charge compensation is small, and y> In the case of 3, it becomes difficult to synthesize an oxide having an inverted fluorite crystal structure. Therefore, the range of y is 0.5 ≦ y ≦ 3. The value of z indicates the composition of the cation M other than Li and the transition metal element. When the number of transition metal elements is one, it is necessary to include M, so that z> 0, so that two or more transition metal elements are included. When included, it is not always necessary to include M, so z ≧
It becomes 0. On the other hand, when z> 2, it becomes difficult to synthesize an oxide having an inverted fluorite crystal structure. Therefore, the range of z is 0
It is desirable that ≦ z ≦ 2. Further, the value of a indicates the composition of the anion A other than oxygen constituting the inverted fluorite type crystal structure. When a> 1, it becomes difficult to synthesize an oxide having an inverted fluorite type crystal structure. Therefore, the range of a is 0 ≦
It is desirable that a ≦ 1.

【0020】さらに、逆蛍石型結晶構造を有する酸化物
からなる正極材料を構成するLi及びLi以外のカチオ
ンの総組成は、4<x+y+z≦8の範囲であることが
望ましい。これは、x+y+z≦4では逆蛍石型結晶構
造を維持することができず、またx+y+z>8ではア
ニオンに対するカチオン比が大きすぎ逆蛍石型結晶構造
を形成できないためである。
Furthermore, it is desirable that the total composition of Li and cations other than Li constituting the positive electrode material made of an oxide having an inverted fluorite type crystal structure is in the range of 4 <x + y + z ≦ 8. This is because when x + y + z ≦ 4, the inverse fluorite crystal structure cannot be maintained, and when x + y + z> 8, the cation to anion ratio is too large to form the inverse fluorite crystal structure.

【0021】このような本実施形態の正極材料の合成法
について説明する。本実施形態の正極材料は、一般的な
無機化合物の合成方法と同様の方法で合成できる。すな
わち、原料となる複数の化合物を、所望するLi、カチ
オンMeとM、そしてアニオンAの組成比となるよう秤
量し、均質に混合して焼成することで合成できる。原料
となる化合物において、リチウム化合物としてはリチウ
ムの水酸化物、塩化物、硝酸塩、そして炭酸塩などを用
いることができる。Li及び遷移金属元素以外のカチオ
ンMの原料となる化合物としては、その好適な化合物を
用いることができ、例えば酸化物、水酸化物、塩化物、
硝酸塩、炭酸塩、硫酸塩、そして有機酸塩などを用いる
ことができる。
A method for synthesizing the positive electrode material of this embodiment will be described. The positive electrode material of this embodiment can be synthesized by a method similar to a general method for synthesizing an inorganic compound. That is, it can be synthesized by weighing a plurality of raw material compounds so that the desired composition ratios of Li, cations Me and M, and anion A are obtained, and then uniformly mixing and firing. In the compound as a raw material, as the lithium compound, hydroxide, chloride, nitrate and carbonate of lithium can be used. As the compound which is a raw material of the cation M other than Li and the transition metal element, a suitable compound thereof can be used, and examples thereof include oxides, hydroxides, chlorides,
Nitrate, carbonate, sulfate, and organic acid salt can be used.

【0022】遷移金属元素であるカチオンMeの原料と
なる化合物としては、それぞれの元素の好適な酸化物、
水酸化物、塩化物、硝酸塩、炭酸塩、硫酸塩、そして有
機酸塩などを用いることができる。例えば、遷移金属元
素MeをCo、Mn、Feとする場合は、二酸化マンガ
ン、γ−MnOOH、炭酸マンガン、硝酸マンガン、水
酸化マンガン、Co3O4、CoO、Fe2O3、そしてFe3
O4などを用いることができる。また、LiとカチオンM
e及びMの原料のうち、2つ以上の元素を含む化合物を
原料として用いることも可能であり、例えば、CoとM
n含む弱酸性溶液中にアルカリ溶液を加えて沈殿させて
水酸化物原料とすることもできる。
As a compound as a raw material of the cation Me which is a transition metal element, a suitable oxide of each element,
Hydroxides, chlorides, nitrates, carbonates, sulfates, organic acid salts and the like can be used. For example, when the transition metal element Me is Co, Mn, or Fe, manganese dioxide, γ-MnOOH, manganese carbonate, manganese nitrate, manganese hydroxide, Co 3 O 4 , CoO, Fe 2 O 3 , and Fe 3 are used.
O 4 or the like can be used. In addition, Li and cation M
Of the raw materials of e and M, it is also possible to use a compound containing two or more elements as a raw material, for example, Co and M.
It is also possible to add an alkaline solution to a weakly acidic solution containing n and precipitate it to obtain a hydroxide raw material.

【0023】正極材料の製造工程において、必要に応じ
て、原料の混合と焼成とを繰り返し行うこともできる。
その際は、混合条件、焼成条件は適宜に選択できる。ま
た、原料の混合から焼成までの工程を繰り返す製造工程
とする場合は、混合工程を繰り返す際に原料を適宜追加
し、最終の焼成工程において正極材料に含まれる各々の
元素が目的とする組成比になるようにすることもでき
る。焼成温度は用いる原料や工程の段階により好適な温
度が異なるが、400℃〜1200℃の範囲であること
が好ましく、特に最終の焼成工程においては600℃〜
1000℃で10時間以上焼成することがより望まし
い。
In the manufacturing process of the positive electrode material, the raw materials may be mixed and fired repeatedly if necessary.
In that case, the mixing conditions and the firing conditions can be appropriately selected. When the manufacturing process is repeated from the mixing of the raw materials to the firing, the raw materials are appropriately added when the mixing step is repeated, and each element contained in the positive electrode material in the final firing step has a desired composition ratio. Can also be The firing temperature varies depending on the raw material used and the stage of the process, but is preferably in the range of 400 ° C to 1200 ° C, and particularly in the final firing process 600 ° C to
It is more desirable to fire at 1000 ° C. for 10 hours or more.

【0024】また、焼成工程は、大気中、真空中、酸素
雰囲気中、水素雰囲気中、窒素や希ガスといった不活性
ガス雰囲気中で混合した原料を焼成することで行われ
る。ただし、最終の焼成工程においては大気中または不
活性ガス雰囲気中であることが望ましい。必要に応じ、
加圧された雰囲気中で焼成することもできる。また、気
相原料を用い、これらの原料ガスを含む雰囲気中で焼成
することもできる。
The firing step is performed by firing the mixed raw materials in the atmosphere, a vacuum, an oxygen atmosphere, a hydrogen atmosphere, or an inert gas atmosphere such as nitrogen or a rare gas. However, it is desirable that the final firing step is performed in the air or an inert gas atmosphere. As needed,
It can also be fired in a pressurized atmosphere. It is also possible to use a vapor phase raw material and perform firing in an atmosphere containing these raw material gases.

【0025】このような製造方法によって得られた正極
材料は、X線回折法において、不純物相の無い単相の逆
蛍石型結晶構造を有する酸化物となっていることが望ま
しい。また、得られた正極材料の結晶構造を知るには、
正極材料を必要に応じ乳鉢などで粉砕し、例えばCuK
αを線源としたX線回折を行うことで知ることができ
る。X線回折を行う際の回折速度は0.1°/秒以下で
行う事が望ましく、より望ましくは0.02°/秒で行
う。
The positive electrode material obtained by such a manufacturing method is preferably an oxide having a single-phase inverted fluorite type crystal structure without an impurity phase in the X-ray diffraction method. Further, to know the crystal structure of the obtained positive electrode material,
If necessary, crush the positive electrode material in a mortar, etc.
This can be known by performing X-ray diffraction using α as a radiation source. The diffraction rate at the time of performing X-ray diffraction is preferably 0.1 ° / sec or less, more preferably 0.02 ° / sec.

【0026】ここで、正極材料の放電容量を測定する方
法の一例を説明する。ここでは、電気化学セルを作成
し、正極材料の電気化学的特性を金属Li基準電位で測
定する場合を示す。電気化学セル5は、図2に示すよう
に、正極材料を用いて形成した試験正極7と金属Liを
用いた対極9と多孔性絶縁材料からなるセパレーター1
1とを、セパレーター11、対極9、セパレーター1
1、試験正極7、セパレーター11の順に積層して2枚
のステンレス板13の間に圧力をかけた状態で挟み込
み、これを密封可能な容器15内に収容された有機電解
液17中に浸したものである。また、容器15内には、
金属Liを用いた参照極19も有機電解液17中に浸る
ように吊るされている。このような電気化学セル5の作
製は、アルゴンガスなどの不活性ガスを封入したグロー
ブボックス中で行う。
Here, an example of the method for measuring the discharge capacity of the positive electrode material will be described. Here, a case is shown in which an electrochemical cell is created and the electrochemical characteristics of the positive electrode material are measured at a metal Li reference potential. As shown in FIG. 2, the electrochemical cell 5 includes a separator 1 including a test positive electrode 7 formed by using a positive electrode material, a counter electrode 9 using metal Li, and a porous insulating material.
1 and the separator 11, the counter electrode 9, the separator 1
1. Test positive electrode 7 and separator 11 were laminated in this order, sandwiched between two stainless steel plates 13 under pressure, and immersed in an organic electrolyte solution 17 contained in a sealable container 15. It is a thing. In addition, in the container 15,
The reference electrode 19 using metal Li is also suspended so as to be immersed in the organic electrolytic solution 17. Such an electrochemical cell 5 is manufactured in a glove box filled with an inert gas such as argon gas.

