JPH06325765A - Nonaqueous electrolytic secondary battery and its manufacture - Google Patents

Nonaqueous electrolytic secondary battery and its manufacture

Info

Publication number
JPH06325765A
JPH06325765A JP5162958A JP16295893A JPH06325765A JP H06325765 A JPH06325765 A JP H06325765A JP 5162958 A JP5162958 A JP 5162958A JP 16295893 A JP16295893 A JP 16295893A JP H06325765 A JPH06325765 A JP H06325765A
Authority
JP
Japan
Prior art keywords
lithium
active material
battery
negative electrode
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5162958A
Other languages
Japanese (ja)
Other versions
JP2997741B2 (en
Inventor
Kensuke Tawara
謙介 田原
Hideki Ishikawa
英樹 石川
Fumiharu Iwasaki
文晴 岩崎
Seiji Yahagi
誠治 矢作
Akihito Sakata
明史 坂田
Tsugio Sakai
次夫 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Electronic Components Ltd
Seiko Instruments Inc
Original Assignee
Seiko Electronic Components Ltd
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Electronic Components Ltd, Seiko Instruments Inc filed Critical Seiko Electronic Components Ltd
Priority to JP5162958A priority Critical patent/JP2997741B2/en
Priority to DE69318897T priority patent/DE69318897T2/en
Priority to EP93111938A priority patent/EP0582173B1/en
Priority to US08/097,714 priority patent/US5395711A/en
Priority to KR1019930014610A priority patent/KR100237580B1/en
Priority to TW082106073A priority patent/TW242200B/zh
Publication of JPH06325765A publication Critical patent/JPH06325765A/en
Application granted granted Critical
Publication of JP2997741B2 publication Critical patent/JP2997741B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • H01M4/0447Forming after manufacture of the electrode, e.g. first charge, cycling of complete cells or cells stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/164Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide a new nonaqueous electrolytic secondary battery and its manufacture where the battery is of high voltage and high energy density, excellent in charge/ discharge characteristics, concurrently durable in cyclic life, and is high in reliability. CONSTITUTION:In a nonaqueous electrolytic secondary battery composed of a negative electrode, a positive electrode, and at least, of lithium ion conductive nonaqueous electrolyte, silicon oxide containing lithium or cilicic acid salt is used as negative electrode active material. The lower silicon oxide is particularly used, which is represented by a composition formula LixSiOy (where, x<=0, and 2>y>0), and contains lithium. By this constitution, the secondary battery can thereby be obtained, in which negative electrode active material is low in potential, and is a base metal, charge/ discharge capacity is high in the potential area of low voltage of 0 to 1V in respect to litium, moreover, voltage is high, and energy density is also high because polarization (internal resistance) is low at the time of charge/discharge. And furthermore, the battery is excellent in high amperage current charge/discharge characteristics, concurrently is less deteriorated by over charging/over discharging, is durable in cyclic life, and is high in reliability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウムを吸蔵放出可
能な物質を負極活物質とし、リチウムイオン導電性の非
水電解質を用いる非水電解質二次電池に関するものであ
り、特に、高電圧、高エネルギー密度で且つ充放電特性
が優れ、サイクル寿命が長く、信頼性の高い新規な二次
電池を提供する新規な負極活物質及びそれに適した電解
質と正極活物質に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery using a lithium ion conductive non-aqueous electrolyte as a negative electrode active material, which is capable of inserting and extracting lithium, and particularly to a high voltage, The present invention relates to a novel negative electrode active material that provides a novel secondary battery having high energy density, excellent charge / discharge characteristics, long cycle life, and high reliability, and an electrolyte and a positive electrode active material suitable for the novel negative electrode active material.

【0002】[0002]

【従来の技術】負極活物質としてリチウムを用いる非水
電解質電池は、高電圧、高エネルギー密度で、かつ自己
放電が小さく長期信頼性に優れる等々の利点により、一
次電池としてはメモリーバックアップ用、カメラ用等の
電源として既に広く用いられている。しかしながら、近
年携帯型の電子機器、通信機器等の著しい発展に伴い、
電源としての電池に対し大電流出力を要求する機器が多
種多様に出現し、経済性と機器の小型軽量化の観点か
ら、再充放電可能で、かつ高エネルギー密度の二次電池
が強く要望されている。このため、高エネルギー密度を
有する前記非水電解質電池の二次電池化を進める研究開
発が活発に行われ、一部実用化されているが、エネルギ
ー密度、充放電サイクル寿命、信頼性等々まだまだ不十
分である。
Non-aqueous electrolyte batteries using lithium as a negative electrode active material have advantages of high voltage, high energy density, small self-discharge and excellent long-term reliability. It has already been widely used as a power source for industrial use. However, with the remarkable development of portable electronic devices and communication devices in recent years,
A wide variety of devices that require a large current output for batteries as power sources have appeared, and rechargeable / dischargeable secondary batteries with high energy density have been strongly demanded from the viewpoint of economy and reduction in size and weight of devices. ing. Therefore, research and development for promoting the non-aqueous electrolyte battery having a high energy density into a secondary battery have been actively carried out and partially put into practical use, but energy density, charge / discharge cycle life, reliability, etc. are still unsatisfactory. It is enough.

【0003】従来、この種の二次電池の正極を構成する
正極活物質としては、充放電反応の形態に依り下記の3
種のタイプのものが見い出されている。第1のタイプ
は、TiS2 ,MoS2 ,NbSe3 等の金属カルコゲ
ン化物や、MnO2 ,MoO3,V25 ,LiX Co
2 ,LiX NiO2 ,Lix Mn24 等の金属酸化
物等々の様に、結晶の層間や格子位置又は格子間隙間に
リチウムイオン(カチオン)のみがインターカレーショ
ン、デインターカレーション反応等に依り出入りするタ
イプ。第2のタイプは、ポリアニリン、ポリピロール、
ポリパラフェニレン等の導電性高分子の様な、主として
アニオンのみが安定にドープ、脱ドープ反応に依り出入
りするタイプ。第3のタイプは、グラファイト層間化合
物やポリアセン等の導電性高分子等々の様な、リチウム
カチオンとアニオンが共に出入り可能なタイプ(インタ
ーカレーション、デインターカレーション又はドープ、
脱ドープ等)である。
Conventionally, as the positive electrode active material constituting the positive electrode of this type of secondary battery, depending on the form of charge / discharge reaction, the following 3
Some types of species have been found. The first type is a metal chalcogenide such as TiS 2 , MoS 2 , NbSe 3 or MnO 2 , MoO 3 , V 2 O 5 , Li X Co.
O 2, Li X NiO 2, Li x Mn 2 O 4 or the like as a so metal oxides, crystalline interlayer and lattice positions or interstitial gap lithium-ion (cation) only intercalation, deintercalation Type that goes in and out depending on the reaction. The second type is polyaniline, polypyrrole,
A type in which mainly anions are stably doped and de-doped due to conducting reactions such as conductive polymers such as polyparaphenylene. The third type is a type (intercalation, deintercalation or dope, in which both lithium cations and anions can enter and exit, such as graphite intercalation compounds and conductive polymers such as polyacene.
Dedoping etc.).

【0004】一方、この種の電池の負極を構成する負極
活物質としては、金属リチウムを単独で用いた場合が電
極電位が最も卑であるため、上記の様な正極活物質を用
いた正極と組み合わせた電池としての出力電圧が最も高
く、エネルギー密度も高く好ましいが、充放電に伴い負
極上にデンドライトや不働体化合物が生成し、充放電に
よる劣化が大きく、サイクル寿命が短いという問題があ
った。この問題を解決するため、負極活物質として
(1)リチウムとAl,Zn,Sn,Pb,Bi,Cd
等の他金属との合金、(2)WO2 ,MoO2 ,Fe2
3 ,TiS2 等の無機化合物やグラファイト、有機物
を焼成して得られる炭素質材料等々の結晶構造中にリチ
ウムイオンを吸蔵させた層間化合物あるいは挿入化合
物、(3)リチウムイオンをドープしたポリアセンやポ
リアセチレン等の導電性高分子等々のリチウムイオンを
吸蔵放出可能な物質を用いることが提案されている。
On the other hand, as the negative electrode active material constituting the negative electrode of this type of battery, when metal lithium is used alone, the electrode potential is the most base, so that the positive electrode using the positive electrode active material as described above is used. The combined battery has the highest output voltage and high energy density, which is preferable, but there was a problem that dendrites and passivation compounds were formed on the negative electrode during charging and discharging, and deterioration due to charging and discharging was large and cycle life was short. . In order to solve this problem, as a negative electrode active material, (1) lithium and Al, Zn, Sn, Pb, Bi, Cd
Alloys with other metals such as (2) WO 2 , MoO 2 , Fe 2
An intercalation compound or an intercalation compound in which lithium ions are occluded in the crystal structure of an inorganic compound such as O 3 or TiS 2 , graphite, or a carbonaceous material obtained by firing an organic substance, (3) lithium ion-doped polyacene, It has been proposed to use a substance capable of inserting and extracting lithium ions, such as a conductive polymer such as polyacetylene.

【0005】[0005]

【発明が解決しようとする課題】しかし乍、一般に、負
極活物質として上記の様な金属リチウム以外のリチウム
イオンを吸蔵放出可能な物質を用いた負極と、前記の様
な正極活物質を用いた正極とを組合せて電池を構成した
場合には、これらの負極活物質の電極電位が金属リチウ
ムの電極電位より貴であるため、電池の作動電圧が負極
活物質として金属リチウムを単独で用いた場合よりかな
り低下するという欠点がある。例えば、リチウムとA
l,Zn,Pb,Sn,Bi,Cd等の合金を用いる場
合には0.2〜0.8V、炭素−リチウム層間化合物で
は0〜1V、MoO2 やWO2 等のリチウムイオン挿入
化合物では0.5〜1.5V作動電圧が低下する。
However, generally, a negative electrode using a material capable of inserting and extracting lithium ions other than metallic lithium as described above as a negative electrode active material, and a positive electrode active material as described above are used. When a battery is constructed by combining the positive electrode and the negative electrode active material, the electrode potential of these negative electrode active materials is nobler than the electrode potential of metallic lithium. It has the drawback of being significantly lower. For example, lithium and A
0.2 to 0.8 V when using an alloy such as 1, Zn, Pb, Sn, Bi, Cd, 0 to 1 V for a carbon-lithium intercalation compound, and 0 for a lithium ion insertion compound such as MoO 2 or WO 2. The operating voltage is reduced by 0.5 to 1.5V.

【0006】又、リチウム以外の元素も負極構成要素と
なるため、体積当り及び重量当りの容量及びエネルギー
密度が著しく低下する。更に、上記の(1)のリチウム
と他金属との合金を用いた場合には、充放電時のリチウ
ムの利用効率が低く、且つ充放電の繰り返しにより電極
にクラックが発生し割れを生じる等のためサイクル寿命
が短いという問題があり、(2)のリチウム層間化合物
又は挿入化合物の場合には、過充放電により結晶構造の
崩壊や不可逆物質の生成等の劣化があり、又電極電位が
高い(貴な)ものが多い為、これを用いた電池の出力電
圧が低いという欠点があり、(3)の導電性高分子の場
合には、充放電容量、特に体積当りの充放電容量が小さ
いという問題がある。
Further, since elements other than lithium also serve as negative electrode constituents, the capacity and energy density per volume and weight are significantly reduced. Furthermore, when the alloy of (1) above with lithium and another metal is used, the utilization efficiency of lithium during charging and discharging is low, and cracks occur in the electrode due to repeated charging and discharging, and the like. Therefore, there is a problem that the cycle life is short, and in the case of the lithium intercalation compound or the intercalation compound of (2), there is deterioration such as collapse of the crystal structure or generation of an irreversible substance due to overcharge and discharge, and a high electrode potential ( Since there are many (noble) batteries, there is a drawback that the output voltage of a battery using this is low, and in the case of the conductive polymer of (3), the charge / discharge capacity, especially the charge / discharge capacity per volume is small. There's a problem.

【0007】このため、高電圧、高エネルギー密度で、
且つ充放電特性が優れ、サイクル寿命の長い二次電池を
得るためには、リチウムに対する電極電位が低く(卑
な)、充放電時のリチウムイオンの吸蔵放出に依る結晶
構造の崩壊や不可逆物質の生成等の劣化が無く、かつ可
逆的にリチウムイオンを吸蔵放出できる量即ち有効充放
電容量のより大きい負極活物質が必要である。
Therefore, at high voltage and high energy density,
In addition, in order to obtain a secondary battery with excellent charge / discharge characteristics and a long cycle life, the electrode potential with respect to lithium is low (base), and the collapse of the crystal structure or the irreversible substance due to the absorption / desorption of lithium ions during charge / discharge. There is a need for a negative electrode active material that has a large amount of lithium ions that can be occluded and released reversibly without deterioration such as generation, that is, a large effective charge / discharge capacity.

【0008】一方、上記の正極活物質に於て、第1のタ
イプは、一般にエネルギー密度は大きいが、過充電や過
放電すると結晶の崩壊や不可逆物質の生成等による劣化
が大きいという欠点がある。又、第2、第3のタイプで
は、逆に充放電容量特に体積当たりの充放電容量及びエ
ネルギー密度が小さいという欠点がある。
On the other hand, of the above-mentioned positive electrode active materials, the first type generally has a large energy density, but has a drawback that if it is overcharged or overdischarged, it is greatly deteriorated due to crystal collapse or generation of irreversible substances. . On the contrary, the second and third types have a drawback that the charge / discharge capacity, especially the charge / discharge capacity per volume and the energy density are small.

【0009】このため、過充電特性及び過放電特性が優
れ、かつ高容量、高エネルギー密度の二次電池を得るた
めには過充電過放電に依る結晶の崩壊や不可逆物質の生
成が無く、かつ可逆的にリチウムイオンを吸蔵放出でき
る量のより大きい正極活物質が必要である。
Therefore, in order to obtain a secondary battery having excellent overcharge and overdischarge characteristics, high capacity and high energy density, there is no crystal collapse or irreversible substance formation due to overcharge and overdischarge, and A positive electrode active material having a larger amount capable of reversibly inserting and extracting lithium ions is required.

【0010】[0010]

【課題を解決するための手段】本発明は、上記の様な課
題を解決するため、この種の電池の負極活物質として、
リチウムを含有するケイ素の酸化物もしくはケイ酸塩か
ら成る新規なリチウムイオン吸蔵放出可能物質を用いる
ことを提起するものである。即ち、ケイ素の酸化物もし
くはケイ酸塩の結晶構造中または非晶質構造内にリチウ
ムを含有し、非水電解質中で電気化学反応によりリチウ
ムイオンを吸蔵及び放出可能なリチウムとケイ素の複合
酸化物を用いる。この複合酸化物中でのリチウムの状態
は主としてイオンであることが好ましいが必ずしも限定
されない。
In order to solve the above problems, the present invention provides a negative electrode active material for a battery of this type,
It is proposed to use a novel lithium ion storage / release material comprising a silicon oxide or silicate containing lithium. That is, a composite oxide of lithium and silicon containing lithium in the crystal structure or amorphous structure of silicon oxide or silicate and capable of inserting and extracting lithium ions by an electrochemical reaction in a non-aqueous electrolyte. To use. The state of lithium in this composite oxide is preferably mainly ionic, but is not necessarily limited.

【0011】本発明電池の負極活物質として用いられる
リチウムを含有するケイ素の酸化物もしくはケイ酸塩の
好ましい製造方法としては、下記の2種類の方法が上げ
られるが、これらに限定はされない。第1の方法は、リ
チウムとケイ素及び他の金属元素または非金属元素等の
各々の単体又はその化合物を所定のモル比で混合し、空
気中または酸素を有する雰囲気中で加熱して合成する方
法である。出発原料となるリチウムとケイ素及び他の金
属元素または非金属元素のそれぞれの化合物としては、
各々の酸化物、水酸化物、あるいは炭酸塩、硝酸塩等の
塩あるいは有機化合物等々の空気中又は酸素を有する雰
囲気中で加熱して酸化物を生成する化合物であれば良
い。
The following two types of methods can be mentioned as preferable methods for producing the lithium-containing silicon oxide or silicate used as the negative electrode active material of the battery of the present invention, but the method is not limited thereto. The first method is a method of synthesizing lithium, silicon, and other simple substances such as metal elements or non-metal elements or their compounds in a predetermined molar ratio, and heating in air or in an atmosphere containing oxygen. Is. The respective compounds of lithium and silicon and other metal elements or non-metal elements as starting materials,
Any oxide, hydroxide, salt such as carbonate or nitrate, or organic compound may be used as long as it is a compound that is heated in air or in an atmosphere containing oxygen to form an oxide.

【0012】リチウムとケイ素の各々の化合物として各
々の酸化物、水酸化物又はその他の酸素を有する化合物
を用いる場合には、不活性雰囲気中や真空中等の非酸化
性雰囲気中或いは酸素量を規制した雰囲気中で加熱合成
することも可能である。これらの出発原料の中で、リチ
ウムの化合物としては酸化リチウムLi2 O、過酸化リ
チウムLi22、水酸化リチウムLiOH、炭酸リチ
ウムLi2 CO3 、硝酸リチウムLiNO3 等々、ケイ
素の化合物としては二酸化ケイ素SiO2 や一酸化ケイ
素SiO等の酸化ケイ素及びそれらの水和物やオルトケ
イ酸H4 SiO 4、メタケイ酸H2 SiO3 、メタ二ケ
イ酸H2 Si25 及びその他の宿合ケイ酸等のケイ酸
等々が、加熱により容易に分解し酸化物を生成し易く且
つ固溶し易いので特に好ましい。
Each compound of lithium and silicon
Various oxides, hydroxides or other compounds containing oxygen
When using, non-oxidizing in an inert atmosphere or in a vacuum, etc.
Synthesis in a neutral atmosphere or in an atmosphere with a controlled amount of oxygen
It is also possible to do so. Among these starting materials,
Lithium oxide Li as a compound of um2 O, peroxide
Tium Li2 O2, Lithium hydroxide LiOH, Lithium carbonate
Um Li2 CO3 , Lithium nitrate LiNO3 And so on, Kay
Silicon dioxide as the elemental compound SiO2 And Kay monoxide
Silicon oxides such as elemental SiO and their hydrates and orthoke
Formic acid HFour SiO Four, Metasilicic acid H2 SiO3 , Meta
Formic acid H2 Si2 OFive And other silicic acids such as silicic acid
Etc. are easily decomposed by heating and easily form an oxide, and
It is particularly preferable because it easily forms a solid solution.

【0013】又、これらの出発原料を水やアルコール、
グリセリン等の溶媒に溶解もしくは分散し、溶液中で均
一に混合又は/及び反応させた後、乾燥し、上記の加熱
処理を行うことも出来る。特に、水酸化リチウムの水溶
液に上記の様なケイ酸もしくは酸化ケイ素またはそれら
の水溶液を所定量加えて溶解し、反応させた物を乾燥脱
水後、上記の加熱処理する方法に依れば、より均一な生
成物がより低温の加熱処理で得られる利点がある。加熱
温度は、出発原料と加熱雰囲気に依っても異なるが、通
常400℃以上で合成が可能であり、好ましくは800
℃以上、より好ましくは1100℃以上の温度がよい。
この様なリチウムの化合物とケイ素の化合物との混合物
の加熱処理に依って得られるリチウムを含有するケイ素
の酸化物の例を上げるとLi4 SiO4 、Li2 SiO
3 、Li2 Si25 、Li4 Si38、Li6 Si4
11等の各種のケイ酸リチウム及びそれらの縮合物等
や、又、これらの化学量論組成のものに対しリチウムが
過剰又は不足した非化学量論組成のもの等々が上げられ
る。
Further, these starting materials are water, alcohol,
It is also possible to dissolve or disperse in a solvent such as glycerin, uniformly mix and / or react in the solution, then dry and perform the above heat treatment. In particular, according to the method of heating the above-mentioned silicic acid or silicon oxide or an aqueous solution thereof as described above by adding a predetermined amount to an aqueous solution of lithium hydroxide, dissolving the resulting mixture, and drying and dehydrating the reaction product. There is an advantage that a uniform product can be obtained by heat treatment at a lower temperature. Although the heating temperature varies depending on the starting material and the heating atmosphere, it is usually possible to synthesize at 400 ° C. or higher, and preferably 800
C. or higher, more preferably 1100.degree. C. or higher.
Examples of lithium-containing silicon oxides obtained by heat treatment of such a mixture of a lithium compound and a silicon compound include Li 4 SiO 4 and Li 2 SiO
3 , Li 2 Si 2 O 5 , Li 4 Si 3 O 8 , Li 6 Si 4
Examples include various lithium silicates such as O 11 and condensates thereof, and non-stoichiometric compositions in which lithium is in excess or deficiency with respect to these stoichiometric compositions.

【0014】又、出発原料にケイ素の化合物として前記
の様な各種のケイ酸を用いた場合やリチウム化合物とし
て水酸化リチウム等を用いた場合には、加熱処理により
水素が完全には脱離せず、熱処理後の生成物中に一部残
り、リチウムと水素が共存することも可能であり、本発
明に含まれる。更に、リチウムもしくはその化合物と同
時に、ナトリウム、カリウム、ルビジウム等の他のアル
カリ金属、マグネシウム、カルシウム等のアルカリ土類
金属及び/又は鉄、ニッケル、マンガン、バナジウム、
チタン、鉛、アルミニウム、ゲルマニウム、ホウ素、リ
ン等々のその他の金属または非金属元素の単体もしくは
それらの化合物等をも加えてケイ素もしくはその化合物
と混合し加熱処理することにより、これらのリチウム以
外の金属イオンもしくは非金属をリチウムイオン及びケ
イ素と共存させることもでき、これらの場合も本発明に
含まれる。
Further, when various silicic acids such as those mentioned above are used as the starting compound of silicon or lithium hydroxide or the like is used as the lithium compound, hydrogen is not completely desorbed by the heat treatment. It is also possible that a part of the product remains after the heat treatment and lithium and hydrogen coexist, which are included in the present invention. Further, at the same time with lithium or a compound thereof, other alkali metals such as sodium, potassium and rubidium, alkaline earth metals such as magnesium and calcium and / or iron, nickel, manganese, vanadium,
Other metals such as titanium, lead, aluminum, germanium, boron, phosphorus, etc., other than lithium, are also added by adding other metals or non-metal elements such as simple substances or their compounds and mixing them with silicon or its compounds and heat-treating. Ions or non-metals can coexist with lithium ions and silicon, and these cases are also included in the present invention.

【0015】この様にして得られたリチウムを含有する
ケイ素の酸化物もしくはケイ酸塩は、これをそのままも
しくは必要により粉砕整粒や造粒等の加工を施した後に
負極活物質として用いることが出来るし、又、下記の第
2の方法と同様に、このリチウムを含有するケイ素の酸
化物もしくはケイ酸塩とリチウムもしくはリチウムを含
有する物質との電気化学的反応に依り、このリチウムを
含有するケイ素の酸化物もしくはケイ酸塩に更にリチウ
ムイオンを吸蔵させるか、又は逆にこのリチウムを含有
するケイ素の酸化物もしくはケイ酸塩からリチウムイオ
ンを放出させることにより、リチウム量を増加又は減少
させたものを負極活物質として用いても良い。
The lithium-containing silicon oxide or silicate thus obtained can be used as a negative electrode active material as it is or after being subjected to processing such as pulverizing and granulating if necessary. In addition, as in the case of the second method described below, the lithium-containing substance is contained by the electrochemical reaction between the lithium-containing silicon oxide or silicate and lithium or the lithium-containing substance. Increasing or decreasing the amount of lithium by causing the silicon oxide or silicate to further occlude lithium ions, or conversely, to release the lithium ions from the lithium-containing silicon oxide or silicate. You may use a thing as a negative electrode active material.

【0016】第2の方法は、二酸化ケイ素SiO2 や一
酸化ケイ素SiO等のケイ素の酸化物もしくはCaSi
3 、MgSiO3 、Zn2 SiO4 等のケイ酸塩とリ
チウムもしくはリチウムを含有する物質との電気化学的
反応に依りケイ素の酸化物もしくはケイ酸塩にリチウム
イオンを吸蔵させてリチウムを含有するケイ素の酸化物
もしくはケイ酸塩を得る方法である。ケイ酸塩として
は、上記の第一の方法に依って得られる人工合成のもの
の他、鉱物から得られる各種のケイ酸塩も用いることが
出来る。
The second method is a silicon oxide such as silicon dioxide SiO 2 or silicon monoxide SiO, or CaSi.
Containing lithium by occluding lithium ions in an oxide or silicate of silicon by an electrochemical reaction between a silicate such as O 3 , MgSiO 3 and Zn 2 SiO 4 and a substance containing lithium or lithium This is a method of obtaining an oxide or silicate of silicon. As the silicate, various synthetic silicates obtained from minerals can be used in addition to the artificially synthesized one obtained by the above-mentioned first method.

【0017】又、電気化学的反応に用いる為のリチウム
を含有する物質としては、例えば、前述の従来の技術の
項で上げた正極活物質又は負極活物質等に用いられる様
なリチウムイオンを吸蔵放出可能な活物質を用いること
が出来る。このケイ素の酸化物もしくはケイ酸塩への電
気化学的反応に依るリチウムイオンの吸蔵は、電池組立
後電池内で、又は電池製造工程の途上において電池内も
しくは電池外で行うことが出来、具体的には次の様にし
て行うことが出来る。
As the substance containing lithium for use in the electrochemical reaction, for example, a lithium ion which is used for the positive electrode active material or the negative electrode active material mentioned in the above-mentioned section of the prior art can be occluded. A releasable active material can be used. The storage of lithium ions by the electrochemical reaction of silicon into an oxide or silicate can be performed in the battery after the battery is assembled or inside or outside the battery during the battery manufacturing process. Can be done as follows.

【0018】即ち、(1)該ケイ素の酸化物もしくは該
ケイ酸塩又はそれらと導電剤及び結着剤等との混合合剤
を所定形状に成形したものを一方の電極(作用極)と
し、金属リチウム又はリチウムを含有する物質をもう一
方の電極(対極)としてリチウムイオン導電性の非水電
解質に接して両電極を対向させて電気化学セルを構成
し、作用極がカソード反応をする方向に適当な電流で通
電し電気化学的にリチウムイオンを該ケイ素の酸化物も
しくは該ケイ酸塩に吸蔵させる。得られた該作用極をそ
のまま負極として又は負極を構成する負極活物質として
用いて非水電解質二次電池を構成する。
That is, (1) one of the electrodes (working electrode) is formed by molding the silicon oxide or the silicate or a mixture of the silicon oxide or the silicate or the conductive agent and the binder into a predetermined shape. Metal lithium or a substance containing lithium is used as the other electrode (counter electrode) in contact with a lithium ion conductive non-aqueous electrolyte so that both electrodes face each other to form an electrochemical cell, and the working electrode is in the direction of cathodic reaction. A lithium ion is electrochemically occluded in the silicon oxide or the silicate by applying an appropriate current. A non-aqueous electrolyte secondary battery is constructed by using the obtained working electrode as it is as a negative electrode or as a negative electrode active material constituting the negative electrode.