【0027】試験正極7は、正極材料85重量%に、導
電剤として塊状黒鉛を8重量%とアセチレンブラックを
2重量%加えて混合し、結着剤として予め5重量%のポ
リフッ化ビニリデン(PVDF)をN−メチルピロリド
ン(NMP)に溶解させた溶液に分散させて正極合剤ス
ラリーとする。この正極合剤スラリーを厚さ20μmの
アルミニウム箔の片面に均一に塗布して乾燥する。乾燥
後の正極合剤の重量は、10ないし25mg/cm
する。その後、ロールプレス機により正極合剤の密度が
1.5ないし3.0g/cmとなるよう圧縮成形する。
圧縮成形後、直径15mmの円盤状に、打ち抜き金具を
用いて打ち抜き、試験正極7を作製する。
The test positive electrode 7 was prepared by mixing 85% by weight of the positive electrode material with 8% by weight of massive graphite as a conductive agent and 2% by weight of acetylene black, and mixing them with 5% by weight of polyvinylidene fluoride (PVDF) as a binder. ) Is dispersed in a solution in which N-methylpyrrolidone (NMP) is dissolved to obtain a positive electrode mixture slurry. This positive electrode mixture slurry is uniformly applied to one surface of an aluminum foil having a thickness of 20 μm and dried. The weight of the positive electrode mixture after drying is 10 to 25 mg / cm 2 . Then, it is compression-molded by a roll press machine so that the density of the positive electrode mixture becomes 1.5 to 3.0 g / cm 3 .
After compression molding, a test positive electrode 7 is manufactured by punching into a disk shape having a diameter of 15 mm using a punching metal fitting.

【0028】セパレーター11は、厚さ25μmの微多
孔性ポリプロピレンフィルムからなる。試験正極7は、
正極材料が存在する面がセパレーター11を挟んで対極
9と対向するように積層する。有機電解液17は、エチ
レンカーボネート(EC)とジエチルカーボネート(D
MC)が重量比30:70の混合溶媒に電解質として1
モル/リットル相当のLiPFを溶解したものを用い
る。
The separator 11 is made of a microporous polypropylene film having a thickness of 25 μm. The test positive electrode 7 is
The positive electrode material is laminated so that the surface on which the positive electrode material is present faces the counter electrode 9 with the separator 11 interposed therebetween. The organic electrolytic solution 17 includes ethylene carbonate (EC) and diethyl carbonate (D
1) as an electrolyte in a mixed solvent having a weight ratio of 30:70.
Using a solution obtained by dissolving LiPF 6 mol / l corresponds.

【0029】このように作製した電気化学セル5を用
い、正極材料の電気化学的特性を調べることができる。
電気化学的特性を調べる際は、0.2C相当の電流値、
望ましくは0.1C相当以下の電流値で測定を行う。
The electrochemical characteristics of the positive electrode material can be examined by using the electrochemical cell 5 thus manufactured.
When examining the electrochemical characteristics, a current value equivalent to 0.2C,
It is desirable to measure at a current value of 0.1 C or less.

【0030】ところで、正極材料のサイクル特性を知る
には、適当な充放電条件で充放電を繰返し、その電気化
学的特性の変化を調べればよい。例えば、ある適当な充
電終止電位と放電終止電位を定め、その作動電位範囲に
おける充電容量と放電容量との変化を調べる事ができ
る。したがって、複数の正極材料のサイクル特性を比較
する際には、ある作動電位範囲における充電容量と放電
容量の減少量を比較すればよい。また、正極材料の重量
あたり一定の充電容量を充電終止条件として定めること
もできる。一般に、正極材料は、充放電の容量、すなわ
ち脱離・挿入するLi量が増大するに伴い、サイクル特
性の劣化が進行する。すなわち、充放電の容量の増加に
伴い、脱離・挿入可能なLi量の減少が早くなる。この
ため、複数の正極材料のサイクル特性を比較する際に、
ある正極材料の重量あたり一定の充電容量を定め、充放
電を繰返したときに、この定めた充電容量まで充電でき
なくなったサイクル数を比較することもできる。
By the way, in order to know the cycle characteristics of the positive electrode material, charging / discharging may be repeated under appropriate charging / discharging conditions and changes in the electrochemical characteristics thereof may be investigated. For example, it is possible to determine a certain appropriate charge end potential and discharge end potential, and examine the change in the charge capacity and the discharge capacity in the operating potential range. Therefore, when comparing the cycle characteristics of a plurality of positive electrode materials, it is only necessary to compare the reduction amounts of the charge capacity and the discharge capacity in a certain operating potential range. Further, a constant charge capacity per weight of the positive electrode material can be set as the charge termination condition. Generally, in the positive electrode material, the cycle characteristics deteriorate as the charge / discharge capacity, that is, the amount of Li to be desorbed / inserted increases. That is, as the charge / discharge capacity increases, the amount of Li that can be desorbed / inserted decreases faster. Therefore, when comparing the cycle characteristics of multiple positive electrode materials,
It is also possible to determine a constant charge capacity per weight of a certain positive electrode material, and compare the number of cycles in which charging cannot be performed up to the determined charge capacity when charging and discharging are repeated.

【0031】さらに、複数の正極材料のサイクル特性を
比較する際に、サイクル特性を比較するための充電終止
条件を電位と充電容量の双方で規定することもできる。
一般に、定められた充電容量で充放電を行うと、サイク
ル劣化が進行するに従い、その充電終了時の電位が上昇
する。そして充電終了時の電位が充電終止電位に到達す
ると、それ以後の充放電サイクルにおいて充電容量が低
下する。したがって、このような方法でも、正極材料の
サイクル特性を比較することができる。
Furthermore, when comparing the cycle characteristics of a plurality of positive electrode materials, the charge termination condition for comparing the cycle characteristics can be specified by both the potential and the charge capacity.
Generally, when charging / discharging is performed with a predetermined charging capacity, the potential at the end of charging rises as the cycle deterioration progresses. When the potential at the end of charging reaches the end-of-charge potential, the charge capacity decreases in subsequent charge / discharge cycles. Therefore, even with such a method, the cycle characteristics of the positive electrode materials can be compared.

【0032】以下に、本実施形態の正極材料を含む正極
を有するリチウムイオン二次電池の構成を、円筒型電池
を一例として説明する。本実施形態の正極材料を含む正
極を有するリチウムイオン二次電池21は、図3に示す
ように、本実施形態の正極材料を含む正極23、Liを
可逆的に反応もしくは挿入する負極活物質を有する負極
25、正極23と負極25とを電気的に絶縁する機構と
なるセパレーター27、正極23と負極25を電気化学
的に結合させるリチウム塩を含む非水電解質などで構成
されている。セパレーター27は、厚さ15〜50μm
の多孔質絶縁物フィルム、例えば微多孔性ポリプロピレ
ンフィルムなどで形成されている。
The structure of a lithium ion secondary battery having a positive electrode containing the positive electrode material of this embodiment will be described below by taking a cylindrical battery as an example. As shown in FIG. 3, the lithium-ion secondary battery 21 having a positive electrode containing the positive electrode material of the present embodiment includes a positive electrode 23 containing the positive electrode material of the present embodiment and a negative electrode active material that reversibly reacts or inserts Li. The negative electrode 25, a separator 27 that serves as a mechanism for electrically insulating the positive electrode 23 and the negative electrode 25, a nonaqueous electrolyte containing a lithium salt that electrochemically bonds the positive electrode 23 and the negative electrode 25, and the like. The separator 27 has a thickness of 15 to 50 μm
Of a porous insulating film such as a microporous polypropylene film.

【0033】円筒型電池であるリチウムイオン二次電池
21は、正極23と負極25との間にセパレーター27
を挟み、これを円筒状に捲回して電極群を作製し、例え
ばSUSやアルミニウムなどでできた円筒状の電池容器
29に挿入したものである。電極群を電池容器29に挿
入した後、負極25に電気的に接続された集電タブ31
を円筒状の電池容器29の底面に溶接し、正極23に電
気的に接続された正極集電タブ33を、正極電流端子を
有する密閉蓋部35に溶接する。その後、一端が開口し
ている状態の電池容器29内に、乾燥空気中または不活
性ガス雰囲気の作業空間内で、EC/DMC混合溶媒に
1モル/リットルのLiPF塩を溶解させた電解液を
注入した後に、密閉蓋部35を円筒状の電池容器29の
開口縁部分に設けられたパッキン37を介して電池容器
29にかしめて取り付け、電池容器29内を密閉して円
筒型電池であるリチウムイオン二次電池21とした。な
お、電極群と円筒状の電池容器29の底面との間、また
は電極群と密閉蓋部35との間には、各々絶縁板39、
41が設けられており、集電タブ31、33は、各々絶
縁板39、41を貫通した状態になっている。
The lithium-ion secondary battery 21, which is a cylindrical battery, has a separator 27 between a positive electrode 23 and a negative electrode 25.
The electrode group is manufactured by sandwiching the electrode with a cylindrical shape and wound into a cylindrical shape, and inserted into a cylindrical battery container 29 made of, for example, SUS or aluminum. After inserting the electrode group into the battery container 29, a current collecting tab 31 electrically connected to the negative electrode 25.
Is welded to the bottom surface of the cylindrical battery container 29, and the positive electrode collector tab 33 electrically connected to the positive electrode 23 is welded to the closed lid portion 35 having the positive electrode current terminal. After that, in the battery container 29 with one end opened, in the working space in dry air or an inert gas atmosphere, the EC / DMC mixed solvent is added.
After injecting an electrolyte solution in which 1 mol / liter of LiPF 6 salt is dissolved, the sealing lid portion 35 is caulked and attached to the battery container 29 via a packing 37 provided at the opening edge portion of the cylindrical battery container 29. The inside of the battery container 29 was sealed to form the lithium-ion secondary battery 21, which is a cylindrical battery. An insulating plate 39 is provided between the electrode group and the bottom surface of the cylindrical battery container 29, or between the electrode group and the sealing lid 35.
41 is provided, and the current collecting tabs 31 and 33 are in a state of penetrating the insulating plates 39 and 41, respectively.