【0019】(2)該ケイ素の酸化物もしくは該ケイ酸
塩又はそれらと導電剤及び結着剤等との混合合剤を所定
形状に成形し、これにリチウムもしくはリチウムの合金
等を圧着してもしくは接触させて積層電極としたものを
負極として非水電解質二次電池に組み込む。電池内でこ
の積層電極が電解質に触れることにより一種の局部電池
を形成し自己放電し電気化学的にリチウムがケイ素の酸
化物もしくはケイ酸塩に吸蔵される方法。
(2) The silicon oxide or the silicate or a mixture of the silicon oxide or the silicate or the conductive agent and the binder is molded into a predetermined shape, and lithium or a lithium alloy or the like is pressure-bonded thereto. Alternatively, a laminated electrode that is brought into contact with one another is incorporated into a non-aqueous electrolyte secondary battery as a negative electrode. A method of forming a kind of local battery by touching the electrolyte with this laminated electrode in the battery and self-discharging to electrochemically occlude lithium in the oxide or silicate of silicon.

【0020】(3)該ケイ素の酸化物もしくは該ケイ酸
塩を負極活物質とし、リチウムを含有しリチウムイオン
を吸蔵放出可能な物質を正極活物質として用いた非水電
解質二次電池を構成する。電池として使用時に充電を行
うことにより正極から放出されたリチウムイオンが該ケ
イ素の酸化物もしくはケイ酸塩に吸蔵される方法。
(3) A non-aqueous electrolyte secondary battery using the silicon oxide or the silicate as a negative electrode active material and using a material containing lithium and capable of inserting and extracting lithium ions as a positive electrode active material. . A method in which lithium ions released from the positive electrode by being charged when used as a battery are occluded in the silicon oxide or silicate.

【0021】この様にして得られるリチウムを含有する
ケイ素の酸化物もしくはケイ酸塩を負極活物質として用
いる。本発明者等は、又、上記のリチウムを含有するケ
イ素の酸化物の化学組成、特にケイ素原子数に対する酸
素原子数の比が非水電解質中での電気化学的なリチウム
イオンの吸蔵及び放出の性能即ち充放電性能に対して著
しい影響を有することを見いだした。
The lithium-containing silicon oxide or silicate thus obtained is used as the negative electrode active material. The present inventors have also found that the chemical composition of the above-mentioned lithium-containing silicon oxide, in particular, the ratio of the number of oxygen atoms to the number of silicon atoms of electrochemical storage and release of lithium ions in a non-aqueous electrolyte. It has been found that it has a significant influence on the performance, that is, the charge / discharge performance.

【0022】ケイ素の酸化物としては、二酸化ケイ素S
iO2 が最も安定であり石英結晶や非晶質シリカ(ガラ
ス)等々の形でよく知られている。このケイ素原子数に
対する酸素原子数の比が2もしくはそれ以上である二酸
化ケイ素SiO2 やケイ酸リチウムLi2 SiO3 等よ
りも酸素原子数の比の小さいケイ素の低級酸化物又はそ
れらのリチウム含有化合物Lix SiOy (但し、x≧
0、2>y>0)の方が、非水電解質中において電気化
学的にリチウムイオンを吸蔵及び放出することが出来る
量即ち充放電容量が著しく大きく、且つその電位がリチ
ウムメタルに対し1.0V以下の卑な領域の充放電容量
が著しく大きく、負極活物質としてより優れていること
が分かった。特に、非晶質構造を有するケイ素の該低級
酸化物又はそれらのリチウム含有化合物が、充放電容量
が大きく、且つ充放電の繰り返し(サイクル)や過充放
電に依る劣化が小さくより優れていることが分かった。
As silicon oxide, silicon dioxide S
iO 2 is the most stable and is well known in the form of quartz crystal, amorphous silica (glass) and the like. A lower oxide of silicon or a lithium-containing compound thereof having a smaller ratio of the number of oxygen atoms than silicon dioxide SiO 2 or lithium silicate Li 2 SiO 3 having a ratio of the number of oxygen atoms to the number of silicon atoms of 2 or more. Li x SiO y (where x ≧
0, 2>y> 0) has a remarkably large amount that can electrochemically store and release lithium ions in the non-aqueous electrolyte, that is, a charge / discharge capacity, and its potential is 1. It was found that the charge / discharge capacity in a base region of 0 V or less was remarkably large and it was more excellent as the negative electrode active material. In particular, the lower oxide of silicon having an amorphous structure or a lithium-containing compound thereof has a large charge / discharge capacity, and is excellent in less deterioration due to repeated charge / discharge (cycle) or overcharge / discharge. I understood.

【0023】これらの事実に基づき、本発明は、更に、
この種の電池の負極活物質として、より好ましくは、組
成式がLix SiOy (但し、x≧0、2>y>0)で
示され、リチウムを含有するケイ素の酸化物から成る新
規なリチウムイオン吸蔵放出可能物質を用いることを提
起するものである。即ち、ケイ素原子数に対する酸素原
子数の比yが2未満であり且つ0より大きい組成を有す
る酸化物であり、その結晶構造中、より好ましくは非晶
質構造中にリチウムを含有し、非水電解質中で電気化学
反応によりリチウムイオンを吸蔵及び放出可能なケイ素
の低級酸化物を用いる。この酸化物中でのリチウムの状
態は主としてイオンであることが好ましいが必ずしも限
定はされない。
Based on these facts, the present invention further provides
As a negative electrode active material for this type of battery, more preferably, a novel compound having a composition formula of Li x SiO y (where x ≧ 0, 2>y> 0) and comprising a lithium-containing silicon oxide is used. It proposes to use a lithium ion storage / release material. That is, an oxide having a composition in which the ratio y of the number of oxygen atoms to the number of silicon atoms is less than 2 and greater than 0, contains lithium in its crystal structure, more preferably in its amorphous structure, and is non-aqueous. A lower oxide of silicon that can store and release lithium ions by an electrochemical reaction in an electrolyte is used. The state of lithium in this oxide is preferably mainly ionic, but is not necessarily limited.

【0024】本発明電池の負極活物質として用いられる
リチウムを含有する該ケイ素の低級酸化物Lix SiO
y (但し、x≧0、2>y>0)の好ましい製造方法と
しては、下記の2種類の方法が上げられるが、これらに
限定はされない。第1の方法は、予めリチウムを含有し
ないケイ素の低級酸化物SiOy (但し、2>y>0)
を合成し、得られたケイ素の低級酸化物SiOy とリチ
ウムもしくはリチウムを含有する物質との電気化学的反
応に依り、該ケイ素の低級酸化物SiOy にリチウムイ
オンを吸蔵させて、リチウムを含有するケイ素の低級酸
化物Lix SiOy を得る方法である。この様なケイ素
の低級酸化物SiOy としては、SiO1.5 (Si2
3 )、SiO1.33(Si34 )、SiO及びSiO
0.5 (Si2 O)等々の化学量論組成のものの他、yが
0より大きく2未満の任意の組成のものでよい。
The lower oxide Li x SiO of silicon containing lithium used as the negative electrode active material of the battery of the present invention.
As a preferable manufacturing method of y (however, x ≧ 0, 2>y> 0), the following two kinds of methods are mentioned, but not limited thereto. The first method is a lower silicon oxide SiO y (2>y> 0) which does not contain lithium in advance.
And a lithium ion is occluded in the lower oxide SiO y of silicon by an electrochemical reaction between the obtained lower oxide SiO y of silicon and lithium or a substance containing lithium to contain lithium. Is a method of obtaining a lower oxide of silicon, Li x SiO y . As such a lower oxide SiO y of silicon, SiO 1.5 (Si 2 O
3 ), SiO 1.33 (Si 3 O 4 ), SiO and SiO
In addition to the stoichiometric composition such as 0.5 (Si 2 O), any composition in which y is larger than 0 and smaller than 2 may be used.

【0025】又、これらのケイ素の低級酸化物SiOy
は、下記のような種々の公知の方法に依り製造すること
が出来る。即ち、(1)二酸化ケイ素SiO2 とケイ素
Siとを所定のモル比で混合し非酸化性雰囲気中又は真
空中で加熱する方法、(2)二酸化ケイ素SiO2 を水
素H2 等の還元性ガス中で加熱して所定量還元する方
法、(3)二酸化ケイ素SiO2 を所定量の炭素Cや金
属等と混合し、加熱して所定量還元する方法、(4)ケ
イ素Siを酸素ガス又は酸化物と加熱して所定量酸化す
る方法、(5)シランSiH4 等のケイ素化合物ガスと
酸素O2 の混合ガスを加熱反応又はプラズマ分解反応さ
せるCVD法又はプラズマCVD法等々である。
Also, these lower oxides of silicon SiO y
Can be produced by various known methods as described below. That is, (1) a method in which silicon dioxide SiO 2 and silicon Si are mixed at a predetermined molar ratio and heated in a non-oxidizing atmosphere or in a vacuum, (2) silicon dioxide SiO 2 is a reducing gas such as hydrogen H 2. A method of heating in a predetermined amount to reduce a predetermined amount, (3) a method of mixing silicon dioxide SiO 2 with a predetermined amount of carbon C or a metal, and heating to reduce a predetermined amount, (4) an oxygen gas or oxidation of silicon Si A method of heating an object to oxidize it by a predetermined amount, (5) a CVD method or a plasma CVD method in which a mixed gas of a silicon compound gas such as silane SiH 4 and oxygen O 2 is heated or plasma-decomposed.

【0026】一方、電気化学的反応に用いる為のリチウ
ムを含有する物質としては、例えば、前述の従来の技術
の項で上げた正極活物質又は負極活物質等に用いられる
様なリチウムイオンを吸蔵放出可能な活物質を用いるこ
とが出来る。このケイ素の低級酸化物SiOy への電気
化学的反応に依るリチウムイオンの吸蔵は、電池組立後
電池内で、又は電池製造工程の途上において電池内もし
くは電池外で行うことが出来、具体的には次の様にして
行うことが出来る。
On the other hand, as the substance containing lithium for use in the electrochemical reaction, for example, a lithium ion which is used in the positive electrode active material or the negative electrode active material mentioned in the section of the prior art mentioned above is occluded. A releasable active material can be used. The absorption of lithium ions by the electrochemical reaction of the silicon to the lower oxide SiO y can be performed in the battery after the battery is assembled, or in the battery or outside the battery during the battery manufacturing process. Can be done as follows.

【0027】即ち、(1)該ケイ素の低級酸化物又はそ
れらと導電剤及び結着剤等との混合合剤を所定形状に成
形したものを一方の電極(作用極)とし、金属リチウム
又はリチウムを含有する物質をもう一方の電極(対極)
としてリチウムイオン導電性の非水電解質に接して両電
極を対向させて電気化学セルを構成し、作用極がカソー
ド反応をする方向に適当な電流で通電し電気化学的にリ
チウムイオンを該ケイ素の低級酸化物に吸蔵させる。得
られた該作用極をそのまま負極として又は負極を構成す
る負極活物質として用いて非水電解質二次電池を構成す
る。
That is, (1) one of the electrodes (working electrode) is formed by molding a lower oxide of silicon or a mixture of the lower oxide of silicon and a conductive agent, a binder or the like into a predetermined shape, and metal lithium or lithium is used. Substance containing the other electrode (counter electrode)
As an electrochemical cell with both electrodes facing each other in contact with a lithium ion conductive non-aqueous electrolyte, the working electrode is energized with an appropriate current in the direction of cathodic reaction to electrochemically ionize the lithium ions of the silicon Store in lower oxide. A non-aqueous electrolyte secondary battery is constructed by using the obtained working electrode as it is as a negative electrode or as a negative electrode active material constituting the negative electrode.

【0028】(2)該ケイ素の低級酸化物又はそれらと
導電剤及び結着剤等との混合合剤を所定形状に成形し、
これにリチウムもしくはリチウムの合金等を圧着しても
しくは接触させて積層電極としたものを負極として非水
電解質二次電池に組み込む。電池内でこの積層電極が電
解質に触れることにより一種の局部電池を形成し、自己
放電し電気化学的にリチウムが該ケイ素の低級酸化物に
吸蔵される方法。
(2) A lower oxide of silicon or a mixture of the lower oxide of silicon and a conductive agent or a binder is molded into a predetermined shape,
Lithium or an alloy of lithium or the like is pressure-bonded or brought into contact therewith to form a laminated electrode, which is incorporated as a negative electrode in a non-aqueous electrolyte secondary battery. A method of forming a kind of local battery by exposing the laminated electrode to the electrolyte in the battery, and self-discharging to electrochemically occlude lithium in the lower oxide of silicon.

【0029】(3)該ケイ素の低級酸化物を負極活物質
とし、リチウムを含有しリチウムイオンを吸蔵放出可能
な物質を正極活物質として用いた非水電解質二次電池を
構成する。電池として使用時に充電を行うことにより正
極から放出されたリチウムイオンが該ケイ素の低級酸化
物に吸蔵される方法。
(3) A non-aqueous electrolyte secondary battery is constructed using the lower oxide of silicon as a negative electrode active material and a material containing lithium and capable of inserting and extracting lithium ions as a positive electrode active material. A method in which lithium ions released from the positive electrode by being charged when used as a battery are occluded in the lower oxide of silicon.

【0030】第2の方法は、リチウムとケイ素の各々の
単体又はそれらの化合物を所定のモル比で混合し、非酸
化性雰囲気中または酸素を規制した雰囲気中で加熱して
合成する方法である。出発原料となるリチウムとケイ素
のそれぞれの化合物としては、各々の酸化物、水酸化
物、あるいは炭酸塩、硝酸塩等の塩あるいは有機化合物
等々の非酸化性雰囲気中で加熱して酸化物を生成する化
合物が良い。特に、ケイ素の化合物として上記の第1の
方法で示したケイ素の低級酸化物SiOy を用い、それ
らとリチウムもしくはリチウムの酸素を有する化合物と
を混合し、不活性雰囲気中又は真空中で加熱する方法が
制御が容易で製造し易く、且つ充放電特性の優れたもの
が得られので好ましい。
The second method is a method of synthesizing each element of lithium and silicon or their compounds in a predetermined molar ratio, and heating in a non-oxidizing atmosphere or an oxygen-controlled atmosphere. . The respective compounds of lithium and silicon, which are the starting materials, are heated in a non-oxidizing atmosphere such as oxides, hydroxides, salts such as carbonates and nitrates, or organic compounds to form oxides. Compound is good. In particular, the lower oxide SiO y of silicon shown in the above first method is used as a compound of silicon, and these are mixed with lithium or a compound having oxygen of lithium, and heated in an inert atmosphere or in a vacuum. The method is preferable because it is easy to control, easy to manufacture, and excellent in charge / discharge characteristics.

【0031】又、これらの出発原料を水やアルコール、
グリセリン等の溶媒に溶解もしくは分散し、溶液中で均
一に混合又は/及び反応させた後、乾燥し、上記の加熱
処理を行うことも出来る。特に、水酸化リチウムの水溶
液にケイ素または上記のケイ素の低級酸化物又はそれら
の分散液もしくは水溶液を所定量加えて混合し、反応さ
せた物を乾燥脱水後、上記の加熱処理する方法に依れ
ば、より均一な生成物がより低温の加熱処理で得られる
利点がある。加熱温度は、出発原料と加熱雰囲気に依っ
ても異なるが、通常400℃以上で合成が可能であり、
一方800℃以上の温度ではケイ素Siと二酸化ケイ素
SiO2 に不均化反応する場合があるため400〜80
0℃の温度が好ましい。
Further, these starting materials may be water or alcohol,
It is also possible to dissolve or disperse in a solvent such as glycerin, uniformly mix and / or react in the solution, then dry and perform the above heat treatment. In particular, it depends on the method of adding the predetermined amount of silicon or the above-mentioned lower oxide of silicon or a dispersion or aqueous solution thereof to an aqueous solution of lithium hydroxide and mixing them, drying and dehydrating the reacted product, and then performing the heat treatment described above. For example, a more uniform product can be obtained by heat treatment at a lower temperature. Although the heating temperature differs depending on the starting material and the heating atmosphere, it is usually possible to synthesize at 400 ° C. or higher,
On the other hand, at a temperature of 800 ° C. or higher, a disproportionation reaction of silicon Si and silicon dioxide SiO 2 may occur, so 400-80
A temperature of 0 ° C. is preferred.

【0032】又、出発原料にケイ素の化合物として水素
を有する各種のケイ酸を用いた場合やリチウム化合物と
して水酸化リチウム等を用いた場合には、加熱処理によ
り水素が完全には脱離せず、熱処理後の生成物中に一部
残り、リチウムと水素が共存することも可能であり、本
発明に含まれる。更に、リチウムもしくはその化合物及
びケイ素もしくはその化合物と共に、少量のナトリウ
ム、カリウム、ルビジウム等の他のアルカリ金属、マグ
ネシウム、カルシウム等のアルカリ土類金属及び/又は
鉄、ニッケル、マンガン、バナジウム、チタン、鉛、ア
ルミニウム、ゲルマニウム、ホウ素、リン等々のその他
の金属または非金属元素の単体もしくはそれらの化合物
等をも加えて混合し加熱処理することにより、少量のこ
れらのリチウム以外の金属もしくは非金属をリチウム及
びケイ素と共存させることもでき、これらの場合も本発
明に含まれる。
Further, when various silicic acids having hydrogen as a silicon compound are used as a starting material, or when lithium hydroxide or the like is used as a lithium compound, hydrogen is not completely desorbed by heat treatment, It is possible that a part of the product remains after the heat treatment and lithium and hydrogen coexist, which is included in the present invention. Further, together with lithium or a compound thereof and silicon or a compound thereof, a small amount of another alkali metal such as sodium, potassium or rubidium, an alkaline earth metal such as magnesium or calcium and / or iron, nickel, manganese, vanadium, titanium or lead. , Aluminium, germanium, boron, phosphorus and other metals or non-metal elements such as simple substances or compounds thereof are also mixed and heat-treated to remove a small amount of these metals or non-metals other than lithium from lithium and It can be made to coexist with silicon, and these cases are also included in the present invention.

【0033】この様にして得られたリチウムを含有する
ケイ素の低級酸化物は、これをそのままもしくは必要に
より粉砕整粒や造粒等の加工を施した後に負極活物質と
して用いることが出来るし、又、上記の第1の方法と同
様に、このリチウムを含有するケイ素の低級酸化物とリ
チウムもしくはリチウムを含有する物質との電気化学的
反応に依り、このリチウムを含有するケイ素の低級酸化
物に更にリチウムイオンを吸蔵させるか、又は逆にこの
リチウムを含有するケイ素の低級酸化物からリチウムイ
オンを放出させることにより、リチウム量を増加又は減
少させたものを負極活物質として用いても良い。
The thus obtained lithium-containing silicon lower oxide can be used as a negative electrode active material as it is or after being optionally subjected to processing such as pulverization and granulation. In the same manner as in the first method, the lithium-containing silicon lower oxide is converted to the lithium-containing silicon lower oxide by an electrochemical reaction between the lithium-containing silicon lower oxide and lithium or a lithium-containing substance. Further, a material in which the amount of lithium is increased or decreased by occluding lithium ions or conversely releasing lithium ions from the lower oxide of silicon containing lithium may be used as the negative electrode active material.

【0034】この様にして得られるリチウムを含有する
ケイ素の低級酸化物Lix SiOyを負極活物質として
用いる。一方正極活物質としては、前述の様にTiS
2 ,MoS2 ,NbSe3 等の金属カルコゲン化物や、
MnO2 ,MoO3 ,V25 ,LiX CoO2 ,Li
XNiO2 ,Lix Mn24 等の金属酸化物、ポリア
ニリン、ポリピロール、ポリパラフェニレンポリアセン
等の導電性高分子、及びグラファイト層間化合物等々の
リチウムイオン及び/又はアニオンを吸蔵放出可能な各
種の物質を用いることが出来る。本発明のリチウムを含
有するケイ素の酸化物、特に低級酸化物Li x SiOy
を負極活物質とする負極は、金属リチウムに対する電極
電位が低く(卑)且つ1V以下の卑な領域の充放電容量
が著しく大きいという利点を有している為、前述の金属
酸化物や金属カルコゲン化物等々の様な金属リチウムに
対する電極電位が2V以上、より好ましくはV25
MnO2 、LiX CoO2 、Lix NiO2 やLix
24 等々の様な3Vないし4V以上の高電位を有す
る(貴な)活物質を用いた正極と組み合わせることに依
り、より高電圧高エネルギー密度でかつ充放電特性の優
れた二次電池が得られるという利点を有する。
It contains lithium thus obtained
Lower oxide of silicon Lix SiOyAs the negative electrode active material
To use. On the other hand, as the positive electrode active material, as described above, TiS
2 , MoS2 , NbSe3 Metal chalcogenides such as
MnO2 , MoO3 , V2 OFive , LiX CoO2 , Li
XNiO2 , Lix Mn2 OFour Metal oxides such as polyurea
Niline, polypyrrole, polyparaphenylene polyacene
Such as conductive polymers, graphite intercalation compounds, etc.
Each capable of occluding and releasing lithium ions and / or anions
Seed materials can be used. Including the lithium of the present invention
Having oxides of silicon, especially lower oxides Li x SiOy 
Negative electrode with a negative electrode active material is an electrode for metallic lithium.
Charging / discharging capacity in a low potential (base) and base area of 1 V or less
Has the advantage that the
For metallic lithium such as oxides and chalcogenides
The electrode potential with respect to it is 2 V or more, more preferably V2 OFive ,
MnO2 , LiX CoO2 , Lix NiO2 And Lix M
n2 OFour Have a high potential of 3V to 4V or more like etc.
By combining with a positive electrode using a (noble) active material
Higher voltage and energy density and excellent charge / discharge characteristics.
It is possible to obtain an improved secondary battery.

【0035】特に、本発明に依るリチウムを含有するケ
イ素の酸化物もしくはケイ酸塩から成る負極活物質を用
いた負極と共に、組成式がLiabc2で示され、但
し、Mは遷移金属元素、Lはホウ素B及びケイ素Siの
中から選ばれた1種以上の類金属元素であり、a,b,
cはそれぞれ0<a≦1.15、0.85≦b+c≦
1.3、0≦cであり、リチウムを含有し層状構造を有
する複合酸化物から成る正極活物質を用いた正極とを組
み合わせて用いた場合には、特に高エネルギー密度で充
放電特性が優れるとともに過充電過放電に依る劣化が小
さくサイクル寿命の長い二次電池が得られるので特に好
ましい。
In particular, the composition formula is shown as Li a M b L c O 2 together with the negative electrode using the negative electrode active material comprising the lithium-containing silicon oxide or silicate according to the present invention, where M Is a transition metal element, L is one or more kinds of metal elements selected from boron B and silicon Si, and a, b,
c is 0 <a ≦ 1.15, 0.85 ≦ b + c ≦, respectively
1.3, 0 ≦ c, and when used in combination with a positive electrode using a positive electrode active material made of a composite oxide containing lithium and having a layered structure, the charge and discharge characteristics are particularly excellent at high energy density. At the same time, a secondary battery which is less deteriorated due to overcharge and overdischarge and has a long cycle life is particularly preferable.

【0036】本発明電池の正極活物質として用いられる
該複合酸化物Liabc2は次のようにして合成する
ことが出来る。即ち、リチウムLi、遷移金属M及び元
素Lの各単体または各々の酸化物、水酸化物あるいは炭
酸塩、硝酸塩などの塩を所定比で混合し、空気中または
酸素を有する雰囲気中600℃以上の温度、好ましくは
700〜900℃の温度で加熱焼成することに依って得
られる。Li、M及びL等の供給源としてそれらの酸化
物、または、酸素を有する化合物を用いる場合には、不
活性雰囲気中で加熱合成することも可能である。加熱時
間は、通常4〜50時間で十分であるが、合成反応を促
進し、均一性を高めるため、焼成、冷却、粉砕混合のプ
ロセスを数回繰り返すことが有効である。
The composite oxide Li a M b L c O 2 used as the positive electrode active material of the battery of the present invention can be synthesized as follows. That is, lithium Li, transition metal M and element L each alone or mixed with respective oxides, hydroxides or salts such as carbonates and nitrates at a predetermined ratio and heated in air or in an atmosphere containing oxygen at 600 ° C. or higher. It is obtained by heating and calcining at a temperature, preferably 700 to 900 ° C. When the oxides or compounds containing oxygen are used as the supply sources of Li, M, L and the like, it is possible to perform heat synthesis in an inert atmosphere. A heating time of 4 to 50 hours is usually sufficient, but it is effective to repeat the processes of firing, cooling, and pulverizing and mixing several times in order to promote the synthesis reaction and enhance the uniformity.

【0037】組成式Liabc2に於て、Li量aは
上記の加熱合成に於いては定比組成a=1が標準である
が、±15%程度の不定比組成も可能であり、又、電気
化学的なインターカレーション、デインターカレーショ
ン等により0<a≦1.15が可能である。遷移金属M
としては、Co,Ni,Fe,Mn,Cr,V等が好ま
しく、特にCo,Niが充放電特性が優れており好まし
い。ホウ素及び/又はケイ素の量c及び遷移金属M量b
としては、0<cかつ0.85≦b+c≦1.3におい
て充放電時の分極(内部抵抗)の低減、サイクル特性向
上等への効果が顕著であり好ましい。一方、各サイクル
毎の充放電容量は、ホウ素及び/又はケイ素の量cが多
過ぎると逆に低下し、0<c≦0.5において最大とな
るため、この範囲が特に好ましい。
In the composition formula Li a M b L c O 2 , the standard Li ratio a is 1 in the above heat synthesis, but a non-stoichiometric composition of about ± 15% is also possible. It is possible, and 0 <a ≦ 1.15 is possible by electrochemical intercalation, deintercalation, or the like. Transition metal M
As the above, Co, Ni, Fe, Mn, Cr, V and the like are preferable, and Co and Ni are particularly preferable because they have excellent charge and discharge characteristics. Amount c of boron and / or silicon and amount b of transition metal M
When 0 <c and 0.85 ≦ b + c ≦ 1.3, the effects on reduction of polarization (internal resistance) during charge / discharge, improvement of cycle characteristics, etc. are remarkable, which is preferable. On the other hand, the charge / discharge capacity in each cycle decreases conversely when the amount c of boron and / or silicon is too large, and becomes the maximum when 0 <c ≦ 0.5. Therefore, this range is particularly preferable.

【0038】又、電解質としては、γ−ブチロラクト
ン、プロピレンカーボネート、エチレンカーボネート、
ブチレンカーボネート、ジメチルカーボネート、ジエチ
ルカーボネート、メチルフォーメイト、1,2−ジメト
キシエタン、テトラヒドロフラン、ジオキソラン、ジメ
チルフォルムアミド等の有機溶媒の単独又は混合溶媒に
支持電解質としてLiClO4 ,LiPF6 ,LiBF
4 ,LiCF3 SO3 等のリチウムイオン解離性塩を溶
解した非水(有機)電解液、ポリエチレンオキシドやポ
リフォスファゼン架橋体等の高分子に前記リチウム塩を
固溶させた高分子固体電解質あるいはLi3 N,LiI
等の無機固体電解質等々のリチウムイオン導電性の非水
電解質を用いることが出来る。
As the electrolyte, γ-butyrolactone, propylene carbonate, ethylene carbonate,
LiClO 4 , LiPF 6 , LiBF 6 as a supporting electrolyte in a single or mixed solvent of organic solvents such as butylene carbonate, dimethyl carbonate, diethyl carbonate, methyl formate, 1,2-dimethoxyethane, tetrahydrofuran, dioxolane and dimethylformamide.
4 , a non-aqueous (organic) electrolytic solution in which a lithium ion dissociable salt such as LiCF 3 SO 3 is dissolved, a polymer solid electrolyte in which the lithium salt is dissolved in a polymer such as polyethylene oxide or a crosslinked polyphosphazene, or Li 3 N, LiI
Lithium ion conductive non-aqueous electrolytes such as inorganic solid electrolytes and the like can be used.