【0034】正極23の作製は以下のようにするもので
ある。正極材料である逆蛍石型結晶構造を有する酸化物
からなる正極材料の粉末と導電剤とをよく混合する。導
電剤としては、黒鉛系もしくは非晶質系の炭素粉末を用
いるのが望ましい。正極材料と導電剤との混合割合は、
重量比にして導電剤を正極材料に対して7%〜25%と
することが望ましい。これに、結着剤としてのポリフッ
化ビニリデン(PVDF)などをN−メチルピロリドン
(NMP)などの溶媒に溶解させた溶液を加えて混合
し、正極合剤スラリーとする。この正極合剤スラリーを
厚さ10μm〜20μmのアルミニウム箔に塗布して8
0℃〜100℃の温度で乾燥する。同じ手順でアルミニ
ウム箔の反対側の面にも正極合剤スラリーを塗布して乾
燥を行う。その後、ロールプレス機により圧縮成形し、
所定の大きさに切断して正極23とする。
The positive electrode 23 is manufactured as follows. A positive electrode material powder made of an oxide having an inverted fluorite type crystal structure, which is a positive electrode material, and a conductive agent are mixed well. As the conductive agent, it is desirable to use graphite-based or amorphous carbon powder. The mixing ratio of the positive electrode material and the conductive agent is
The weight ratio of the conductive agent to the positive electrode material is preferably 7% to 25%. To this, a solution of polyvinylidene fluoride (PVDF) or the like as a binder dissolved in a solvent such as N-methylpyrrolidone (NMP) is added and mixed to obtain a positive electrode mixture slurry. This positive electrode mixture slurry is applied to an aluminum foil having a thickness of 10 μm to 20 μm, and 8
Dry at a temperature of 0 ° C to 100 ° C. By the same procedure, the positive electrode mixture slurry is applied to the opposite surface of the aluminum foil and dried. After that, compression molding with a roll press machine,
The positive electrode 23 is cut into a predetermined size.

【0035】負極25の負極活物質としては、例えば、
金属リチウムや、炭素材料、Liが挿入された化合物、
またはLiとの化合物の形成が可能な様々な材料を用い
ることができるが、Liが挿入された化合物を形成可能
な材料である炭素材料が特に好適である。炭素材料に
は、黒鉛系材料や非晶質系炭素材料などがあるが、負極
活物質に用いる炭素材料の種類により、その放電挙動が
若干異なってくる。一般的に、黒鉛系材料は、金属Li
基準で0.1V付近に平坦な放電電位を示すため、放電
電圧の安定したリチウムイオン二次電池が得られる。ま
た、一般的に、非晶質系炭素材料は、その放電深度によ
り電位が連続的に変化するため、電池電圧による残容量
の検出の容易なリチウムイオン二次電池が得られる。ま
た、Liとの化合物の形成が可能な材料としては、アル
ミニウム、スズ、ケイ素、インジウム、ガリウム、マグ
ネシウムなどの金属及びこれらの元素を含む合金、ス
ズ、ケイ素などを含む金属酸化物が挙げられる。また、
負極25の負極活物質としては、Liとの化合物の形成
が可能な材料である金属、合金、そして金属酸化物と、
Liが挿入された化合物を形成可能な材料である黒鉛系
や非晶質系の炭素材料との複合材を用いることもでき
る。
As the negative electrode active material of the negative electrode 25, for example,
Metallic lithium, carbon materials, compounds containing Li,
Alternatively, various materials that can form a compound with Li can be used, but a carbon material that is a material that can form a compound into which Li is inserted is particularly preferable. Carbon materials include graphite-based materials and amorphous carbon materials, but their discharge behavior is slightly different depending on the type of carbon material used for the negative electrode active material. Generally, graphite-based materials are metallic Li
Since a flat discharge potential is shown in the vicinity of 0.1 V as a standard, a lithium ion secondary battery having a stable discharge voltage can be obtained. Further, in general, the potential of the amorphous carbon material continuously changes depending on the depth of discharge, so that a lithium ion secondary battery in which the remaining capacity can be easily detected by the battery voltage can be obtained. Examples of the material capable of forming a compound with Li include metals such as aluminum, tin, silicon, indium, gallium, and magnesium, alloys containing these elements, and metal oxides containing tin, silicon, and the like. Also,
As the negative electrode active material of the negative electrode 25, a metal, an alloy, and a metal oxide, which are materials capable of forming a compound with Li,
It is also possible to use a composite material with a graphite-based or amorphous carbon material, which is a material capable of forming a compound into which Li is inserted.

【0036】負極25の作製は以下のようにするもので
ある。ここでは、負極活物質として炭素材料を用いる。
この炭素材料からなる負極活物質に、結着剤としてPV
DFなどをNMPなどの溶媒に溶解させた溶液を加えて
混合し負極合剤スラリーとする。この負極合剤スラリー
を銅箔に塗布して80℃〜100℃の温度で乾燥する。
同じ手順で銅箔の反対側の面にも負極合剤スラリーを塗
布して乾燥を行う。その後ロールプレス機により圧縮成
形し、所定の大きさに切断し負極を作製する。セパレー
ター27として用いることができるものは、ポリエチレ
ン(PE)やポリプロピレン(PP)などの樹脂製多孔
質絶縁物フィルムや、それらの樹脂製多孔質絶縁物フィ
ルムの積層体、それらの樹脂製多孔質絶縁物フィルムに
アルミナなどの無機化合物を分散させたものなどを用い
ることもできる。
The negative electrode 25 is manufactured as follows. Here, a carbon material is used as the negative electrode active material.
The negative electrode active material made of this carbon material is used as a binder with PV
A solution prepared by dissolving DF or the like in a solvent such as NMP is added and mixed to obtain a negative electrode mixture slurry. This negative electrode mixture slurry is applied to a copper foil and dried at a temperature of 80 ° C to 100 ° C.
In the same procedure, the negative electrode mixture slurry is applied to the opposite surface of the copper foil and dried. After that, compression molding is carried out by a roll press machine and cut into a predetermined size to prepare a negative electrode. What can be used as the separator 27 is a resin-made porous insulating film such as polyethylene (PE) or polypropylene (PP), a laminate of those resin-made porous insulating films, or a resin-made porous insulating film thereof. It is also possible to use a material film in which an inorganic compound such as alumina is dispersed.

【0037】正極23と負極25を電気化学的に結合さ
せる電解質を溶解した電解液には、必要に応じ各種の添
加剤を添加してもよい。電解液は、リチウム塩を電解質
とし、これを有機溶媒に溶解したものであればよく、リ
チウム塩は、電池の充放電により電解液中を移動するL
iイオンを供給するもので、リチウム塩としては、Li
PFの他に、LiClO、LiCFSO、Li
BF、LiAsFなどを単独で、またはこれらの2
種類以上を適宜用いることができる。有機溶媒として
は、カーボネート類、エステル類、エーテル類等が挙げ
られ、エチレンカーボネート(EC)とジメチルカーボ
ネート(DMC)の他、プロピレンカーボネート、ブチ
レンカーボネート、ジエチルカーボネート、メチルエチ
ルカーボネート、ジエチルカーボネート、γ−ブチロラ
クトンなどを適宜用いることができる。一般に、これら
の有機溶媒を単独あるいは混合した溶媒に対し、上記の
ようなLi塩を0.1〜2モル/リットル、望ましくは
0.7〜1.5モル/リットルを溶解させて用いる。
If necessary, various additives may be added to the electrolytic solution in which the electrolyte that electrochemically bonds the positive electrode 23 and the negative electrode 25 is dissolved. The electrolytic solution may be a solution in which a lithium salt is used as an electrolyte and is dissolved in an organic solvent, and the lithium salt moves in the electrolytic solution due to charge and discharge of the battery.
i-ion is supplied, and as a lithium salt, Li
Other than PF 6 , LiClO 4 , LiCF 3 SO 3 , Li
BF 4 , LiAsF 6 or the like alone or 2
More than one kind can be appropriately used. Examples of the organic solvent include carbonates, esters, ethers, and the like. Besides ethylene carbonate (EC) and dimethyl carbonate (DMC), propylene carbonate, butylene carbonate, diethyl carbonate, methyl ethyl carbonate, diethyl carbonate, γ- Butyrolactone or the like can be used as appropriate. In general, 0.1 to 2 mol / liter, preferably 0.7 to 1.5 mol / liter, of the above-mentioned Li salt is dissolved and used in a solvent in which these organic solvents are used alone or in a mixture.

【0038】また、添加剤は、電池の安全性向上や副反
応の抑制、高温での安定性を高めるなどの目的で必要に
応じ用い、添加剤としては、硫黄系化合物、リン系化合
物など、上記の溶媒に溶解するもの、溶媒を兼ねるもの
などが挙げられる。
Additives are used as necessary for the purpose of improving the safety of batteries, suppressing side reactions, and improving stability at high temperatures. As additives, sulfur compounds, phosphorus compounds, etc. may be used. The thing which melt | dissolves in the said solvent, the thing which doubles as a solvent, etc. are mentioned.

【0039】また、本実施形態の正極材料を含む正極を
有するリチウムイオン二次電池を角形電池とするために
は、円筒型電池であるリチウムイオン二次電池21の正
極23、負極25、そしてセパレーター27と同様に作
成した正極、負極、セパレーターを用い、角形のセンタ
ーピンを中心として捲回し角形の電極群を作製する。こ
の角形の電極群を、円筒型電池であるリチウムイオン二
次電池21と同様に、角形の電池容器に収納し電解液を
注入後、密封する。また、角形電池の場合には、捲回し
た角形の電極群の代わりに、セパレーター、正極、セパ
レーター、負極、セパレーターの順に積層して形成した
積層体からなる電極群を用いることもできる。
In order to make the lithium ion secondary battery having the positive electrode containing the positive electrode material of this embodiment into a prismatic battery, the positive electrode 23, the negative electrode 25, and the separator of the lithium ion secondary battery 21 which is a cylindrical battery. Using the positive electrode, the negative electrode, and the separator prepared in the same manner as in No. 27, a square center electrode is wound to form a square electrode group. Similar to the lithium-ion secondary battery 21 which is a cylindrical battery, this prismatic electrode group is housed in a prismatic battery container, and after injecting an electrolytic solution, it is sealed. In the case of a prismatic battery, instead of the wound prismatic electrode group, an electrode group composed of a laminate formed by laminating a separator, a positive electrode, a separator, a negative electrode, and a separator in this order may be used.

【0040】このようにして作成したリチウムイオン二
次電池の正極の電気化学的特性を調べる場合にも、図2
に示したような電気化学セル25を用いることがができ
る。このとき、リチウムイオン二次電池21をアルゴン
などの不活性雰囲気中で解体する。この解体はリチウム
イオン二次電池21の充放電状態に関わらず行うことが
可能である。解体した電池の正極23を分離し、洗浄
液、例えばジメチルカーボネートなどで充分に洗浄し、
洗浄した正極23に付着した洗浄液を十分に乾燥させ
る。この後、正極23の全重量及び面積を測定する。さ
らに、正極合剤が塗布されている塗布面積も測定する。
その後、正極23を直径15mmの円盤状に、打ち抜き
金具を用いて打ち抜く。正極23が、正極合剤が両面に
塗付されたものである場合は、NMPやアセトンなどの
溶媒を用いてその片面を完全に剥離し、片面塗布の試験
正極を作製する。この試験正極を用いて、電気化学セル
25を作製し、前述と同様に充放電試験を行う。
When examining the electrochemical characteristics of the positive electrode of the lithium-ion secondary battery prepared in this way, FIG.
An electrochemical cell 25 as shown in can be used. At this time, the lithium ion secondary battery 21 is disassembled in an inert atmosphere such as argon. This disassembly can be performed regardless of the charge / discharge state of the lithium ion secondary battery 21. The positive electrode 23 of the disassembled battery is separated and thoroughly washed with a cleaning liquid, such as dimethyl carbonate,
The cleaning liquid attached to the cleaned positive electrode 23 is sufficiently dried. Then, the total weight and area of the positive electrode 23 are measured. Further, the area of application of the positive electrode mixture is also measured.
Then, the positive electrode 23 is punched into a disk shape having a diameter of 15 mm by using a punching metal fitting. When the positive electrode 23 is one in which the positive electrode mixture is applied on both sides, one side is completely peeled off using a solvent such as NMP or acetone to prepare a single-sided coated test positive electrode. An electrochemical cell 25 is produced using this test positive electrode, and a charge / discharge test is performed in the same manner as described above.

【0041】また、上述のようなリチウムイオン二次電
池21の解体の手法を用い、リチウムイオン二次電池2
1の正極23中の正極材料の結晶構造を調べることがで
きる。上述と同様に電池を解体し洗浄乾燥した正極23
を15mmの円盤状に打ち抜いたものをX線回折法によ
り測定する。必要に応じ、X線透過フィルムを用いるな
ど、大気に触れないようにして測定することもできる。
Further, by using the disassembling method of the lithium ion secondary battery 21 as described above, the lithium ion secondary battery 2
The crystal structure of the positive electrode material in the positive electrode 23 of No. 1 can be investigated. Positive electrode 23 in which the battery was disassembled, washed and dried in the same manner as described above
Is punched into a disk shape of 15 mm and measured by an X-ray diffraction method. If necessary, the measurement can be performed without using the X-ray transparent film so as not to contact the atmosphere.

【0042】本発明の正極材料を含む正極を備えたリチ
ウムイオン二次電池は様々な用途、例えばパーソナルコ
ンピュータ、ワープロ、コードレス電話子機、電子ブッ
クプレーヤ、携帯電話、自動車電話、ポケットベル(登
録商標)、ハンディターミナル、携帯コピー機、電子手
帳、電卓、液晶テレビ、電子翻訳機、メモリーカードな
どの各種携帯型電子機器、その他、例えばラジオ、テー
プレコーダ、ヘッドホンステレオ、ポータブルCDプレ
ーヤ、ビデオムービー、電気シェーバー、携帯型電動工
具、トランシーバ、携帯無線機、音声入力機器、の各種
携帯機器の電源や、冷蔵庫、エアコン、テレビ、ステレ
オ、温水器、オーブン電子レンジ、食器洗い機、乾燥
器、洗濯機、照明器具、玩具等の家庭用電気機器などに
用いることができる。さらに、産業用途として、各種の
電気自動車、内燃機関等の動力源と電動機による動力の
双方を用いるハイブリッド型自動車、医療機器、ゴルフ
カート、蓄電システム、エレベータなどにも適用でき
る。
The lithium-ion secondary battery provided with the positive electrode containing the positive electrode material of the present invention has various uses, such as a personal computer, a word processor, a cordless handset, an electronic book player, a mobile phone, a car phone, and a pager (registered trademark). ), Handheld terminals, portable copiers, electronic organizers, calculators, LCD TVs, electronic translators, memory cards, and other portable electronic devices, as well as other devices such as radios, tape recorders, headphone stereos, portable CD players, video movies, and electrics. Power supply for various portable devices such as shavers, portable power tools, transceivers, portable radios, voice input devices, refrigerators, air conditioners, TVs, stereos, water heaters, microwave ovens, dishwashers, dryers, washing machines, lighting It can be used for household appliances such as appliances and toys Furthermore, as an industrial application, the present invention can be applied to various electric vehicles, hybrid vehicles using both a power source such as an internal combustion engine and power from an electric motor, medical equipment, golf carts, power storage systems, elevators, and the like.

【0043】[0043]

【実施例】以下、本発明の一実施例について図4乃至図
6を参照して説明する。図4は、遷移金属元素の組成と
10サイクル目の放電容量の関係を示す図である。図5
及び6は、充放電サイクル数と電池容量の関係を示す図
である。なお、本発明は以下に説明する実施例に限定さ
れるものではない。 (実施例1)逆蛍石型結晶構造を有する酸化物からなる
正極材料として、一般式LiFe 0.8Mn0.3O
で示される正極材料1、Li4.4Fe0.9Co0.4O
3.90.1で示される正極材料2、Li4.7Fe
0.9Mn0.1Ni0.2Oで示される正極材料3、L
Fe0.6Cu0.4Ni0.1O3.80.2で示さ
れる正極材料4、Li4.4Fe0.8Al0.2Oで示
される正極材料5、Li .6FeAl0.1O3.9
0.1で示される正極材料6、Li4.8Fe0.9Zn
0.2Mg0.05Oで示される正極材料7、Li4.6
Fe0.8Co0.3Mg0.2O3.90.1で示される
正極材料8、Li4.5FeAl0.1Mg0. Oで示
される正極材料9を合成した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIGS.
This will be described with reference to FIG. FIG. 4 shows the composition of transition metal elements and
It is a figure which shows the relationship of the discharge capacity of the 10th cycle. Figure 5
6 and 6 are diagrams showing the relationship between the number of charge / discharge cycles and the battery capacity.
Is. The present invention is not limited to the examples described below.
It is not something that can be done. (Example 1) Consists of an oxide having an inverted fluorite type crystal structure
As the positive electrode material, the general formula Li5Fe 0.8Mn0.3OFour
Positive electrode material 1 represented by Li4.4Fe0.9Co0.4O
3.9F0.1Positive electrode material 2 represented by Li4.7Fe
0.9Mn0.1Ni0.2OFourPositive electrode material 3, L
i5Fe0.6Cu0.4Ni0.1O3.8F0.2Indicated by
Positive electrode material 4, Li4.4Fe0.8Al0.2OFourIndicated by
Positive electrode material 5, LiFour .6FeAl0.1O3.9F
0.1Positive electrode material 6 represented by Li4.8Fe0.9Zn
0.2Mg0.05OFourPositive electrode material 7 represented by Li4.6
Fe0.8Co0.3Mg0.2O3.9F0.1Indicated by
Positive electrode material 8, Li4.5FeAl0.1Mg0. 1OFourIndicated by
Was synthesized.

【0044】原料は、水酸化リチウム(LiOH)、フ
ッ化リチウム(LiF)、酸化鉄(Fe)、酸化
マンガン(MnO)、酸化コバルト(CoO)、酸化銅
(CuO)、酸化ニッケル(NiO)、酸化亜鉛(Z
nO)、酸化マグネシウム(MgO)、水酸化アルミニ
ウム(Al(OH))を用いた。これらの原料を所定
の金属元素比及びアニオン比となるよう秤量後、らいか
い機により室温で30分間乾式混合し、出発原料粉とし
た。これをアルミナ製の箱に入れ、アルゴン中で900
℃で15時間焼成して各正極材料1〜9を得た。
The raw materials are lithium hydroxide (LiOH), lithium fluoride (LiF), iron oxide (Fe 2 O 3 ), manganese oxide (MnO), cobalt oxide (CoO), copper oxide (Cu 2 O), and oxidation. Nickel (NiO), zinc oxide (Z
nO), magnesium oxide (MgO), and aluminum hydroxide (Al (OH) 3 ) were used. These raw materials were weighed so as to have a predetermined metal element ratio and anion ratio, and then dry-mixed at room temperature for 30 minutes by a raider machine to obtain a starting raw material powder. Place this in an alumina box and place in argon for 900
The positive electrode materials 1 to 9 were obtained by firing at 15 ° C. for 15 hours.

【0045】得られた正極材料1〜9について、以下の
手順で電気化学特性を調べた。正極材料1〜9いずれか
の正極材料85重量%に、導電剤として塊状黒鉛を8重
量%とアセチレンブラックを2重量%加えて混合し、結
着剤として予め5重量%のPVDFをNMPに溶解させ
た溶液に分散させて正極合剤スラリーとした。この正極
合剤スラリーを厚さ20μmのアルミニウム箔の片面に
均一に塗布して乾燥後、ロールプレス機により正極合剤
の密度が2.0g/cmとなるよう圧縮成形した。圧
縮成形後、これを打ち抜き金具を用いて直径15mmの
円盤状に打ち抜き、各正極材料1〜9のいずれかを含む
試験正極を作製した。
The electrochemical characteristics of the obtained positive electrode materials 1 to 9 were examined by the following procedure. Positive electrode materials 1 to 9 85% by weight of positive electrode material, 8% by weight of massive graphite as a conductive agent and 2% by weight of acetylene black were mixed and mixed, and 5% by weight of PVDF was dissolved in NMP as a binder in advance. The mixed solution was dispersed to obtain a positive electrode mixture slurry. The positive electrode mixture slurry was uniformly applied to one surface of an aluminum foil having a thickness of 20 μm, dried, and then compression-molded by a roll press machine so that the density of the positive electrode mixture was 2.0 g / cm 3 . After compression molding, this was punched into a disk shape having a diameter of 15 mm using a punching metal to prepare a test positive electrode containing any of the positive electrode materials 1 to 9.