【0039】しかし乍、本発明によるリチウムを含有す
るケイ素の酸化物、特にケイ素の低級酸化物Lix Si
y を負極活物質とし、上記のような非水電解液を用い
て非水電解質二次電池を構成すると、用いる非水電解液
の種類により充電容量と放電容量の差すなわち容量ロス
が著しく異なり、充放電効率が著しく異なるため、充放
電の繰り返しによる放電容量の低下、従ってサイクル寿
命が著しく異なるということが分かった。この主原因
は、後述の実施例において詳細に説明するが、充電時に
リチウムを含有する該ケイ素の酸化物、特にケイ素の低
級酸化物Lix SiOy を活物質とする負極において非
水電解液が分解してガスを発生し、非水電解液が劣化し
内部抵抗が増加するためである事が明らかになった。こ
の電解液の分解に依るガス発生は電池の内圧を高め、甚
だしい場合には電池を膨らませ、破裂に至らしめること
もあるため、安全面においても重要な問題である。この
様な電池を実際に電子機器等に搭載して使用すると、電
子機器の破損にもつながる。
However, the oxide of silicon containing lithium according to the invention, in particular the lower oxide of silicon Li x Si.
When O y is used as the negative electrode active material and a non-aqueous electrolyte secondary battery is constructed using the above non-aqueous electrolyte, the difference between the charge capacity and the discharge capacity, that is, the capacity loss remarkably differs depending on the type of the non-aqueous electrolyte used. It was also found that the charging and discharging efficiencies were remarkably different, and therefore the discharge capacity was decreased by repeated charging and discharging, and thus the cycle life was remarkably different. The main reason for this will be described in detail in Examples described later, but in a negative electrode using an oxide of silicon containing lithium, particularly a lower oxide of silicon Li x SiO y as an active material during charging, a non-aqueous electrolyte is It was clarified that this was because the non-aqueous electrolyte was deteriorated due to decomposition and gas generation, and the internal resistance was increased. The generation of gas due to the decomposition of the electrolytic solution raises the internal pressure of the battery, and in extreme cases, it may cause the battery to swell, leading to rupture, which is an important safety issue. If such a battery is actually installed in an electronic device or the like and used, the electronic device may be damaged.

【0040】一般に、非水電解液も、安定な領域外の高
電位あるいは低電位が印加されると電気化学的な反応に
より酸化・還元される。これにより電解液が分解・劣化
し、電池として用いた場合には電池の劣化や充放電サイ
クル寿命の低下につながる。特に本発明のLix SiO
y (0≦x,0<y<2)で示されるリチウムを含有す
るケイ素の低級酸化物を負極活物質として用いた場合に
は、充放電の繰り返しによる活物質そのものの劣化より
も、非水電解液の劣化や分解により発生したガスの蓄積
による電池の内部抵抗の増加等がその電池の性能劣化を
引き起こす。また前述した容量ロスも大きく、活物質の
持つ高い充放電容量特性を十分に活かす事ができない。
Generally, the non-aqueous electrolyte is also oxidized / reduced by an electrochemical reaction when a high potential or a low potential outside the stable region is applied. As a result, the electrolytic solution is decomposed and deteriorated, which leads to deterioration of the battery and shortening of the charge / discharge cycle life when used as a battery. In particular, Li x SiO of the present invention
When a lithium-containing lower oxide of silicon represented by y (0 ≦ x, 0 <y <2) is used as the negative electrode active material, the non-aqueous state is more preferable than the deterioration of the active material itself due to repeated charging and discharging. The internal resistance of the battery increases due to the accumulation of gas generated by the deterioration and decomposition of the electrolytic solution, which causes the performance of the battery to deteriorate. In addition, the above-mentioned capacity loss is large, and the high charge / discharge capacity characteristic of the active material cannot be fully utilized.

【0041】本発明は又、上記の様な問題点を解決する
ため、負極活物質としてリチウムを含有するケイ素の酸
化物、特にLix SiOy (0≦x,0<y<2)で示
される低級酸化物を用いる二次電池において、エチレン
カーボネート(EC)を含有する非水電解液を用いる事
を提案するものである。ECは凝固点が高いため、電解
液の全溶媒に対して体積比で80%以下にする事が望ま
しい。また、ECは高粘度溶媒であるので、よりイオン
導電性を高め、さらに安定化するために数1で表される
R・R’型アルキルカーボネート(R=R’も含む)を
も含有する事が望ましい。R及びR’はCn2n+1で示
されるアルキル基で、n=1、2、3、4、5の場合に
特にイオン導電性が高く、低粘度であり好ましい。中で
も、数1中のR及びR’がメチル基(n=1)やエチル
基(n=2)である、ジメチルカーボネート(DM
C)、ジエチルカーボネート(DEC)やメチルエチル
カーボネート等がより好ましい。さらに、ECと数1で
表されるR・R’型アルキルカーボネートで該電解液の
溶媒を構成する事が望ましく、ECとR・R’型アルキ
ルカーボネートの混合比が体積比約1:1においてイオ
ン導電率が最大となるため、混合比は体積比約3:1〜
1:3とすることが特に好ましい。
In order to solve the above-mentioned problems, the present invention is also represented by an oxide of silicon containing lithium as a negative electrode active material, particularly Li x SiO y (0 ≦ x, 0 <y <2). It is proposed to use a non-aqueous electrolyte containing ethylene carbonate (EC) in a secondary battery using a lower oxide. Since EC has a high freezing point, it is desirable to set the volume ratio to 80% or less with respect to the total solvent of the electrolytic solution. Further, since EC is a highly viscous solvent, it must also contain an R · R ′ type alkyl carbonate (including R = R ′) represented by Formula 1 in order to further enhance ionic conductivity and further stabilize it. Is desirable. R and R ′ are alkyl groups represented by C n H 2n + 1 , and when n = 1, 2, 3, 4, 5, particularly high ionic conductivity and low viscosity are preferable. Among them, dimethyl carbonate (DM) in which R and R'in Formula 1 are a methyl group (n = 1) or an ethyl group (n = 2)
C), diethyl carbonate (DEC), methyl ethyl carbonate and the like are more preferable. Further, it is desirable to compose the solvent of the electrolytic solution with EC and the R / R'-type alkyl carbonate represented by the formula 1. When the mixing ratio of EC and the R / R'-type alkyl carbonate is about 1: 1 by volume. Since the ionic conductivity is maximum, the mixing ratio is about 3: 1 by volume.
The ratio of 1: 3 is particularly preferable.

【0042】また、電解液中の支持電解質としては前述
した通り、溶媒中でLi+ イオンを解離する塩で負極・
正極と直接化学反応しないものであれば良いが、例えば
LiClO4 ,LiPF6 ,LiBF4,LiCF3
3 、Li(CF3 SO22N等が良い。
As described above, the supporting electrolyte in the electrolytic solution is a salt that dissociates Li + ions in the solvent and is used as a negative electrode.
Any material that does not directly chemically react with the positive electrode may be used, for example, LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 S.
O 3 , Li (CF 3 SO 2 ) 2 N, etc. are preferable.

【0043】[0043]

【作用】本発明のリチウムを含有するケイ素の酸化物も
しくはケイ酸塩を負極活物質とする負極は、非水電解質
中に於て金属リチウムに対し少なくとも0〜3Vの電極
電位の範囲で安定に繰り返しリチウムイオンを吸蔵放出
することが出来、この様な電極反応により繰り返し充放
電可能な二次電池の負極として用いることが出来る。特
にリチウム基準極(金属リチウム)に対し0〜1Vの卑
な電位領域において、安定にリチウムイオンを吸蔵放出
し繰り返し充放電できる高容量の充放電領域を有する。
又、従来この種の電池の負極活物質として用いられてき
たグラファイト等の炭素質材料に比べ可逆的にリチウム
イオンを吸蔵放出できる量即ち有効充放電容量が著しく
大きく、かつ充放電の分極が小さいため、大電流での充
放電が可能であり、更に過充電過放電による不可逆物質
の生成等の劣化が殆ど見られず、極めて安定でサイクル
寿命の長い二次電池を得ることが出来る。
The negative electrode using the lithium-containing silicon oxide or silicate of the present invention as the negative electrode active material is stable in the non-aqueous electrolyte in the range of an electrode potential of at least 0 to 3 V with respect to metallic lithium. It can repeatedly occlude and release lithium ions, and can be used as a negative electrode of a secondary battery that can be repeatedly charged and discharged by such an electrode reaction. In particular, in a base potential region of 0 to 1 V with respect to the lithium reference electrode (metal lithium), it has a high-capacity charging / discharging region capable of stably occluding / releasing lithium ions and repeatedly charging / discharging.
Further, as compared with a carbonaceous material such as graphite which has been conventionally used as a negative electrode active material of this type of battery, an amount capable of reversibly occluding and releasing lithium ions, that is, an effective charge / discharge capacity is remarkably large and polarization of charge / discharge is small. Therefore, charging / discharging with a large current is possible, and deterioration such as generation of an irreversible substance due to overcharging / overdischarging is hardly seen, and an extremely stable secondary battery having a long cycle life can be obtained.

【0044】特に、ケイ素原子数に対する酸素原子数の
比yが2未満の組成を有するケイ素の低級酸化物Lix
SiOy (但し、x≧0、2>y>0)を用いた場合に
は、ケイ素原子数に対する酸素原子数の比yが2以上の
ケイ素の酸化物もしくはケイ酸塩等を用いた場合に比べ
可逆的にリチウムイオンを吸蔵放出できる量即ち有効充
放電容量が著しく大きく、特に充放電特性が優れた二次
電池を得ることが出来る。
In particular, a lower oxide Li x of silicon having a composition in which the ratio y of the number of oxygen atoms to the number of silicon atoms is less than 2.
When SiO y (where x ≧ 0, 2>y> 0) is used, when a silicon oxide or silicate having a ratio y of the number of oxygen atoms to the number of silicon atoms of 2 or more is used. In comparison, an amount capable of reversibly occluding and releasing lithium ions, that is, an effective charge / discharge capacity is remarkably large, and a secondary battery having particularly excellent charge / discharge characteristics can be obtained.

【0045】更に、本発明に依るリチウムを含有するケ
イ素の酸化物もしくはケイ酸塩から成る負極活物質にお
いては、リチウムメタルの融点(約180℃)以下の温
度でのリチウムイオンの吸蔵及び放出反応による電池反
応速度が充分大きいため、室温もしくは常温作動型の非
水電解質二次電池に特に適する。
Further, in the negative electrode active material made of a lithium-containing silicon oxide or silicate according to the present invention, a lithium ion absorption and desorption reaction at a temperature below the melting point (about 180 ° C.) of lithium metal. Since it has a sufficiently high battery reaction rate, it is particularly suitable for a non-aqueous electrolyte secondary battery that operates at room temperature or at room temperature.

【0046】この様に優れた充放電特性が得られる理由
は必ずしも明らかではないが、次の様に推定される。即
ち、本発明による新規な負極活物質であるリチウムを含
有するケイ素の酸化物もしくはケイ酸塩は、共有結合性
の強いケイ素原子と酸素原子がケイ素原子を中心に酸素
原子が配位した基本構造が連なって骨格構造をなす鎖状
構造、層状構造又は3次元網目構造等々を形成してお
り、この様な構造中でのリチウムイオンの移動度が高
く、且つ、リチウムイオンを吸蔵できるサイトが多いた
めリチウムイオンの吸蔵放出が容易である為と推定され
る。
The reason why such excellent charge and discharge characteristics are obtained is not always clear, but it is presumed as follows. That is, a novel oxide or silicate of silicon containing lithium, which is a novel anode active material according to the present invention, has a basic structure in which a silicon atom having a strong covalent bond and an oxygen atom are coordinated with the oxygen atom centered around the silicon atom. Form a chain structure, a layered structure, a three-dimensional network structure, etc. that form a skeleton structure in a continuous manner, and the mobility of lithium ions in such a structure is high, and there are many sites that can store lithium ions. Therefore, it is presumed that it is easy to insert and extract lithium ions.

【0047】又、ケイ素原子数に対する酸素原子数の比
yが2以上のケイ素の酸化物もしくはケイ酸塩において
はケイ素原子と4個の酸素原子が結合した四面体が連な
った骨格構造をし、逆にyが0のLix Siにおいては
ケイ素同志の結合のみからなる骨格構造をしているのに
対し、リチウムを含有するケイ素の低級酸化物Lix
iOy (但し、x≧0、2>y>0)は、ケイ素原子と
酸素原子の結合の他ケイ素原子どうしの結合を有する骨
格構造を形成しており、特にこの様な構造中でのリチウ
ムイオンの移動度が高く、且つ、リチウムイオンを吸蔵
できるサイトが非常に多いためリチウムイオンの吸蔵放
出が容易である為と推定される。
Further, in an oxide or silicate of silicon having a ratio y of the number of oxygen atoms to the number of silicon atoms of 2 or more, a skeleton structure in which a tetrahedron in which silicon atoms and four oxygen atoms are bonded is connected, On the contrary, Li x Si in which y is 0 has a skeleton structure composed of only silicon-bonded bonds, whereas Li x S, a lower oxide of silicon containing lithium, Li x S
iO y (where x ≧ 0, 2>y> 0) forms a skeleton structure having a bond between silicon atoms and oxygen atoms as well as a bond between silicon atoms, and particularly lithium in such a structure. It is presumed that the ion mobility is high and the number of sites that can store lithium ions is very large, so that the lithium ions can be easily stored and released.

【0048】一方、正極活物質として用いられる複合酸
化物Liabc2は、金属リチウムに対する電極電位
が約4Vもしくはそれ以上の高電位を有し、かつ少なく
とも0<a≦1.15の間でLiイオンのインターカレ
ーション、デインターカレーションによる可逆的な充放
電が可能であり、かつ過充電過放電による劣化が小さ
く、優れたサイクル特性を有する。特にB及び/又はS
iの含有量cが0.05≦c<0.5において分極が小
さく、かつサイクル特性が優れている。この様に優れた
充放電特性が得られる理由は必ずしも明らかではない
が、次のように推定される。即ち、本発明による正極活
物質Liabc2は、B及びSiを含有しないα−N
aCrO2 型の層状構造の酸化物Liab2 の遷移金
属元素Mの一部がB又はSiで置換されたα−NaCr
2型に類似の骨格構造をしている。但し、B原子及び
Si原子は又、結晶の格子間隙間やLiサイト(Liと
置換)にも存在し得る。いずれにせよ、B又はSiの存
在により、結晶構造及び電子構造が変化するため、Li
イオン導電性が高まり、且つリチウムイオンの吸蔵放出
が容易になる為であると推定される。
On the other hand, the complex oxide Li a M b L c O 2 used as the positive electrode active material has a high potential of about 4 V or higher with respect to metallic lithium and has at least 0 <a ≦ 1. Between 15 and 15, reversible charge and discharge by Li ion intercalation and deintercalation are possible, deterioration by overcharge and overdischarge is small, and excellent cycle characteristics are obtained. Especially B and / or S
When the content c of i is 0.05 ≦ c <0.5, the polarization is small and the cycle characteristics are excellent. The reason why such excellent charge / discharge characteristics are obtained is not always clear, but it is presumed as follows. That is, the positive electrode active material Li a M b L c O 2 according to the present invention is α-N containing neither B nor Si.
α-NaCr in which a part of the transition metal element M of the aCrO 2 type layered structure Li a M b O 2 is replaced with B or Si
It has a skeletal structure similar to that of the O 2 type. However, B atoms and Si atoms may also be present in interstitial gaps of crystals and Li sites (replaced with Li). In any case, the crystal structure and electronic structure change due to the presence of B or Si.
It is presumed that this is because the ionic conductivity is enhanced and the occlusion / release of lithium ions is facilitated.

【0049】このため、これらの本発明による負極活物
質と正極活物質とを組み合わせて用いた電池は、約4V
の高い作動電圧を有し、可逆的にリチウムイオンを吸蔵
放出できる量即ち充放電容量が著しく大きく、かつ充放
電の分極が小さいため、大電流での充放電が可能であ
り、更に過充電過放電による活物質の分解や結晶崩壊等
の劣化が殆ど見られず、極めて安定でサイクル寿命が長
い等々、特に優れた性能を有する。
Therefore, the battery using the negative electrode active material and the positive electrode active material according to the present invention in combination has a voltage of about 4V.
It has a high operating voltage, is reversibly capable of occluding and releasing lithium ions, that is, the charging / discharging capacity is remarkably large, and the polarization of charging / discharging is small. Degradation of the active material due to discharge, deterioration such as crystal collapse, etc. is hardly seen, and extremely stable and long cycle life, etc., and particularly excellent performance.

【0050】又、リチウムを含有するケイ素の酸化物を
負極活物質として用いる本発明の非水電解質二次電池に
おいて、電解質としてECや数1で表されるR・R’型
アルキルカーボネートを含有する非水電解液を用いる事
により、充放電時の電解液の分解やガス発生等による劣
化を著しく抑制する事が出来る。即ち、従来、この種の
非水電解質二次電池において最も一般的に用いられてき
たPCに支持電解質としてLiClO4 やLiPF6
を溶解した非水電解液を、上記のリチウムを含有したケ
イ素の酸化物、特にケイ素の低級酸化物Lix SiOy
(0<y<2)を負極活物質とする電池に用いた場合に
は、充電時に電解液の分解により激しくガスが発生し、
充放電の繰り返しによる放電容量の低下が著しいのに対
し、ECを含有した電解液、特にECとDEC又はDM
Cの混合溶媒に支持電解質としてLiClO4 やLiP
6 等を溶解した電解液を用いた場合には、電解液の分
解やガス発生が起こらない。これにより充放電時の容量
ロスが著しく低減され、充放電効率が著しく向上し、負
極及び正極の活物質本来の高容量密度を活かした、高電
圧、高エネルギーで且つサイクル寿命が長く信頼性の高
い電池を得る事ができる。
Further, in the non-aqueous electrolyte secondary battery of the present invention using a lithium-containing silicon oxide as a negative electrode active material, EC or an RR 'type alkyl carbonate represented by Formula 1 is contained as an electrolyte. By using the non-aqueous electrolyte, it is possible to remarkably suppress the decomposition of the electrolyte during charge / discharge and the deterioration due to gas generation. That is, a non-aqueous electrolytic solution prepared by dissolving LiClO 4 , LiPF 6 or the like as a supporting electrolyte in PC, which has been most commonly used in conventional non-aqueous electrolyte secondary batteries of the type described above, is treated with the above-mentioned lithium-containing silicon. Oxides, especially lower oxides of silicon Li x SiO y
When (0 <y <2) is used in a battery having a negative electrode active material, gas is violently generated due to decomposition of the electrolytic solution during charging,
Although the discharge capacity decreases remarkably due to repeated charging and discharging, an electrolyte containing EC, especially EC and DEC or DM
LiClO 4 or LiP as a supporting electrolyte in a mixed solvent of C
When an electrolytic solution in which F 6 or the like is dissolved is used, decomposition of the electrolytic solution or gas generation does not occur. As a result, the capacity loss during charge and discharge is significantly reduced, the charge and discharge efficiency is significantly improved, and the high capacity density inherent in the active material of the negative and positive electrodes is utilized to achieve high voltage, high energy, long cycle life, and long reliability. You can get a high battery.

【0051】以下、実施例により本発明を更に詳細に説
明する。
Hereinafter, the present invention will be described in more detail with reference to examples.

【0052】[0052]

【実施例】図1は、以下の実施例に於て、本発明に依る
非水電解質二次電池の負極活物質の性能評価に用いたテ
ストセルの一例を示すコイン型電池の断面図である。図
において、1は対極端子を兼ねる対極ケースであり、外
側片面をNiメッキしたステンレス鋼製の板を絞り加工
したものである。2はステンレス鋼製のネットから成る
対極集電体であり対極ケース1にスポット溶接されてい
る。対極3は、所定厚みのアルミニウム板を直径15m
mに打ち抜き、対極集電体2に固着し、その上に所定厚
みのリチウムフォイルを直径14mmに打ち抜いたもの
を圧着したものである。7は外側片面をNiメッキした
ステンレス鋼製の作用極ケースであり、作用極端子を兼
ねている。5は後述の本発明に依る活物質又は従来法に
依る比較活物質を用いて構成された作用極であり、6は
ステンレス鋼製のネット又は炭素を導電性フィラーとす
る導電性接着剤からなる作用極集電体であり、作用極5
と作用極ケース7とを電気的に接続している。4はポリ
プロピレンの多孔質フィルムからなるセパレータであ
り、電解液が含浸されている。8はポリプロピレンを主
体とするガスケットであり、対極ケース1と作用極ケー
ス7の間に介在し、対極と作用極との間の電気的絶縁性
を保つと同時に、作用極ケース開口縁が内側に折り曲げ
られカシメられることに依って、電池内容物を密封、封
止している。電池の大きさは、外径20mm、厚さ1.
6mmであった。
EXAMPLE FIG. 1 is a cross-sectional view of a coin-type battery showing an example of a test cell used for performance evaluation of a negative electrode active material of a non-aqueous electrolyte secondary battery according to the present invention in the following examples. . In the figure, reference numeral 1 is a counter electrode case which also serves as a counter electrode terminal, which is obtained by drawing a stainless steel plate having Ni plated on one outer surface. Reference numeral 2 denotes a counter electrode current collector made of a stainless steel net, which is spot-welded to the counter electrode case 1. The counter electrode 3 is an aluminum plate having a predetermined thickness and a diameter of 15 m.
m is punched out, fixed to the counter electrode current collector 2, and a lithium foil having a predetermined thickness punched out to a diameter of 14 mm is press-bonded thereon. Reference numeral 7 denotes a working electrode case made of stainless steel whose outer surface is plated with Ni, and also serves as a working electrode terminal. Reference numeral 5 is a working electrode composed of an active material according to the present invention or a comparative active material according to a conventional method described later, and 6 is a net made of stainless steel or a conductive adhesive containing carbon as a conductive filler. Working electrode current collector, working electrode 5
And the working electrode case 7 are electrically connected. 4 is a separator made of a polypropylene porous film, which is impregnated with an electrolytic solution. Numeral 8 is a gasket mainly composed of polypropylene, which is interposed between the counter electrode case 1 and the working electrode case 7 to maintain the electrical insulation between the counter electrode and the working electrode, and at the same time the working electrode case opening edge is inward. By folding and crimping, the battery contents are hermetically sealed. The battery has an outer diameter of 20 mm and a thickness of 1.
It was 6 mm.

【0053】(実施例1)本実施例の作用極5を次の様
にして作製した。市販のメタケイ酸リチウムLi 2 Si
3 を自動乳鉢により粒径53μm以下に粉砕整粒した
ものを本発明に依る活物質aとし、これに導電剤として
グラファイトを、結着剤として架橋型アクリル酸樹脂等
を重量比30:65:5の割合で混合して作用極合剤と
し、次にこの作用極合剤をステンレス鋼製のネットから
なる作用極集電体6と共に2ton/cm2で直径15
mm厚さ0.5mmのペレットに加圧成形した後、20
0℃で10時間減圧加熱乾燥したものを作用極とした。
(Embodiment 1) The working electrode 5 of this embodiment is as follows.
Was prepared. Commercially available lithium metasilicate Li 2 Si
O3 Was crushed and sized by an automatic mortar to a particle size of 53 μm or less.
The active material a according to the present invention is used as a conductive agent.
Crosslinking acrylic resin etc. using graphite as a binder
In a weight ratio of 30: 65: 5 and a working electrode mixture.
And then apply this working mixture from a stainless steel net.
With a working electrode current collector 6 of 2 ton / cm2 and a diameter of 15
20 mm after being pressed into pellets with a thickness of 0.5 mm
What was dried under reduced pressure at 0 ° C. for 10 hours was used as a working electrode.

【0054】又、比較のため、上記の本発明に依る活物
質aの代わりに、上記の導電剤に用いたと同じグラファ
イトを活物質(活物質rと略記)として用いた他は、上
記の本発明の作用極の場合と同様にして、同様な電極
(比較用作用極)を作成した。電解液はプロピレンカー
ボネートと1,2−ジメトキシエタンの体積比1:1混
合溶媒に過塩素酸リチウムLiClO4 を1モル/l溶
解したものを用いた。
For comparison, the above-mentioned book is used except that the same graphite as that used for the above-mentioned conductive material is used as an active material (abbreviated as active material r) instead of the above-mentioned active material a according to the present invention. A similar electrode (working electrode for comparison) was prepared in the same manner as the working electrode of the invention. The electrolytic solution used was a solvent in which propylene carbonate and 1,2-dimethoxyethane were mixed at a volume ratio of 1: 1 and lithium perchlorate LiClO 4 was dissolved at 1 mol / l.

【0055】この様にして作製された電池は、室温で1
週間放置エージングされた後、後述の充放電試験が行わ
れた。このエージングによって、対極のリチウム−アル
ミニウム積層電極は電池内で非水電解液に触れることに
より十分合金化が進行し、リチウムフォイルは実質的に
全てLi−Al合金となるため、電池電圧は、対極とし
て金属リチウムを単独で用いた場合に比べて約0.4V
低下した値となって安定した。
The battery thus manufactured has a temperature of 1 at room temperature.
After being left to stand for a week, it was subjected to the charge / discharge test described below. By this aging, the lithium-aluminum laminated electrode of the counter electrode is sufficiently alloyed by touching the non-aqueous electrolyte in the battery, and the lithium foil is substantially all Li-Al alloy. 0.4V compared with the case where metallic lithium is used alone as
It became a lowered value and became stable.

【0056】この様にして作製した電池を、以下、それ
ぞれの使用した作用極の活物質a,rに対応し、電池
A,Rと略記する。これらの電池A及びRを0.4mA
の定電流で、充電(電解液中から作用極にリチウムイオ
ンが吸蔵される電池反応をする電流方向)の終止電圧−
0.4V、放電(作用極から電解液中へリチウムイオン
が放出される電池反応をする電流方向)の終止電圧2.
5Vの条件で充放電サイクルを行ったときの3サイクル
目の充電特性を図2に、放電特性を図3に示した。又、
同じ定電流で、充電の終止電圧が−0.8V、放電の終
止電圧が2.5Vの条件で充放電サイクルを行ったとき
の3サイクル目の充電特性を図4に、放電特性を図5
に、更にサイクル特性を図6に示した。尚、充放電サイ
クルは充電からスタートした。又、これらの充放電サイ
クルの後、充電状態及び放電状態にした電池を分解し顕
微鏡で観察したところ、作用極上にリチウムメタルの析
出は見られず、作用極の充放電反応は実質的に活物質の
反応によることが確認された。
The batteries thus produced will be abbreviated as batteries A and R, corresponding to the active materials a and r of the working electrodes used. 0.4 mA for these batteries A and R
With a constant current of, the end voltage of charging (current direction in which the battery reaction in which lithium ions are occluded from the electrolyte to the working electrode)
Final voltage of 0.4 V, discharge (direction of current causing battery reaction in which lithium ions are released from working electrode into electrolyte) 2.
FIG. 2 shows the charging characteristics of the third cycle when the charging / discharging cycle was performed under the condition of 5 V, and FIG. 3 shows the discharging characteristics. or,
FIG. 4 shows the charging characteristics of the third cycle when the charging / discharging cycle is performed under the conditions of the same constant current, the charging end voltage is −0.8 V and the discharging end voltage is 2.5 V, and FIG.
Further, FIG. 6 shows the cycle characteristics. The charging / discharging cycle started from charging. After these charge / discharge cycles, when the battery in the charged state and the discharged state was disassembled and observed under a microscope, no precipitation of lithium metal was observed on the working electrode, and the charge / discharge reaction of the working electrode was substantially activated. It was confirmed that the reaction was caused by the substance.