【0046】これらの試験正極を用いて、図2に示すよ
うな対極9及び参照極19に金属Liを用いた電気化学
セル25を作製し、充放電を繰り返すサイクル試験を行
った。充放電電流は0.1mA/cmとした。また、充
電終止条件は、金属Li基準で4.0Vの電位と正極材
料重量あたり210mAh/gの定容量充電の2条件下
で試験を行った。すなわち電位と容量のどちらか一方の
条件に達した時点で充電は終了する。放電終止条件は、
金属Li基準で1.5Vの電位に達したときとした。表
1に10サイクル時の正極材料重量あたりの充電容量と
放電容量を示す。
Using these test positive electrodes, an electrochemical cell 25 using metal Li for the counter electrode 9 and the reference electrode 19 as shown in FIG. 2 was prepared, and a cycle test was conducted in which charging and discharging were repeated. The charging / discharging current was 0.1 mA / cm 2 . The test was conducted under two conditions of charge termination conditions: a potential of 4.0 V on the basis of metal Li and a constant capacity charge of 210 mAh / g per weight of the positive electrode material. That is, charging ends when either one of the potential and the capacity is reached. The discharge termination condition is
It was determined that the potential of 1.5 V was reached on the basis of metallic Li. Table 1 shows the charge capacity and discharge capacity per weight of the positive electrode material after 10 cycles.

【0047】[0047]

【表1】 10サイクル時の正極材料重量あたりの充電容量と放電
容量は、それぞれ正極材料1で198mAh/g及び1
89mAh/g、正極材料2で141mAh/g及び1
34mAh/g、正極材料3で168mAh/g及び1
60mAh/g、正極材料4で172mAh/g及び1
63mAh/g、正極材料5で128mAh/g及び1
21mAh/g、正極材料6で143mAh/g及び1
35mAh/g、正極材料7で162mAh/g及び1
55mAh/g、正極材料8で148mAh/g及び1
41mAh/g、正極材料9で135mAh/g及び1
29mAh/gであった。 (実施例2)実施例2として逆蛍石型結晶構造を有する
酸化物からなる正極材料として、一般式LiMn
0.8Ni0.1O3.80.2で示される正極材料1
0、Li5. Mn0.7Co0.2Zn0.1O3.9
0.1で示される正極材料11、Li .8MnMg
0.1Oで示される正極材料12、Li5.85Mn
0.9Cu0.1Al0.05Oで示される正極材料13
を実施例1と同様の方法で合成し、各正極材料10〜1
3のいずれかを含む試験正極を作製した。
[Table 1] The charge capacity and the discharge capacity per weight of the positive electrode material after 10 cycles were 198 mAh / g and 1 for the positive electrode material 1, respectively.
89 mAh / g, 141 mAh / g and 1 for positive electrode material 2
34 mAh / g, positive electrode material 3 with 168 mAh / g and 1
60 mAh / g, 172 mAh / g and 1 for positive electrode material 4
63 mAh / g, positive electrode material 5 has 128 mAh / g and 1
21 mAh / g, 143 mAh / g and 1 for positive electrode material 6
35 mAh / g, 162 mAh / g and 1 for positive electrode material 7
55 mAh / g, 148 mAh / g and 1 for positive electrode material 8
41 mAh / g, positive electrode material 9 has 135 mAh / g and 1
It was 29 mAh / g. As a positive electrode material composed of an oxide having an inverse fluorite crystal structure (Example 2) Example 2, the general formula Li 6 Mn
Positive electrode material 1 represented by 0.8 Ni 0.1 O 3.8 F 0.2
0, Li 5. 9 Mn 0.7 Co 0.2 Zn 0.1 O 3.9 F
Cathode material 11 indicated by 0.1, Li 5 .8 MnMg
Positive electrode material 12 represented by 0.1 O 4 , Li 5.85 Mn
Positive electrode material 13 represented by 0.9 Cu 0.1 Al 0.05 O 4
Was synthesized in the same manner as in Example 1, and each positive electrode material 10 to 1 was synthesized.
A test positive electrode including any one of 3 was prepared.

【0048】得られた正極材料10〜13について実施
例1と同様の充放電試験を行った。表1に10サイクル
時の正極材料重量あたりの充電容量と放電容量を示す。
10サイクル時の正極材料重量あたりの充電容量と放電
容量はそれぞれ正極材料10で123mAh/g及び1
16mAh/g、正極材料12で134mAh/g及び
125mAh/g、正極材料12で120mAh/g及
び114mAh/g、正極材料13で128mAh/g
及び119mAh/gであった。 (実施例3)実施例3として逆蛍石型結晶構造を有する
酸化物からなる正極材料として、一般式Li5.8Co
Zn0.1Oで示される正極材料14、LiCo
0.9Cu 0.1Zn0.05Oで示される正極材料1
5、Li5.75Co1.1Al0.0 Oで示される正
極材料16、Li5.95Co0.9Mg0.1O3.95
0.0 で示される正極材料17、LiCo0.4Ni
0.1Mg0.5Oで示される正極材18、Li5.6
0.8Al0.1Mg0.2O3.90.1で示される正
極材料19を合成した。このとき、実施例1と同様の方
法により合成を行ったが、焼成条件は、アルゴン雰囲気
中で750℃、15時間とした。
Implementation was carried out on the obtained positive electrode materials 10 to 13.
The same charge / discharge test as in Example 1 was performed. 10 cycles in Table 1
The charge capacity and the discharge capacity per unit weight of the positive electrode material are shown.
Charge capacity and discharge per positive electrode material weight at 10 cycles
The capacity is 123 mAh / g and 1 for the positive electrode material 10, respectively.
16 mAh / g, 134 mAh / g for positive electrode material 12 and
125 mAh / g, 120 mAh / g for positive electrode material 12
114 mAh / g, positive electrode material 13 has 128 mAh / g
And 119 mAh / g. (Example 3) As Example 3, it has an inverted fluorite type crystal structure.
As a positive electrode material made of an oxide, the general formula Li5.8Co
Zn0.1OFourPositive electrode material 14 represented by Li6Co
0.9Cu 0.1Zn0.05OFourPositive electrode material 1
5, Li5.75Co1.1Al0.0 5OFourPositive indicated by
Polar material 16, Li5.95Co0.9Mg0.1O3.95F
0.0 5Positive electrode material 17 represented by Li6Co0.4Ni
0.1Mg0.5OFourPositive electrode material 18 represented by Li5.6C
o0.8Al0.1Mg0.2O3.9F0.1Positive indicated by
Pole material 19 was synthesized. At this time, the same person as in Example 1
Synthesis was performed by the method, but the firing conditions were argon atmosphere.
The temperature was 750 ° C. for 15 hours.

【0049】得られた正極材料14〜19について実施
例1と同様の充放電試験を行った。表1に10サイクル
時の正極材料重量あたりの充電容量と放電容量を示す。
10サイクル時の正極材料重量あたりの充電容量と放電
容量はそれぞれ正極材料14で138mAh/g及び1
30mAh/g、正極材料15で137mAh/g及び
130mAh/g、正極材料16で140mAh/g及
び132mAh/g、正極材料17で152mAh/g
及び145mAh/g、正極材料18で119mAh/
g及び112mAh/g、正極材料19で148mAh
/g及び129mAh/gであった。 (実施例4)実施例4として逆蛍石型結晶構造を有する
酸化物からなる正極材料として、一般式Li5.6Cu
1.8Ni0.2Oで示される正極材料20、Li5.4
Cu Zn0.1O3.70.03正極材料21、Li
4.9Cu2.8Al0.1Oで示される正極材料22、
Li6.3Cu1.4Mg0.1O3.90.1で示される
正極材料23を合成した。このとき、実施例1と同様の
方法により合成を行ったが、焼成条件は、アルゴン雰囲
気中で800℃、15時間とした。
Implementation was carried out on the obtained positive electrode materials 14 to 19.
The same charge / discharge test as in Example 1 was performed. 10 cycles in Table 1
The charge capacity and the discharge capacity per unit weight of the positive electrode material are shown.
Charge capacity and discharge per positive electrode material weight at 10 cycles
The capacity of the positive electrode material 14 is 138 mAh / g and 1 respectively.
30 mAh / g, 137 mAh / g for positive electrode material 15 and
130 mAh / g, 140 mAh / g for positive electrode material 16
And 132 mAh / g, positive electrode material 17 has 152 mAh / g
And 145 mAh / g, the positive electrode material 18 has 119 mAh / g.
g and 112 mAh / g, positive electrode material 19 has 148 mAh
/ G and 129 mAh / g. (Example 4) As Example 4, it has an inverted fluorite type crystal structure.
As a positive electrode material made of an oxide, the general formula Li5.6Cu
1.8Ni0.2OFourPositive electrode material 20 represented by Li5.4
Cu TwoZn0.1O3.7F0.03Positive electrode material 21, Li
4.9Cu2.8Al0.1OFourA positive electrode material 22 represented by
Li6.3Cu1.4Mg0.1O3.9F0.1Indicated by
The positive electrode material 23 was synthesized. At this time, the same as in the first embodiment
Although the synthesis was performed by the method, the firing conditions were argon atmosphere.
The temperature was 800 ° C. in air for 15 hours.

【0050】得られた正極材料20〜23について実施
例1と同様の充放電試験を行った。表1に10サイクル
時の正極材料重量あたりの充電容量と放電容量を示す。
10サイクル時の正極材料重量あたりの充電容量と放電
容量はそれぞれ正極材料20で125mAh/g及び1
20mAh/g、正極材料21で130mAh/g及び
123mAh/g、正極材料22で135mAh/g及
び128mAh/g、正極材料23で120mAh/g
及び115mAh/gであった。 (比較例1)比較例1として逆蛍石型結晶構造を有する
酸化物からなる正極材料として、一般式LiCo
0.3Ni0.1Mg0.6Oで示される正極材料24を
実施例3と同様の方法で合成した。正極材料24は、遷
移金属元素の組成yがy<0.5となっている。
The positive electrode materials 20 to 23 thus obtained were subjected to the same charge and discharge test as in Example 1. Table 1 shows the charge capacity and discharge capacity per weight of the positive electrode material after 10 cycles.
The charge capacity and the discharge capacity per weight of the positive electrode material after 10 cycles were 125 mAh / g and 1 for the positive electrode material 20, respectively.
20 mAh / g, 130 mAh / g and 123 mAh / g for cathode material 21, 135 mAh / g and 128 mAh / g for cathode material 22, 120 mAh / g for cathode material 23
And 115 mAh / g. As a positive electrode material composed of an oxide having an inverse fluorite crystal structure (Comparative Example 1) Comparative Example 1, the general formula Li 6 Co
A positive electrode material 24 represented by 0.3 Ni 0.1 Mg 0.6 O 4 was synthesized in the same manner as in Example 3. In the positive electrode material 24, the composition y of the transition metal element is y <0.5.

【0051】得られた正極材料24の正極材料について
実施例1と同様の充放電試験を行った。表1に10サイ
クル時の正極材料重量あたりの充電容量と放電容量を示
す。正極材料24の10サイクル時の正極材料重量あた
りの充電容量と放電容量は、それぞれ98mAh/g及
び93mAh/gであった。 (比較例2)比較例2として逆蛍石型結晶構造を有する
酸化物からなる正極材料として、一般式Li4.6Cu
3.1Al0.1Oで示される正極材料の合成を実施例
4と同様の方法で試みた。ここでは、遷移金属元素の組
成yがy>3であるため、得られた材料は逆蛍石型の結
晶相と赤銅鋼型の結晶相の混合物であった。したがっ
て、単一相のものが得られなかったため、充放電試験を
行わなかった。 (比較例3)比較例3として逆蛍石型結晶構造を有する
酸化物からなる正極材料として、一般式LiCoO4
示される正極材料25を実施例3と同様の方法で合成し
た。正極材料25は、Li以外のカチオンを1種しか含
んでいない。
The same charge and discharge test as in Example 1 was conducted on the positive electrode material of the obtained positive electrode material 24. Table 1 shows the charge capacity and discharge capacity per weight of the positive electrode material after 10 cycles. The charge capacity and discharge capacity per positive electrode material weight of the positive electrode material 24 after 10 cycles were 98 mAh / g and 93 mAh / g, respectively. (Comparative Example 2) As Comparative Example 2, as a positive electrode material made of an oxide having an inverted fluorite crystal structure, a general formula Li 4.6 Cu was used.
The positive electrode material represented by 3.1 Al 0.1 O 4 was synthesized in the same manner as in Example 4. Here, since the composition y of the transition metal element was y> 3, the obtained material was a mixture of an inverted fluorite type crystal phase and a red copper steel type crystal phase. Therefore, a charge / discharge test was not performed because a single phase product was not obtained. Comparative Example 3 As Comparative Example 3, a positive electrode material 25 represented by the general formula Li 6 CoO 4 was synthesized in the same manner as in Example 3 as a positive electrode material made of an oxide having an inverted fluorite type crystal structure. The positive electrode material 25 contains only one kind of cation other than Li.

【0052】得られた正極材料25について実施例1と
同様の充放電試験を行った。表1に10サイクル時の正
極材料重量あたりの充電容量と放電容量を示す。正極材
料25の10サイクル時の正極材料重量あたりの充電容
量と放電容量は、それぞれ90mAh/g及び88mA
h/gであった。 (比較例4)比較例4として逆蛍石型結晶構造を有する
酸化物からなる正極材料として、一般式LiFeO4
示される正極材料26及びLiMnO4で示される正極
材料27を実施例1と同様の方法で合成した。正極材料
26、27は、Li以外のカチオンを1種しか含んでい
ない。
The obtained positive electrode material 25 was subjected to the same charge / discharge test as in Example 1. Table 1 shows the charge capacity and discharge capacity per weight of the positive electrode material after 10 cycles. The charge capacity and discharge capacity of the positive electrode material 25 per 10 cycles of the positive electrode material 25 were 90 mAh / g and 88 mA, respectively.
It was h / g. (Comparative Example 4) As Comparative Example 4, a positive electrode material 26 represented by the general formula Li 5 FeO 4 and a positive electrode material 27 represented by Li 6 MnO 4 were used as the positive electrode material made of an oxide having an inverted fluorite crystal structure. Synthesis was carried out in the same manner as in Example 1. The positive electrode materials 26 and 27 contain only one kind of cation other than Li.

【0053】得られた正極材料26、27について実施
例1と同様の充放電試験を行った。表1に10サイクル
時の正極材料重量あたりの充電容量と放電容量を示す。
10サイクル時の正極材料重量あたりの充電容量と放電
容量はそれぞれ正極材料26では110mAh/g及び
98mAh/g、正極材料27では39mAh/g及び
34mAh/gであった。
The positive electrode materials 26 and 27 thus obtained were subjected to the same charge / discharge test as in Example 1. Table 1 shows the charge capacity and discharge capacity per weight of the positive electrode material after 10 cycles.
The charge capacity and the discharge capacity per 10 cycles of the positive electrode material were 110 mAh / g and 98 mAh / g for the positive electrode material 26 and 39 mAh / g and 34 mAh / g for the positive electrode material 27, respectively.

【0054】このような実施例1〜4及び比較例1、3
及び4における正極材料の遷移金属組成yと10サイク
ル目の放電容量の関係を図4に示す。表1及び図4に示
した実施例1〜実施例4と比較例1、3及び4の結果の
比較すると、実施例1における正極材料1〜9、実施例
2における正極材料10〜13、実施例3における正極
材料14〜19、そして実施例4における正極材料20
〜23のいずれにおいても、比較例1における正極材料
24、比較例3における正極材料25、そして比較例4
における正極材料26、27に比べ、充電容量及び放電
容量とも高く、サイクル性に優れている。したがって、
Liと、少なくとも2種のLi以外のカチオンとを含む
逆蛍石型結晶構造を有する酸化物からなり、Li以外の
カチオンのうち、少なくとも1種が遷移金属元素である
正極材料とすれば、リチウムイオン二次電池の充放電容
量を増大し、かつ充放電サイクル特性を向上できる。
Examples 1 to 4 and Comparative Examples 1 and 3 as described above.
The relationship between the transition metal composition y of the positive electrode material and the discharge capacity at the 10th cycle in Nos. 4 and 4 is shown in FIG. Comparing the results of Examples 1 to 4 and Comparative Examples 1, 3 and 4 shown in Table 1 and FIG. 4, positive electrode materials 1 to 9 in Example 1, positive electrode materials 10 to 13 in Example 2, and Positive Electrode Material 14 to 19 in Example 3 and Positive Electrode Material 20 in Example 4
23 to 23, the positive electrode material 24 in Comparative Example 1, the positive electrode material 25 in Comparative Example 3, and the Comparative Example 4
In comparison with the positive electrode materials 26 and 27 in No. 3, the charge capacity and the discharge capacity are higher and the cycle property is excellent. Therefore,
A positive electrode material comprising an oxide having an inverted fluorite crystal structure containing Li and at least two kinds of cations other than Li, and at least one kind of cations other than Li is a transition metal element is lithium. The charge / discharge capacity of the ion secondary battery can be increased and the charge / discharge cycle characteristics can be improved.

【0055】さらに、遷移金属元素の組成yがy<0.
5では放電容量が小さく、y>3では不純物相が生成し
たことなどから、一般式LiMe4−a
で示したとき、遷移金属元素Meの組成yは、0.5≦
y≦3であることがリチウムイオン二次電池の充放電容
量を増大し、かつ充放電サイクル特性を向上する上で望
ましい。 (実施例5)実施例5では、実施例1で作製した正極材
料1を用いて図3に示すような円筒型電池であるリチウ
ムイオン二次電池21を作製した。正極23は、正極材
料、黒鉛系導電材、アセチレンブラックを重量比90:
8:2の割合で500g混合し、これにNMPで7%に
希釈したPVDF溶液を325g加え、ミキサーでこれ
を攪拌して正極合剤スラリーを作成し、転写式塗布機を
用いて、ロール状に巻かれた20μm厚のアルミ箔上に
連続塗布・乾燥をし、これをアルミ箔の両面に行った
後、所定の長さと幅に切断後250kg/cmの線圧で
ロールプレスして作製した。この正極23には、電流端
子に接続して電流を取り出すためのアルミニウム製の集
電タブ33をスポット溶接により取り付けた。
Further, the composition y of the transition metal element is y <0.
5, the discharge capacity was small, and when y> 3, an impurity phase was generated. Therefore, the general formula Li x Me y M z O 4-a A a
, The composition y of the transition metal element Me is 0.5 ≦
It is desirable that y ≦ 3 in order to increase the charge / discharge capacity of the lithium ion secondary battery and improve the charge / discharge cycle characteristics. (Example 5) In Example 5, the positive electrode material 1 produced in Example 1 was used to produce a lithium-ion secondary battery 21, which was a cylindrical battery as shown in FIG. The positive electrode 23 includes a positive electrode material, a graphite-based conductive material, and acetylene black in a weight ratio of 90 :.
Mix 500 g at a ratio of 8: 2, add 325 g of PVDF solution diluted to 7% with NMP, stir this with a mixer to prepare a positive electrode mixture slurry, and use a transfer type coating machine to roll it. It was prepared by continuous coating and drying on a 20 μm thick aluminum foil wound on the aluminum foil, applying it to both sides of the aluminum foil, cutting it to a predetermined length and width, and then roll pressing it with a linear pressure of 250 kg / cm. . A collector tab 33 made of aluminum for connecting to a current terminal and extracting a current was attached to the positive electrode 23 by spot welding.

【0056】負極25は、負極材料である塊状黒鉛15
0gに対して、NMPで7%に希釈したPVDF溶液を
240g加えてミキサーで攪拌して負極合剤スラリーと
し、正極23と同様の手法で15μm厚の銅箔上に塗布
した後、正極23と同様に切断してプレスを行い作製し
た。この負極25には、ニッケル箔を集電タブ31とし
てスポット溶接により取り付けた。
The negative electrode 25 is composed of massive graphite 15 which is a negative electrode material.
To 0 g, 240 g of PVDF solution diluted with NMP to 7% was added, and the mixture was stirred with a mixer to form a negative electrode mixture slurry, which was applied on a copper foil having a thickness of 15 μm in the same manner as the positive electrode 23, and then mixed with the positive electrode 23. It cut similarly and pressed and produced. A nickel foil was attached to the negative electrode 25 as a current collecting tab 31 by spot welding.