【0057】図2〜6から明らかな様に、本発明による
電池Aは比較電池Rに比べ、充放電容量が著しく大き
く、充放電の可逆領域が著しく拡大することが分かる。
又、全充放電領域に渡って充電と放電の作動電圧の差が
著しく小さくなっており、電池の分極(内部抵抗)が著
しく小さく、大電流充放電が容易なことが分かる。更
に、充放電の繰り返しによる放電容量の低下(サイクル
劣化)が著しく小さい。これは、上述の様に本発明に依
る電池Aの作用極の活物質であるリチウムを含有するケ
イ素の酸化物もしくはケイ酸塩に於いては、ケイ素原子
を中心に酸素原子が4個結合した四面体が連なった骨格
構造を有しており、この構造中でのリチウムイオンの移
動度が高く、且つ、リチウムイオンを吸蔵できるサイト
が非常に多いためリチウムイオンの吸蔵放出が容易であ
る為と推定される。
As is apparent from FIGS. 2 to 6, the charge / discharge capacity of the battery A according to the present invention is significantly larger than that of the comparative battery R, and the reversible charge / discharge region is significantly expanded.
Further, it can be seen that the difference in operating voltage between charging and discharging is extremely small over the entire charging / discharging region, the polarization (internal resistance) of the battery is extremely small, and large current charging / discharging is easy. Further, the decrease in discharge capacity (cycle deterioration) due to repeated charging and discharging is extremely small. As described above, in the silicon-containing oxide or silicate containing lithium which is the active material of the working electrode of the battery A according to the present invention as described above, four oxygen atoms are bonded centering on the silicon atom. It has a skeleton structure in which tetrahedra are connected, the mobility of lithium ions in this structure is high, and because there are many sites that can store lithium ions, it is easy to store and release lithium ions. Presumed.

【0058】(実施例2)実施例1の活物質aの代わり
に、市販の試薬特級グレイドの二酸化ケイ素SiO2
(沈降性無水ケイ酸)を粒径53μm以下に粉砕整粒し
たものを作用極の活物質(活物質bと略記)として用い
た。この活物質bと、導電剤として実施例1で用いたの
と同じグラファイトを、結着剤として実施例1で用いた
のと同じ架橋型アクリル酸樹脂等を重量比30:65:
5の割合で混合して作用極合剤とし、次にこの作用極合
剤をステンレス鋼製のネットからなる作用極集電体6と
共に2ton/cm2 で直径15mm厚さ0.5mmの
ペレットに加圧成形した後、200℃で10時間減圧加
熱乾燥したものを作用極とした。この様にして作製した
作用極を用いた以外は、すべて実施例1と同様にして同
様な電池Bを作製した。
(Example 2) Instead of the active material a of Example 1, a commercially available reagent grade grade silicon dioxide SiO 2 was used.
The (precipitated silicic acid anhydride) was pulverized and sized to a particle size of 53 μm or less and used as the active material (abbreviated as active material b) of the working electrode. A weight ratio of the active material b, the same graphite as used in Example 1 as a conductive agent, and the same cross-linked acrylic acid resin as used in Example 1 as a binder, in a weight ratio of 30:65:
5 at a ratio of 5 to form a working electrode mixture, and then this working electrode mixture is mixed with a working electrode current collector 6 made of a stainless steel net into pellets having a diameter of 15 mm and a thickness of 0.5 mm at 2 ton / cm 2. After pressure molding, the product was dried under reduced pressure at 200 ° C. for 10 hours and used as a working electrode. A similar battery B was manufactured in the same manner as in Example 1 except that the working electrode thus manufactured was used.

【0059】この様にして得られた電池Bについても実
施例1と同様な充放電サイクル試験を行った。この時の
結果を実施例1と同様に、図2〜6に併記して示した。
図から明かな様に、本実施例の電池Bは、実施例1の本
発明に依る電池Aと同様に優れた充放電特性を有するこ
とが判る。即ち、充電に依って対極のLi−Al合金か
ら電解液中にリチウムイオンが放出され、このリチウム
イオンが電解液中を移動して活物質bと電極反応し、活
物質bに電気化学的にリチウムイオンが吸蔵されリチウ
ムを含有するケイ素の酸化物が生成する。次に放電に際
しては、この酸化物からリチウムイオンが電解液中に放
出され、電解液中を移動して対極のLi−Al合金中に
吸蔵されることに依り安定に繰り返し充放電できる。こ
こで、活物質bは1回目の充電によりリチウムを含有す
るケイ素の酸化物が生成した後は、その後の放電ー充電
のサイクルに於て、完全放電時以外にはリチウムを含有
するケイ素の酸化物を形成している。
The battery B thus obtained was also subjected to the same charge / discharge cycle test as in Example 1. The results at this time are also shown in FIGS.
As is apparent from the figure, the battery B of this example has the same excellent charge / discharge characteristics as the battery A of the first example according to the present invention. That is, lithium ions are released from the Li-Al alloy of the counter electrode into the electrolytic solution due to charging, and the lithium ions move in the electrolytic solution to cause an electrode reaction with the active material b, and the active material b is electrochemically reacted. Lithium ions are occluded and a silicon oxide containing lithium is produced. Next, during discharge, lithium ions are released from this oxide into the electrolytic solution, move in the electrolytic solution, and are occluded in the Li-Al alloy of the counter electrode, so that stable charge and discharge can be performed repeatedly. Here, the active material b is a silicon-containing silicon oxide containing lithium after the first charging, and then a lithium-containing silicon oxide is oxidized in a subsequent discharge-charge cycle except during complete discharge. Is forming a thing.

【0060】(実施例3)本実施例は、実施例1の活物
質aの代わりに下記の様にして合成した活物質(活物質
cと略記)を用いた場合であり、作用極の活物質以外
は、すべて実施例1と同様にして同様な電池Cを作製し
た。
Example 3 In this example, an active material synthesized as follows (abbreviated as active material c) was used in place of the active material a of Example 1, and the activity of the working electrode was A battery C was prepared in the same manner as in Example 1 except for the substances.

【0061】本実施例の活物質cを次の様にして合成し
た。水酸化リチウムLiOH・H2Oと二酸化ケイ素S
iO2と五酸化バナジウムV25 とをLi:Si:V
=2:0.9:0.1のモル比で乳鉢を用いて十分混合
した後、この混合物を大気中1000゜Cの温度で12
時間加熱処理した。冷却後、得られた生成物を粒径53
μm以下に粉砕整粒したものを本実施例の活物質cとし
て用いた。
The active material c of this example was synthesized as follows. Lithium hydroxide LiOH ・ H 2 O and silicon dioxide S
iO2 and the vanadium pentoxide V 2 O 5 Li: Si: V
= 2: 0.9: 0.1 at a molar ratio of 1: 1 and thoroughly mixed in a mortar, and then the mixture was heated in the atmosphere at a temperature of 1000 ° C for 12 hours.
Heat treated for hours. After cooling, the product obtained has a particle size of 53
What was pulverized and sized to less than μm was used as the active material c in this example.

【0062】この様にして得られた電池Cについても実
施例1と同様な充放電サイクル試験を行った。この時の
結果を実施例1及び2と同様に、図2〜6に併記して示
した。図から明かな様に、本実施例の電池Cは、実施例
1及び2の本発明に依る電池A及びBと同様に優れた充
放電特性を有することが判る。
The battery C thus obtained was also subjected to the same charge / discharge cycle test as in Example 1. The results at this time are also shown in FIGS. 2 to 6, as in Examples 1 and 2. As is apparent from the figure, the battery C of this example has excellent charge / discharge characteristics as the batteries A and B of Examples 1 and 2 according to the present invention.

【0063】又、本発明に依る電池A、B及びCの活物
質a、b及びcは対極のLi−Al合金電極に対して−
0.4〜+0.6V(金属リチウムに対して約0〜1V
に対応する)の卑な電位領域の充放電容量が著しく大き
いことから、非水電解質二次電池の負極活物質として優
れていることが判る。特に、メタケイ酸塩を出発物質と
して用いた実施例1の活物質aは卑な電位領域での充放
電容量がより大きく、かつより卑な電位を有しており、
負極活物質として特に優れている。
In addition, the active materials a, b and c of the batteries A, B and C according to the present invention have a negative electrode with respect to the Li-Al alloy electrode.
0.4 to + 0.6V (about 0 to 1V against metallic lithium)
(Corresponding to (1)), the charge and discharge capacities in the base potential region are remarkably large, which indicates that it is excellent as a negative electrode active material for a non-aqueous electrolyte secondary battery. In particular, the active material a of Example 1 using metasilicate as a starting material has a larger charge / discharge capacity in a base potential region and a base electric potential,
Particularly excellent as a negative electrode active material.

【0064】(実施例4)作用極5を次の様にして作製
した。後述の組成数SiOy (但し、0≦y)で表され
るケイ素の酸化物又はケイ素Siを自動乳鉢により粒径
53μm以下に粉砕整粒したものを作用極の活物質とし
て用いた。これらの活物質に導電剤として実施例1で用
いたものと同じグラファイトを、結着剤として架橋型ア
クリル酸樹脂等を重量比65:20:15の割合で混合
して作用極合剤とした。次に、この作用極合剤を2to
n/cm2 で直径15mm厚さ0.3mmのペレットに
加圧成形して作用極5を作製した。その後、この様にし
て得られた作用極5を炭素を導電性フィラーとする導電
性樹脂接着剤からなる作用極集電体6を用いて作用極ケ
ース7に接着し一体化した後、200℃で10時間減圧
加熱乾燥したものを用いて上述のコイン形電池を作製し
た。
(Example 4) The working electrode 5 was prepared as follows. A silicon oxide or silicon Si represented by the composition number SiO y (where 0 ≦ y) described later was pulverized and sized to a particle size of 53 μm or less by an automatic mortar and used as an active material of the working electrode. These active materials were mixed with the same graphite as that used in Example 1 as a conductive agent and a cross-linking acrylic resin as a binder at a weight ratio of 65:20:15 to prepare a working electrode mixture. . Next, 2 tons of this working electrode mixture
Working electrode 5 was produced by pressure molding into a pellet having a diameter of 15 mm and a thickness of 0.3 mm at n / cm 2 . Thereafter, the working electrode 5 thus obtained is bonded to a working electrode case 7 by using a working electrode current collector 6 made of a conductive resin adhesive containing carbon as a conductive filler, and integrated at 200 ° C. The coin-type battery described above was prepared by using the dried product under reduced pressure for 10 hours.

【0065】作用極の活物質としては、上記の組成数S
iOyにおけるケイ素原子数に対する酸素原子数の比y
が2〜0の次の3種のものを用いて比較した。即ち、
(b1)y=2に相当する二酸化ケイ素SiO2 (実施
例1で用いたものと同じ市販の特級グレイド沈降性無水
ケイ酸、非晶質構造)、(d1)y=1に相当する一酸
化ケイ素SiO(市販特級グレイド、非晶質構造)、
(e)y=0に相当する単体のケイ素Si(市販特級グ
レイド)の3種である。
As the active material of the working electrode, the above composition number S
Ratio y of number of oxygen atoms to number of silicon atoms in iOy y
Were compared using the following three types having a value of 2 to 0. That is,
(B1) Silicon dioxide SiO 2 corresponding to y = 2 (the same commercial grade grade precipitated silicic anhydride, amorphous structure used in Example 1), (d1) monoxide corresponding to y = 1. Silicon SiO (commercial grade grade, amorphous structure),
(E) Three types of silicon Si (commercially available special grade) corresponding to y = 0.

【0066】電解液はプロピレンカーボネートとエチレ
ンカーボネート及び1,2−ジメトキシエタンの体積比
1:1:2混合溶媒に過塩素酸リチウムLiClO4
1モル/l溶解したものを用いた。この様にして作製さ
れた電池は、室温で1週間放置エージングされた後、後
述の充放電試験が行われた。このエージングによって、
対極のリチウム−アルミニウム積層電極は電池内で非水
電解液に触れることにより十分合金化が進行し、リチウ
ムフォイルは実質的に全てLi−Al合金となるため、
電池電圧は、対極として金属リチウムを単独で用いた場
合に比べて約0.4V低下した値となって安定した。
The electrolyte used was a mixture of propylene carbonate, ethylene carbonate and 1,2-dimethoxyethane in a volume ratio of 1: 1: 2 in which 1 mol / l of lithium perchlorate LiClO 4 was dissolved. The battery thus manufactured was left to stand for 1 week at room temperature and then subjected to the charge / discharge test described below. By this aging,
The lithium-aluminum laminated electrode of the counter electrode is sufficiently alloyed by touching the non-aqueous electrolyte in the battery, and the lithium foil is substantially all Li-Al alloy.
The battery voltage became stable at a value that was about 0.4 V lower than that when metal lithium was used alone as the counter electrode.

【0067】この様にして作製した電池を、以下、それ
ぞれの使用した作用極の活物質b1,d1,eに対応
し、電池B1,D1,Eと略記する。これらの電池B
1、D1及びEを1mAの定電流で、充電(電解質中か
ら作用極にリチウムイオンが吸蔵される電池反応をする
電流方向)の終止電圧−0.4V、放電(作用極から電
解質中へリチウムイオンが放出される電池反応をする電
流方向)の終止電圧2.5Vの条件で充放電サイクルを
行ったときの1サイクル目の充電特性を図7に、放電特
性を図8に示した。尚、充放電サイクルは充電からスタ
ートした。
The batteries thus produced will be abbreviated as batteries B1, D1 and E below, corresponding to the active materials b1, d1 and e of the working electrodes used. These batteries B
1, D1 and E at a constant current of 1 mA, the end voltage of charging (current direction in which battery reaction in which lithium ions are occluded in the working electrode from the electrolyte) −0.4 V, discharge (lithium from working electrode to electrolyte) FIG. 7 shows the charge characteristics of the first cycle and FIG. 8 shows the discharge characteristics when the charge / discharge cycle is performed under the condition of a final voltage of 2.5 V (in the direction of the current in which the ions are discharged in the battery reaction). The charging / discharging cycle started from charging.

【0068】図7及び図8から明らかな様に、組成式S
iOy で表されるケイ素の酸化物を活物質とする作用極
を用いた電池において、ケイ素原子数に対する酸素原子
数の比yが2及び0に相当する電池B1及び電池Eに比
べ、yとして中間の値0<y<2を有する電池D1の充
放電容量が著しく大きく、充放電の可逆領域が著しく拡
大することが分かる。又、全充放電領域に渡って充電と
放電の作動電圧の差が著しく小さくなっており、電池の
分極(内部抵抗)が著しく小さく、大電流充放電が容易
なことが分かる。特に、対極のLi−Al合金電極に対
して−0.4〜+0.6V(金属リチウムに対して約0
〜1Vに対応する)の様な卑な電位領域の充放電容量が
著しく大きいことから、非水電解質二次電池の負極活物
質として特に優れていることが分かる。
As is clear from FIGS. 7 and 8, the composition formula S
In a battery using a working electrode in which an oxide of silicon represented by iO y is used as an active material, compared with battery B1 and battery E in which the ratio y of the number of oxygen atoms to the number of silicon atoms is 2 and 0, y is It can be seen that the charge / discharge capacity of the battery D1 having the intermediate value 0 <y <2 is remarkably large, and the reversible region of charge / discharge is remarkably expanded. Further, it can be seen that the difference in operating voltage between charging and discharging is extremely small over the entire charging / discharging region, the polarization (internal resistance) of the battery is extremely small, and large current charging / discharging is easy. In particular, -0.4 to +0.6 V with respect to the counter Li-Al alloy electrode (about 0 with respect to metallic lithium).
(Corresponding to ˜1 V), the charge and discharge capacities in a base potential region are remarkably large, and thus it is found that they are particularly excellent as a negative electrode active material for a non-aqueous electrolyte secondary battery.

【0069】即ち、充電に依って対極のLi−Al合金
から電解質中にリチウムイオンが放出され、このリチウ
ムイオンが電解質中を移動して作用極の活物質SiOy
と電極反応し、活物質SiOyに電気化学的にリチウム
イオンが吸蔵されリチウムを含有するケイ素の酸化物L
x SiOy が生成する。次に放電に際しては、この酸
化物Lix SiOy からリチウムイオンが電解質中に放
出され、電解質中を移動して対極のLi−Al合金中に
吸蔵されることに依り安定に繰り返し充放電できる。こ
こで、活物質SiOy は1回目の充電によりリチウムを
含有するケイ素の酸化物Lix SiOy が生成した後
は、その後の放電ー充電のサイクルに於て、完全放電時
以外にはリチウムを含有するケイ素の酸化物Lix'Si
y を形成している。この様なリチウムを含有するケイ
素の酸化物Lix SiOy において、リチウムを完全に
放出した状態の酸化物SiOy (完全放電状態)のケイ
素原子数に対する酸素原子数の比yが二酸化ケイ素Si
2 とケイ素単体Siとの中間の値0<y<2を有する
低級酸化物の場合に特に充放電特性が優れていることが
分かる。又、非晶質構造のものが優れた充放電特性を示
すことが分かる。
That is, lithium ions are released from the Li-Al alloy of the counter electrode into the electrolyte due to charging, and the lithium ions move in the electrolyte to form the active material SiO y of the working electrode.
And an electrode reaction with the active material SiOy to electrochemically occlude lithium ions and contain lithium oxide L of silicon
i x SiO y is generated. Next, during discharge, lithium ions are released from the oxide Li x SiO y into the electrolyte, move in the electrolyte, and are occluded in the Li-Al alloy of the counter electrode, whereby stable repeated charge and discharge can be performed. Here, after the active material SiO y has produced a lithium-containing silicon oxide Li x SiO y by the first charge, it is charged with lithium except during complete discharge in the subsequent discharge-charge cycle. oxide Li x 'Si of the silicon containing
Forming O y . In such a lithium-containing silicon oxide Li x SiO y , the ratio y of the number of oxygen atoms to the number of silicon atoms of the oxide SiO y (completely discharged state) in a state where lithium is completely released is silicon dioxide Si.
It can be seen that the charge / discharge characteristics are particularly excellent in the case of a lower oxide having a value 0 <y <2 which is an intermediate value between O 2 and silicon simple substance. Also, it can be seen that the amorphous structure has excellent charge / discharge characteristics.

【0070】これは、上述の様にケイ素原子数に対する
酸素原子数の比yが0<y<2の値を有するケイ素の低
級酸化物SiOy は、ケイ素原子と酸素原子の結合の他
に、ケイ素原子どうしの結合を有する骨格構造を形成し
ており、安定な非晶質構造をとり易く、この様な構造中
でのリチウムイオンの移動度が高く、且つ、リチウムイ
オンを吸蔵できるサイトが非常に多いためリチウムイオ
ンの吸蔵放出が容易である為と推定される。
This is because the lower oxide SiO y of silicon having the ratio y of the number of oxygen atoms to the number of silicon atoms of 0 <y <2 is as described above, in addition to the bond between the silicon atom and the oxygen atom. It forms a skeleton structure that has bonds between silicon atoms, it is easy to form a stable amorphous structure, the mobility of lithium ions in such a structure is high, and the sites that can store lithium ions are extremely It is presumed that it is easy to store and release lithium ions due to its large amount.

【0071】(実施例5)本実施例は、実施例4の作用
極の活物質の代わりに下記の様にして合成した活物質
(活物質fと略記)を用いた場合であり、作用極の活物
質以外は、すべて実施例4と同様にして同様な電池Fを
作製した。
Example 5 In this example, an active material (abbreviated as active material f) synthesized as follows was used instead of the active material of the working electrode of Example 4, and the working electrode was used. A similar battery F was produced in the same manner as in Example 4 except for the active material in Example 4.

【0072】本実施例の活物質を次の様にして合成し
た。水酸化リチウムLiOH・H2 Oと実施例4で用い
たものと同じ一酸化ケイ素SiOとをLi:Si=1:
1のモル比で乳鉢を用いて十分混合した後、この混合物
を窒素気流中700゜Cの温度で12時間加熱処理し
た。冷却後、得られた生成物を粒径53μm以下に粉砕
整粒したものを本実施例の活物質fとして用いた。この
様にして得られた活物質fは、LiSiO1.5 の平均組
成を有し、ケイ素原子数に対する酸素原子数の比yが
1.5であり、予め構造中にリチウムを含有するケイ素
の低級酸化物である。
The active material of this example was synthesized as follows. Lithium hydroxide LiOH.H 2 O and the same silicon monoxide SiO used in Example 4 were used as Li: Si = 1:
After thoroughly mixing with a mortar at a molar ratio of 1, this mixture was heat-treated in a nitrogen stream at a temperature of 700 ° C. for 12 hours. After cooling, the obtained product was pulverized and sized to a particle size of 53 μm or less and used as the active material f in this example. The active material f thus obtained had an average composition of LiSiO 1.5 , had a ratio y of the number of oxygen atoms to the number of silicon atoms of 1.5, and had a lower oxidation of silicon containing lithium in the structure in advance. It is a thing.

【0073】この様にして得られた電池Fについても実
施例4と同様な充放電サイクル試験を行った。この時の
結果を実施例4と同様に、図7〜8に併記して示した。
図から明かな様に、本実施例の電池Fは、実施例4のケ
イ素原子数に対する酸素原子数の比yが2であるケイ素
の酸化物SiO2 を用いた電池B1と比較して充放電容
量が大きく充放電特性が優れているが、yが1であるケ
イ素の低級酸化物SiOを用いた電池D1に比べれば充
放電容量が小さく充放電特性が劣っている。このことか
らケイ素原子数に対する酸素原子数の比yとしては、0
<y<1.5が特に優れていることが分かる。
The battery F thus obtained was subjected to the same charge / discharge cycle test as in Example 4. The results at this time are also shown in FIGS.
As is apparent from the figure, the battery F of the present example is different from the battery B1 of Example 4 in which the ratio y of the number of oxygen atoms to the number of silicon atoms is 2 and the battery B1 using the silicon oxide SiO 2. Although the capacity is large and the charge / discharge characteristics are excellent, the charge / discharge capacity is small and the charge / discharge characteristics are inferior as compared with the battery D1 using the lower oxide SiO of silicon in which y is 1. Therefore, the ratio y of the number of oxygen atoms to the number of silicon atoms is 0.
It can be seen that <y <1.5 is particularly excellent.

【0074】(実施例6)本実施例では実施例4で用い
たものと同じ一酸化ケイ素SiOを粒径53μm以下に
粉砕整粒したものを作用極の活物質として用いた。この
活物質と、導電剤として実施例4で用いたのと同じグラ
ファイトを、結着剤として実施例4で用いたのと同じ架
橋型アクリル酸樹脂等を重量比30:55:15の割合
で混合して作用極合剤とし、次にこの作用極合剤95m
gを2ton/cm2 で直径15mm厚さ0.3mmの
ペレットに加圧成形して作用極5を得た。この様にして
作製した作用極を用いた以外は、全て実施例4と同様に
して同様な電池D2を作製した。
Example 6 In this example, the same silicon monoxide SiO as that used in Example 4 was pulverized and sized to a particle size of 53 μm or less and used as the active material of the working electrode. This active material, the same graphite as used in Example 4 as a conductive agent, and the same cross-linking acrylic resin as used in Example 4 as a binder were mixed at a weight ratio of 30:55:15. After mixing to make a working electrode mixture, then this working electrode mixture 95m
g was pressed at 2 ton / cm 2 into a pellet having a diameter of 15 mm and a thickness of 0.3 mm to obtain a working electrode 5. A similar battery D2 was prepared in the same manner as in Example 4, except that the working electrode prepared in this manner was used.

【0075】この様にして得られた電池D2についても
実施例4と同様に1mAの定電流で、充電の終止電圧−
0.4V、放電の終止電圧2.5Vの条件で充放電サイ
クル試験を行った。この時の3サイクル目の充放電特性
を図9に、又サイクル特性を図10に示した。
As for the battery D2 thus obtained, the constant voltage of 1 mA was applied to the battery D2 as in Example 4, and the final voltage of charging-
A charge / discharge cycle test was performed under the conditions of 0.4 V and a discharge end voltage of 2.5 V. The charge / discharge characteristics of the third cycle at this time are shown in FIG. 9, and the cycle characteristics are shown in FIG.

【0076】図から明かな様に、3サイクル目の充放電
容量は活物質SiOの1g当たり1100mAh/g以
上の高容量であり、且つ作動電圧がLi−Al合金電極
に対して0.6V(金属リチウムに対して約1Vに対応
する)以下の卑な領域が大半を占めており、更に充放電
の繰り返しによる放電容量の低化(サイクル劣化)が小
さく、非水電解質二次電池の負極活物質として特に優れ
ていることが分かる。
As is clear from the figure, the charge / discharge capacity at the third cycle is a high capacity of 1100 mAh / g or more per 1 g of the active material SiO, and the operating voltage is 0.6 V ( Most of the base area is less than or equal to 1 V (corresponding to about 1 V with respect to metallic lithium), and reduction in discharge capacity (cycle deterioration) due to repeated charging and discharging is small, and the negative electrode activity of the non-aqueous electrolyte secondary battery is small. It turns out that it is particularly excellent as a substance.

【0077】(実施例7)充放電時のガス発生の様子
を、各種非水電解液の場合について観察した。三極式の
ガラス製電気化学セルを用い、対極及び参照極はリチウ
ムメタルとした。また、作用極は次のように作製した。
粒径53μm以下に粉砕整粒した一酸化ケイ素(Si
O)と、これに導電剤としてグラファイトと、結着剤と
して架橋型アクリル酸樹脂等を重量比65:20:15
の割合で混合して作用極合剤とし、2トン/cm2 で直径
15mm厚さ0.3mmのペレットに加圧成形した後、
200℃で10時間真空乾燥したものを作用極とした。
電解液は表1に示した6種類を用いて比較した。
Example 7 The state of gas generation during charge / discharge was observed for various non-aqueous electrolytes. A three-electrode glass electrochemical cell was used, and the counter electrode and the reference electrode were made of lithium metal. The working electrode was prepared as follows.
Silicon monoxide (Si
O), graphite as a conductive agent, and crosslinked acrylic acid resin as a binder in a weight ratio of 65:20:15.
After mixing into a working electrode mixture at a ratio of 2 ton / cm 2 and press-molding into pellets having a diameter of 15 mm and a thickness of 0.3 mm,
What was vacuum-dried at 200 ° C. for 10 hours was used as a working electrode.
The electrolytes were compared using the six types shown in Table 1.

【0078】SiOはLiイオンを含んだ電解液中で、
電気化学的にLiイオンをインターカレート及びデイン
ターカレートし、数2に示す反応をすると考えられる。
SiO is an electrolyte containing Li ions,
It is considered that Li ions are electrochemically intercalated and deintercalated to cause the reaction shown in Formula 2.

【0079】[0079]

【数2】 [Equation 2]

【0080】この様なセルで、サイクリックボルタモグ
ラム(CV)を測定しながら、作用極表面からのガス発
生の様子を観察した。CVの電圧範囲は0〜3V(vs
Li/Li+ )で、スキャン速度は10mV/秒で、
数回のスキャンを行った。上記のような測定で得られた
ガス発生の様子を表1に示す。
While measuring the cyclic voltammogram (CV) in such a cell, the state of gas generation from the surface of the working electrode was observed. The voltage range of CV is 0-3V (vs
Li / Li + ), the scanning speed is 10 mV / sec,
Several scans were performed. Table 1 shows the state of gas generation obtained by the above measurement.

【0081】[0081]

【表1】 [Table 1]

【0082】表1から、電解液中にECを加える事でガ
スの発生を著しく抑制する事ができ、またECにさらに
DECを加える事でほぼ完全にガス発生を抑制できる事
が明らかになった。 (実施例8)本実施例は、図1に示すコイン形電池を用
いて、本発明に依る非水電解質二次電池の負極活物質
の、非水電解液の違いに依る充放電サイクル特性の差を
比較評価したものである。作用極5及び電解液を下記の
様にし、対極3のリチウムーアルミニウム積層電極の厚
さを1.5倍にした他は、全て実施例4と同様にして同
様な電池を作製した。 作用極5は、次のようにして作
製した。粒径53μm以下に粉砕整粒した一酸化ケイ素
(SiO)と、これに導電剤としてグラファイトと、結
着剤として架橋型アクリル酸樹脂等を重量比30:5
5:15の割合で混合して作用極合剤とし、2ton/
cm2 で直径15mm厚さ0.15mmのペレットに加
圧成形して作用極5を得た。
From Table 1, it is clear that the addition of EC to the electrolytic solution can remarkably suppress the generation of gas, and the addition of DEC to EC can suppress the generation of gas almost completely. . (Embodiment 8) In this embodiment, the coin-type battery shown in FIG. 1 is used to determine the charge / discharge cycle characteristics of the negative electrode active material of the non-aqueous electrolyte secondary battery according to the present invention depending on the difference in the non-aqueous electrolyte. This is a comparative evaluation of the difference. A similar battery was manufactured in the same manner as in Example 4, except that the working electrode 5 and the electrolytic solution were set as follows, and the thickness of the lithium-aluminum laminated electrode of the counter electrode 3 was increased by 1.5 times. The working electrode 5 was produced as follows. A weight ratio of silicon monoxide (SiO) crushed and sized to a particle size of 53 μm or less, graphite as a conductive agent, and a cross-linking acrylic resin as a binder is 30: 5.
The mixture is mixed at a ratio of 5:15 to make a working electrode mixture, 2 ton /
A working electrode 5 was obtained by pressure molding into a pellet having a diameter of 15 mm and a thickness of 0.15 mm in cm 2 .

【0083】電解液は、次の4種のものを用いて比較し
た。即ち、(g)PCとDMEの体積比1:1混合溶媒
にLiClO4 を1モル/l溶解したもの、(h)EC
とDMEの体積比1:1混合溶媒にLiClO4 を1モ
ル/l溶解したもの、(i)ECとDECの体積比1:
1混合溶媒にLiClO4 を1モル/l溶解したもの、
(j)ECとDECの体積比1:1混合溶媒にLiPF
6 を1モル/l溶解したもの、の4種である この様にして作製した電池を、以下、それぞれの使用し
た電解液g,h,i,jに対応し、電池G,H,I,J
と略記する。
The following four kinds of electrolytic solutions were used for comparison. That is, (g) 1 mol / l of LiClO 4 dissolved in a 1: 1 volume ratio PC / DME mixed solvent, (h) EC
1 mol / l of LiClO 4 dissolved in a mixed solvent of 1: 1 by volume of DME and DME, (i) Volume ratio of EC and DEC of 1:
1 mol / l of LiClO 4 dissolved in 1 mixed solvent,
(J) LiPF in a mixed solvent of EC and DEC at a volume ratio of 1: 1
There are four types of 6 dissolved in 1 mol / l. The batteries prepared in this manner are described below in correspondence with the electrolytes g, h, i and j used. J
Is abbreviated.

【0084】以上の様に作製した電池を、実施例4と同
様に1mAの定電流で、充電(作用極にリチウムイオン
が吸蔵される電池反応をする電流方向)の終止電圧−
0.4V、放電(作用極からリチウムイオンが放出され
る電池反応をする電流方向)の終止電圧2.5Vの条件
で充放電サイクルを行ったときの5サイクル目の充電特
性を図11に、放電特性を図12、1〜10サイクルの
サイクル特性を図13に示した。充放電サイクルは充電
からスタートした。
The battery prepared as described above was charged with a constant current of 1 mA as in Example 4, and the final voltage of charging (current direction in which battery reaction in which lithium ions were occluded in the working electrode)-
FIG. 11 shows the charge characteristics of the fifth cycle when a charge / discharge cycle was performed under the conditions of 0.4 V and a final voltage of 2.5 V of discharge (current direction in which battery reaction in which lithium ions are released from the working electrode). The discharge characteristics are shown in FIG. 12, and the cycle characteristics of 1 to 10 cycles are shown in FIG. The charging / discharging cycle started from charging.

【0085】図11〜13から明らかなように、電解液
中にECを含有することにより、充放電容量が大きくな
り、容量ロスが減少し、充放電サイクル寿命も長くなっ
た。また、ECとDECで電解液の溶媒を構成した場合
には、さらに良好な結果を得た。
As is clear from FIGS. 11 to 13, the inclusion of EC in the electrolytic solution increased the charge / discharge capacity, reduced the capacity loss, and extended the charge / discharge cycle life. Further, when EC and DEC were used as the solvent of the electrolytic solution, a better result was obtained.

【0086】(実施例9)図14は、本発明に依る非水
電解質二次電池の一例を示すコイン型電池の断面図であ
る。図において、11は負極端子を兼ねる負極ケースで
あり、外側片面をNiメッキしたステンレス鋼製の板を
絞り加工したものである。13は、後述の本発明に依る
負極活物質を用いて構成された負極であり、炭素を導電
性フィラーとする導電性接着剤からなる負極集電体12
により負極ケース11に接着されている。17は外側片
面をNiメッキしたステンレス鋼製の正極ケースであ
り、正極端子を兼ねている。15は後述の本発明に依る
正極活物質を用いて構成された正極であり、炭素を導電
性フィラーとする導電性接着剤からなる正極集電体16
により正極ケース17に接着されている。14はポリプ
ロピレンの多孔質フィルムからなるセパレータであり、
電解液が含浸されている。18はポリプロピレンを主体
とするガスケットであり、負極ケース11と正極ケース
17の間に介在し、負極と正極との間の電気的絶縁性を
保つと同時に、正極ケース開口縁が内側に折り曲げられ
カシメられることに依って、電池内容物を密封、封止し
ている。電解液はプロピレンカーボネートとエチレンカ
ーボネートと1,2−ジメトキシエタンの体積比1:
1:2混合溶媒に過塩素酸リチウムLiClO4 を1モ
ル/l溶解したものを用いた。電池の大きさは、外径2
0mm、厚さ1.6mmであった。
(Example 9) FIG. 14 is a sectional view of a coin-type battery showing an example of the non-aqueous electrolyte secondary battery according to the present invention. In the figure, reference numeral 11 denotes a negative electrode case which also serves as a negative electrode terminal, which is obtained by drawing a stainless steel plate having Ni plated on one outer surface. Reference numeral 13 denotes a negative electrode constituted by using a negative electrode active material according to the present invention described later, which is a negative electrode current collector 12 made of a conductive adhesive containing carbon as a conductive filler.
Is bonded to the negative electrode case 11. Reference numeral 17 denotes a positive electrode case made of stainless steel having one outer surface plated with Ni, which also serves as a positive electrode terminal. Reference numeral 15 is a positive electrode constituted by using a positive electrode active material according to the present invention, which will be described later, and is a positive electrode current collector 16 made of a conductive adhesive containing carbon as a conductive filler.
Is bonded to the positive electrode case 17. 14 is a separator made of a polypropylene porous film,
It is impregnated with electrolyte. Reference numeral 18 denotes a gasket mainly made of polypropylene, which is interposed between the negative electrode case 11 and the positive electrode case 17 to maintain the electrical insulation between the negative electrode and the positive electrode, and at the same time, the opening edge of the positive electrode case is bent inward. The battery contents are thus hermetically sealed. The electrolytic solution had a volume ratio of propylene carbonate, ethylene carbonate and 1,2-dimethoxyethane of 1:
Lithium perchlorate LiClO 4 dissolved in a 1: 2 mixed solvent at 1 mol / l was used. Battery size is outer diameter 2
The thickness was 0 mm and the thickness was 1.6 mm.

【0087】負極13は次の様にして作製した。市販の
純度99.9%の一酸化ケイ素SiOを自動乳鉢に依り
粒径53μm以下に粉砕整粒したものを本発明に依る負
極活物質とし、これに導電剤としてグラファイトを、結
着剤として架橋型アクリル酸樹脂等を重量比65:2
0:15の割合で混合して負極合剤とし、次にこの負極
合剤を2ton/cm2 で直径15mm、厚さが0.1
9mmのペレットに加圧成形した後、200℃で10時
間減圧加熱乾燥したものを負極とした。
The negative electrode 13 was manufactured as follows. Commercially available silicon monoxide SiO having a purity of 99.9% was pulverized and sized by an automatic mortar to have a particle size of 53 μm or less, which was used as a negative electrode active material according to the present invention, and graphite as a conductive agent was cross-linked as a binder. Type acrylic resin etc. weight ratio 65: 2
The mixture was mixed at a ratio of 0:15 to obtain a negative electrode mixture, and this negative electrode mixture was 2 ton / cm 2 and had a diameter of 15 mm and a thickness of 0.1.
A 9 mm pellet was press-molded and then dried under reduced pressure at 200 ° C. for 10 hours to obtain a negative electrode.

【0088】正極15は次の様にして作製した。水酸化
リチウムLiOH・H2 Oと炭酸コバルトCoCO3
をLi:Coのモル比が1:1となる様に秤量し、乳鉢
を用いて十分混合した後、この混合物を大気中850℃
の温度で12時間加熱焼成し、冷却後、粒径53μm以
下に粉砕整粒した。この焼成、粉砕整粒を2回繰り返し
て本実施例の正極活物質LiCoO2 を合成した。
The positive electrode 15 was manufactured as follows. Lithium hydroxide LiOH.H 2 O and cobalt carbonate CoCO 3 were weighed so that the molar ratio of Li: Co was 1: 1 and sufficiently mixed using a mortar, and then this mixture was heated to 850 ° C. in the atmosphere.
It was heated and baked at the temperature of 12 hours, cooled, and then pulverized and sized to a particle size of 53 μm or less. This firing and crushing and sizing were repeated twice to synthesize the positive electrode active material LiCoO 2 of this example.

【0089】この生成物を正極活物質とし、これに導電
剤としてグラファイトを、結着剤としてフっ素樹脂等を
重量比80:15:5の割合で混合して正極合剤とし、
次にこの正極合剤を2ton/cm2 で直径16.2m
m厚さ0.71mmのペレットに加圧成形した後、10
0℃で10時間減圧加熱乾燥したものを正極とした。
This product was used as a positive electrode active material, graphite was mixed as a conductive agent, and fluorine resin or the like was mixed as a binder at a weight ratio of 80: 15: 5 to prepare a positive electrode mixture.
Next, this positive electrode mixture was treated at 2 ton / cm 2 and had a diameter of 16.2 m.
m after pressure molding into 0.71 mm thick pellets,
What was dried under reduced pressure at 0 ° C. for 10 hours was used as a positive electrode.

【0090】この様にして作製された電池(電池Kとす
る)は、室温で1週間放置エージングされた後、後述の
充放電試験が行われた。この電池Kを1mAの定電流
で、充電の終止電圧4.4V、放電の終止電圧2.0V
の条件で充放電サイクルを行ったときの1サイクル目と
2サイクル目の充放電特性を図15に、サイクル特性を
図16に示した。尚、充放電サイクルは充電からスター
トした。
The battery thus produced (referred to as battery K) was left to stand for 1 week at room temperature and then subjected to the charge / discharge test described below. With this battery K at a constant current of 1 mA, the final voltage of charging was 4.4 V and the final voltage of discharging was 2.0 V.
FIG. 15 shows the charge / discharge characteristics of the first cycle and the second cycle when the charge / discharge cycle was carried out under the conditions of, and FIG. 16 shows the cycle characteristics. The charging / discharging cycle started from charging.

【0091】この電池Kは、充電に依って正極活物質か
ら電解液中にリチウムイオンが放出され、このリチウム
イオンが電解液中を移動して負極活物質と電極反応し、
負極活物質に電気化学的にリチウムイオンが吸蔵されリ
チウムとケイ素の複合酸化物Lix SiOが生成する。
次に、放電に際しては負極のリチウムとケイ素の該複合
酸化物からリチウムイオンが電解液中に放出され、電解
液中を移動して正極活物質に吸蔵されることに依り安定
に繰り返し充放電できる。ここで、負極活物質は1回目
の充電によりリチウムを含有する複合酸化物Lix Si
Oを生成した後は、その後の放電−充電のサイクルに於
ては、完全放電時以外にはリチウムを含有するケイ素の
複合酸化物Lix'SiOを形成している。
In this battery K, lithium ions are released from the positive electrode active material into the electrolytic solution due to charging, and the lithium ions move in the electrolytic solution to cause an electrode reaction with the negative electrode active material.
Lithium ions are electrochemically occluded in the negative electrode active material to form a composite oxide Li x SiO of lithium and silicon.
Next, during discharge, lithium ions are released from the composite oxide of lithium and silicon of the negative electrode into the electrolytic solution, move in the electrolytic solution, and are occluded by the positive electrode active material, whereby stable repeated charging and discharging can be performed. . Here, the negative electrode active material is a composite oxide Li x Si containing lithium after the first charge.
After O is generated, in the subsequent discharge-charge cycle, a lithium-containing silicon composite oxide Li x ′ SiO is formed except during complete discharge.

【0092】図15〜16から明らかな様に、本発明に
よる電池Kは、充放電容量が著しく大きいことが分か
る。又、充電容量に対する放電容量(充放電効率)の低
下は、1サイクル目以外では著しく小さく、充放電の繰
り返しによる放電容量の低下(サイクル劣化)も小さ
い。更に、全充放電領域に渡って充電と放電の作動電圧
の差が著しく小さく、電池の分極(内部抵抗)が著しく
小さく、大電流充放電が容易なことが分かる。
As is apparent from FIGS. 15 to 16, the battery K according to the present invention has a remarkably large charge / discharge capacity. Further, the decrease in discharge capacity (charge / discharge efficiency) with respect to the charge capacity is extremely small except for the first cycle, and the decrease in discharge capacity (cycle deterioration) due to repeated charging / discharging is also small. Furthermore, it can be seen that the difference in operating voltage between charging and discharging is extremely small over the entire charging / discharging region, the polarization (internal resistance) of the battery is extremely small, and large-current charging / discharging is easy.

【0093】尚、1サイクル目の充電容量に対する1サ
イクル目の放電容量の低下(初期ロス)がやや大きい原
因は、1サイクル目の充電に於いて、負極活物質に電気
化学的にリチウムイオンが吸蔵される際に、負極合剤に
導電剤として加えたグラファイトや結着剤等とLiとの
間で発生する副反応が主原因であり、又、負極活物質の
SiOに吸蔵され、放電時に放出されないで残存するL
iが存在するためと考えられる。
The reason why the decrease (initial loss) in the discharge capacity in the first cycle relative to the charge capacity in the first cycle is slightly large is that the negative electrode active material is electrochemically charged with lithium ions during the charge in the first cycle. When it is occluded, it is mainly caused by a side reaction that occurs between graphite and a binder added to the negative electrode mixture as a conductive agent and a binder, and is also occluded in SiO of the negative electrode active material, so that it is discharged. L that remains without being released
This is probably because i exists.

【0094】(実施例10)本実施例では、実施例9の
負極13及び正極15の代わりに下記のようにして作製
した負極23及び正極25を用いた以外は、全て実施例
9と同様にして同様な電池Lを作製した。
(Example 10) This example is the same as Example 9 except that the negative electrode 23 and the positive electrode 25 produced in the following manner were used in place of the negative electrode 13 and the positive electrode 15 of Example 9. A similar battery L was produced.

【0095】負極23は次の様にして作製した。実施例
9と同じ負極活物質、負極合剤を用いて、2ton/c
2 で直径15mm、厚さが0.28mmのペレットに
加圧成形して負極ペレットを得た。この負極ペレットを
炭素を導電性フィラーとする導電性接着剤から成る負極
集電体12に依り負極ケース11に接着し、200℃で
10時間減圧加熱乾燥した後、この負極ペレットの上に
所定厚みのリチウムフォイルを直径14mmに打ち抜い
たものを圧着した。この様にして得られたリチウム―負
極ペレット積層電極を負極として用いた。
The negative electrode 23 was manufactured as follows. Using the same negative electrode active material and negative electrode mixture as in Example 9, 2 ton / c
A negative electrode pellet was obtained by pressure molding into a pellet having a diameter of 15 mm and a thickness of 0.28 mm in m 2 . This negative electrode pellet was adhered to the negative electrode case 11 with a negative electrode current collector 12 made of a conductive adhesive containing carbon as a conductive filler, dried under reduced pressure at 200 ° C. for 10 hours, and then dried on the negative electrode pellet to a predetermined thickness. The punched lithium foil of 14 mm in diameter was crimped. The lithium-negative electrode pellet laminated electrode thus obtained was used as a negative electrode.

【0096】正極25は次の様にして作製した。水酸化
リチウムLiOH・H2 Oと炭酸コバルトCoCO3
酸化ホウ素B23 をLi:Co:Bのモル比が1:
0.9:0.1となる様に秤量し、乳鉢を用いて十分混
合した後、この混合物を大気中850℃の温度で12時
間加熱焼成し、冷却後、粒径53μm以下に粉砕整粒し
た。この焼成、粉砕整粒を2回繰り返して本発明に依る
正極活物質LiCo0.90.12 を合成した。
The positive electrode 25 was manufactured as follows. Lithium hydroxide LiOH.H 2 O, cobalt carbonate CoCO 3 and boron oxide B 2 O 3 are mixed at a molar ratio of Li: Co: B of 1 :.
Weigh it to be 0.9: 0.1, mix well using a mortar, heat and calculate this mixture for 12 hours in the air at a temperature of 850 ° C., and after cooling, pulverize and size the particles to 53 μm or less. did. This firing and crushing and sizing were repeated twice to synthesize the positive electrode active material LiCo 0.9 B 0.1 O 2 according to the present invention.

【0097】この生成物を正極活物質とし、これに導電
剤としてグラファイトを、結着剤としてフっ素樹脂等を
重量比80:15:5の割合で混合して正極合剤とし、
次にこの正極合剤を2ton/cm2 で直径16.2m
m厚さ0.52mmのペレットに加圧成形した後、10
0℃で10時間減圧加熱乾燥したものを正極とした。
This product was used as a positive electrode active material, graphite was mixed as a conductive agent, and fluorine resin or the like was mixed as a binder at a weight ratio of 80: 15: 5 to prepare a positive electrode mixture.
Next, this positive electrode mixture was treated at 2 ton / cm 2 and had a diameter of 16.2 m.
After pressure molding into pellets with a thickness of 0.52 mm, 10
What was dried under reduced pressure at 0 ° C. for 10 hours was used as a positive electrode.

【0098】この様にして作製された電池(以下、電池
Lと略記)は、室温で1週間放置エージングされた後、
後述の充放電試験が行われた。このエージングによっ
て、負極23のリチウム−負極ペレット積層電極は電池
内で非水電解液に触れることにより自発的に反応し、リ
チウムフォイルは実質的に全て負極合剤に電気化学的に
吸蔵された。
The battery thus produced (hereinafter abbreviated as battery L) was left to stand at room temperature for 1 week and then aged.
The charge / discharge test described below was performed. By this aging, the lithium-negative electrode pellet laminated electrode of the negative electrode 23 spontaneously reacted by contacting the non-aqueous electrolyte in the battery, and substantially all the lithium foil was electrochemically occluded in the negative electrode mixture.

【0099】この様にして得られた電池Lについても、
実施例9と同様に1mAの定電流で充電の終止電圧4.
4V、放電の終止電圧2.0Vの条件で充放電サイクル
試験を行った。この時の1サイクル目と2サイクル目の
充放電特性を図17に、サイクル特性を図18に示し
た。
Regarding the battery L thus obtained,
As in Example 9, the constant voltage of 1 mA was applied to the end voltage of charging.
A charge / discharge cycle test was performed under the conditions of 4 V and a discharge end voltage of 2.0 V. The charge / discharge characteristics of the first cycle and the second cycle at this time are shown in FIG. 17, and the cycle characteristics are shown in FIG.

【0100】図から明かな様に、本実施例の電池Lは、
実施例9の電池Kに比べ著しく優れた充放電特性を有す
ることが判る。特に、1サイクル目の充電容量に対する
1サイクル目の放電容量の低下(初期ロス)がほとんど
無く、実施例9の電池Kと比較して著しく改善されてい
ることが判る。これは、充放電に伴って発生するリチウ
ムイオンと導電剤や結着剤等との副反応や充電時にSi
Oへ吸蔵され放電時に放出されないで残存するリチウム
等々に相当する量のリチウムを、予め負極合剤に積層し
て電池を組立て、電池組立後、電池内でこの積層電極が
電解液に触れることにより自発的にこのリチウムが負極
合剤と反応し吸蔵される様にしたため、その後の充放電
時の負極におけるリチウムのロスが発生しないためであ
る。
As is apparent from the figure, the battery L of this embodiment is
It can be seen that the battery K has remarkably excellent charge / discharge characteristics as compared with the battery K of Example 9. In particular, it can be seen that there is almost no decrease (initial loss) in the discharge capacity in the first cycle with respect to the charge capacity in the first cycle, which is significantly improved compared to the battery K of Example 9. This is due to a side reaction between lithium ions generated by charging and discharging and a conductive agent or a binder, or Si during charging.
By assembling a battery by preliminarily stacking an amount of lithium corresponding to lithium, etc., which is occluded in O and not released at the time of discharge, on the negative electrode mixture, and after the battery is assembled, the laminated electrode is exposed to the electrolytic solution in the battery. This is because the lithium spontaneously reacts with the negative electrode mixture and is occluded, so that lithium is not lost in the negative electrode during the subsequent charge and discharge.

【0101】又、正極活物質としてホウ素を含有する複
合酸化物を用いたことにより、サイクル劣化が著しく改
善されていることが判る。 (実施例11)本実施例は、実施例10の正極活物質及
び電解液の代わりに、下記の正極活物質及び電解液を用
いた場合である。正極活物質と電解液以外は全て実施例
10と同様にして同様な電池を作製した。
Further, it is understood that the cycle deterioration is remarkably improved by using the composite oxide containing boron as the positive electrode active material. (Example 11) In this example, the following positive electrode active material and electrolytic solution were used instead of the positive electrode active material and electrolytic solution of Example 10. A similar battery was produced in the same manner as in Example 10 except for the positive electrode active material and the electrolytic solution.

【0102】本実施例の正極活物質を次の様にして作製
した。水酸化リチウムLiOH・H 2 Oと炭酸コバルト
CoCO3 と二酸化ケイ素SiO2 をLi:Co:Si
のモル比が1:0.9:0.1となる様に秤量し、乳鉢
を用いて十分混合した後、この混合物を大気中850℃
の温度で12時間加熱焼成し、冷却後、粒径53μm以
下に粉砕整粒した。この焼成、粉砕整粒を2回繰り返し
てLiCo0.9Si0.1O2の近似組成を有する層状構造
の複合酸化物を得た。これを本発明による正極活物質と
して用いた。
The positive electrode active material of this example was prepared as follows.
did. Lithium hydroxide LiOH / H 2 O and cobalt carbonate
CoCO3 And silicon dioxide SiO2 Li: Co: Si
Mortar, weighed so that the molar ratio of is 0.9: 0.1.
After mixing well, the mixture is heated to 850 ° C in air.
After heating and firing at the temperature of 12 hours and cooling, the particle size is 53 μm or less.
It was crushed and sized underneath. Repeat this baking and crushing twice.
Layered structure having an approximate composition of LiCo0.9Si0.1O2
A complex oxide of This as a positive electrode active material according to the present invention
I used it.

【0103】電解液は、ECとDECの体積比1:1混
合溶媒にLiPF6を1モル/l溶解したものを用い
た。この様にして得られた電池(電池Mと略記)につい
ても、実施例9,10と同様に1mAの定電流で充電の
終止電圧4.4V、放電の終止電圧2.0Vの条件で充
放電サイクル試験を行った。この時の1サイクル目と2
サイクル目の充放電特性を図19に、サイクル特性を図
20に示した。
The electrolyte used was a solution of LiPF6 dissolved at 1 mol / l in a mixed solvent of EC and DEC at a volume ratio of 1: 1. The battery thus obtained (abbreviated as battery M) was also charged and discharged under the conditions of a constant current of 1 mA and a cutoff voltage of 4.4 V and a discharge end voltage of 2.0 V as in Examples 9 and 10. A cycle test was conducted. 1st cycle and 2 at this time
FIG. 19 shows the charge / discharge characteristics at the cycle, and FIG. 20 shows the cycle characteristics.

【0104】図から明かな様に、本実施例の電池Mは、
実施例10の電池Lに比べ更に優れた充放電特性を有す
ることが判る。即ち、正極活物質としてケイ素を含有す
る複合酸化物を用いたことにより、ホウ素を含有する複
合酸化物を用いた電池Lと同等の充放電容量が得られる
と共に、電解質溶媒としてECとDECから成る混合溶
媒を用いたことに依り、PCを含有しDECを含まない
電解質溶媒を用いた電池Lに比べサイクル劣化が著しく
改善されていることが判る。
As is clear from the figure, the battery M of this embodiment is
It can be seen that the battery L has more excellent charge / discharge characteristics as compared with the battery L of Example 10. That is, by using the composite oxide containing silicon as the positive electrode active material, the same charge / discharge capacity as that of the battery L using the composite oxide containing boron can be obtained, and the electrolyte solvent is composed of EC and DEC. By using the mixed solvent, it is found that the cycle deterioration is remarkably improved as compared with the battery L using the electrolyte solvent containing PC and not containing DEC.

【0105】(実施例12)実施例11の電解液の代わ
りに、ECとDMCの体積比1:1混合溶媒にLiPF
6 を1モル/l溶解したものを用いた。電解液以外は全
て実施例11と同様にして同様な電池Nを作製した。
Example 12 Instead of the electrolytic solution of Example 11, LiPF was used in a mixed solvent of EC and DMC in a volume ratio of 1: 1.
A solution of 6 dissolved in 1 mol / l was used. A similar battery N was produced in the same manner as in Example 11 except for the electrolytic solution.

【0106】この様にして得られた電池Nの1kHz、
1mAの交流法で測定した内部抵抗は6Ωであり、実施
例11の電池Mの場合の11Ωに比べて半減した。この
電池Nについても、実施例11と同様な充放電サイクル
試験を行ったところ、電池Mに比べ各サイクル毎の充放
電容量が約20%増加し、且つ充放電の繰り返しに依る
放電容量の低下(サイクル劣化)は、電池Mとほぼ同様
な水準であった。即ち、電解質溶媒としてECとDMC
の混合溶媒を用いた場合には、ECとDECの混合溶媒
を用いた場合以上に優れた充放電特性が得られる。
The thus obtained battery N of 1 kHz,
The internal resistance measured by the 1 mA AC method was 6Ω, which was half that of the battery M of Example 11, which was 11Ω. The battery N was also subjected to the same charge / discharge cycle test as in Example 11, and as a result, the charge / discharge capacity for each cycle was increased by about 20% as compared with the battery M, and the discharge capacity was decreased due to repeated charge / discharge. The (cycle deterioration) was almost the same level as the battery M. That is, EC and DMC are used as electrolyte solvents.
In the case of using the mixed solvent of, the charge / discharge characteristics superior to those in the case of using the mixed solvent of EC and DEC are obtained.

【0107】[0107]

【発明の効果】以上詳述した様に、本発明は、非水電解
質二次電池の負極活物質として、リチウムを含有するケ
イ素の酸化物もしくはケイ酸塩から成る新規な活物質を
用いたものであり、該負極活物質はリチウム基準極(金
属リチウム)に対し0〜1Vの卑な電位領域に於て、充
放電により可逆的にリチウムイオンを吸蔵放出出来る量
即ち充放電容量が著しく大きく、かつ充放電の分極が小
さいため、高電圧・高エネルギー密度で且つ大電流での
充放電特性が優れた二次電池を得ることが出来る。又、
過充電過放電による不可逆物質の生成等の劣化が殆ど見
られず、極めて安定でサイクル寿命の長い二次電池を得
ることが出来る。
As described in detail above, the present invention uses a novel active material composed of a lithium-containing silicon oxide or silicate as a negative electrode active material of a non-aqueous electrolyte secondary battery. The negative electrode active material has a remarkably large amount of lithium ions that can be reversibly occluded and discharged by charging and discharging in a base potential region of 0 to 1 V with respect to a lithium reference electrode (metal lithium), Since the charge / discharge polarization is small, it is possible to obtain a secondary battery having high voltage / high energy density and excellent charge / discharge characteristics at a large current. or,
Almost no deterioration such as generation of irreversible substances due to overcharging / overdischarging is observed, and a very stable secondary battery having a long cycle life can be obtained.

【0108】特に、リチウムを含有するケイ素の低級酸
化物LixSiOy (但し、x≧0、2>y>0)を用
いた場合に、充放電容量が特に大きく、且つ充放電の分
極が小さく、大電流充放電が容易であり特に優れてい
る。又、これらの負極活物質と共に、正極活物質として
ケイ素及び/又はホウ素を含有する層状構造の複合酸化
物Liabc2を用いて二次電池を構成する事によ
り、約4Vの高い作動電圧を有し、且つより高エネルギ
ー密度で充放電特性が優れ、しかも過充電過放電による
劣化が小さくサイクル寿命の長い二次電池が得られる。
In particular, when a lower oxide Li x SiO y of silicon containing lithium (where x ≧ 0, 2>y> 0) is used, the charge / discharge capacity is particularly large and the charge / discharge polarization is high. It is small and easy to charge and discharge with large current, and it is especially excellent. In addition, by using a composite oxide Li a M b L c O 2 having a layered structure containing silicon and / or boron as a positive electrode active material together with these negative electrode active materials, a secondary battery is constructed, It is possible to obtain a secondary battery having a high operating voltage, a higher energy density, excellent charging / discharging characteristics, little deterioration due to overcharging / overdischarging, and a long cycle life.

【0109】更に、これらの負極活物質と共に、電解質
としてエチレンカーボネートを含有する非水電解質を用
いることに依り、特にサイクル寿命が長く、信頼性の高
い二次電池が得られる等々優れた効果を有する。
Furthermore, by using a non-aqueous electrolyte containing ethylene carbonate as an electrolyte together with these negative electrode active materials, it is possible to obtain a secondary battery having a particularly long cycle life and high reliability, which has excellent effects. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明において負極活物質の比較評価に用いた
電池の構造の一例を示した説明図である。
FIG. 1 is an explanatory view showing an example of the structure of a battery used for comparative evaluation of negative electrode active materials in the present invention.

【図2】本発明による電池と従来電池の負極活物質の3
サイクル目の充電特性の比較を示した説明図である。
FIG. 2 is a negative electrode active material of a battery according to the present invention and a conventional battery.
It is explanatory drawing which showed the comparison of the charging characteristic of the cycle.

【図3】本発明による電池と従来電池の負極活物質の3
サイクル目の放電特性の比較を示した説明図である。
FIG. 3 is a negative electrode active material of a battery according to the present invention and a conventional battery.
It is explanatory drawing which showed the comparison of the discharge characteristic of the cycle.

【図4】本発明による電池と従来電池の負極活物質の3
サイクル目の充電特性の比較を示した説明図である。
FIG. 4 is a negative electrode active material of a battery according to the present invention and a conventional battery;
It is explanatory drawing which showed the comparison of the charging characteristic of the cycle.

【図5】本発明による電池と従来電池の負極活物質の3
サイクル目の放電特性の比較を示した説明図である。
FIG. 5 is a negative electrode active material of a battery according to the present invention and a conventional battery.
It is explanatory drawing which showed the comparison of the discharge characteristic of the cycle.

【図6】本発明による電池と従来電池の負極活物質のサ
イクル特性の比較を示した説明図である。
FIG. 6 is an explanatory diagram showing a comparison of cycle characteristics of a negative electrode active material of a battery according to the present invention and a conventional battery.

【図7】本発明による電池の各種負極活物質の1サイク
ル目の充電特性の比較を示した説明図である。
FIG. 7 is an explanatory diagram showing a comparison of charge characteristics in the first cycle of various negative electrode active materials of the battery according to the present invention.

【図8】本発明による電池の各種負極活物質の1サイク
ル目の放電特性の比較を示した説明図である。
FIG. 8 is an explanatory diagram showing a comparison of discharge characteristics in the first cycle of various negative electrode active materials of the battery according to the present invention.

【図9】本発明による電池の負極活物質の3サイクル目
の充放電特性を示した説明図である。
FIG. 9 is an explanatory diagram showing charge / discharge characteristics at the third cycle of the negative electrode active material of the battery according to the present invention.

【図10】本発明による電池の負極活物質のサイクル特
性を示した説明図である。
FIG. 10 is an explanatory diagram showing cycle characteristics of a negative electrode active material of a battery according to the present invention.

【図11】本発明による電池の負極活物質の各種電解質
中での5サイクル目の充電特性の比較を示した説明図で
ある。
FIG. 11 is an explanatory diagram showing a comparison of charging characteristics of the negative electrode active material of the battery according to the present invention in various electrolytes at the fifth cycle.

【図12】本発明による電池の負極活物質の各種電解質
中での5サイクル目の放電特性の比較を示した説明図で
ある。
FIG. 12 is an explanatory diagram showing a comparison of discharge characteristics of the negative electrode active material of the battery according to the present invention in various electrolytes at the fifth cycle.

【図13】本発明による電池の負極活物質の各種電解質
中でのサイクル特性の比較を示した説明図である。
FIG. 13 is an explanatory diagram showing a comparison of cycle characteristics of the negative electrode active material of the battery according to the present invention in various electrolytes.

【図14】本発明において実施した電池の構造の一例を
示した説明図である。
FIG. 14 is an explanatory diagram showing an example of the structure of a battery implemented in the present invention.

【図15】本発明による電池の1サイクル目と2サイク
ル目の充放電特性を示した説明図である。
FIG. 15 is an explanatory diagram showing charge / discharge characteristics in the first cycle and the second cycle of the battery according to the present invention.

【図16】本発明による電池のサイクル特性を示した説
明図である。
FIG. 16 is an explanatory diagram showing cycle characteristics of the battery according to the present invention.

【図17】本発明による電池の1サイクル目と2サイク
ル目の充放電特性を示した説明図である。
FIG. 17 is an explanatory diagram showing charge / discharge characteristics at the first cycle and the second cycle of the battery according to the present invention.

【図18】本発明による電池のサイクル特性を示した説
明図である。
FIG. 18 is an explanatory diagram showing cycle characteristics of the battery according to the present invention.

【図19】本発明による電池の1サイクル目と2サイク
ル目の充放電特性を示した説明図である。
FIG. 19 is an explanatory diagram showing charge / discharge characteristics at the first cycle and the second cycle of the battery according to the present invention.

【図20】本発明による電池のサイクル特性を示した説
明図である。
FIG. 20 is an explanatory diagram showing cycle characteristics of the battery according to the present invention.

【符号の説明】[Explanation of symbols]

1 対極ケース 2 対極集電体 3 対極 4、14 セパレータ 5 作用極 6 作用極集電体 7 作用極ケース 8、18 ガスケット 11 負極ケース 12 負極集電体 13 負極 15 正極 16 正極集電体 17 正極ケース 1 counter electrode case 2 counter electrode current collector 3 counter electrode 4, 14 separator 5 working electrode 6 working electrode current collector 7 working electrode case 8, 18 gasket 11 negative electrode case 12 negative electrode current collector 13 negative electrode 15 positive electrode 16 positive electrode current collector 17 positive electrode Case

───────────────────────────────────────────────────── フロントページの続き (31)優先権主張番号 特願平4−265179 (32)優先日 平4(1992)10月2日 (33)優先権主張国 日本(JP) (31)優先権主張番号 特願平4−202383 (32)優先日 平4(1992)7月29日 (33)優先権主張国 日本(JP) (72)発明者 岩崎 文晴 東京都江東区亀戸6丁目31番1号 セイコ ー電子工業株式会社内 (72)発明者 矢作 誠治 東京都江東区亀戸6丁目31番1号 セイコ ー電子工業株式会社内 (72)発明者 坂田 明史 東京都江東区亀戸6丁目31番1号 セイコ ー電子工業株式会社内 (72)発明者 酒井 次夫 宮城県仙台市太白区西多賀5丁目30番1号 セイコー電子部品株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (31) Priority claim number Japanese Patent Application No. 4-265179 (32) Priority date Hei 4 (1992) October 2 (33) Country of priority claim Japan (JP) (31) Priority Claim number Japanese patent application No. 4-202383 (32) Priority date Hei 4 (1992) July 29 (33) Priority claiming country Japan (JP) (72) Inventor Fumiharu Iwasaki 6-31 Kameido, Koto-ku, Tokyo No. 1 Seiko Electronics Co., Ltd. (72) Inventor Seiji Yahagi 6-31 Kameido, Koto-ku, Tokyo No. 1 Seiko Electronics Co., Ltd. (72) Inventor Akifumi Sakata 6-31 Kameido, Koto-ku, Tokyo No. 1 in Seiko Electronics Co., Ltd. (72) Inventor Tsugio Sakai 5-30-1 Nishitaga, Taihaku-ku, Sendai City, Miyagi Prefecture Seiko Electronic Components Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 負極と正極とリチウムイオン導電性の非
水電解質とから少なくとも成る非水電解質二次電池にお
いて、負極活物質として、リチウムを含有するケイ素の
酸化物もしくはケイ酸塩を用いたことを特徴とする非水
電解質二次電池。
1. A non-aqueous electrolyte secondary battery comprising at least a negative electrode, a positive electrode and a lithium ion conductive non-aqueous electrolyte, wherein a lithium-containing silicon oxide or silicate is used as a negative electrode active material. A non-aqueous electrolyte secondary battery characterized by:
【請求項2】 負極活物質として組成式Lix SiOy
(但し、x≧0、2>y>0)で示され、リチウムを含
有するケイ素の酸化物を用いたことを特徴とする請求項
1に記載の非水電解質二次電池。
2. The composition formula Li x SiO y as the negative electrode active material.
(However, x ≧ 0, 2>y> 0) and a lithium-containing silicon oxide is used, and the non-aqueous electrolyte secondary battery according to claim 1.
【請求項3】 負極活物質として用いるリチウムを含有
する該ケイ素の酸化物もしくは該ケイ酸塩が非晶質であ
ることを特徴とする請求項1及び2に記載の非水電解質
二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the silicon oxide or the silicate containing lithium used as the negative electrode active material is amorphous.
【請求項4】 正極活物質として、組成式がLiab
c O2で示され、但し、Mは遷移金属元素、Lはホウ
素B及びケイ素Siの中から選ばれた1種以上の類金属
元素であり、a,b,cはそれぞれ0<a≦1.15、
0.85≦b+c≦1.3、0≦cであり、層状構造を
有する複合酸化物を用いたことを特徴とする請求項1〜
3に記載の非水電解質二次電池。
4. The positive electrode active material has a composition formula of Li a M b.
L c O2, where M is a transition metal element, L is one or more kinds of metal elements selected from boron B and silicon Si, and a, b, and c are 0 <a ≦ 1 respectively. .15,
0.85 ≦ b + c ≦ 1.3, 0 ≦ c, and a complex oxide having a layered structure is used.
The non-aqueous electrolyte secondary battery according to item 3.
【請求項5】 該非水電解質として、非水溶媒とリチウ
ムイオンを含有する支持電解質とから少なくとも成り、
エチレンカーボネートを含有する非水電解液を用いるこ
とを特徴とする請求項1〜4に記載の非水電解質二次電
池。
5. The non-aqueous electrolyte comprises at least a non-aqueous solvent and a supporting electrolyte containing lithium ions,
The non-aqueous electrolyte secondary battery according to any one of claims 1 to 4, wherein a non-aqueous electrolyte solution containing ethylene carbonate is used.
【請求項6】 該非水電解液が、数1で表されるR・
R’型アルキルカーボネートをも含有することを特徴と
する請求項5に記載の非水電解質二次電池。 【数1】
6. The non-aqueous electrolyte is R · represented by the formula 1.
The non-aqueous electrolyte secondary battery according to claim 5, further comprising an R′-type alkyl carbonate. [Equation 1]
【請求項7】 該R・R’型アルキルカーボネートがジ
メチルカーボネート又はジエチルカーボネートであるこ
とを特徴とする請求項6に記載の非水電解質二次電池。
7. The non-aqueous electrolyte secondary battery according to claim 6, wherein the R · R′-type alkyl carbonate is dimethyl carbonate or diethyl carbonate.
【請求項8】 電池組立後電池内で、又は電池製造工程
の途上において電池内もしくは電池外で、ケイ素の酸化
物もしくはケイ酸塩とリチウムもしくはリチウムを含有
する物質との電気化学的反応に依り該ケイ素の酸化物も
しくは該ケイ酸塩にリチウムイオンを吸蔵させてリチウ
ムを含有する該ケイ素の酸化物もしくは該ケイ酸塩を得
ることを特徴とする請求項1〜7に記載の非水電解質二
次電池の製造方法。
8. By an electrochemical reaction between a silicon oxide or a silicate and lithium or a substance containing lithium in the battery after the battery is assembled or in the battery during the battery manufacturing process. 8. The non-aqueous electrolyte electrolyte according to claim 1, wherein the silicon oxide or the silicate absorbs lithium ions to obtain the silicon oxide or the silicate containing lithium. Next battery manufacturing method.
【請求項9】 ケイ素の酸化物がケイ素の低級酸化物S
iOy(但し、0<y<2)であることを特徴とする請
求項8に記載の非水電解質二次電池の製造方法。
9. The silicon oxide is a lower oxide S of silicon.
9. The method for manufacturing a non-aqueous electrolyte secondary battery according to claim 8, wherein iOy (where 0 <y <2).
JP5162958A 1992-07-29 1993-06-30 Non-aqueous electrolyte secondary battery and method of manufacturing the same Expired - Lifetime JP2997741B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP5162958A JP2997741B2 (en) 1992-07-29 1993-06-30 Non-aqueous electrolyte secondary battery and method of manufacturing the same
DE69318897T DE69318897T2 (en) 1992-07-29 1993-07-26 Secondary battery with non-aqueous electrolytes and process for their production
EP93111938A EP0582173B1 (en) 1992-07-29 1993-07-26 Non-aqueous electrolyte secondary battery and its production method
US08/097,714 US5395711A (en) 1992-07-29 1993-07-27 Non-aqueous electrolyte secondary battery and its production method
KR1019930014610A KR100237580B1 (en) 1992-07-29 1993-07-29 Non-aqueous electrolyte battery and its production method
TW082106073A TW242200B (en) 1992-07-29 1993-07-29

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
JP5-35851 1992-07-29
JP4-265179 1992-07-29
JP4-202383 1992-07-29
JP5-60520 1992-07-29
JP20238392 1992-07-29
JP5-43058 1992-07-29
JP26517992 1992-10-02
JP3585193 1993-02-24
JP4305893 1993-03-03
JP6052093 1993-03-19
JP5162958A JP2997741B2 (en) 1992-07-29 1993-06-30 Non-aqueous electrolyte secondary battery and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH06325765A true JPH06325765A (en) 1994-11-25
JP2997741B2 JP2997741B2 (en) 2000-01-11

Family

ID=27549783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5162958A Expired - Lifetime JP2997741B2 (en) 1992-07-29 1993-06-30 Non-aqueous electrolyte secondary battery and method of manufacturing the same

Country Status (5)

Country Link
US (1) US5395711A (en)
EP (1) EP0582173B1 (en)
JP (1) JP2997741B2 (en)
KR (1) KR100237580B1 (en)
DE (1) DE69318897T2 (en)

Cited By (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997001193A1 (en) * 1995-06-22 1997-01-09 Seiko Instruments Inc. Nonaqueous electrolyte secondary battery
JPH10270088A (en) * 1997-03-27 1998-10-09 Seiko Instr Inc Nonaqueous electrolyte secondary battery
JP2001023603A (en) * 1999-07-13 2001-01-26 Toshiba Battery Co Ltd Flat nonaqueous electrolyte secondary battery
US6410188B1 (en) 1998-11-30 2002-06-25 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
JP2003160328A (en) * 2001-09-05 2003-06-03 Shin Etsu Chem Co Ltd Lithium-containing silicon oxide powder and method for production thereof
WO2007063765A1 (en) 2005-12-02 2007-06-07 Matsushita Electric Industrial Co., Ltd. Negative active substance, and negative electrode and lithium ion secondary battery using the substance
WO2007086411A1 (en) 2006-01-25 2007-08-02 Matsushita Electric Industrial Co., Ltd. Negative electrode for lithium secondary battery, method for producing same, and lithium secondary battery comprising such negative electrode for lithium secondary battery
US7358011B2 (en) 2002-11-26 2008-04-15 Shin-Etsu Chemical Co., Ltd Non-aqueous electrolyte secondary battery negative electrode material, making method, and lithium ion secondary battery
JPWO2006106782A1 (en) * 2005-03-31 2008-09-11 松下電器産業株式会社 Lithium secondary battery
JP2009070825A (en) * 2007-09-17 2009-04-02 Samsung Sdi Co Ltd Negative active material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery and lithium secondary battery
US7718311B2 (en) 2004-11-05 2010-05-18 Sony Corporation Electrolytic solution and battery
US7718313B2 (en) 2003-06-23 2010-05-18 Sony Corporation Anode material and battery using the same
WO2010071166A1 (en) 2008-12-19 2010-06-24 Necトーキン株式会社 Negative electrode for nonaqueous electrolyte solution secondary cell and nonaqueous electrolyte solution secondary cell using the same, and method for producing negative electrode for nonaqueous electrolyte solution secondary cell
US7754389B2 (en) 2004-02-12 2010-07-13 Sony Corporation Battery including an electrolyte solution comprising a halogenated carbonate derivative
US7754381B2 (en) 2002-10-25 2010-07-13 Sony Corporation Anode and battery, and manufacturing methods thereof
US7824801B2 (en) 2004-12-16 2010-11-02 Panasonic Corporation Negative electrode for lithium ion secondary battery, production method thereof and lithium ion secondary battery comprising the same
US7906237B2 (en) 2003-06-11 2011-03-15 Sony Corporation Battery
US7914930B2 (en) 2006-01-10 2011-03-29 Panasonic Corporation Method for producing non-aqueous electrolyte secondary battery
WO2011040443A1 (en) 2009-09-29 2011-04-07 Necエナジーデバイス株式会社 Secondary battery
WO2011040447A1 (en) 2009-09-29 2011-04-07 Necエナジーデバイス株式会社 Secondary battery
JP2011100625A (en) * 2009-11-06 2011-05-19 National Institute Of Advanced Industrial Science & Technology Positive electrode active material for lithium secondary battery, and method of manufacturing the same
US7955581B2 (en) 2005-10-14 2011-06-07 Panasonic Corporation Method of producing silicon oxide, negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the same
US8003243B2 (en) 2004-11-08 2011-08-23 Sony Corporation Spirally wound secondary battery with uneven termination end portions
WO2011102453A1 (en) 2010-02-18 2011-08-25 Necエナジーデバイス株式会社 Polymer secondary battery and method for producing same
WO2011118387A1 (en) 2010-03-26 2011-09-29 Necエナジーデバイス株式会社 Non-aqueous electrolyte secondary battery
WO2012029551A1 (en) 2010-09-02 2012-03-08 日本電気株式会社 Secondary battery and secondary battery electrolyte used therein
US8148018B2 (en) 2006-11-21 2012-04-03 Panasonic Corporation Method and apparatus of manufacturing negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the negative electrode
US8153292B2 (en) 2007-04-13 2012-04-10 Panasonic Corporation Electrochemical device, manufacturing method of electrode thereof and processing apparatus for electrode of electrochemical device
US8334073B2 (en) 2006-10-12 2012-12-18 Panasonic Corporation Non-aqueous electrolyte secondary battery and method of manufacturing negative electrode thereof
WO2012176039A1 (en) 2011-06-24 2012-12-27 Toyota Jidosha Kabushiki Kaisha Negative-electrode active material, and method for production of negative-electrode active material
JP2013008586A (en) * 2011-06-24 2013-01-10 Sony Corp Lithium ion secondary battery, negative electrode for lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device
WO2013018486A1 (en) * 2011-07-29 2013-02-07 三洋電機株式会社 Active substance for nonaqueous electrolyte secondary cell, method for producing same, and negative electrode using active substance
WO2013115040A1 (en) * 2012-01-30 2013-08-08 日本電気株式会社 Conjugated ester compound, electrolyte, and secondary battery using same
JP2013191458A (en) * 2012-03-14 2013-09-26 Seiko Instruments Inc Nonaqueous electrolyte secondary battery
JP2013229320A (en) * 2012-03-27 2013-11-07 Tdk Corp Lithium ion secondary battery
US8586245B2 (en) 2004-11-05 2013-11-19 Sony Corporation Battery
WO2014002602A1 (en) 2012-06-27 2014-01-03 Jnc株式会社 Negative active material for secondary battery, process for producing same, and negative electrode and lithium-ion battery both obtained using same
KR20140013729A (en) * 2012-07-26 2014-02-05 주식회사 엘지화학 Electrode active material for secondary battery
US8999562B2 (en) 2010-09-02 2015-04-07 Nec Corporation Secondary battery and secondary battery electrolytic solution for use in secondary battery
WO2015063979A1 (en) * 2013-10-29 2015-05-07 信越化学工業株式会社 Negative electrode active material, production method for negative electrode active material, and lithium ion secondary battery
WO2015088248A1 (en) 2013-12-10 2015-06-18 주식회사 엘지화학 Negative electrode material for secondary battery, and secondary battery using same
WO2015088283A1 (en) 2013-12-13 2015-06-18 주식회사 엘지화학 Negative electrode material for secondary battery, and secondary battery using same
US9077029B2 (en) 2010-02-23 2015-07-07 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and rechargeable lithium battery including the same
US9077045B2 (en) 2010-09-02 2015-07-07 Nec Corporation Secondary battery
WO2015107581A1 (en) * 2014-01-16 2015-07-23 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary batteries and method for producing negative electrode active material particles
US9123971B2 (en) 2010-09-02 2015-09-01 Nec Corporation Secondary battery
JP2015198038A (en) * 2014-04-02 2015-11-09 信越化学工業株式会社 Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US9196896B2 (en) 2012-07-24 2015-11-24 Lg Chem, Ltd. Porous silicon-based electrode active material and secondary battery comprising the same
US9219274B2 (en) 2010-09-02 2015-12-22 Nec Corporation Secondary battery
US9299985B2 (en) 2010-10-14 2016-03-29 Nec Corporation Secondary battery and electrolyte solution for secondary battery to be used in same
US9312534B2 (en) 2010-12-09 2016-04-12 Nec Corporation Nonaqueous electrolytic solution secondary battery, and positive electrode and negative electrode used in the same
US9373867B2 (en) 2011-03-28 2016-06-21 Nec Corporation Secondary battery and electrolyte liquid
US9425480B2 (en) 2010-09-02 2016-08-23 Nec Corporation Secondary battery
US9466827B2 (en) 2010-09-02 2016-10-11 Nec Corporation Secondary battery
US9512523B2 (en) 2012-04-19 2016-12-06 Lg Chem, Ltd. Porous electrode active material and secondary battery including the same
US9543618B2 (en) 2010-09-02 2017-01-10 Nec Corporation Secondary battery
US9548489B2 (en) 2012-01-30 2017-01-17 Nexeon Ltd. Composition of SI/C electro active material
US9627681B2 (en) 2012-11-30 2017-04-18 Lg Chem, Ltd. Silicon-based composite and production method thereof
WO2017085900A1 (en) * 2015-11-18 2017-05-26 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte battery
US9666904B2 (en) 2012-07-02 2017-05-30 Nec Corporation Secondary battery
US9748608B2 (en) 2012-03-02 2017-08-29 Nec Corporation Second battery comprising a phosphate ester compound and a fluorinated carbonate compound
US9780357B2 (en) 2012-04-19 2017-10-03 Lg Chem, Ltd. Silicon-based anode active material and secondary battery comprising the same
JP2017204374A (en) * 2016-05-11 2017-11-16 株式会社大阪チタニウムテクノロジーズ Silicon oxide-based powder negative electrode material
WO2018074175A1 (en) * 2016-10-19 2018-04-26 株式会社大阪チタニウムテクノロジーズ Silicon oxide negative electrode material and production method therefor
US9997772B2 (en) 2012-08-28 2018-06-12 Kabushiki Kaisha Toyota Jidoshokki Negative-electrode material for nonaqueous-electrolyte secondary battery production process for the same, negative electrode for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery
US10008716B2 (en) 2012-11-02 2018-06-26 Nexeon Limited Device and method of forming a device
US10077506B2 (en) 2011-06-24 2018-09-18 Nexeon Limited Structured particles
US10090513B2 (en) 2012-06-01 2018-10-02 Nexeon Limited Method of forming silicon
US10103379B2 (en) 2012-02-28 2018-10-16 Nexeon Limited Structured silicon particles
US10290894B2 (en) 2010-10-29 2019-05-14 Nec Corporation Secondary battery and method for manufacturing same
US10312518B2 (en) 2007-10-26 2019-06-04 Murata Manufacturing Co., Ltd. Anode and method of manufacturing the same, and secondary battery
US10396355B2 (en) 2014-04-09 2019-08-27 Nexeon Ltd. Negative electrode active material for secondary battery and method for manufacturing same
US10476072B2 (en) 2014-12-12 2019-11-12 Nexeon Limited Electrodes for metal-ion batteries
US10522824B2 (en) 2014-07-23 2019-12-31 Nexeon Ltd Method for preparing silicon-based active material particles for secondary battery and silicon-based active material particles
US10586976B2 (en) 2014-04-22 2020-03-10 Nexeon Ltd Negative electrode active material and lithium secondary battery comprising same
WO2020110625A1 (en) 2018-11-28 2020-06-04 信越化学工業株式会社 Negative-electrode active material and method for producing same
WO2020149079A1 (en) 2019-01-15 2020-07-23 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery and method for producing same
US10749208B2 (en) 2011-03-28 2020-08-18 Nec Corporation Secondary battery and electrolyte liquid
US10847784B2 (en) 2015-07-10 2020-11-24 Jnc Corporation Negative electrode active material for lithium ion secondary battery and method for producing same
KR20200144855A (en) * 2019-06-19 2020-12-30 대주전자재료 주식회사 Carbon-silicon complex oxide compoite for anode material of secondary battery and method for preparing the same
WO2021053951A1 (en) 2019-09-18 2021-03-25 信越化学工業株式会社 Negative electrode active substance, negative electrode, and methods for producing these
WO2021065200A1 (en) 2019-10-03 2021-04-08 信越化学工業株式会社 Negative electrode active material, negative electrode, and method for manufacturing negative electrode active material
WO2022158150A1 (en) 2021-01-25 2022-07-28 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries, and method for producing negative electrode active material for nonaqueous electrolyte secondary batteries
WO2022168474A1 (en) 2021-02-04 2022-08-11 信越化学工業株式会社 Negative electrode and method for producing negative electrode
WO2022172815A1 (en) 2021-02-15 2022-08-18 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
WO2022239676A1 (en) 2021-05-13 2022-11-17 信越化学工業株式会社 Negative electrode active material and method for producing same
WO2022259920A1 (en) 2021-06-08 2022-12-15 信越化学工業株式会社 Negative electrode active material, negative electrode and lithium ion secondary battery
WO2022259914A1 (en) 2021-06-08 2022-12-15 信越化学工業株式会社 Negative electrode active material, negative electrode, and lithium ion secondary battery
WO2023282136A1 (en) 2021-07-05 2023-01-12 信越化学工業株式会社 Method for manufacturing silicon monoxide
WO2023008093A1 (en) 2021-07-27 2023-02-02 信越化学工業株式会社 Negative electrode active material and method for producing same
WO2023008094A1 (en) 2021-07-27 2023-02-02 信越化学工業株式会社 Negative electrode and method for producing same
WO2023017689A1 (en) 2021-08-11 2023-02-16 信越化学工業株式会社 Negative electrode
WO2023021861A1 (en) 2021-08-16 2023-02-23 信越化学工業株式会社 Negative electrode and method for producing negative electrode
WO2023032845A1 (en) 2021-09-02 2023-03-09 信越化学工業株式会社 Silicon monoxide powder, and negative electrode active material for lithium ion secondary battery

Families Citing this family (172)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5478673A (en) * 1992-10-29 1995-12-26 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
JP3010226B2 (en) * 1993-03-10 2000-02-21 セイコーインスツルメンツ株式会社 Non-aqueous electrolyte secondary battery and method of manufacturing the same
CA2122092C (en) * 1993-04-28 2006-06-06 Atsuo Omaru Secondary battery having non-aqueous electrolyte
US5618640A (en) * 1993-10-22 1997-04-08 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
US5486435A (en) * 1994-01-25 1996-01-23 Hydro-Quebec Additives for extruding polymer electrolytes
JPH07240200A (en) * 1994-02-28 1995-09-12 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH07263028A (en) * 1994-03-25 1995-10-13 Fuji Photo Film Co Ltd Nonaqueous secondary battery
CA2122770C (en) * 1994-05-03 2000-10-03 Moli Energy (1990) Limited Carbonaceous host compounds and use as anodes in rechargeable batteries
CA2127621C (en) * 1994-07-08 1999-12-07 Alfred Macdonald Wilson Carbonaceous insertion compounds and use as anodes in rechargeable batteries
US5683834A (en) * 1994-09-07 1997-11-04 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
CA2162456C (en) * 1994-11-09 2008-07-08 Keijiro Takanishi Cathode material, method of preparing it and nonaqueous solvent type secondary battery having a cathode comprising it
JPH08138744A (en) * 1994-11-16 1996-05-31 Fuji Photo Film Co Ltd Nonaqueous secondary battery
US5591548A (en) * 1995-06-05 1997-01-07 Motorola, Inc. Electrode materials for rechargeable electrochemical cells and method of making same
US5580686A (en) * 1995-10-13 1996-12-03 Arthur D. Little, Inc. Electrolytic cell and electrolytic process
US5698147A (en) * 1996-05-24 1997-12-16 W. R. Grace & Co.-Conn. Fabrication methods for low impedance lithium polymer electrodes
US5824280A (en) * 1996-06-11 1998-10-20 Dow Corning Corporation Electrodes for lithium ion batteries using polysiloxanes
US5631106A (en) * 1996-06-11 1997-05-20 Dow Corning Corporation Electrodes for lithium ion batteries using polysilazanes ceramic with lithium
US5907899A (en) * 1996-06-11 1999-06-01 Dow Corning Corporation Method of forming electrodes for lithium ion batteries using polycarbosilanes
US6306541B1 (en) 1996-06-11 2001-10-23 Dow Corning Corporation Electrodes for lithium ion batteries using polysilanes
JP3713900B2 (en) * 1996-07-19 2005-11-09 ソニー株式会社 Negative electrode material and non-aqueous electrolyte secondary battery using the same
US6022640A (en) * 1996-09-13 2000-02-08 Matsushita Electric Industrial Co., Ltd. Solid state rechargeable lithium battery, stacking battery, and charging method of the same
US5928812A (en) * 1996-11-18 1999-07-27 Ultralife Batteries, Inc. High performance lithium ion polymer cells and batteries
US6017656A (en) * 1996-11-27 2000-01-25 Medtronic, Inc. Electrolyte for electrochemical cells having cathodes containing silver vanadium oxide
US5766797A (en) * 1996-11-27 1998-06-16 Medtronic, Inc. Electrolyte for LI/SVO batteries
US6083644A (en) * 1996-11-29 2000-07-04 Seiko Instruments Inc. Non-aqueous electrolyte secondary battery
JP3436033B2 (en) * 1996-12-27 2003-08-11 ソニー株式会社 Non-aqueous electrolyte secondary battery
US6824920B1 (en) 1997-06-03 2004-11-30 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery comprising composite particles
DE69814232T2 (en) * 1997-06-03 2004-04-08 Matsushita Electric Industrial Co., Ltd., Kadoma Negative electrode active materials for non-aqueous electrolyte secondary batteries and corresponding batteries
US6203944B1 (en) 1998-03-26 2001-03-20 3M Innovative Properties Company Electrode for a lithium battery
US6653019B1 (en) 1998-06-03 2003-11-25 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
US6821675B1 (en) 1998-06-03 2004-11-23 Matsushita Electric Industrial Co., Ltd. Non-Aqueous electrolyte secondary battery comprising composite particles
US6255017B1 (en) 1998-07-10 2001-07-03 3M Innovative Properties Co. Electrode material and compositions including same
KR20010106515A (en) * 1998-10-13 2001-11-29 추후 High performance lithium ion polymer cells and batteries
US6395431B1 (en) * 1998-10-28 2002-05-28 Valence Technology, Inc. Electrolytes having improved stability comprising an N,N-dialkylamide additive
US6428933B1 (en) 1999-04-01 2002-08-06 3M Innovative Properties Company Lithium ion batteries with improved resistance to sustained self-heating
JP2004063433A (en) * 2001-12-26 2004-02-26 Shin Etsu Chem Co Ltd Conductive silicon oxide powder, its manufacturing method, and negative electrode material for nonaqueous secondary battery using the same
US20030135989A1 (en) * 2002-01-19 2003-07-24 Huggins Robert A. Electrodes for alkali metal batteries
CN100414743C (en) * 2002-05-08 2008-08-27 株式会社杰士汤浅 Nonaqueous electrolyte secondary cell
TWI278429B (en) 2002-05-17 2007-04-11 Shinetsu Chemical Co Conductive silicon composite, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
KR100595896B1 (en) * 2003-07-29 2006-07-03 주식회사 엘지화학 A negative active material for lithium secondary battery and a method for preparing same
JP4171904B2 (en) * 2003-08-05 2008-10-29 信越化学工業株式会社 Lithium ion secondary battery negative electrode material and method for producing the same
US8377591B2 (en) 2003-12-26 2013-02-19 Nec Corporation Anode material for secondary battery, anode for secondary battery and secondary battery therewith
JP5011629B2 (en) * 2004-02-19 2012-08-29 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
US7790316B2 (en) 2004-03-26 2010-09-07 Shin-Etsu Chemical Co., Ltd. Silicon composite particles, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
JP4450192B2 (en) 2004-07-01 2010-04-14 信越化学工業株式会社 Silicon composite, method for producing the same, and negative electrode material for non-aqueous electrolyte secondary battery
US7658863B2 (en) 2004-07-30 2010-02-09 Shin-Etsu Chemical Co., Ltd. Si-C-O composite, making method, and non-aqueous electrolyte secondary cell negative electrode material
RU2321924C1 (en) * 2004-08-17 2008-04-10 Эл Джи Кем, Лтд. Secondary lithium battery characterized in improved safety and performance characteristics
US20060051670A1 (en) * 2004-09-03 2006-03-09 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary cell negative electrode material and metallic silicon power therefor
JP4994634B2 (en) * 2004-11-11 2012-08-08 パナソニック株式会社 Negative electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the same
JP2007213825A (en) * 2006-02-07 2007-08-23 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery, anode activator and anode of the same, as well as manufacturing method of nonaqueous electrolyte secondary battery, anode activator, and anode of the same
US7776473B2 (en) 2006-03-27 2010-08-17 Shin-Etsu Chemical Co., Ltd. Silicon-silicon oxide-lithium composite, making method, and non-aqueous electrolyte secondary cell negative electrode material
US20070224509A1 (en) * 2006-03-27 2007-09-27 Shin-Etsu Chemical Co., Ltd. SiCO-Li COMPOSITE, MAKING METHOD, AND NON-AQUEOUS ELECTROLYTE SECONDARY CELL NEGATIVE ELECTRODE MATERIAL
JP4207055B2 (en) * 2006-04-26 2009-01-14 信越化学工業株式会社 Method for producing SiOx (x <1)
CN100434362C (en) * 2006-04-28 2008-11-19 中国科学院上海硅酸盐研究所 Method for preparig lithium secondary cell silicon/rich-lithium phase composite cathode material by high energy ball milling
KR100851969B1 (en) 2007-01-05 2008-08-12 삼성에스디아이 주식회사 Anode active material, method of preparing the same, anode and lithium battery containing the material
KR101451801B1 (en) * 2007-02-14 2014-10-17 삼성에스디아이 주식회사 Anode active material, method of preparing the same, anode and lithium battery containing the material
JP5338676B2 (en) 2007-11-12 2013-11-13 三洋電機株式会社 Non-aqueous electrolyte secondary battery negative electrode material, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery
KR100898293B1 (en) * 2007-11-27 2009-05-18 삼성에스디아이 주식회사 Negative active material for lithium secondary battery, and method of preparing same
JP5196149B2 (en) 2008-02-07 2013-05-15 信越化学工業株式会社 Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery and electrochemical capacitor
US8105718B2 (en) 2008-03-17 2012-01-31 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode material, and making method
JP4883323B2 (en) 2008-08-26 2012-02-22 信越化学工業株式会社 Non-aqueous electrolyte secondary battery negative electrode material, Si-O-Al composite manufacturing method, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery
US8546019B2 (en) 2008-11-20 2013-10-01 Lg Chem, Ltd. Electrode active material for secondary battery and method for preparing the same
JP5893832B2 (en) * 2009-01-19 2016-03-23 Necエナジーデバイス株式会社 Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP5396902B2 (en) * 2009-02-20 2014-01-22 Tdk株式会社 Lithium ion secondary battery
JP4634515B2 (en) 2009-06-19 2011-02-16 株式会社大阪チタニウムテクノロジーズ Negative electrode material for silicon oxide and lithium ion secondary battery
JP4769319B2 (en) 2009-09-10 2011-09-07 株式会社大阪チタニウムテクノロジーズ Negative electrode material for silicon oxide and lithium ion secondary battery
JP5215978B2 (en) 2009-10-28 2013-06-19 信越化学工業株式会社 Anode material for non-aqueous electrolyte secondary battery, method for producing the same, and lithium ion secondary battery
CN102630355A (en) 2009-11-03 2012-08-08 安维亚系统公司 High capacity anode materials for lithium ion batteries
WO2011077654A1 (en) * 2009-12-21 2011-06-30 株式会社豊田自動織機 Negative electrode active substance for nonaqueous secondary cell and method for producing the same
JP5659696B2 (en) 2009-12-24 2015-01-28 ソニー株式会社 Lithium ion secondary battery, negative electrode for lithium ion secondary battery, electric tool, electric vehicle and power storage system
JP5411780B2 (en) 2010-04-05 2014-02-12 信越化学工業株式会社 Anode material for non-aqueous electrolyte secondary battery, method for producing anode material for non-aqueous electrolyte secondary battery, and lithium ion secondary battery
JP5411781B2 (en) 2010-04-05 2014-02-12 信越化学工業株式会社 Anode material for non-aqueous electrolyte secondary battery, method for producing anode material for non-aqueous electrolyte secondary battery, and lithium ion secondary battery
JP5454353B2 (en) 2010-05-21 2014-03-26 信越化学工業株式会社 Non-aqueous electrolyte secondary battery negative electrode silicon oxide and method for producing the same, negative electrode, lithium ion secondary battery, and electrochemical capacitor
CN102906908A (en) 2010-05-25 2013-01-30 株式会社大阪钛技术 Powder for negative electrode material of lithium-ion rechargeable battery electrode, and method of producing same
US9112224B2 (en) 2010-06-30 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Energy storage device and method for manufacturing the same
JP5682955B2 (en) 2010-08-04 2015-03-11 Necエナジーデバイス株式会社 Lithium secondary battery control system and lithium secondary battery state detection method
CN103168380B (en) * 2010-10-15 2016-04-20 株式会社大阪钛技术 Ion secondary battery cathode material lithium powder, lithium ion secondary battery negative pole and capacitor anode and lithium rechargeable battery and capacitor
US20130292605A1 (en) 2011-01-07 2013-11-07 Osaka Titanium Negative electrode material powder for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery using the same
JP6010279B2 (en) 2011-04-08 2016-10-19 信越化学工業株式会社 Method for producing negative electrode active material for non-aqueous electrolyte secondary battery
JP6007902B2 (en) 2011-04-28 2016-10-19 日本電気株式会社 Negative electrode active material for lithium secondary battery, lithium secondary battery using the same, and production method thereof
US9601228B2 (en) 2011-05-16 2017-03-21 Envia Systems, Inc. Silicon oxide based high capacity anode materials for lithium ion batteries
WO2012165049A1 (en) 2011-05-27 2012-12-06 日本電気株式会社 Method for doping and dedoping lithium into and from negative electrode and method for manufacturing negative electrode for lithium secondary battery
JP5935246B2 (en) 2011-06-24 2016-06-15 ソニー株式会社 Lithium ion secondary battery, negative electrode for lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP6003015B2 (en) 2011-06-24 2016-10-05 ソニー株式会社 Lithium ion secondary battery, negative electrode for lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP5675540B2 (en) 2011-09-22 2015-02-25 信越化学工業株式会社 Anode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2013069517A (en) 2011-09-22 2013-04-18 Shin Etsu Chem Co Ltd Negative electrode paste, negative electrode and method for manufacturing the same, and nonaqueous electrolyte secondary battery
JP5675546B2 (en) 2011-10-14 2015-02-25 信越化学工業株式会社 Silicon oxide for non-aqueous electrolyte secondary battery negative electrode material, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP5727352B2 (en) 2011-11-15 2015-06-03 信越化学工業株式会社 Nonaqueous electrolyte secondary battery
JP5982811B2 (en) 2011-12-20 2016-08-31 ソニー株式会社 Secondary battery active material, secondary battery and electronic equipment
US9139441B2 (en) 2012-01-19 2015-09-22 Envia Systems, Inc. Porous silicon based anode material formed using metal reduction
WO2013146642A1 (en) 2012-03-30 2013-10-03 Necライティング株式会社 Transparent substrate for optical elements, polarizer plate for liquid crystal display device using said substrate, and organic electroluminescence element
US9780358B2 (en) 2012-05-04 2017-10-03 Zenlabs Energy, Inc. Battery designs with high capacity anode materials and cathode materials
US10553871B2 (en) 2012-05-04 2020-02-04 Zenlabs Energy, Inc. Battery cell engineering and design to reach high energy
JP6020331B2 (en) 2012-05-16 2016-11-02 信越化学工業株式会社 Silicon oxide particles, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP2013242997A (en) 2012-05-18 2013-12-05 Shin Etsu Chem Co Ltd Lithium ion secondary battery
JP5737265B2 (en) 2012-10-23 2015-06-17 信越化学工業株式会社 Silicon oxide and manufacturing method thereof, negative electrode, lithium ion secondary battery and electrochemical capacitor
CN104781959B (en) 2012-11-13 2017-07-04 日本电气株式会社 Negative electrode active material, its preparation method and lithium secondary battery
KR101591698B1 (en) * 2012-11-30 2016-02-04 주식회사 엘지화학 Anode active material, lithium secondary battery comprising the material, and method of preparing the material
JP6156089B2 (en) 2012-12-10 2017-07-05 信越化学工業株式会社 Silicon oxide and manufacturing method thereof, negative electrode, lithium ion secondary battery and electrochemical capacitor
JP5817754B2 (en) * 2013-02-25 2015-11-18 株式会社豊田自動織機 Negative electrode for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery
JP6124996B2 (en) 2013-03-29 2017-05-10 三洋電機株式会社 Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US10020491B2 (en) 2013-04-16 2018-07-10 Zenlabs Energy, Inc. Silicon-based active materials for lithium ion batteries and synthesis with solution processing
JP6030995B2 (en) 2013-05-15 2016-11-24 信越化学工業株式会社 Anode material for non-aqueous electrolyte secondary battery, method for producing the same, and lithium ion secondary battery
CN105229828B (en) 2013-05-23 2018-10-26 信越化学工业株式会社 Negative electrode material for nonaqueous electrode secondary battery and secondary cell
JP6100610B2 (en) 2013-05-27 2017-03-22 信越化学工業株式会社 Negative electrode active material, non-aqueous electrolyte secondary battery, and production method thereof
US10886526B2 (en) 2013-06-13 2021-01-05 Zenlabs Energy, Inc. Silicon-silicon oxide-carbon composites for lithium battery electrodes and methods for forming the composites
JP6466635B2 (en) 2013-06-14 2019-02-06 信越化学工業株式会社 Method for producing negative electrode for nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
WO2015024004A1 (en) 2013-08-16 2015-02-19 Envia Systems, Inc. Lithium ion batteries with high capacity anode active material and good cycling for consumer electronics
WO2015025443A1 (en) 2013-08-21 2015-02-26 信越化学工業株式会社 Negative-electrode active substance, negative electrode active substance material, negative electrode, lithium ion secondary battery, negative electrode active substance manufacturing method, and lithium ion secondary battery manufacturing method
JP2015072809A (en) 2013-10-03 2015-04-16 信越化学工業株式会社 Silicon-containing material, and negative electrode for nonaqueous electrolytic secondary batteries and nonaqueous electrolyte secondary battery, and manufacturing method thereof
EP3089245B1 (en) 2013-12-25 2019-01-30 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for nonaqueous electrolyte secondary batteries and method for producing same
JP6301142B2 (en) 2014-01-31 2018-03-28 信越化学工業株式会社 Anode material for nonaqueous electrolyte secondary battery, method for producing anode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6281306B2 (en) 2014-02-06 2018-02-21 信越化学工業株式会社 Negative electrode material for lithium ion secondary battery, manufacturing method thereof, negative electrode and lithium ion secondary battery
JP6397262B2 (en) 2014-02-07 2018-09-26 信越化学工業株式会社 Nonaqueous electrolyte secondary battery
JP6359836B2 (en) 2014-02-07 2018-07-18 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
JP6082355B2 (en) 2014-02-07 2017-02-15 信越化学工業株式会社 Negative electrode active material for negative electrode material of non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US9742007B2 (en) 2014-02-27 2017-08-22 Sony Corporation Active material, electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
JP6193798B2 (en) 2014-04-14 2017-09-06 信越化学工業株式会社 Method for producing negative electrode material for lithium ion secondary battery
JP6196183B2 (en) 2014-04-22 2017-09-13 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary battery and method for producing the same, negative electrode active material layer for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery
JP6268049B2 (en) 2014-06-23 2018-01-24 信越化学工業株式会社 Non-aqueous electrolyte secondary battery negative electrode material, non-aqueous electrolyte secondary battery, and method for producing negative electrode active material particles
WO2016009590A1 (en) 2014-07-15 2016-01-21 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary battery and method for producing negative electrode active material particle
KR101766535B1 (en) 2014-10-02 2017-08-10 주식회사 엘지화학 Negative electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery comprising the same
JP6312211B2 (en) 2014-10-08 2018-04-18 信越化学工業株式会社 Non-aqueous electrolyte secondary battery negative electrode active material, non-aqueous electrolyte secondary battery negative electrode, non-aqueous electrolyte secondary battery, and method for producing non-aqueous electrolyte secondary battery negative electrode material
JP6312212B2 (en) 2014-11-18 2018-04-18 信越化学工業株式会社 Rotating cylindrical furnace and method for producing negative electrode active material for non-aqueous electrolyte secondary battery
KR101614016B1 (en) 2014-12-31 2016-04-20 (주)오렌지파워 Silicon based negative electrode material for rechargeable battery and method of fabricating the same
JP2016152077A (en) 2015-02-16 2016-08-22 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing negative electrode material for nonaqueous electrolyte secondary battery
US10446837B2 (en) 2015-02-26 2019-10-15 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method of producing negative electrode material for a non-aqueous electrolyte secondary battery
JP6448525B2 (en) 2015-02-26 2019-01-09 信越化学工業株式会社 Non-aqueous electrolyte secondary battery negative electrode active material, non-aqueous electrolyte secondary battery negative electrode, non-aqueous electrolyte secondary battery, and method for producing non-aqueous electrolyte secondary battery negative electrode material
JP6844814B2 (en) 2015-03-31 2021-03-17 株式会社村田製作所 Negative electrode active material and its manufacturing method, negative electrode, and battery
JP6386414B2 (en) 2015-04-22 2018-09-05 信越化学工業株式会社 Anode active material for nonaqueous electrolyte secondary battery, method for producing the same, nonaqueous electrolyte secondary battery using the anode active material, and method for producing anode material for nonaqueous electrolyte secondary battery
JP6548959B2 (en) 2015-06-02 2019-07-24 信越化学工業株式会社 Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing negative electrode active material particles
JP6407804B2 (en) 2015-06-17 2018-10-17 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing negative electrode material for nonaqueous electrolyte secondary battery
EP3322006B1 (en) 2015-07-07 2020-05-06 Shin-Etsu Chemical Co., Ltd. Method for manufacturing negative-electrode active material for non-aqueous-electrolyte secondary cell, method for manufacturing negative electrode for non-aqueous-electrolyte secondary cell, and non-aqueous-electrolyte secondary cell
EP3331068A4 (en) * 2015-07-31 2019-03-27 Shin-Etsu Chemical Co., Ltd. Lithium ion secondary battery negative electrode material, production method therefor, and lithium ion secondary battery
CN107851789B (en) 2015-08-28 2021-03-12 株式会社大阪钛技术 Li-containing silicon oxide powder and method for producing same
WO2017043039A1 (en) 2015-09-10 2017-03-16 信越化学工業株式会社 Method for producing negative electrode active material for nonaqueous electrolyte secondary batteries, method for manufacturing nonaqueous electrolyte secondary battery, method for producing negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP6389159B2 (en) 2015-10-08 2018-09-12 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, method for producing nonaqueous electrolyte secondary battery negative electrode material, and method for producing nonaqueous electrolyte secondary battery
JP6422847B2 (en) 2015-11-17 2018-11-14 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, negative electrode for nonaqueous electrolyte secondary battery, lithium ion secondary battery, method for producing negative electrode active material, and method for producing lithium ion secondary battery
JP6445956B2 (en) 2015-11-17 2018-12-26 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery
JP6535581B2 (en) 2015-11-18 2019-06-26 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery
JP6460960B2 (en) 2015-11-18 2019-01-30 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, negative electrode for nonaqueous electrolyte secondary battery, lithium ion secondary battery, method for producing negative electrode active material, and method for producing lithium ion secondary battery
JP6453203B2 (en) 2015-11-20 2019-01-16 信越化学工業株式会社 Negative electrode active material, negative electrode, lithium ion secondary battery, method for producing negative electrode material for nonaqueous electrolyte secondary battery, and method for producing lithium ion secondary battery
JP6433442B2 (en) 2016-01-04 2018-12-05 信越化学工業株式会社 Non-aqueous electrolyte secondary battery negative electrode active material, non-aqueous electrolyte secondary battery negative electrode, non-aqueous electrolyte secondary battery, and method for producing non-aqueous electrolyte secondary battery negative electrode active material
JP6507106B2 (en) 2016-01-07 2019-04-24 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery, method of producing negative electrode active material, and method of producing lithium ion secondary battery
JP6496672B2 (en) 2016-01-21 2019-04-03 信越化学工業株式会社 Method for producing negative electrode active material and method for producing non-aqueous electrolyte secondary battery
JP7078346B2 (en) 2016-02-15 2022-05-31 信越化学工業株式会社 Method for manufacturing negative electrode active material and lithium ion secondary battery
JP6867821B2 (en) 2016-02-23 2021-05-12 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material material, negative electrode for non-aqueous electrolyte secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, negative electrode active material manufacturing method, negative electrode manufacturing method, and lithium ion secondary Battery manufacturing method
JP6596405B2 (en) 2016-02-24 2019-10-23 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing negative electrode material for nonaqueous electrolyte secondary battery
KR102380071B1 (en) 2016-04-13 2022-03-30 신에쓰 가가꾸 고교 가부시끼가이샤 Manufacturing method of negative electrode active material for nonaqueous electrolyte secondary battery and manufacturing method of negative electrode for nonaqueous electrolyte secondary battery
JP6719262B2 (en) 2016-04-18 2020-07-08 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
TWI773667B (en) 2016-05-30 2022-08-11 日商信越化學工業股份有限公司 Negative active material, mixed negative active material, and method for producing negative active material (1)
TWI716580B (en) 2016-05-30 2021-01-21 日商信越化學工業股份有限公司 Method for manufacturing negative electrode active material for lithium ion secondary battery, mixed negative electrode active material material for lithium ion secondary battery, and negative electrode active material for lithium ion secondary battery (2)
JP6719554B2 (en) 2016-05-30 2020-07-08 信越化学工業株式会社 Negative electrode active material for lithium ion secondary battery, mixed negative electrode active material for lithium ion secondary battery, and method for producing negative electrode active material for lithium ion secondary battery
EP3471178B1 (en) 2016-06-13 2022-09-28 Shin-Etsu Chemical Co., Ltd. Negative-electrode active substance, mixed negative-electrode active substance material, and method for manufacturing negative-electrode active substance
JP6564740B2 (en) 2016-07-04 2019-08-21 信越化学工業株式会社 Negative electrode active material, negative electrode, lithium ion secondary battery, method of using lithium ion secondary battery, method of manufacturing negative electrode active material, and method of manufacturing lithium ion secondary battery
CN109155405B (en) 2016-09-16 2022-02-15 信越化学工业株式会社 Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
JP6861565B2 (en) 2016-09-16 2021-04-21 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, and method for manufacturing negative electrode active material
KR102335477B1 (en) 2016-09-30 2021-12-07 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material, mixed negative electrode active material material, and manufacturing method of negative electrode active material
JP6797739B2 (en) 2016-09-30 2020-12-09 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, and method for manufacturing negative electrode active material
JP6704327B2 (en) 2016-10-21 2020-06-03 信越化学工業株式会社 Negative electrode active material, negative electrode, lithium ion secondary battery, method for producing negative electrode active material, and method for producing lithium ion secondary battery
JP6765997B2 (en) 2017-03-13 2020-10-07 信越化学工業株式会社 Negative electrode material, manufacturing method of the negative electrode material, and mixed negative electrode material
JP6634398B2 (en) 2017-03-13 2020-01-22 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
JP2018206560A (en) 2017-06-01 2018-12-27 信越化学工業株式会社 Negative electrode active substance, mixed negative electrode active substance material, and method for manufacturing particles of negative electrode active substance
JP6964386B2 (en) 2017-08-03 2021-11-10 信越化学工業株式会社 Method for manufacturing negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and negative electrode material for non-aqueous electrolyte secondary battery
US11515515B2 (en) * 2017-10-19 2022-11-29 Lg Energy Solution, Ltd. Method of preparing negative electrode active material
US11094925B2 (en) 2017-12-22 2021-08-17 Zenlabs Energy, Inc. Electrodes with silicon oxide active materials for lithium ion cells achieving high capacity, high energy density and long cycle life performance
CN111137902B (en) * 2018-11-05 2022-06-07 清华大学 H-Si-O system material, negative electrode active material and preparation method thereof, electrochemical cell negative electrode material and electrochemical cell
JP7084849B2 (en) 2018-11-07 2022-06-15 信越化学工業株式会社 Method for manufacturing negative electrode active material, mixed negative electrode active material, aqueous negative electrode slurry composition, and negative electrode active material
US11973178B2 (en) 2019-06-26 2024-04-30 Ionblox, Inc. Lithium ion cells with high performance electrolyte and silicon oxide active materials achieving very long cycle life performance
US11594725B1 (en) * 2019-12-03 2023-02-28 GRU Energy Lab Inc. Solid state pretreatment of active materials for negative electrodes in electrochemical cells
KR20220087143A (en) 2020-12-17 2022-06-24 대주전자재료 주식회사 Negative electrode material for lithium ion secondary battery, preparation method thereof, and lithium ion secondary battery comprising same
WO2023216940A1 (en) * 2022-05-07 2023-11-16 四川物科金硅新材料科技有限责任公司 Doped oxygen-silicon material, and preparation method therefor and use thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4786499A (en) * 1987-11-01 1988-11-22 The United States Of America As Represented By The Secretary Of The Army Lithium electrochemical cell including aprotic solvent-dialkyl carbonate solvent mixture
GB8800082D0 (en) * 1988-01-05 1988-02-10 Alcan Int Ltd Battery
US4950566A (en) * 1988-10-24 1990-08-21 Huggins Robert A Metal silicide electrode in lithium cells
EP0414902B1 (en) * 1988-12-16 1994-03-09 Otsuka Kagaku Kabushiki Kaisha Totally solid secondary cell
US4957833A (en) * 1988-12-23 1990-09-18 Bridgestone Corporation Non-aqueous liquid electrolyte cell
JPH02288068A (en) * 1989-04-26 1990-11-28 Bridgestone Corp Nonaqueous electrolyte secondary battery
US4935316A (en) * 1989-07-25 1990-06-19 The United States Of America As Represented By The United States Department Of Energy Overdischarge protection in high-temperature cells and batteries
JP3162437B2 (en) * 1990-11-02 2001-04-25 セイコーインスツルメンツ株式会社 Non-aqueous electrolyte secondary battery
US5278005A (en) * 1992-04-06 1994-01-11 Advanced Energy Technologies Inc. Electrochemical cell comprising dispersion alloy anode

Cited By (142)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997001193A1 (en) * 1995-06-22 1997-01-09 Seiko Instruments Inc. Nonaqueous electrolyte secondary battery
JPH10270088A (en) * 1997-03-27 1998-10-09 Seiko Instr Inc Nonaqueous electrolyte secondary battery
US6410188B1 (en) 1998-11-30 2002-06-25 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
JP2001023603A (en) * 1999-07-13 2001-01-26 Toshiba Battery Co Ltd Flat nonaqueous electrolyte secondary battery
JP2003160328A (en) * 2001-09-05 2003-06-03 Shin Etsu Chem Co Ltd Lithium-containing silicon oxide powder and method for production thereof
JP4702510B2 (en) * 2001-09-05 2011-06-15 信越化学工業株式会社 Lithium-containing silicon oxide powder and method for producing the same
US7754381B2 (en) 2002-10-25 2010-07-13 Sony Corporation Anode and battery, and manufacturing methods thereof
US7358011B2 (en) 2002-11-26 2008-04-15 Shin-Etsu Chemical Co., Ltd Non-aqueous electrolyte secondary battery negative electrode material, making method, and lithium ion secondary battery
US7906237B2 (en) 2003-06-11 2011-03-15 Sony Corporation Battery
US7718313B2 (en) 2003-06-23 2010-05-18 Sony Corporation Anode material and battery using the same
US7754389B2 (en) 2004-02-12 2010-07-13 Sony Corporation Battery including an electrolyte solution comprising a halogenated carbonate derivative
US8586245B2 (en) 2004-11-05 2013-11-19 Sony Corporation Battery
US7718311B2 (en) 2004-11-05 2010-05-18 Sony Corporation Electrolytic solution and battery
USRE44489E1 (en) * 2004-11-05 2013-09-10 Sony Corporation Electrolytic solution and battery
US8003243B2 (en) 2004-11-08 2011-08-23 Sony Corporation Spirally wound secondary battery with uneven termination end portions
US7824801B2 (en) 2004-12-16 2010-11-02 Panasonic Corporation Negative electrode for lithium ion secondary battery, production method thereof and lithium ion secondary battery comprising the same
JP4584307B2 (en) * 2005-03-31 2010-11-17 パナソニック株式会社 Lithium secondary battery
JPWO2006106782A1 (en) * 2005-03-31 2008-09-11 松下電器産業株式会社 Lithium secondary battery
US7955581B2 (en) 2005-10-14 2011-06-07 Panasonic Corporation Method of producing silicon oxide, negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the same
US8071237B2 (en) 2005-12-02 2011-12-06 Panasonic Corporation Negative electrode active material and negative electrode using the same and lithium ion secondary battery
WO2007063765A1 (en) 2005-12-02 2007-06-07 Matsushita Electric Industrial Co., Ltd. Negative active substance, and negative electrode and lithium ion secondary battery using the substance
US7914930B2 (en) 2006-01-10 2011-03-29 Panasonic Corporation Method for producing non-aqueous electrolyte secondary battery
US8110307B2 (en) 2006-01-25 2012-02-07 Panasonic Corporation Negative electrode for lithium secondary battery, method for producing same, and lithium secondary battery comprising such negative electrode for lithium secondary battery
WO2007086411A1 (en) 2006-01-25 2007-08-02 Matsushita Electric Industrial Co., Ltd. Negative electrode for lithium secondary battery, method for producing same, and lithium secondary battery comprising such negative electrode for lithium secondary battery
US8334073B2 (en) 2006-10-12 2012-12-18 Panasonic Corporation Non-aqueous electrolyte secondary battery and method of manufacturing negative electrode thereof
US8148018B2 (en) 2006-11-21 2012-04-03 Panasonic Corporation Method and apparatus of manufacturing negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the negative electrode
US8153292B2 (en) 2007-04-13 2012-04-10 Panasonic Corporation Electrochemical device, manufacturing method of electrode thereof and processing apparatus for electrode of electrochemical device
JP2009070825A (en) * 2007-09-17 2009-04-02 Samsung Sdi Co Ltd Negative active material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery and lithium secondary battery
US10312518B2 (en) 2007-10-26 2019-06-04 Murata Manufacturing Co., Ltd. Anode and method of manufacturing the same, and secondary battery
WO2010071166A1 (en) 2008-12-19 2010-06-24 Necトーキン株式会社 Negative electrode for nonaqueous electrolyte solution secondary cell and nonaqueous electrolyte solution secondary cell using the same, and method for producing negative electrode for nonaqueous electrolyte solution secondary cell
US9263741B2 (en) 2008-12-19 2016-02-16 Nec Energy Devices, Ltd. Negative electrode for nanaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using the same, and method for manufacturing negative electrode for nonaqueous electrolyte secondary battery
US9627687B2 (en) 2009-09-29 2017-04-18 Nec Energy Devices, Ltd. Secondary battery
WO2011040443A1 (en) 2009-09-29 2011-04-07 Necエナジーデバイス株式会社 Secondary battery
WO2011040447A1 (en) 2009-09-29 2011-04-07 Necエナジーデバイス株式会社 Secondary battery
US9203107B2 (en) 2009-09-29 2015-12-01 Nec Energy Devices, Ltd. Secondary battery
JP2011100625A (en) * 2009-11-06 2011-05-19 National Institute Of Advanced Industrial Science & Technology Positive electrode active material for lithium secondary battery, and method of manufacturing the same
WO2011102453A1 (en) 2010-02-18 2011-08-25 Necエナジーデバイス株式会社 Polymer secondary battery and method for producing same
US9077029B2 (en) 2010-02-23 2015-07-07 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and rechargeable lithium battery including the same
WO2011118387A1 (en) 2010-03-26 2011-09-29 Necエナジーデバイス株式会社 Non-aqueous electrolyte secondary battery
US9543618B2 (en) 2010-09-02 2017-01-10 Nec Corporation Secondary battery
WO2012029551A1 (en) 2010-09-02 2012-03-08 日本電気株式会社 Secondary battery and secondary battery electrolyte used therein
US9219274B2 (en) 2010-09-02 2015-12-22 Nec Corporation Secondary battery
US8999562B2 (en) 2010-09-02 2015-04-07 Nec Corporation Secondary battery and secondary battery electrolytic solution for use in secondary battery
US9466827B2 (en) 2010-09-02 2016-10-11 Nec Corporation Secondary battery
US9425480B2 (en) 2010-09-02 2016-08-23 Nec Corporation Secondary battery
US9123971B2 (en) 2010-09-02 2015-09-01 Nec Corporation Secondary battery
US9077045B2 (en) 2010-09-02 2015-07-07 Nec Corporation Secondary battery
US9299985B2 (en) 2010-10-14 2016-03-29 Nec Corporation Secondary battery and electrolyte solution for secondary battery to be used in same
US10290894B2 (en) 2010-10-29 2019-05-14 Nec Corporation Secondary battery and method for manufacturing same
US9312534B2 (en) 2010-12-09 2016-04-12 Nec Corporation Nonaqueous electrolytic solution secondary battery, and positive electrode and negative electrode used in the same
US9373867B2 (en) 2011-03-28 2016-06-21 Nec Corporation Secondary battery and electrolyte liquid
US10749208B2 (en) 2011-03-28 2020-08-18 Nec Corporation Secondary battery and electrolyte liquid
US10077506B2 (en) 2011-06-24 2018-09-18 Nexeon Limited Structured particles
US9136525B2 (en) 2011-06-24 2015-09-15 Toyota Jidosha Kabushiki Kaisha Negative-electrode active material, and method for production of negative-electrode active material
US10822713B2 (en) 2011-06-24 2020-11-03 Nexeon Limited Structured particles
JP2013008586A (en) * 2011-06-24 2013-01-10 Sony Corp Lithium ion secondary battery, negative electrode for lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device
WO2012176039A1 (en) 2011-06-24 2012-12-27 Toyota Jidosha Kabushiki Kaisha Negative-electrode active material, and method for production of negative-electrode active material
WO2013018486A1 (en) * 2011-07-29 2013-02-07 三洋電機株式会社 Active substance for nonaqueous electrolyte secondary cell, method for producing same, and negative electrode using active substance
JPWO2013018486A1 (en) * 2011-07-29 2015-03-05 三洋電機株式会社 Non-aqueous electrolyte secondary battery active material, method for producing the same, and negative electrode using the same
US9548489B2 (en) 2012-01-30 2017-01-17 Nexeon Ltd. Composition of SI/C electro active material
US10388948B2 (en) 2012-01-30 2019-08-20 Nexeon Limited Composition of SI/C electro active material
WO2013115040A1 (en) * 2012-01-30 2013-08-08 日本電気株式会社 Conjugated ester compound, electrolyte, and secondary battery using same
US10103379B2 (en) 2012-02-28 2018-10-16 Nexeon Limited Structured silicon particles
US9748608B2 (en) 2012-03-02 2017-08-29 Nec Corporation Second battery comprising a phosphate ester compound and a fluorinated carbonate compound
JP2013191458A (en) * 2012-03-14 2013-09-26 Seiko Instruments Inc Nonaqueous electrolyte secondary battery
JP2013229320A (en) * 2012-03-27 2013-11-07 Tdk Corp Lithium ion secondary battery
US9831500B2 (en) 2012-04-19 2017-11-28 Lg Chem, Ltd. Porous electrode active material and secondary battery including the same
US9512523B2 (en) 2012-04-19 2016-12-06 Lg Chem, Ltd. Porous electrode active material and secondary battery including the same
US9780357B2 (en) 2012-04-19 2017-10-03 Lg Chem, Ltd. Silicon-based anode active material and secondary battery comprising the same
US10090513B2 (en) 2012-06-01 2018-10-02 Nexeon Limited Method of forming silicon
WO2014002602A1 (en) 2012-06-27 2014-01-03 Jnc株式会社 Negative active material for secondary battery, process for producing same, and negative electrode and lithium-ion battery both obtained using same
US9666904B2 (en) 2012-07-02 2017-05-30 Nec Corporation Secondary battery
US9196896B2 (en) 2012-07-24 2015-11-24 Lg Chem, Ltd. Porous silicon-based electrode active material and secondary battery comprising the same
KR20140013729A (en) * 2012-07-26 2014-02-05 주식회사 엘지화학 Electrode active material for secondary battery
US9879344B2 (en) 2012-07-26 2018-01-30 Lg Chem, Ltd. Electrode active material for secondary battery
US9997772B2 (en) 2012-08-28 2018-06-12 Kabushiki Kaisha Toyota Jidoshokki Negative-electrode material for nonaqueous-electrolyte secondary battery production process for the same, negative electrode for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery
US10008716B2 (en) 2012-11-02 2018-06-26 Nexeon Limited Device and method of forming a device
US9627681B2 (en) 2012-11-30 2017-04-18 Lg Chem, Ltd. Silicon-based composite and production method thereof
US9929399B2 (en) 2013-10-29 2018-03-27 Shin-Etsu Chemical Co., Ltd. Negative electrode active material, method for producing a negative electrode active material, and lithium ion secondary battery
CN105684197A (en) * 2013-10-29 2016-06-15 信越化学工业株式会社 Negative electrode active material, production method for negative electrode active material, and lithium ion secondary battery
US10283756B2 (en) 2013-10-29 2019-05-07 Shin-Etsu Chemical Co., Ltd. Negative electrode active material, method for producing a negative electrode active material, and lithium ion secondary battery
WO2015063979A1 (en) * 2013-10-29 2015-05-07 信越化学工業株式会社 Negative electrode active material, production method for negative electrode active material, and lithium ion secondary battery
CN105684197B (en) * 2013-10-29 2018-10-30 信越化学工业株式会社 Negative electrode active material, the manufacturing method of negative electrode active material and lithium rechargeable battery
US10115963B2 (en) 2013-12-10 2018-10-30 Lg Chem, Ltd. Negative electrode material for secondary battery and secondary battery using the same
WO2015088248A1 (en) 2013-12-10 2015-06-18 주식회사 엘지화학 Negative electrode material for secondary battery, and secondary battery using same
US10199640B2 (en) 2013-12-13 2019-02-05 Lg Chem, Ltd. Negative electrode material for secondary battery and secondary battery using the same
WO2015088283A1 (en) 2013-12-13 2015-06-18 주식회사 엘지화학 Negative electrode material for secondary battery, and secondary battery using same
CN105917499A (en) * 2014-01-16 2016-08-31 信越化学工业株式会社 Negative electrode material for nonaqueous electrolyte secondary batteries and method for producing negative electrode active material particles
WO2015107581A1 (en) * 2014-01-16 2015-07-23 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary batteries and method for producing negative electrode active material particles
CN105917499B (en) * 2014-01-16 2019-05-07 信越化学工业株式会社 The manufacturing method of negative electrode material for nonaqueous electrode secondary battery and anode active material particles
JP2015156328A (en) * 2014-01-16 2015-08-27 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary battery and method of producing negative electrode active material particles
US10396351B2 (en) 2014-01-16 2019-08-27 Shin-Etsu Chemical Co., Ltd. Negative electrode material for non-aqueous electrolyte secondary battery and method of producing negative electrode active material particles
JP2015198038A (en) * 2014-04-02 2015-11-09 信越化学工業株式会社 Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US10693134B2 (en) 2014-04-09 2020-06-23 Nexeon Ltd. Negative electrode active material for secondary battery and method for manufacturing same
US10396355B2 (en) 2014-04-09 2019-08-27 Nexeon Ltd. Negative electrode active material for secondary battery and method for manufacturing same
US10586976B2 (en) 2014-04-22 2020-03-10 Nexeon Ltd Negative electrode active material and lithium secondary battery comprising same
US11196042B2 (en) 2014-07-23 2021-12-07 Nexeon Ltd Method for preparing silicon-based active material particles for secondary battery and silicon-based active material particles
US10522824B2 (en) 2014-07-23 2019-12-31 Nexeon Ltd Method for preparing silicon-based active material particles for secondary battery and silicon-based active material particles
US10476072B2 (en) 2014-12-12 2019-11-12 Nexeon Limited Electrodes for metal-ion batteries
US10847784B2 (en) 2015-07-10 2020-11-24 Jnc Corporation Negative electrode active material for lithium ion secondary battery and method for producing same
JPWO2017085900A1 (en) * 2015-11-18 2018-04-19 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte battery
CN108352559A (en) * 2015-11-18 2018-07-31 松下知识产权经营株式会社 Nonaqueous electrolyte battery
WO2017085900A1 (en) * 2015-11-18 2017-05-26 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte battery
CN108352559B (en) * 2015-11-18 2021-01-05 松下知识产权经营株式会社 Nonaqueous electrolyte battery
JP2017204374A (en) * 2016-05-11 2017-11-16 株式会社大阪チタニウムテクノロジーズ Silicon oxide-based powder negative electrode material
JP2021052014A (en) * 2016-10-19 2021-04-01 株式会社大阪チタニウムテクノロジーズ Silicon oxide-based negative electrode material and manufacturing method of the same
JPWO2018074175A1 (en) * 2016-10-19 2019-07-25 株式会社大阪チタニウムテクノロジーズ Silicon oxide based negative electrode material and method for manufacturing the same
WO2018074175A1 (en) * 2016-10-19 2018-04-26 株式会社大阪チタニウムテクノロジーズ Silicon oxide negative electrode material and production method therefor
WO2020110625A1 (en) 2018-11-28 2020-06-04 信越化学工業株式会社 Negative-electrode active material and method for producing same
KR20210095148A (en) 2018-11-28 2021-07-30 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material and manufacturing method thereof
KR20210110606A (en) 2019-01-15 2021-09-08 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material for nonaqueous electrolyte secondary battery and manufacturing method thereof
WO2020149079A1 (en) 2019-01-15 2020-07-23 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery and method for producing same
KR20210146874A (en) * 2019-06-19 2021-12-06 대주전자재료 주식회사 Carbon-silicon complex oxide compoite for anode material of secondary battery and method for preparing the same
KR20200144855A (en) * 2019-06-19 2020-12-30 대주전자재료 주식회사 Carbon-silicon complex oxide compoite for anode material of secondary battery and method for preparing the same
WO2021053951A1 (en) 2019-09-18 2021-03-25 信越化学工業株式会社 Negative electrode active substance, negative electrode, and methods for producing these
KR20220066052A (en) 2019-09-18 2022-05-23 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material, negative electrode and manufacturing method thereof
WO2021065200A1 (en) 2019-10-03 2021-04-08 信越化学工業株式会社 Negative electrode active material, negative electrode, and method for manufacturing negative electrode active material
KR20220075218A (en) 2019-10-03 2022-06-07 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material, negative electrode and manufacturing method of negative electrode active material
KR20230137311A (en) 2021-01-25 2023-10-04 신에쓰 가가꾸 고교 가부시끼가이샤 Method for manufacturing negative electrode active material for non-aqueous electrolyte secondary battery and negative electrode active material for non-aqueous electrolyte secondary battery
WO2022158150A1 (en) 2021-01-25 2022-07-28 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries, and method for producing negative electrode active material for nonaqueous electrolyte secondary batteries
KR20230142483A (en) 2021-02-04 2023-10-11 신에쓰 가가꾸 고교 가부시끼가이샤 Cathode and cathode manufacturing method
WO2022168474A1 (en) 2021-02-04 2022-08-11 信越化学工業株式会社 Negative electrode and method for producing negative electrode
WO2022172815A1 (en) 2021-02-15 2022-08-18 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
KR20230145351A (en) 2021-02-15 2023-10-17 신에쓰 가가꾸 고교 가부시끼가이샤 Negative active material for non-aqueous electrolyte secondary battery, manufacturing method thereof, and non-aqueous electrolyte secondary battery
WO2022239676A1 (en) 2021-05-13 2022-11-17 信越化学工業株式会社 Negative electrode active material and method for producing same
KR20240007153A (en) 2021-05-13 2024-01-16 신에쓰 가가꾸 고교 가부시끼가이샤 Negative active material and method for producing the same
WO2022259920A1 (en) 2021-06-08 2022-12-15 信越化学工業株式会社 Negative electrode active material, negative electrode and lithium ion secondary battery
WO2022259914A1 (en) 2021-06-08 2022-12-15 信越化学工業株式会社 Negative electrode active material, negative electrode, and lithium ion secondary battery
KR20240019114A (en) 2021-06-08 2024-02-14 신에쓰 가가꾸 고교 가부시끼가이샤 Negative active material, negative electrode and lithium ion secondary battery
KR20240019115A (en) 2021-06-08 2024-02-14 신에쓰 가가꾸 고교 가부시끼가이샤 Negative active material, negative electrode and lithium ion secondary battery
KR20240031296A (en) 2021-07-05 2024-03-07 신에쓰 가가꾸 고교 가부시끼가이샤 Method for producing silicon monoxide
WO2023282136A1 (en) 2021-07-05 2023-01-12 信越化学工業株式会社 Method for manufacturing silicon monoxide
WO2023008094A1 (en) 2021-07-27 2023-02-02 信越化学工業株式会社 Negative electrode and method for producing same
WO2023008093A1 (en) 2021-07-27 2023-02-02 信越化学工業株式会社 Negative electrode active material and method for producing same
KR20240032876A (en) 2021-07-27 2024-03-12 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode and its manufacturing method
KR20240041324A (en) 2021-07-27 2024-03-29 신에쓰 가가꾸 고교 가부시끼가이샤 Negative active material and method for producing the same
WO2023017689A1 (en) 2021-08-11 2023-02-16 信越化学工業株式会社 Negative electrode
KR20240045221A (en) 2021-08-11 2024-04-05 신에쓰 가가꾸 고교 가부시끼가이샤 negative electrode
WO2023021861A1 (en) 2021-08-16 2023-02-23 信越化学工業株式会社 Negative electrode and method for producing negative electrode
KR20240042448A (en) 2021-08-16 2024-04-02 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode and method for manufacturing negative electrode
WO2023032845A1 (en) 2021-09-02 2023-03-09 信越化学工業株式会社 Silicon monoxide powder, and negative electrode active material for lithium ion secondary battery
KR20240053051A (en) 2021-09-02 2024-04-23 신에쓰 가가꾸 고교 가부시끼가이샤 Silicon monoxide powder and negative electrode active material for lithium ion secondary batteries

Also Published As

Publication number Publication date
EP0582173B1 (en) 1998-06-03
EP0582173A1 (en) 1994-02-09
US5395711A (en) 1995-03-07
KR940006306A (en) 1994-03-23
DE69318897D1 (en) 1998-07-09
KR100237580B1 (en) 2000-01-15
JP2997741B2 (en) 2000-01-11
DE69318897T2 (en) 1998-10-01

Similar Documents

Publication Publication Date Title
JP2997741B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3010226B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3079343B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3008228B2 (en) Non-aqueous electrolyte secondary battery and method for producing negative electrode active material thereof
JPH097638A (en) Nonaqueous electrolytic secondary battery
JPH08213052A (en) Nonaqueous electrolyte secondary battery
KR20020027286A (en) Non-aqueous electrolyte secondary cell
JP3169102B2 (en) Non-aqueous electrolyte secondary battery
JP4724911B2 (en) Nonaqueous electrolyte secondary battery
JP3546566B2 (en) Non-aqueous electrolyte secondary battery
JP2887632B2 (en) Non-aqueous electrolyte secondary battery
JPH10162828A (en) Nonaqueous electrolyte battery, and manufacture thereof
JP2000243449A (en) Nonaqueous electrolyte secondary battery
JP3079344B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH07249409A (en) Nonaqueous electrolyte secondary battery
JPH06267539A (en) Lithium secondary battery
JP4491947B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
JP2002110152A (en) Nonaqueous electrolyte secondary battery
JPH07220721A (en) Nonaqueous secondary battery
JP3447187B2 (en) Non-aqueous electrolyte battery and method for manufacturing the same
JP3354611B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3303319B2 (en) Non-aqueous electrolyte secondary battery
JP2001196073A (en) Nonaqueous electrolyte battery
JP3663694B2 (en) Non-aqueous electrolyte secondary battery
JP3081981B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 11

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 14

EXPY Cancellation because of completion of term