【0057】このように作製した正極23と負極25、
そして厚さ25μmのセパレーター27を捲回して電極
群を作製し、この電極群をSUS製の電池容器29に挿
入し、負極側の集電タブ31を電池容器29の底面に溶
接し、正極電流端子を有する密閉蓋部35に正極側の集
電タブ33を溶接し、EC/DMC混合溶媒に1モル/
リットルのLiPF塩を溶解させた電解液を注入した
後に、パッキン37を介して密閉蓋部35を電池容器2
9にかしめて密閉して円筒型電池であるリチウムイオン
二次電池21を形成した。
The positive electrode 23 and the negative electrode 25 produced in this way,
Then, a 25 μm-thick separator 27 is wound to form an electrode group, the electrode group is inserted into a battery container 29 made of SUS, a current collecting tab 31 on the negative electrode side is welded to the bottom surface of the battery container 29, and a positive electrode current is supplied. The collector tab 33 on the positive electrode side is welded to the closed lid portion 35 having a terminal, and 1 mol / liter of the EC / DMC mixed solvent is added.
After injecting an electrolytic solution in which liter of LiPF 6 salt is dissolved, the sealing lid 35 is attached to the battery container 2 via the packing 37.
The lithium ion secondary battery 21, which is a cylindrical battery, was formed by caulking it in 9 and sealing it.

【0058】このように形成された円筒型電池であるリ
チウムイオン二次電池21に銅線を接続して充放電試験
を行った。充放電電流は、200mAとし、充電終止条
件を3.9Vの電圧と2000mAhの定容量充電の2
条件下で試験を行った。すなわち、電圧と容量のどちら
か一方の条件に達した時点で充電は終了する。放電終止
条件は、電圧1.5Vとした。本実施例のリチウムイオ
ン二次電池21におけるサイクルの経過に伴う電池の充
電容量と放電容量の変化は、図5に示すように、5サイ
クル時の電池の充電容量と放電容量がそれぞれ2000
mAhと1920mAh、10サイクル時ではそれぞれ
1770mAhと1750mAhであった。 (比較例5)比較例5では、市販の正極材料であるコバ
ルト酸リチウム(LiCoO)を用いて正極23を作
成し、実施例5と同様にリチウムイオン二次電池21を
作製した。充放電試験は充電終止条件を4.4Vの電圧
と2000mAhの定容量充電の2条件下で、放電終止
条件の電圧を3.0Vとした以外は実施例5と同様に行
った。本比較例の電池におけるサイクルの経過に伴うと
電池の充電容量と放電容量の変化は、図6に示すよう
に、5サイクル時の電池の充電容量と放電容量がそれぞ
れ680mAhと525mAhであり、前述の実施例5
に比べ充電及び放電容量の低下が著しく、サイクル特性
が劣っていた。
A charging / discharging test was conducted by connecting a copper wire to the lithium-ion secondary battery 21, which is a cylindrical battery thus formed. The charging / discharging current is 200 mA, and the charge termination condition is a voltage of 3.9 V and a constant capacity charging of 2000 mAh.
The test was conducted under conditions. That is, charging ends when either the voltage or the capacity is reached. The discharge termination condition was a voltage of 1.5V. As shown in FIG. 5, the lithium-ion secondary battery 21 of the present embodiment shows a change in the charge capacity and the discharge capacity of the battery with the lapse of cycles.
mAh and 1920 mAh were 1770 mAh and 1750 mAh at 10 cycles, respectively. (Comparative Example 5) In Comparative Example 5, a positive electrode 23 was prepared using lithium cobalt oxide (LiCoO 2 ) which is a commercially available positive electrode material, and a lithium ion secondary battery 21 was prepared in the same manner as in Example 5. The charge / discharge test was performed in the same manner as in Example 5 except that the charge termination condition was a voltage of 4.4 V and a constant capacity charge of 2000 mAh, and the discharge termination condition was 3.0 V. As shown in FIG. 6, the change in the charge capacity and the discharge capacity of the battery according to the cycle of the battery of this comparative example was as follows: the charge capacity and the discharge capacity of the battery at 5 cycles were 680 mAh and 525 mAh, respectively. Example 5
Compared with, the charge and discharge capacities were significantly reduced and the cycle characteristics were inferior.

【0059】したがって、実施例5のような本発明を適
用してなる正極材料を用いて形成した正極を備えたリチ
ウムイオン二次電池では、充放電容量を増大し、かつ充
放電サイクル特性を向上できる。
Therefore, in the lithium ion secondary battery provided with the positive electrode formed by using the positive electrode material according to the present invention as in Example 5, the charge / discharge capacity is increased and the charge / discharge cycle characteristics are improved. it can.

【0060】[0060]

【発明の効果】本発明によれば、リチウムイオン二次電
池の充放電容量を増大し、かつ充放電サイクル特性を向
上できる。
According to the present invention, the charge / discharge capacity of a lithium ion secondary battery can be increased and the charge / discharge cycle characteristics can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用してなる正極材料である逆蛍石型
結晶構造を有する酸化物の構造を示す模式図である。
FIG. 1 is a schematic view showing a structure of an oxide having an inverted fluorite type crystal structure, which is a positive electrode material to which the present invention is applied.

【図2】本発明を適用してなる正極材料を用いて正極を
形成したリチウムイオン二次電池の一実施形態の概略構
成を示す部分断面図である。
FIG. 2 is a partial cross-sectional view showing a schematic configuration of an embodiment of a lithium ion secondary battery in which a positive electrode is formed using a positive electrode material to which the present invention is applied.

【図3】正極材料の電気化学的特性を調べるための電気
化学セルの概略構成の一例を示す部分断面図である。
FIG. 3 is a partial cross-sectional view showing an example of a schematic configuration of an electrochemical cell for examining electrochemical characteristics of a positive electrode material.

【図4】遷移金属元素の組成と10サイクル目の放電容
量の関係を示す図である。
FIG. 4 is a diagram showing the relationship between the composition of a transition metal element and the discharge capacity at the 10th cycle.

【図5】本発明を適用してなる正極材料の一実施例の充
放電サイクル数と電池容量の関係を示す図である。
FIG. 5 is a diagram showing the relationship between the number of charge / discharge cycles and the battery capacity of a positive electrode material according to an embodiment of the present invention.

【図6】比較例の充放電サイクル数と電池容量の関係を
示す図である。
FIG. 6 is a diagram showing the relationship between the number of charge / discharge cycles and the battery capacity in a comparative example.

【符号の説明】[Explanation of symbols]

1 アニオン 3 カチオン 5 電気化学セル 7 試験正極 9 対極 11、27 セパレーター 13 ステンレス板 15 容器 17 有機電解液 19 参照極 21 リチウムイオン二次電池 23 正極 25 負極 29 電池容器 31、33 集電タブ 35 密閉蓋部 1 anion 3 cations 5 Electrochemical cell 7 Test positive electrode 9 opposite poles 11, 27 separator 13 Stainless steel plate 15 containers 17 Organic Electrolyte 19 reference pole 21 Lithium-ion secondary battery 23 Positive electrode 25 negative electrode 29 Battery case 31, 33 Current collecting tab 35 Sealing lid

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C01G 51/00 C01G 51/00 A 53/00 53/00 A H01M 4/02 H01M 4/02 C 10/40 10/40 Z (72)発明者 武内 瀞士 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 後藤 明弘 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 Fターム(参考) 4G002 AA06 AA10 AA12 AB01 AD04 AE05 4G047 AA04 AA05 AB01 AC03 4G048 AA04 AA05 AA06 AB05 AC06 AD06 AE05 5H029 AJ03 AJ05 AK03 AL02 AL06 AL07 AL12 AL18 AM03 AM05 AM07 BJ02 BJ14 CJ08 HJ02 5H050 AA07 AA08 BA17 CA07 CB02 CB07 CB08 CB12 CB29 FA05 GA10 HA02 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C01G 51/00 C01G 51/00 A 53/00 53/00 A H01M 4/02 H01M 4/02 C 10 / 40 10/40 Z (72) Inventor Toshi Takeuchi 7-1-1 Omika-cho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Inventor Akihiro Goto 7-1 Omika-cho, Hitachi-shi, Ibaraki F-term in Hitachi Research Laboratory, Hitachi, Ltd. (Reference) 4G002 AA06 AA10 AA12 AB01 AD04 AE05 4G047 AA04 AA05 AB01 AC03 4G048 AA04 AA05 AA06 AB05 AC06 AD06 AE05 5H029 AJ03 AJ05 AK03 AL02 BJ C08 AM02 AM14 AM02 AL12 AM08 AL07 AM12 AL02 HJ02 5H050 AA07 AA08 BA17 CA07 CB02 CB07 CB08 CB12 CB29 FA05 GA10 HA02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Liと、少なくとも2種のLi以外のカ
チオンとを含む逆蛍石型結晶構造を有する酸化物からな
り、前記Li以外のカチオンのうち、少なくとも1種が
遷移金属元素であるリチウムイオン二次電池用の正極材
料。
1. A lithium comprising an oxide having an inverted fluorite type crystal structure containing Li and at least two kinds of cations other than Li, and at least one kind of the cations other than Li is a transition metal element. Positive electrode material for ion secondary batteries.
【請求項2】 一般式LiMe4−a
(但し、Meは少なくとも1種の遷移金属元素、Mは
Li及び遷移金属以外のカチオン、Aは酸素以外のアニ
オンで、3≦x≦7、0.5≦y≦3、0≦z≦2、0
≦a≦1でかつ4<x+y+z≦8)で示されることを
特徴とする請求項1に記載のリチウムイオン二次電池用
の正極材料。
2. The general formula Li x Me y M z O 4-a A.
a (however, Me is at least one kind of transition metal element, M is a cation other than Li and a transition metal, A is an anion other than oxygen, and 3 ≦ x ≦ 7, 0.5 ≦ y ≦ 3, 0 ≦ z ≦ 2,0
The positive electrode material for a lithium ion secondary battery according to claim 1, wherein ≦ a ≦ 1 and 4 <x + y + z ≦ 8).
【請求項3】 正極が請求項1または2に記載の正極材
料を含むことを特徴とするリチウムイオン二次電池。
3. A lithium ion secondary battery, wherein the positive electrode contains the positive electrode material according to claim 1 or 2.
JP2001259494A 2001-08-29 2001-08-29 Lithium ion secondary battery comprising a positive electrode material for a lithium ion secondary battery and a positive electrode formed from the positive electrode material Expired - Fee Related JP3685109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001259494A JP3685109B2 (en) 2001-08-29 2001-08-29 Lithium ion secondary battery comprising a positive electrode material for a lithium ion secondary battery and a positive electrode formed from the positive electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001259494A JP3685109B2 (en) 2001-08-29 2001-08-29 Lithium ion secondary battery comprising a positive electrode material for a lithium ion secondary battery and a positive electrode formed from the positive electrode material

Publications (2)

Publication Number Publication Date
JP2003068302A true JP2003068302A (en) 2003-03-07
JP3685109B2 JP3685109B2 (en) 2005-08-17

Family

ID=19086856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001259494A Expired - Fee Related JP3685109B2 (en) 2001-08-29 2001-08-29 Lithium ion secondary battery comprising a positive electrode material for a lithium ion secondary battery and a positive electrode formed from the positive electrode material

Country Status (1)

Country Link
JP (1) JP3685109B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190556A (en) * 2005-01-06 2006-07-20 Nec Corp Active material for lithium secondary battery, manufacturing method of the same, raw material for manufacturing the same, and lithium secondary battery
JP2010244945A (en) * 2009-04-08 2010-10-28 Toyota Industries Corp Positive electrode active material for lithium secondary battery
JP2015107890A (en) * 2013-12-04 2015-06-11 国立大学法人 東京大学 Hetero atom solid soluble alkali metal oxide
WO2015115052A1 (en) * 2014-01-31 2015-08-06 三洋電機株式会社 Nonaqueous-electrolyte secondary battery and method for manufacturing nonaqueous-electrolyte secondary battery
JP2018041677A (en) * 2016-09-09 2018-03-15 株式会社Gsユアサ Positive electrode active material, positive electrode, and nonaqueous electrolyte power storage device
US10276862B2 (en) 2012-10-25 2019-04-30 Samsung Sdi Co., Ltd. Composite cathode active material, method of preparing the composite cathode active material, and cathode and lithium battery each including the composite cathode active material
US10573885B2 (en) * 2017-01-24 2020-02-25 Farasis Energy (Ganzhou) Co., Ltd. Lithium source material and preparation method thereof and use in Li-ion cells
JP2020053315A (en) * 2018-09-27 2020-04-02 株式会社豊田自動織機 Method of manufacturing composite particles
WO2021033345A1 (en) * 2019-08-20 2021-02-25 株式会社Gsユアサ Positive electrode active material, positive electrode, non-aqueous electrolyte storage element, method for manufacturing positive electrode active material, method for manufacturing positive electrode, and method for manufacturing non-aqueous electrolyte storage element
WO2021111249A1 (en) * 2019-12-04 2021-06-10 株式会社半導体エネルギー研究所 Positive electrode active material, secondary battery, and vehicle
WO2021177258A1 (en) * 2020-03-06 2021-09-10 株式会社Gsユアサ Positive-electrode active material, positive electrode, nonaqueous-electrolyte power storage element, power storage device, method for producing positive-electrode active material, method for producing positive electrode, and method for producing nonaqueous-electrolyte power storage element
WO2022050101A1 (en) * 2020-09-01 2022-03-10 株式会社Gsユアサ Positive electrode active material, positive electrode, nonaqueous electrolyte power storage element, power storage device, method for producing positive electrode active material, method for producing positive electrode, and method for producing nonaqueous electrolyte power storage element
WO2022158672A1 (en) * 2021-01-22 2022-07-28 주식회사 엘지화학 Lithium transition metal oxide, cathode additive for lithium secondary battery, and lithium secondary battery comprising same
JP7427901B2 (en) 2019-09-30 2024-02-06 株式会社Gsユアサ Abnormality determination device, abnormality determination method, and computer program

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006190556A (en) * 2005-01-06 2006-07-20 Nec Corp Active material for lithium secondary battery, manufacturing method of the same, raw material for manufacturing the same, and lithium secondary battery
JP4696557B2 (en) * 2005-01-06 2011-06-08 日本電気株式会社 Active material for lithium secondary battery, production method thereof, raw material used therefor, and lithium secondary battery
JP2010244945A (en) * 2009-04-08 2010-10-28 Toyota Industries Corp Positive electrode active material for lithium secondary battery
US10276862B2 (en) 2012-10-25 2019-04-30 Samsung Sdi Co., Ltd. Composite cathode active material, method of preparing the composite cathode active material, and cathode and lithium battery each including the composite cathode active material
JP2015107890A (en) * 2013-12-04 2015-06-11 国立大学法人 東京大学 Hetero atom solid soluble alkali metal oxide
WO2015115052A1 (en) * 2014-01-31 2015-08-06 三洋電機株式会社 Nonaqueous-electrolyte secondary battery and method for manufacturing nonaqueous-electrolyte secondary battery
CN105940528A (en) * 2014-01-31 2016-09-14 三洋电机株式会社 Nonaqueous-electrolyte secondary battery and method for manufacturing nonaqueous-electrolyte secondary battery
JPWO2015115052A1 (en) * 2014-01-31 2017-03-23 三洋電機株式会社 Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
US10256469B2 (en) 2014-01-31 2019-04-09 Sanyo Electric Co., Ltd. Nonaqueous-electrolyte secondary battery and method for manufacturing nonaqueous-electrolyte secondary battery
JP2018041677A (en) * 2016-09-09 2018-03-15 株式会社Gsユアサ Positive electrode active material, positive electrode, and nonaqueous electrolyte power storage device
US10573885B2 (en) * 2017-01-24 2020-02-25 Farasis Energy (Ganzhou) Co., Ltd. Lithium source material and preparation method thereof and use in Li-ion cells
JP2020053315A (en) * 2018-09-27 2020-04-02 株式会社豊田自動織機 Method of manufacturing composite particles
JP7131258B2 (en) 2018-09-27 2022-09-06 株式会社豊田自動織機 Composite particle manufacturing method
WO2021033345A1 (en) * 2019-08-20 2021-02-25 株式会社Gsユアサ Positive electrode active material, positive electrode, non-aqueous electrolyte storage element, method for manufacturing positive electrode active material, method for manufacturing positive electrode, and method for manufacturing non-aqueous electrolyte storage element
JP7459877B2 (en) 2019-08-20 2024-04-02 株式会社Gsユアサ Positive electrode active material, positive electrode, and non-aqueous electrolyte storage element
JP7427901B2 (en) 2019-09-30 2024-02-06 株式会社Gsユアサ Abnormality determination device, abnormality determination method, and computer program
WO2021111249A1 (en) * 2019-12-04 2021-06-10 株式会社半導体エネルギー研究所 Positive electrode active material, secondary battery, and vehicle
WO2021177258A1 (en) * 2020-03-06 2021-09-10 株式会社Gsユアサ Positive-electrode active material, positive electrode, nonaqueous-electrolyte power storage element, power storage device, method for producing positive-electrode active material, method for producing positive electrode, and method for producing nonaqueous-electrolyte power storage element
WO2022050101A1 (en) * 2020-09-01 2022-03-10 株式会社Gsユアサ Positive electrode active material, positive electrode, nonaqueous electrolyte power storage element, power storage device, method for producing positive electrode active material, method for producing positive electrode, and method for producing nonaqueous electrolyte power storage element
WO2022158672A1 (en) * 2021-01-22 2022-07-28 주식회사 엘지화학 Lithium transition metal oxide, cathode additive for lithium secondary battery, and lithium secondary battery comprising same
WO2022158670A1 (en) * 2021-01-22 2022-07-28 주식회사 엘지화학 Lithium transition metal oxide, cathode additive for lithium secondary battery, and lithium secondary battery comprising same
WO2022158671A1 (en) * 2021-01-22 2022-07-28 주식회사 엘지화학 Lithium transition metal oxide, positive electrode additive for lithium secondary battery, and lithium secondary battery comprising same

Also Published As

Publication number Publication date
JP3685109B2 (en) 2005-08-17

Similar Documents

Publication Publication Date Title
JP5078334B2 (en) Nonaqueous electrolyte secondary battery
US7820327B2 (en) Lithium titanate and lithium cells and batteries including the same
EP2115801B1 (en) Lithium titanate and lithium cells and batteries including the same
CN100367561C (en) Nonaqueous electrolyte secondary battery
KR20190019995A (en) Electrode, non-aqueous electrolyte battery, battery pack and vehicle
JPH07230800A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
JPH06325765A (en) Nonaqueous electrolytic secondary battery and its manufacture
JPH09293512A (en) Lithium ion secondary battery and positive pole active material precursor
KR101488043B1 (en) Method for activating high capacity lithium secondary battery
JP3685109B2 (en) Lithium ion secondary battery comprising a positive electrode material for a lithium ion secondary battery and a positive electrode formed from the positive electrode material
JP2002063900A (en) Positive electrode active material for lithium secondary battery, and lithium secondary battery
CN103222094B (en) Positive active material, process for producing same, and lithium secondary battery including same
JP2002280076A (en) Lithium secondary battery, module using lithium secondary battery and device using these
JP2005158737A (en) Positive electrode for lithium secondary battery, and lithium secondary battery
JPH09213305A (en) Nonaqueous electrolyte secondary cell
US6395425B1 (en) Non-aqueous electrolyte secondary battery with a lithium copper titanium oxide electrode
JP3885720B2 (en) Positive electrode active material for lithium ion secondary battery
WO2023026482A1 (en) Electrode, battery, and battery pack
JP6554725B2 (en) Non-aqueous electrolyte battery
JP3498345B2 (en) Non-aqueous secondary battery
JP5036204B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JPH07235295A (en) Nonaqueous secondary battery
JP2001176511A (en) Lithium secondary battery and positive electrode active material for lithium secondary battery
JP3055621B2 (en) Non-aqueous electrolyte secondary battery
JP2011181222A (en) Lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees