JP2015107890A - Hetero atom solid soluble alkali metal oxide - Google Patents
Hetero atom solid soluble alkali metal oxide Download PDFInfo
- Publication number
- JP2015107890A JP2015107890A JP2013251289A JP2013251289A JP2015107890A JP 2015107890 A JP2015107890 A JP 2015107890A JP 2013251289 A JP2013251289 A JP 2013251289A JP 2013251289 A JP2013251289 A JP 2013251289A JP 2015107890 A JP2015107890 A JP 2015107890A
- Authority
- JP
- Japan
- Prior art keywords
- alkali metal
- metal oxide
- positive electrode
- solid
- heteroatom
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 125000005842 heteroatom Chemical group 0.000 title claims abstract description 71
- 229910000272 alkali metal oxide Inorganic materials 0.000 title claims abstract description 65
- 239000007787 solid Substances 0.000 title abstract description 77
- 239000013078 crystal Substances 0.000 claims abstract description 21
- 239000007772 electrode material Substances 0.000 claims abstract description 21
- 239000000463 material Substances 0.000 claims abstract description 8
- 239000006104 solid solution Substances 0.000 claims description 68
- 150000003624 transition metals Chemical group 0.000 claims description 33
- 229910052723 transition metal Inorganic materials 0.000 claims description 25
- 150000001340 alkali metals Chemical group 0.000 claims description 21
- 229910052783 alkali metal Inorganic materials 0.000 claims description 20
- 125000004429 atom Chemical group 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 10
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical group [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 claims description 7
- 230000000737 periodic effect Effects 0.000 claims description 3
- 238000003860 storage Methods 0.000 abstract description 8
- 239000004575 stone Substances 0.000 abstract 1
- 239000000843 powder Substances 0.000 description 100
- 238000002360 preparation method Methods 0.000 description 75
- 239000000203 mixture Substances 0.000 description 44
- 238000005259 measurement Methods 0.000 description 43
- 229910018068 Li 2 O Inorganic materials 0.000 description 36
- 239000000126 substance Substances 0.000 description 33
- 238000012360 testing method Methods 0.000 description 31
- 239000007774 positive electrode material Substances 0.000 description 26
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 22
- -1 oxides Chemical class 0.000 description 22
- 238000007599 discharging Methods 0.000 description 21
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 19
- 239000006230 acetylene black Substances 0.000 description 19
- 229910052782 aluminium Inorganic materials 0.000 description 19
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 19
- 239000004927 clay Substances 0.000 description 19
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 19
- 239000004810 polytetrafluoroethylene Substances 0.000 description 19
- 239000011230 binding agent Substances 0.000 description 18
- 239000004570 mortar (masonry) Substances 0.000 description 18
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 17
- 229910001947 lithium oxide Inorganic materials 0.000 description 17
- 239000002994 raw material Substances 0.000 description 17
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 16
- 229910052744 lithium Inorganic materials 0.000 description 16
- 238000000034 method Methods 0.000 description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 13
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 13
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 12
- 238000000833 X-ray absorption fine structure spectroscopy Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 10
- 229910044991 metal oxide Inorganic materials 0.000 description 10
- 150000004706 metal oxides Chemical class 0.000 description 10
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 9
- 229910000428 cobalt oxide Inorganic materials 0.000 description 9
- 239000002482 conductive additive Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000011343 solid material Substances 0.000 description 8
- 150000002894 organic compounds Chemical class 0.000 description 7
- 229910010941 LiFSI Inorganic materials 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- VDVLPSWVDYJFRW-UHFFFAOYSA-N lithium;bis(fluorosulfonyl)azanide Chemical compound [Li+].FS(=O)(=O)[N-]S(F)(=O)=O VDVLPSWVDYJFRW-UHFFFAOYSA-N 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 5
- 238000000227 grinding Methods 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical group [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000013329 compounding Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 238000003801 milling Methods 0.000 description 3
- 239000011232 storage material Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 150000001339 alkali metal compounds Chemical class 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000012752 auxiliary agent Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 238000010303 mechanochemical reaction Methods 0.000 description 2
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910000480 nickel oxide Inorganic materials 0.000 description 2
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 2
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910002515 CoAl Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910013131 LiN Inorganic materials 0.000 description 1
- 229910013528 LiN(SO2 CF3)2 Inorganic materials 0.000 description 1
- 229910013385 LiN(SO2C2F5)2 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- JZQOJFLIJNRDHK-CMDGGOBGSA-N alpha-irone Chemical compound CC1CC=C(C)C(\C=C\C(C)=O)C1(C)C JZQOJFLIJNRDHK-CMDGGOBGSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- 150000002642 lithium compounds Chemical class 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Compounds Of Iron (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、ヘテロ原子固溶アルカリ金属酸化物に関する。より詳しくは、酸素貯蔵物質や電極材料として利用可能なヘテロ原子固溶アルカリ金属酸化物に関する。 The present invention relates to a heteroatom solid solution alkali metal oxide. More specifically, the present invention relates to a heteroatom solid solution alkali metal oxide that can be used as an oxygen storage material or an electrode material.
逆ホタル石型の構造を有するアルカリ金属化合物は、酸化物、水酸化物、炭酸塩等の種々の化合物が広く知られており、様々な工業分野で広く用いられている。特に近年では、蓄電池やキャパシタ等の蓄電装置の材料としてリチウム化合物の使用量が急速に大きくなる等、その重要性に改めて注目が集まっている。 As the alkali metal compound having an inverted fluorite-type structure, various compounds such as oxides, hydroxides, and carbonates are widely known and widely used in various industrial fields. Particularly in recent years, attention has been renewed on the importance of the use of lithium compounds as materials for power storage devices such as storage batteries and capacitors.
蓄電装置の中で、現在最も広く普及しているのがリチウムイオン電池であり、携帯電話やノートパソコンのバッテリー等として使用されている。しかしながら、リチウムイオン電池は充放電容量が充分とはいえないため、より充放電容量の大きい新たな電池の開発が求められており、近年では、リチウムイオン電池よりも理論容量の大きいリチウム空気電池が注目を集めてきている。リチウム空気電池については、有機系の電解質を用いる方式が報告されている(非特許文献1参照)。 Among power storage devices, the most widely used at present is a lithium ion battery, which is used as a battery for a mobile phone or a notebook computer. However, since the charge / discharge capacity of a lithium ion battery is not sufficient, the development of a new battery having a larger charge / discharge capacity has been demanded. In recent years, a lithium-air battery having a larger theoretical capacity than a lithium ion battery has been demanded. Has attracted attention. A method using an organic electrolyte has been reported for a lithium-air battery (see Non-Patent Document 1).
しかしながら、リチウム空気電池は、空気電池である為、開放型電池システムが必要であり、大気中の水分や二酸化炭素の混入等課題が多い。この為、より充放電容量が大きく密閉型の電池の開発が求められている。 However, since the lithium air battery is an air battery, an open battery system is necessary, and there are many problems such as mixing of moisture and carbon dioxide in the atmosphere. For this reason, development of a sealed battery having a larger charge / discharge capacity has been demanded.
本発明は、上記現状に鑑みてなされたものであり、従来の電極活物質よりも高い容量を有し、密閉型の蓄電池を構成する材料として使用できる電極活物質を提供することを目的とする。 This invention is made | formed in view of the said present condition, and has the capacity | capacitance higher than the conventional electrode active material, and it aims at providing the electrode active material which can be used as a material which comprises a sealed storage battery. .
本発明者は、蓄電池の材料について種々検討し、アルカリ金属化合物に着目した。そして、逆ホタル石構造のアルカリ金属酸化物の結晶構造内の4配位サイトの一部にヘテロ原子が固溶した構造を有する化合物が、高い容量を発現すること、及び、この活物質を用いて密閉型蓄電池を構成することが可能であることを見出し、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。 The inventor of the present invention studied various materials for storage batteries and focused on alkali metal compounds. A compound having a structure in which heteroatoms are solid-solved in a part of the four coordination sites in the crystal structure of the alkali metal oxide having an inverted fluorite structure expresses a high capacity, and uses this active material. The inventors have found that it is possible to construct a sealed storage battery, and have conceived that the above problems can be solved brilliantly, and have reached the present invention.
すなわち本発明は、逆ホタル石構造のアルカリ金属酸化物の結晶構造内の4配位サイトの一部にヘテロ原子が固溶した構造を有するヘテロ原子固溶アルカリ金属酸化物である。
以下に本発明を詳述する。
なお、以下において記載する本発明の個々の好ましい形態を2つ以上組み合わせたものもまた、本発明の好ましい形態である。
That is, the present invention is a heteroatom solid-solution alkali metal oxide having a structure in which a heteroatom is solid-solved at a part of the 4-coordination site in the crystal structure of the alkali metal oxide having an inverted fluorite structure.
The present invention is described in detail below.
A combination of two or more preferred embodiments of the present invention described below is also a preferred embodiment of the present invention.
本発明のヘテロ原子固溶アルカリ金属酸化物(以下、単に本発明の金属酸化物ともいう)は、アルカリ金属酸化物の結晶構造内にヘテロ原子が固溶した構造を有する。
アルカリ金属酸化物の結晶構造内にヘテロ原子が固溶した構造とは、アルカリ金属酸化物の結晶構造内にヘテロ原子がランダムに入りこんだ構造であり、この点において、本発明の金属酸化物は、アルカリ金属酸化物の結晶構造内にヘテロ原子が一定の割合で規則的に配列した複合酸化物とは異なる。複合酸化物の場合、アルカリ金属酸化物の結晶構造内に規則的に配列したヘテロ原子の影響により、結晶構造内にもとのアルカリ金属酸化物の結晶とは全く別の反射面が生まれ、その結果、XRDパターンはもとのアルカリ金属酸化物とは全く異なるものとなる。これに対し、本発明の金属酸化物は、アモルファス化しつつ、ヘテロ原子が固溶する前のアルカリ金属酸化物のXRDパターンを保持している。また、本発明の金属酸化物では、アルカリ金属に対する固溶するヘテロ原子の割合は決まっておらず、任意の割合で固溶し得る点も、複合酸化物とは異なっている。
本発明の金属酸化物は、アルカリ金属酸化物の結晶構造内にヘテロ原子が固溶した構造は、アルカリ金属酸化物の結晶構造内にヘテロ原子がドーピングした構造ともいうことができる。
The heteroatom solid-solution alkali metal oxide of the present invention (hereinafter also simply referred to as the metal oxide of the present invention) has a structure in which heteroatoms are solid-solved in the crystal structure of the alkali metal oxide.
The structure in which heteroatoms are dissolved in the crystal structure of the alkali metal oxide is a structure in which heteroatoms randomly enter the crystal structure of the alkali metal oxide. In this respect, the metal oxide of the present invention is This is different from a complex oxide in which heteroatoms are regularly arranged at a certain ratio in the crystal structure of an alkali metal oxide. In the case of a complex oxide, the influence of hetero atoms regularly arranged in the crystal structure of the alkali metal oxide creates a completely different reflection surface from the crystal of the alkali metal oxide in the crystal structure. As a result, the XRD pattern is completely different from the original alkali metal oxide. On the other hand, the metal oxide of the present invention retains the XRD pattern of the alkali metal oxide before the heteroatom is dissolved while being amorphized. Further, in the metal oxide of the present invention, the ratio of heteroatoms that are solid-solved with respect to the alkali metal is not determined, and it is different from the composite oxide in that it can be dissolved in an arbitrary ratio.
In the metal oxide of the present invention, the structure in which heteroatoms are dissolved in the crystal structure of the alkali metal oxide can also be referred to as a structure in which heteroatoms are doped in the crystal structure of the alkali metal oxide.
本発明の金属酸化物を電極材料として用いた場合に、低い電圧で酸化容量が発現する理由は明らかではないが、以下のように推定される。
アルカリ金属酸化物中にヘテロ原子が固溶した場合、電荷補償による格子欠陥が生じると推察される。アルカリ金属としてリチウム、ヘテロ原子として鉄を用いた場合を例にとると、以下のとおりである。
(1)Fe/Li=0.2のとき
Li2O + 0.2Fe2O3 → 1.6(Li1.25Fe0.25□0.5)O
(2)Fe/Li=0.1のとき
Li2O + 0.1Fe2O3 → 1.3(Li1.54Fe0.154□0.31)O
□:格子欠陥
このようにアルカリ金属酸化物の結晶構造中に、多価金属である遷移金属等のヘテロ原子を固溶させることで格子欠陥が生成し、この格子欠陥によって導電性が向上し低い過電圧で酸化電流が流れる、と推定される。
When the metal oxide of the present invention is used as an electrode material, the reason why the oxidation capacity is developed at a low voltage is not clear, but is estimated as follows.
When heteroatoms are dissolved in the alkali metal oxide, it is presumed that lattice defects are caused by charge compensation. Taking the case where lithium is used as the alkali metal and iron is used as the heteroatom, the case is as follows.
(1) When Fe / Li = 0.2, Li 2 O + 0.2Fe 2 O 3 → 1.6 (Li 1.25 Fe 0.25 □ 0.5 ) O
(2) When Fe / Li = 0.1, Li 2 O + 0.1 Fe 2 O 3 → 1.3 (Li 1.54 Fe 0.154 □ 0.31 ) O
□: Lattice defects In this way, lattice defects are formed by dissolving solid atoms such as transition metals, which are polyvalent metals, in the crystal structure of the alkali metal oxide. It is estimated that an oxidation current flows due to overvoltage.
本発明のヘテロ原子固溶アルカリ金属酸化物を構成するアルカリ金属原子としては、アルカリ金属に分類されるいずれの金属の原子であってもよく、1種又は2種以上を用いることができるが、リチウム、ナトリウム、カリウムのいずれかであることが好ましい。より好ましくは、リチウムである。アルカリ金属として、リチウムからなるものを用いると、本発明の金属酸化物が電極材料としてより好適なものとなる。 As an alkali metal atom constituting the heteroatom solid-solution alkali metal oxide of the present invention, any metal atom classified as an alkali metal may be used, and one or more kinds may be used. It is preferably any of lithium, sodium and potassium. More preferably, it is lithium. When an alkali metal made of lithium is used, the metal oxide of the present invention is more suitable as an electrode material.
本発明のヘテロ原子固溶アルカリ金属酸化物を構成するヘテロ原子としては、遷移金属原子が好ましい。遷移金属原子としては、遷移金属に分類されるいずれの金属の原子であってもよく、1種又は2種以上を用いることができるが、周期表の第7〜11族に属する遷移金属元素から選ばれる少なくとも1種の原子であることが好ましい。より好ましくは、Mn、Fe、Co、Ni等の周期表の第7〜10族の遷移金属原子であり、更に好ましくは、Fe、Coのいずれかである。 As a hetero atom which comprises the hetero atom solid solution alkali metal oxide of this invention, a transition metal atom is preferable. The transition metal atom may be any metal atom classified as a transition metal, and one or two or more kinds may be used. From the transition metal elements belonging to Groups 7 to 11 of the periodic table It is preferably at least one selected atom. More preferably, it is a transition metal atom of Groups 7 to 10 of the periodic table such as Mn, Fe, Co, Ni, etc., and still more preferably any of Fe and Co.
本発明の金属酸化物におけるアルカリ金属原子の数とヘテロ原子の数との比(ヘテロ原子数/アルカリ金属原子数)は、0.00001〜0.6であることが好ましい。このような範囲であると、本発明の金属酸化物が、ヘテロ原子が固溶したことによる効果をより充分に発揮することができる。アルカリ金属原子の数とヘテロ原子の数との比は、より好ましくは、0.0001〜0.4であり、更に好ましくは、0.001〜0.3である。 The ratio of the number of alkali metal atoms to the number of hetero atoms in the metal oxide of the present invention (the number of hetero atoms / the number of alkali metal atoms) is preferably 0.00001 to 0.6. Within such a range, the metal oxide of the present invention can more fully exhibit the effects due to the solid solution of heteroatoms. The ratio of the number of alkali metal atoms and the number of heteroatoms is more preferably 0.0001 to 0.4, and still more preferably 0.001 to 0.3.
本発明の遷移金属固溶アルカリ金属酸化物は、下記式(1);
[A2−xBx]O (1)
(式中、Aは、アルカリ金属原子を表す。Bは、遷移金属原子を表す。xは、0<x<2の数を表す。)で表されるものであることが好ましい。本発明のヘテロ原子固溶アルカリ金属酸化物は、逆蛍石構造のアルカリ金属酸化物のアルカリ金属サイトが遷移金属原子で置換された構造のものであることが好ましく、そのような構造の金属酸化物は、上記式(1)で表すことができる。
The transition metal solid solution alkali metal oxide of the present invention has the following formula (1):
[A 2-x B x] O (1)
(Wherein, A represents an alkali metal atom, B represents a transition metal atom, and x represents a number of 0 <x <2). The heteroatom solid solution alkali metal oxide of the present invention preferably has a structure in which the alkali metal site of the alkali metal oxide having a reverse fluorite structure is substituted with a transition metal atom. A thing can be represented by the said Formula (1).
上記式(1)においてAで表されるアルカリ金属原子、Bで表される遷移金属原子は、1種の原子であってもよく、2種以上の原子であってもよい。Aで表されるアルカリ金属原子、Bで表される遷移金属原子の具体例及び好ましい原子は、上述したアルカリ金属原子や遷移金属原子の具体例及び好ましい原子と同様である。
上記式(1)におけるxは、0.00002〜0.75であることが好ましい。より好ましくは、0.0002〜0.57であり、更に好ましくは0.002〜0.46である。
In the above formula (1), the alkali metal atom represented by A and the transition metal atom represented by B may be one kind of atom or two or more kinds of atoms. Specific examples and preferred atoms of the alkali metal atom represented by A and transition metal atom represented by B are the same as the above-described specific examples and preferred atoms of the alkali metal atom and transition metal atom.
X in the above formula (1) is preferably 0.00002 to 0.75. More preferably, it is 0.0002-0.57, More preferably, it is 0.002-0.46.
本発明はまた、逆ホタル石構造のアルカリ金属酸化物の結晶構造内の4配位サイトにヘテロ原子が固溶した構造を有するヘテロ原子固溶アルカリ金属酸化物を製造する方法であって、上記製造方法は、メカノケミカル処理によりアルカリ金属酸化物の結晶構造内にヘテロ原子を固溶させる工程を含むヘテロ原子固溶アルカリ金属酸化物の製造方法でもある。
このような製造方法が本発明のヘテロ原子固溶アルカリ金属酸化物を製造する方法として簡便であり好ましい。また、ヘテロ原子としては、遷移金属原子が好ましい。
本発明のヘテロ原子固溶アルカリ金属酸化物の製造方法は、メカノケミカル処理によりアルカリ金属酸化物の結晶構造内にヘテロ原子を固溶させる工程(以下においては、メカノケミカル処理工程ともいう)を含む限り、その他の工程を含んでいてもよい。
The present invention is also a method for producing a heteroatom solid-solution alkali metal oxide having a structure in which a heteroatom is solid-solved at a four-coordinate site in the crystal structure of an alkali metal oxide having an inverted fluorite structure, A manufacturing method is also a manufacturing method of the heteroatom solid solution alkali metal oxide including the process of solid-dissolving a heteroatom in the crystal structure of an alkali metal oxide by a mechanochemical process.
Such a production method is simple and preferable as a method for producing the heteroatom solid solution alkali metal oxide of the present invention. Moreover, as a hetero atom, a transition metal atom is preferable.
The method for producing a heteroatom solid-solution alkali metal oxide of the present invention includes a step (hereinafter also referred to as a mechanochemical treatment step) in which a heteroatom is solid-solved in the crystal structure of the alkali metal oxide by mechanochemical treatment. As long as other processes are included.
上記メカノケミカル処理の具体的な方法は、メカノケミカル反応を起こす方法であれば特に制限されず、遊星ボールミル処理、ビーズミル処理、ボールミル処理やカッターミル処理、ディスクミル処理、スタンプミル処理、ハンマーミル処理、ジェットミル処理等のメカノケミカル反応を起こしうるミリング操作のいずれか1つ又は複数の方法が挙げられる。これらの中でも、メカノケミカル処理を充分に行う点から、遊星ボールミル処理が特に好ましい。 The specific method of the mechanochemical treatment is not particularly limited as long as it causes a mechanochemical reaction. Planetary ball mill treatment, bead mill treatment, ball mill treatment or cutter mill treatment, disc mill treatment, stamp mill treatment, hammer mill treatment. Any one or a plurality of milling operations capable of causing a mechanochemical reaction such as jet mill treatment may be mentioned. Among these, the planetary ball mill treatment is particularly preferable because the mechanochemical treatment is sufficiently performed.
上記メカノケミカル処理を遊星ボールミル処理により行う場合、湿式、乾式のいずれで行ってもよいが、乾式で行うことが好ましい。
また、遊星ボールミル処理に用いる粉砕メディアは、質量の大きいものを用いることが好ましく、具体的には、0.00001g以上のものが好ましい。より好ましくは、0.001g以上のものであり、更に好ましくは、0.1g以上のものである。また、粉砕メディアは、通常、50000g以下のものを用いる。
粉砕メディアとしては、0.01〜500mmφの、ジルコニアボール、メノウボール、アルミナボール、タングステンカーバイドボール、鉄球、ステンレス球等を用いることができる。
遊星ボールミル処理に用いる粉砕メディアは、遊星ボールミル処理に用いる容器の体積と遊星ボールミルに供される化合物の量を考慮し、メカノケミカル処理が充分に行われるよう、適宜最適な数を選択して用いればよい。
When the mechanochemical treatment is performed by a planetary ball mill treatment, it may be performed either by a wet method or a dry method, but is preferably performed by a dry method.
The grinding media used for the planetary ball mill treatment are preferably those having a large mass, specifically 0.00001 g or more. More preferably, it is 0.001 g or more, and still more preferably 0.1 g or more. In addition, as the grinding media, those having 50000 g or less are usually used.
As the grinding media, zirconia balls, agate balls, alumina balls, tungsten carbide balls, iron balls, stainless balls, etc. having a diameter of 0.01 to 500 mmφ can be used.
The grinding media used for the planetary ball mill treatment should be selected by appropriately selecting the optimum number so that the mechanochemical treatment is sufficiently performed in consideration of the volume of the container used for the planetary ball mill treatment and the amount of the compound used for the planetary ball mill. That's fine.
更に、遊星ボールミル処理の回転数は、高いほうが好ましく、具体的には、10rpm以上の回転数が好ましい。より好ましくは、50rpm以上の回転数であり、更に好ましくは、100rpm以上の回転数である。また、遊星ボールミル処理の回転数は、通常、100000rpm以下で行われる。
このように、質量の大きい粉砕メディアを用い、高回転数で遊星ボールミル処理を行うことにより、メカノケミカル処理を充分に進めることができ、ヘテロ原子固溶アルカリ金属酸化物をより高い収率で得ることができる。
Furthermore, the rotation speed of the planetary ball mill treatment is preferably higher, and specifically, the rotation speed of 10 rpm or more is preferable. More preferably, the number of rotations is 50 rpm or more, and still more preferably the number of rotations is 100 rpm or more. Further, the rotational speed of the planetary ball mill treatment is usually 100000 rpm or less.
In this way, by using the grinding media having a large mass and performing the planetary ball mill treatment at a high rotational speed, the mechanochemical treatment can be sufficiently advanced, and the heteroatom solid-solution alkali metal oxide can be obtained in a higher yield. be able to.
上記ミリング操作を行う雰囲気は特に制限されず、空気下、不活性ガス下等、いずれの雰囲気下行ってもよいが、不活性ガス雰囲気下で行うことが不純物生成抑制の点から好ましい。不活性ガスとしては、ヘリウム、窒素、アルゴン等を用いることができる。
上記ミリング操作を行う時間は、0.1〜100000000時間が好ましい。より好ましくは、0.2〜10000000時間であり、更に好ましくは、0.3〜100000時間である。
The atmosphere in which the milling operation is performed is not particularly limited, and may be performed in any atmosphere such as air or inert gas, but is preferably performed in an inert gas atmosphere from the viewpoint of suppression of impurity generation. As the inert gas, helium, nitrogen, argon or the like can be used.
The time for performing the milling operation is preferably 0.1 to 100000000 hours. More preferably, it is 0.2-10000000 hours, More preferably, it is 0.3-100000 hours.
上記メカノケミカル処理工程に供されるアルカリ金属成分、ヘテロ原子の成分は、それぞれ原子の単体であってもよく、酸化物等の化合物であってもよいが、アルカリ金属成分、ヘテロ原子の成分ともに酸化物が好ましい。すなわち、上記メカノケミカル処理工程は、アルカリ金属酸化物とヘテロ原子の酸化物とをメカノケミカル処理する工程であることが好ましい。アルカリ金属酸化物とヘテロ原子の酸化物とを用いることで、アルカリ金属酸化物の結晶構造内にヘテロ原子が固溶した構造の化合物をより高い収率で製造することができる。 The alkali metal component and heteroatom component used in the mechanochemical treatment step may each be a single atom or a compound such as an oxide, but both the alkali metal component and the heteroatom component may be used. Oxides are preferred. That is, the mechanochemical treatment step is preferably a step of mechanochemical treatment of an alkali metal oxide and a heteroatom oxide. By using an alkali metal oxide and an oxide of a heteroatom, a compound having a structure in which heteroatoms are dissolved in the crystal structure of the alkali metal oxide can be produced with higher yield.
上記メカノケミカル処理工程に供するアルカリ金属成分とヘテロ原子の成分との割合は、アルカリ金属成分に含まれるアルカリ金属原子数とヘテロ原子の成分に含まれるヘテロ原子の数との比(ヘテロ原子数/アルカリ金属原子数)が、0.00001〜0.6なるような割合であることが好ましい。このような割合とすることで、アルカリ金属酸化物の結晶構造内にヘテロ原子が好ましい割合で固溶した構造の金属酸化物を得ることができる。より好ましくは、上記比が0.0001〜0.4なるような割合であることであり、更に好ましくは、0.001〜0.3なるような割合であることである。 The ratio of the alkali metal component and heteroatom component used in the mechanochemical treatment step is the ratio of the number of alkali metal atoms contained in the alkali metal component and the number of heteroatoms contained in the heteroatom component (number of heteroatoms / The ratio of the number of alkali metal atoms) is preferably 0.00001 to 0.6. By setting such a ratio, a metal oxide having a structure in which heteroatoms are solid-solved at a preferable ratio in the crystal structure of the alkali metal oxide can be obtained. More preferably, the ratio is such that the ratio is 0.0001 to 0.4, and still more preferably the ratio is 0.001 to 0.3.
本発明のヘテロ原子固溶アルカリ金属酸化物は、ヘテロ原子を固溶していないアルカリ金属酸化物に比べて、非常に低い電圧で酸化電流が流れることから、この化合物を用いて電極を形成した場合、低い電圧で充電することが可能となる。更に、高い電流密度で充放電を行うことも可能であるため、高速充放電が可能な点でも優位性を有している。
このため、本発明のヘテロ原子固溶アルカリ金属酸化物は、電極材料として好適な化合物である。また、この化合物は、酸素原子の含有割合が高いことから、酸素発生材料(酸素貯蔵物質)としての応用も期待される有用な化合物である。
このような、本発明のヘテロ原子固溶アルカリ金属酸化物を含む電極材料もまた、本発明の1つである。また、本発明の電極材料を用いて形成される電極、及び、該電極を用いて構成される電池もまた、本発明の1つである。
更に、このような、本発明のヘテロ原子固溶アルカリ金属酸化物を含む酸素発生材料もまた、本発明の1つである。
In the heteroatom solid solution alkali metal oxide of the present invention, an oxidation current flows at a very low voltage as compared with an alkali metal oxide not containing a heteroatom, so an electrode was formed using this compound. In this case, it is possible to charge at a low voltage. Furthermore, since charging / discharging can be performed at a high current density, it is advantageous in that high-speed charging / discharging is possible.
For this reason, the heteroatom solid solution alkali metal oxide of the present invention is a compound suitable as an electrode material. In addition, since this compound has a high oxygen atom content, it is a useful compound that is expected to be used as an oxygen generating material (oxygen storage material).
Such an electrode material containing the heteroatom solid solution alkali metal oxide of the present invention is also one aspect of the present invention. Moreover, the electrode formed using the electrode material of this invention and the battery comprised using this electrode are also one of this invention.
Furthermore, such an oxygen generating material containing the heteroatom solid solution alkali metal oxide of the present invention is also one aspect of the present invention.
本発明の電極材料(電極合剤)は、本発明の遷移金属固溶アルカリ金属酸化物を必須成分とし、導電助剤、有機化合物を含んで構成されることが好ましく、その他の成分を必要に応じて含んでいてもよい。 The electrode material (electrode mixture) of the present invention preferably comprises the transition metal solid solution alkali metal oxide of the present invention as an essential component, and includes a conductive additive and an organic compound, and requires other components. It may be included accordingly.
上記導電助剤としては、特願2013−162663号に記載のものと同様のものが挙げられる。上記導電助剤は、より好ましくは、グラフェン、ファイバー状カーボン、カーボンナノチューブ、アセチレンブラック、金属である。
上記導電助剤は、電極における導電性を向上させる作用を有するものであり、1種又は2種以上を用いることが出来る。
Examples of the conductive assistant include those described in Japanese Patent Application No. 2013-162663. More preferably, the conductive assistant is graphene, fibrous carbon, carbon nanotube, acetylene black, or metal.
The said conductive support agent has the effect | action which improves the electroconductivity in an electrode, and can use 1 type (s) or 2 or more types.
上記導電助剤の配合量としては、電極材料(電極合剤)中のヘテロ原子固溶アルカリ金属酸化物100質量%に対して、0.001〜300質量%であることが好ましい。導電助剤の配合量がこのような範囲であると、本発明の電極材料から形成される電極がより良好な電池性能を発揮することとなる。より好ましくは、0.01〜200質量%であり、更に好ましくは、0.05〜120質量%である。 As a compounding quantity of the said conductive support agent, it is preferable that it is 0.001-300 mass% with respect to 100 mass% of heteroatom solid solution alkali metal oxides in an electrode material (electrode mixture). When the blending amount of the conductive auxiliary is within such a range, an electrode formed from the electrode material of the present invention will exhibit better battery performance. More preferably, it is 0.01-200 mass%, More preferably, it is 0.05-120 mass%.
上記有機化合物としては、ポリテトラフルオロエチレン含有ポリマー、ポリフッ化ビニリデン含有ポリマーの他、特願2013−162663号に記載のものと同様のものが挙げられる。 Examples of the organic compound include polytetrafluoroethylene-containing polymers and polyvinylidene fluoride-containing polymers, as well as those described in Japanese Patent Application No. 2013-162663.
上記有機化合物、有機化合物塩の配合量としては、電極材料中のヘテロ原子固溶アルカリ金属酸化物100質量%に対して、0.01〜50質量%であることが好ましい。これら有機化合物、有機化合物塩の配合量がこのような範囲であると、本発明の電極材料から形成される電極が、より良好な電池性能を発揮することとなる。より好ましくは、0.01〜45質量%であり、更に好ましくは、0.1〜40質量%である。 As a compounding quantity of the said organic compound and organic compound salt, it is preferable that it is 0.01-50 mass% with respect to 100 mass% of heteroatom solid solution alkali metal oxide in electrode material. When the compounding amount of these organic compounds and organic compound salts is within such a range, the electrode formed from the electrode material of the present invention will exhibit better battery performance. More preferably, it is 0.01-45 mass%, More preferably, it is 0.1-40 mass%.
本発明の電極材料は、ヘテロ原子固溶アルカリ金属酸化物、導電助剤、有機化合物以外の成分を含む場合、その配合量は、電極材料中のヘテロ原子固溶アルカリ金属酸化物100質量%に対して、0.01〜10質量%であることが好ましい。より好ましくは、0.05〜7質量%であり、更に好ましくは、0.1〜5質量%である。 When the electrode material of the present invention contains a component other than the heteroatom solid solution alkali metal oxide, the conductive additive, and the organic compound, the blending amount is 100% by mass of the heteroatom solid solution alkali metal oxide in the electrode material. On the other hand, it is preferable that it is 0.01-10 mass%. More preferably, it is 0.05-7 mass%, More preferably, it is 0.1-5 mass%.
本発明の電極は、遷移金属固溶アルカリ金属酸化物を必要により水及び/又は有機溶媒と、導電助剤や有機化合物と共に混練し、ペースト状としたものをアルミ箔等の金属箔やニッケルメッシュ等の金属メッシュ上に、できる限り膜厚が一定になるように塗工して乾燥する方法や、遷移金属固溶アルカリ金属酸化物、導電助剤、有機化合物を混練して粘土状にし、これを金属箔や金属メッシュに圧着する方法等を用いることができる。
本発明の電極は、正極、負極のいずれに用いてもよいが、正極として用いることが好ましい。したがって、本発明の電極材料は、正極材料として用いられることが好ましい。
The electrode of the present invention is a metal foil such as an aluminum foil or a nickel mesh obtained by kneading a transition metal solid solution alkali metal oxide together with water and / or an organic solvent and a conductive additive or an organic compound as necessary. On a metal mesh such as a method of coating and drying so that the film thickness is as constant as possible, or by kneading a transition metal solid solution alkali metal oxide, a conductive additive and an organic compound into a clay, The method of crimping | bonding this to metal foil or a metal mesh etc. can be used.
The electrode of the present invention may be used as either a positive electrode or a negative electrode, but is preferably used as a positive electrode. Therefore, the electrode material of the present invention is preferably used as a positive electrode material.
本発明の電極を正極として用いた場合、負極としては、リチウム、ナトリウム、マグネシウム、カルシウム等のアルカリ金属の他、特願2013−162663号に記載のものと同様のものが挙げられる。 When the electrode of the present invention is used as a positive electrode, examples of the negative electrode include those similar to those described in Japanese Patent Application No. 2013-162663, in addition to alkali metals such as lithium, sodium, magnesium, and calcium.
本発明の電池を構成する電解液としては、特に制限されないが、アセトニトリルの他、特願2013−162663号に記載のものと同様のものが挙げられる。
本発明の電池を構成する電解質としては、LiPF6、LiBF4、LiClO4、LiN(SO2F)2、LiN(SO2CF3)2、LiN(SO2C2F5)2、Li(BC4O8)、LiF、LiB(CN)4等が挙げられる。
Although it does not restrict | limit especially as electrolyte solution which comprises the battery of this invention, The thing similar to what is described in Japanese Patent Application No. 2013-162663 other than acetonitrile is mentioned.
Examples of the electrolyte constituting the battery of the present invention include LiPF 6 , LiBF 4 , LiClO 4 , LiN (SO 2 F) 2 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , Li ( BC 4 O 8 ), LiF, LiB (CN) 4 and the like.
本発明の電池がセパレータを使用する場合、特願2013−162663号に記載のものと同様のものを用いることができる。 When the battery of the present invention uses a separator, the same one as described in Japanese Patent Application No. 2013-162663 can be used.
本発明のヘテロ原子固溶アルカリ金属酸化物は、上述の構成よりなり、アルカリ金属酸化物と比較して非常に低い電圧で酸化電流が流れるとともに、高い電流密度で充放電することが可能であることから、電極材料として好適であり、また、酸素原子の含有割合が高いことから、酸素発生材料(酸素貯蔵物質)としての応用も期待される有用な化合物である。
また、本発明のヘテロ原子固溶アルカリ金属酸化物の製造方法は、このようなヘテロ原子固溶アルカリ金属酸化物を簡便に製造することができる有用な方法である。
The heteroatom solid solution alkali metal oxide of the present invention has the above-described configuration, and an oxidation current flows at a very low voltage as compared with the alkali metal oxide, and can be charged and discharged at a high current density. Therefore, it is suitable as an electrode material, and since it has a high oxygen atom content ratio, it is a useful compound that is expected to be applied as an oxygen generating material (oxygen storage material).
In addition, the method for producing a heteroatom solid solution alkali metal oxide of the present invention is a useful method for easily producing such a heteroatom solid solution alkali metal oxide.
以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、特に断りのない限り、「部」は「重量部」を、「%」は「質量%」を意味するものとする。 The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples. Unless otherwise specified, “part” means “part by weight” and “%” means “mass%”.
(XRD測定)
XRD測定は、全自動水平型X線回折装置(リガク社製、SMART LAB)を用いて、以下の条件により行った。
CuKα1線:0.15406nm
走査範囲:10°−90°
X線出力設定:45kV−200mA
ステップサイズ:0.020°
スキャン速度:0.5°min−1−4°min−1
なお、XRD測定は、試料をグローブボックス中にて気密試料台に装填することにより、不活性雰囲気を保った状態で行った。
(XAFS測定)
CoのK端XAFS測定は透過放法にてSPring−8のBL14B2にて実施した。標準試料としてCoホイルについてCoのK端XAFS測定を行い、吸収端位置が7715eVとなるように、測定されたスペクトルのエネルギーを較正した。またCoのXAFSスペクトルにおける7709eV付近に現れるプレエッジピーク強度から各種元素の配位数を算出する方法が報告されている(山本孝著,X線分析の進歩, 38, 45-65 (2007)
(XRD measurement)
XRD measurement was performed under the following conditions using a fully automatic horizontal X-ray diffractometer (manufactured by Rigaku Corporation, SMART LAB).
CuKα1 line: 0.15406 nm
Scanning range: 10 ° -90 °
X-ray output setting: 45kV-200mA
Step size: 0.020 °
Scan speed: 0.5 ° min −1 -4 ° min −1
The XRD measurement was performed in a state where an inert atmosphere was maintained by loading the sample on an airtight sample stage in a glove box.
(XAFS measurement)
Co K-edge XAFS measurement was performed on SPring-8 BL14B2 by the permeation-release method. Co K-edge XAFS measurement was performed on Co foil as a standard sample, and the measured spectrum energy was calibrated so that the absorption edge position was 7715 eV. In addition, a method for calculating the coordination number of various elements from the pre-edge peak intensity appearing in the vicinity of 7709 eV in the XAFS spectrum of Co has been reported (Yamamoto Takashi, Advances in X-ray analysis, 38, 45-65 (2007)).
調製例1(Co固溶Li2O正極の調製工程)
正極活物質の原料として酸化リチウム(株式会社高純度化学研究所製)2.09gと酸化コバルト(Co3O4、和光純薬工業社製)2.23gを遊星ボールミル用のポットに入れ、遊星ボールミル混合(混合条件;10mmφのジルコニアボール25個を用いて回転数600rpmにて180時間処理)を行った。作業は全てアルゴン置換された水分濃度1ppm以下のグローブボックス中で行った。得られた固体粉末のXRD測定結果を図1に示す。得られた固体粉末中、遷移金属固溶Li2OとLiCoO2の存在を確認した。得られた固体粉末57mg、導電助剤としてのアセチレンブラック68mg、結着剤としてのポリテトラフルオロエチレン粉末6mgをメノウ乳鉢で混合し、粘土状に加工して正極合剤を得た。得られた正極合剤を60mgのアルミニウムメッシュに圧着して正極とした。
Preparation Example 1 (Preparation process of Co solid solution Li 2 O positive electrode)
As a raw material for the positive electrode active material, 2.09 g of lithium oxide (manufactured by Kojundo Chemical Co., Ltd.) and 2.23 g of cobalt oxide (Co 3 O 4 , manufactured by Wako Pure Chemical Industries, Ltd.) are placed in a pot for a planetary ball mill. Ball mill mixing (mixing conditions: treatment using 180 10 mmφ zirconia balls at 180 rpm for 180 hours) was performed. All operations were performed in a glove box with a water concentration of 1 ppm or less, which was purged with argon. The XRD measurement result of the obtained solid powder is shown in FIG. Presence of transition metal solid solution Li 2 O and LiCoO 2 was confirmed in the obtained solid powder. 57 mg of the obtained solid powder, 68 mg of acetylene black as a conductive assistant, and 6 mg of polytetrafluoroethylene powder as a binder were mixed in an agate mortar and processed into a clay to obtain a positive electrode mixture. The obtained positive electrode mixture was pressure-bonded to a 60 mg aluminum mesh to obtain a positive electrode.
調製例2(Co固溶Li2O正極の調製工程)
正極活物質の原料を酸化リチウム(株式会社高純度化学研究所製)2.19gと酸化コバルト(Co3O4、和光純薬工業社製)1.16gに変更した以外は調製例1と同様にして固体粉末を得た。得られた固体粉末のXRD測定結果を図2に示す。得られた固体粉末中、遷移金属固溶Li2OとLiCoO2の存在を確認した。得られた固体粉末67mg、導電助剤としてのアセチレンブラック77mg、結着剤としてのポリテトラフルオロエチレン粉末6mgをメノウ乳鉢で混合し、粘土状に加工して正極合剤を得た。得られた正極合剤を60mgのアルミニウムメッシュに圧着して正極とした。
Preparation Example 2 (Process for preparing Co-solid solution Li 2 O positive electrode)
Same as Preparation Example 1, except that the raw material of the positive electrode active material was changed to 2.19 g of lithium oxide (manufactured by Kojundo Chemical Laboratory Co., Ltd.) and 1.16 g of cobalt oxide (Co 3 O 4 , manufactured by Wako Pure Chemical Industries, Ltd.) A solid powder was obtained. The XRD measurement result of the obtained solid powder is shown in FIG. Presence of transition metal solid solution Li 2 O and LiCoO 2 was confirmed in the obtained solid powder. 67 mg of the obtained solid powder, 77 mg of acetylene black as a conductive additive and 6 mg of polytetrafluoroethylene powder as a binder were mixed in an agate mortar and processed into a clay to obtain a positive electrode mixture. The obtained positive electrode mixture was pressure-bonded to a 60 mg aluminum mesh to obtain a positive electrode.
調製例3(Co固溶Li2O正極の調製工程)
正極活物質の原料を酸化リチウム(株式会社高純度化学研究所製)2.43gと酸化コバルト(Co3O4、和光純薬工業社製)0.66gに変更した以外は調製例1と同様にして固体粉末を得た。得られた固体粉末のXRD測定結果を図3に示す。得られた固体粉末中、遷移金属固溶Li2Oの存在を確認した。得られた固体粉末51mg、導電助剤としてのアセチレンブラック60mg、結着剤としてのポリテトラフルオロエチレン粉末6mgをメノウ乳鉢で混合し、粘土状に加工して正極合剤を得た。得られた正極合剤を60mgのアルミニウムメッシュに圧着して正極とした。
Preparation Example 3 (Preparation process of Co solid solution Li 2 O positive electrode)
Same as Preparation Example 1, except that the raw material of the positive electrode active material was changed to 2.43 g of lithium oxide (manufactured by Kojundo Chemical Laboratory Co., Ltd.) and 0.66 g of cobalt oxide (Co 3 O 4 , manufactured by Wako Pure Chemical Industries, Ltd.) A solid powder was obtained. The XRD measurement result of the obtained solid powder is shown in FIG. Presence of transition metal solid solution Li 2 O was confirmed in the obtained solid powder. 51 mg of the obtained solid powder, 60 mg of acetylene black as a conductive assistant, and 6 mg of polytetrafluoroethylene powder as a binder were mixed in an agate mortar and processed into a clay to obtain a positive electrode mixture. The obtained positive electrode mixture was pressure-bonded to a 60 mg aluminum mesh to obtain a positive electrode.
調製例4(Co固溶Li2O正極の調製工程)
正極活物質の原料を酸化リチウム(株式会社高純度化学研究所製)2.63gと酸化コバルト(Co3O4、和光純薬工業社製)0.36gに変更した以外は調製例1と同様にして固体粉末を得た。得られた固体粉末のXRD測定結果を図4に示す。得られた固体粉末中、遷移金属固溶Li2Oの存在を確認した。得られた固体粉末57mg、導電助剤としてのアセチレンブラック60mg、結着剤としてのポリテトラフルオロエチレン粉末5mgをメノウ乳鉢で混合し、粘土状に加工して正極合剤を得た。得られた正極合剤を60mgのアルミニウムメッシュに圧着して正極とした。
Preparation Example 4 (Co solid solution Li 2 O positive electrode preparation step)
Same as Preparation Example 1 except that the raw material of the positive electrode active material was changed to 2.63 g of lithium oxide (manufactured by Kojundo Chemical Laboratory Co., Ltd.) and 0.36 g of cobalt oxide (Co 3 O 4 , manufactured by Wako Pure Chemical Industries, Ltd.) A solid powder was obtained. The XRD measurement result of the obtained solid powder is shown in FIG. Presence of transition metal solid solution Li 2 O was confirmed in the obtained solid powder. 57 mg of the obtained solid powder, 60 mg of acetylene black as a conductive assistant, and 5 mg of polytetrafluoroethylene powder as a binder were mixed in an agate mortar and processed into a clay to obtain a positive electrode mixture. The obtained positive electrode mixture was pressure-bonded to a 60 mg aluminum mesh to obtain a positive electrode.
調製例5(Co固溶Li2O正極の調製工程)
正極活物質の原料を酸化リチウム(株式会社高純度化学研究所製)2.30gと酸化コバルト(CoO、和光純薬工業社製)2.31gに変更した以外は調製例1と同様にして固体粉末を得た。得られた固体粉末のXRD測定結果を図5に示す。得られた固体粉末中、遷移金属固溶Li2Oの存在を確認した。得られた固体粉末75mg、導電助剤としてのアセチレンブラック85mg、結着剤としてのポリテトラフルオロエチレン粉末8mgをメノウ乳鉢で混合し、粘土状に加工して正極合剤を得た。得られた正極合剤を60mgのアルミニウムメッシュに圧着して正極とした。
Preparation Example 5 (Co solid solution Li 2 O positive electrode preparation step)
Solid material in the same manner as in Preparation Example 1 except that the raw material of the positive electrode active material was changed to 2.30 g of lithium oxide (manufactured by Kojundo Chemical Laboratory Co., Ltd.) and 2.31 g of cobalt oxide (CoO, manufactured by Wako Pure Chemical Industries, Ltd.) A powder was obtained. The XRD measurement result of the obtained solid powder is shown in FIG. Presence of transition metal solid solution Li 2 O was confirmed in the obtained solid powder. 75 mg of the obtained solid powder, 85 mg of acetylene black as a conductive additive, and 8 mg of polytetrafluoroethylene powder as a binder were mixed in an agate mortar and processed into a clay to obtain a positive electrode mixture. The obtained positive electrode mixture was pressure-bonded to a 60 mg aluminum mesh to obtain a positive electrode.
調製例6(Co固溶Li2O正極の調製工程)
正極活物質の原料を酸化リチウム(株式会社高純度化学研究所製)2.30gと酸化コバルト(CoO、和光純薬工業社製)1.15gに変更した以外は調製例1と同様にして固体粉末を得た。得られた固体粉末のXRD測定結果を図6に示す。得られた固体粉末中、遷移金属固溶Li2Oの存在を確認した。得られた固体粉末59mg、導電助剤としてのアセチレンブラック61mg、結着剤としてのポリテトラフルオロエチレン粉末5mgをメノウ乳鉢で混合し、粘土状に加工して正極合剤を得た。得られた正極合剤を60mgのアルミニウムメッシュに圧着して正極とした。
Preparation Example 6 (Co Solid Solution Li 2 O Cathode Preparation Process)
Solid material in the same manner as in Preparation Example 1 except that the raw material of the positive electrode active material was changed to 2.30 g of lithium oxide (manufactured by Kojundo Chemical Laboratory Co., Ltd.) and 1.15 g of cobalt oxide (CoO, manufactured by Wako Pure Chemical Industries, Ltd.). A powder was obtained. The XRD measurement result of the obtained solid powder is shown in FIG. Presence of transition metal solid solution Li 2 O was confirmed in the obtained solid powder. 59 mg of the obtained solid powder, 61 mg of acetylene black as a conductive assistant, and 5 mg of polytetrafluoroethylene powder as a binder were mixed in an agate mortar and processed into a clay to obtain a positive electrode mixture. The obtained positive electrode mixture was pressure-bonded to a 60 mg aluminum mesh to obtain a positive electrode.
調製例7(Co固溶Li2O正極の調製工程)
正極活物質の原料を酸化リチウム(株式会社高純度化学研究所製)2.94gと酸化コバルト(CoO、和光純薬工業社製)0.75gに変更した以外は調製例1と同様にして固体粉末を得た。得られた固体粉末のXRD測定結果を図7に示す。得られた固体粉末中、遷移金属固溶Li2Oの存在を確認した。得られた固体粉末89mg、導電助剤としてのアセチレンブラック100mg、結着剤としてのポリテトラフルオロエチレン粉末9mgをメノウ乳鉢で混合し、粘土状に加工して正極合剤を得た。得られた正極合剤を60mgのアルミニウムメッシュに圧着して正極とした。
Preparation Example 7 (Co Solid Solution Li 2 O Cathode Preparation Process)
The solid of the positive electrode active material was the same as in Preparation Example 1 except that the raw material of the positive electrode active material was changed to 2.94 g of lithium oxide (manufactured by Kojundo Chemical Laboratory Co., Ltd.) and 0.75 g of cobalt oxide (CoO, manufactured by Wako Pure Chemical Industries, Ltd.). A powder was obtained. The XRD measurement result of the obtained solid powder is shown in FIG. Presence of transition metal solid solution Li 2 O was confirmed in the obtained solid powder. 89 mg of the obtained solid powder, 100 mg of acetylene black as a conductive additive, and 9 mg of polytetrafluoroethylene powder as a binder were mixed in an agate mortar and processed into a clay to obtain a positive electrode mixture. The obtained positive electrode mixture was pressure-bonded to a 60 mg aluminum mesh to obtain a positive electrode.
調製例8(Co固溶Li2O正極の調製工程)
正極活物質の原料を酸化リチウム(株式会社高純度化学研究所製)3.09gと酸化コバルト(CoO、和光純薬工業社製)0.39gに変更した以外は調製例1と同様にして固体粉末を得た。得られた固体粉末のXRD測定結果を図8に示す。得られた固体粉末中、遷移金属固溶Li2Oの存在を確認した。得られた固体粉末87mg、導電助剤としてのアセチレンブラック93mg、結着剤としてのポリテトラフルオロエチレン粉末9mgをメノウ乳鉢で混合し、粘土状に加工して正極合剤を得た。得られた正極合剤を60mgのアルミニウムメッシュに圧着して正極とした。
Preparation Example 8 (Co solid solution Li 2 O positive electrode preparation step)
A solid material was prepared in the same manner as in Preparation Example 1 except that the raw material of the positive electrode active material was changed to 3.09 g of lithium oxide (manufactured by Kojundo Chemical Laboratory Co., Ltd.) and 0.39 g of cobalt oxide (CoO, manufactured by Wako Pure Chemical Industries, Ltd.). A powder was obtained. The XRD measurement result of the obtained solid powder is shown in FIG. Presence of transition metal solid solution Li 2 O was confirmed in the obtained solid powder. 87 mg of the obtained solid powder, 93 mg of acetylene black as a conductive additive, and 9 mg of polytetrafluoroethylene powder as a binder were mixed in an agate mortar and processed into a clay to obtain a positive electrode mixture. The obtained positive electrode mixture was pressure-bonded to a 60 mg aluminum mesh to obtain a positive electrode.
調製例9(Co固溶Li2O正極の調製工程)
正極活物質の原料を酸化リチウム(株式会社高純度化学研究所製)2.42gとコバルト酸リチウム(LiCoO2、STREM CHEMICAL社製)3.16gに変更した以外は調製例1と同様にして固体粉末を得た。得られた固体粉末のXRD測定結果を図9に示す。得られた固体粉末中、遷移金属固溶Li2OとLiCoO2の存在を確認した。得られた固体粉末107mg、導電助剤としてのアセチレンブラック105mg、結着剤としてのポリテトラフルオロエチレン粉末8mgをメノウ乳鉢で混合し、粘土状に加工して正極合剤を得た。得られた正極合剤を60mgのアルミニウムメッシュに圧着して正極とした。
Preparation Example 9 (Co Solid Solution Li 2 O Cathode Preparation Process)
Solid material in the same manner as in Preparation Example 1 except that the raw material of the positive electrode active material was changed to 2.42 g of lithium oxide (manufactured by Kojundo Chemical Laboratory Co., Ltd.) and 3.16 g of lithium cobaltate (LiCoO 2 , manufactured by STREM CHEMICAL). A powder was obtained. The XRD measurement result of the obtained solid powder is shown in FIG. Presence of transition metal solid solution Li 2 O and LiCoO 2 was confirmed in the obtained solid powder. 107 mg of the obtained solid powder, 105 mg of acetylene black as a conductive assistant, and 8 mg of polytetrafluoroethylene powder as a binder were mixed in an agate mortar and processed into a clay to obtain a positive electrode mixture. The obtained positive electrode mixture was pressure-bonded to a 60 mg aluminum mesh to obtain a positive electrode.
調製例10(Co固溶Li2O正極の調製工程)
正極活物質の原料を酸化リチウム(株式会社高純度化学研究所製)3.10gとコバルト酸リチウム(LiCoO2、STREM CHEMICAL社製)2.03gに変更した以外は調製例1と同様にして固体粉末を得た。得られた固体粉末のXRD測定結果を図10に示す。得られた固体粉末中、遷移金属固溶Li2OとLiCoO2の存在を確認した。得られた固体粉末92mg、導電助剤としてのアセチレンブラック94mg、結着剤としてのポリテトラフルオロエチレン粉末7mgをメノウ乳鉢で混合し、粘土状に加工して正極合剤を得た。得られた正極合剤を60mgのアルミニウムメッシュに圧着して正極とした。
Preparation Example 10 (Preparation process of Co solid solution Li 2 O positive electrode)
Solid material in the same manner as in Preparation Example 1 except that the positive electrode active material was changed to 3.10 g of lithium oxide (manufactured by Kojundo Chemical Laboratory Co., Ltd.) and 2.03 g of lithium cobaltate (LiCoO 2 , manufactured by STREM CHEMICAL). A powder was obtained. The XRD measurement result of the obtained solid powder is shown in FIG. Presence of transition metal solid solution Li 2 O and LiCoO 2 was confirmed in the obtained solid powder. 92 mg of the obtained solid powder, 94 mg of acetylene black as a conductive assistant, and 7 mg of polytetrafluoroethylene powder as a binder were mixed in an agate mortar and processed into a clay to obtain a positive electrode mixture. The obtained positive electrode mixture was pressure-bonded to a 60 mg aluminum mesh to obtain a positive electrode.
調製例11(Co固溶Li2O正極の調製工程)
正極活物質の原料を酸化リチウム(株式会社高純度化学研究所製)3.40gとコバルト酸リチウム(LiCoO2、STREM CHEMICAL社製)1.12gに変更した以外は調製例1と同様にして固体粉末を得た。得られた固体粉末のXRD測定結果を図11に示す。得られた固体粉末中、遷移金属固溶Li2Oの存在を確認した。得られた固体粉末56mg、導電助剤としてのアセチレンブラック61mg、結着剤としてのポリテトラフルオロエチレン粉末5mgをメノウ乳鉢で混合し、粘土状に加工して正極合剤を得た。得られた正極合剤を60mgのアルミニウムメッシュに圧着して正極とした。
Preparation Example 11 (Co Solid Solution Li 2 O Cathode Preparation Process)
Solid material in the same manner as in Preparation Example 1 except that the raw material of the positive electrode active material was changed to 3.40 g of lithium oxide (manufactured by Kojundo Chemical Laboratory Co., Ltd.) and 1.12 g of lithium cobaltate (LiCoO 2 , manufactured by STREM CHEMICAL). A powder was obtained. The XRD measurement result of the obtained solid powder is shown in FIG. Presence of transition metal solid solution Li 2 O was confirmed in the obtained solid powder. 56 mg of the obtained solid powder, 61 mg of acetylene black as a conductive assistant, and 5 mg of polytetrafluoroethylene powder as a binder were mixed in an agate mortar and processed into a clay to obtain a positive electrode mixture. The obtained positive electrode mixture was pressure-bonded to a 60 mg aluminum mesh to obtain a positive electrode.
調製例12(Co固溶Li2O正極の調製工程)
正極活物質の原料を酸化リチウム(株式会社高純度化学研究所製)4.95gとコバルト酸リチウム(LiCoO2、STREM CHEMICAL社製)0.70gに変更した以外は調製例1と同様にして固体粉末を得た。得られた固体粉末のXRD測定結果を図12に示す。得られた固体粉末中、遷移金属固溶Li2Oの存在を確認した。得られた固体粉末86mg、導電助剤としてのアセチレンブラック100mg、結着剤としてのポリテトラフルオロエチレン粉末10mgをメノウ乳鉢で混合し、粘土状に加工して正極合剤を得た。得られた正極合剤を60mgのアルミニウムメッシュに圧着して正極とした。
Preparation Example 12 (Preparation process of Co solid solution Li 2 O positive electrode)
Solid material in the same manner as in Preparation Example 1 except that the raw material of the positive electrode active material was changed to 4.95 g of lithium oxide (manufactured by Kojundo Chemical Laboratory Co., Ltd.) and 0.70 g of lithium cobaltate (LiCoO 2 , manufactured by STREM CHEMICAL). A powder was obtained. The XRD measurement result of the obtained solid powder is shown in FIG. Presence of transition metal solid solution Li 2 O was confirmed in the obtained solid powder. 86 mg of the obtained solid powder, 100 mg of acetylene black as a conductive assistant, and 10 mg of polytetrafluoroethylene powder as a binder were mixed in an agate mortar and processed into a clay to obtain a positive electrode mixture. The obtained positive electrode mixture was pressure-bonded to a 60 mg aluminum mesh to obtain a positive electrode.
調製例13(Mn固溶Li2O正極の調製工程)
正極活物質の原料を酸化リチウム(株式会社高純度化学研究所製)4.23gと酸化マンガン(MnO2、和光純薬工業社製)2.45gに変更した以外は調製例1と同様にして固体粉末を得た。得られた固体粉末のXRD測定結果を図13に示す。得られた固体粉末中、遷移金属固溶Li2Oの存在を確認した。得られた固体粉末69mg、導電助剤としてのアセチレンブラック71mg、結着剤としてのポリテトラフルオロエチレン粉末6mgをメノウ乳鉢で混合し、粘土状に加工して正極合剤を得た。得られた正極合剤を60mgのアルミニウムメッシュに圧着して正極とした。
Preparation Example 13 (Preparation process of Mn solid solution Li 2 O positive electrode)
The same procedure as in Preparation Example 1 except that the raw material of the positive electrode active material was changed to 4.23 g of lithium oxide (manufactured by Kojundo Chemical Laboratory Co., Ltd.) and 2.45 g of manganese oxide (MnO 2; manufactured by Wako Pure Chemical Industries, Ltd.). A solid powder was obtained. The XRD measurement result of the obtained solid powder is shown in FIG. Presence of transition metal solid solution Li 2 O was confirmed in the obtained solid powder. 69 mg of the obtained solid powder, 71 mg of acetylene black as a conductive assistant, and 6 mg of polytetrafluoroethylene powder as a binder were mixed in an agate mortar and processed into a clay to obtain a positive electrode mixture. The obtained positive electrode mixture was pressure-bonded to a 60 mg aluminum mesh to obtain a positive electrode.
調製例14(Fe固溶Li2O正極の調製工程)
正極活物質の原料を酸化リチウム(株式会社高純度化学研究所製)4.40gとα−酸化鉄(Fe2O3、和光純薬工業社製)2.34gに変更した以外は調製例1と同様にして固体粉末を得た。得られた固体粉末のXRD測定結果を図14に示す。得られた固体粉末中、遷移金属固溶Li2Oの存在を確認した。得られた固体粉末45mg、導電助剤としてのアセチレンブラック47mg、結着剤としてのポリテトラフルオロエチレン粉末4mgをメノウ乳鉢で混合し、粘土状に加工して正極合剤を得た。得られた正極合剤を60mgのアルミニウムメッシュに圧着して正極とした。
Preparation Example 14 (Preparation Step of Fe Solid Solution Li 2 O Positive Electrode)
Preparation Example 1 except that the raw material of the positive electrode active material was changed to 4.40 g of lithium oxide (manufactured by Kojundo Chemical Laboratory Co., Ltd.) and 2.34 g of α-iron oxide (Fe 2 O 3; manufactured by Wako Pure Chemical Industries, Ltd.) In the same manner, a solid powder was obtained. The XRD measurement result of the obtained solid powder is shown in FIG. Presence of transition metal solid solution Li 2 O was confirmed in the obtained solid powder. 45 mg of the obtained solid powder, 47 mg of acetylene black as a conductive additive and 4 mg of polytetrafluoroethylene powder as a binder were mixed in an agate mortar and processed into a clay to obtain a positive electrode mixture. The obtained positive electrode mixture was pressure-bonded to a 60 mg aluminum mesh to obtain a positive electrode.
調製例15(Ni固溶Li2O正極の調製工程)
正極活物質の原料を酸化リチウム(株式会社高純度化学研究所製)4.11gと酸化ニッケル(NiO、和光純薬工業社製)2.01gに変更した以外は調製例1と同様にして固体粉末を得た。得られた固体粉末のXRD測定結果を図15に示す。得られた固体粉末中、遷移金属固溶Li2Oと酸化ニッケルの存在を確認した。得られた固体粉末57mg、導電助剤としてのアセチレンブラック60mg、結着剤としてのポリテトラフルオロエチレン粉末4mgをメノウ乳鉢で混合し、粘土状に加工して正極合剤を得た。得られた正極合剤を60mgのアルミニウムメッシュに圧着して正極とした。
Preparation Example 15 (Ni solid solution Li 2 O positive electrode preparation step)
Solid material in the same manner as in Preparation Example 1 except that the raw material of the positive electrode active material was changed to 4.11 g of lithium oxide (manufactured by Kojundo Chemical Laboratory Co., Ltd.) and 2.01 g of nickel oxide (
調製例16(Mo固溶Li2O正極の調製工程)
正極活物質の原料を酸化リチウム(株式会社高純度化学研究所製)3.21gと酸化モリブデン(MoO3、和光純薬工業社製)3.10gに変更した以外は調製例1と同様にして固体粉末を得た。得られた固体粉末のXRD測定結果を図16に示す。得られた固体粉末中、遷移金属固溶Li2Oと酸化モリブデンの存在を確認した。得られた固体粉末58mg、導電助剤としてのアセチレンブラック60mg、結着剤としてのポリテトラフルオロエチレン粉末4mgをメノウ乳鉢で混合し、粘土状に加工して正極合剤を得た。得られた正極合剤を60mgのアルミニウムメッシュに圧着して正極とした。
Preparation Example 16 (Mo solid solution Li 2 O positive electrode preparation step)
The raw material for the positive electrode active material was the same as in Preparation Example 1 except that the raw material for the positive electrode active material was changed to 3.21 g of lithium oxide (manufactured by Kojundo Chemical Laboratory Co., Ltd.) and 3.10 g of molybdenum oxide (MoO 3; manufactured by Wako Pure Chemical Industries, Ltd.). A solid powder was obtained. The XRD measurement result of the obtained solid powder is shown in FIG. Presence of transition metal solid solution Li 2 O and molybdenum oxide was confirmed in the obtained solid powder. 58 mg of the obtained solid powder, 60 mg of acetylene black as a conductive auxiliary agent, and 4 mg of polytetrafluoroethylene powder as a binder were mixed in an agate mortar and processed into a clay to obtain a positive electrode mixture. The obtained positive electrode mixture was pressure-bonded to a 60 mg aluminum mesh to obtain a positive electrode.
比較調製例1(Li2O正極の調製工程)
正極活物質の原料を酸化リチウム(株式会社高純度化学研究所製)4.59gに変更した以外は調製例1と同様にして固体粉末を得た。得られた固体粉末71mg、導電助剤としてのアセチレンブラック78mg、結着剤としてのポリテトラフルオロエチレン粉末8mgをメノウ乳鉢で混合し、粘土状に加工して正極合剤を得た。得られた正極合剤を60mgのアルミニウムメッシュに圧着して正極とした。
Comparative Preparation Example 1 (Li 2 O positive electrode preparation step)
A solid powder was obtained in the same manner as in Preparation Example 1 except that the raw material of the positive electrode active material was changed to 4.59 g of lithium oxide (manufactured by Kojundo Chemical Laboratory Co., Ltd.). 71 mg of the obtained solid powder, 78 mg of acetylene black as a conductive assistant, and 8 mg of polytetrafluoroethylene powder as a binder were mixed in an agate mortar and processed into a clay to obtain a positive electrode mixture. The obtained positive electrode mixture was pressure-bonded to a 60 mg aluminum mesh to obtain a positive electrode.
比較調製例2 (LiCoO2正極の調製工程)
正極活物質としてコバルト酸リチウム(STREM CHEMICAL社製)56mgと導電助剤としてのアセチレンブラック68mg、結着剤としてのポリテトラフルオロエチレン粉末7mgをメノウ乳鉢で混合し、粘土状に加工して正極合剤を得た。得られた正極合剤を60mgのアルミニウムメッシュに圧着して正極とした。
Comparative Preparation Example 2 (LiCoO 2 positive electrode preparation process)
56 mg of lithium cobalt oxide (manufactured by STREM CHEMICAL) as a positive electrode active material, 68 mg of acetylene black as a conductive auxiliary agent, and 7 mg of polytetrafluoroethylene powder as a binder are mixed in an agate mortar, processed into a clay shape, and mixed with the positive electrode An agent was obtained. The obtained positive electrode mixture was pressure-bonded to a 60 mg aluminum mesh to obtain a positive electrode.
調製例1〜16及び比較調製例1、2における固体粉末中のアルカリ金属含有量と遷移金属/アルカリ金属モル比を以下の表1に示す。 Table 1 below shows the alkali metal content and the transition metal / alkali metal molar ratio in the solid powder in Preparation Examples 1 to 16 and Comparative Preparation Examples 1 and 2.
実施例1(2極式セルによる充放電試験)
充放電試験は市販の2極式セル(HSセル、宝泉社製)を用いて行った。ワーキング電極に調製例1において作成した正極合剤電極、カウンター電極にはリチウム金属を使用し、電解液には4.0M LiFSI アセトニトリル電解液(LiFSI:リチウムビスフルオロスルホニルイミド〔LiN(SO2F)2〕)を使用した。正極活物質に対して13.5mA/gの電流密度で充電を行った後に同様の電流密度にて放電を行った。電圧範囲は3.45V−2.0Vの範囲にて行った。充放電試験の結果を図17に示す。図17に示すように正極活物質として充放電が可能であることが示された。
Example 1 (Charge / Discharge Test Using a Bipolar Cell)
The charge / discharge test was conducted using a commercially available bipolar cell (HS cell, manufactured by Hosen Co., Ltd.). The working electrode is a positive electrode mixture electrode prepared in Preparation Example 1, the counter electrode is lithium metal, and the electrolyte is 4.0 M LiFSI acetonitrile electrolyte (LiFSI: lithium bisfluorosulfonylimide [LiN (SO 2 F) 2 ]) was used. The positive electrode active material was charged at a current density of 13.5 mA / g and then discharged at the same current density. The voltage range was 3.45V-2.0V. The results of the charge / discharge test are shown in FIG. As shown in FIG. 17, it was shown that charging / discharging was possible as a positive electrode active material.
実施例2〜16(2極式セルによる充放電試験)
ワーキング電極にそれぞれ調製例2〜16において作成した正極合剤電極を使用した以外は実施例1と同じ条件にて充放電試験を行った。充放電試験の結果を図18〜32に示す。図18〜32に示すように正極活物質として充放電が可能であることが示された。
Examples 2 to 16 (Charge / Discharge Test with Bipolar Cell)
The charge / discharge test was performed under the same conditions as in Example 1 except that the positive electrode mixture electrodes prepared in Preparation Examples 2 to 16 were used for the working electrodes. The results of the charge / discharge test are shown in FIGS. As shown in FIGS. 18 to 32, it was shown that charge and discharge are possible as the positive electrode active material.
実施例17(2極式セルによる充放電試験;電流密度依存性)
ワーキング電極に調製例2において作成した正極合剤電極を使用し、カウンター電極にはリチウム金属を使用し、電解液には4.0M LiFSI アセトニトリル電解液(LiFSI:リチウムビスフルオロスルホニルイミド〔LiN(SO2F)2〕)を使用した。正極活物質に対して様々な電流密度で充電を行った後に同様の電流密度にて放電を行った。充電深度は270mAh/gにて実施した。放電容量の電流密度依存性を図33に示す。図33に示すように、1000mAh/gを超える非常に高い電流密度においても充放電が可能であった。
Example 17 (Charge / Discharge Test with Bipolar Cell; Current Density Dependency)
The positive electrode mixture electrode prepared in Preparation Example 2 was used as the working electrode, lithium metal was used as the counter electrode, 4.0 M LiFSI acetonitrile electrolyte (LiFSI: lithium bisfluorosulfonylimide [LiN (SO 2 F) 2 ]) was used. The positive electrode active material was charged at various current densities and then discharged at the same current density. The charging depth was 270 mAh / g. FIG. 33 shows the current density dependence of the discharge capacity. As shown in FIG. 33, charging / discharging was possible even at a very high current density exceeding 1000 mAh / g.
実施例18(2極式セルによる充放電試験;サイクル特性)
ワーキング電極に調製例2において作成した正極合剤電極を使用し、カウンター電極にはリチウム金属を使用し、電解液には4.0M LiFSI アセトニトリル電解液(LiFSI:リチウムビスフルオロスルホニルイミド〔LiN(SO2F)2〕)を使用した。正極活物質に対して45mA/gの電流密度で充電を行った後に同様の電流密度にて放電を行った。充電深度は200mAh/gにて実施した。放電容量保持率の充放電サイクル数依存性を図34に示す。図34に示すように、15サイクル以上に渡って非常に安定した充放電が可能であった。
Example 18 (Charge / Discharge Test with Bipolar Cell; Cycle Characteristics)
The positive electrode mixture electrode prepared in Preparation Example 2 was used as the working electrode, lithium metal was used as the counter electrode, 4.0 M LiFSI acetonitrile electrolyte (LiFSI: lithium bisfluorosulfonylimide [LiN (SO 2 F) 2 ]) was used. The positive electrode active material was charged at a current density of 45 mA / g and then discharged at the same current density. The charging depth was 200 mAh / g. FIG. 34 shows the dependency of the discharge capacity retention rate on the number of charge / discharge cycles. As shown in FIG. 34, very stable charge / discharge was possible over 15 cycles or more.
比較例1、2(2極式セルによる充放電試験)
ワーキング電極にそれぞれ比較調製例1、2において作成した正極合剤電極を使用した以外は実施例1と同じ条件にて充放電試験を行った。充放電試験の結果を図35、36に示す。図35、36に示すように比較調製例1、2において作成した正極合剤電極では充放電が不可能であることが示された。
Comparative Examples 1 and 2 (Charge / discharge test using a bipolar cell)
A charge / discharge test was performed under the same conditions as in Example 1 except that the positive electrode mixture electrode prepared in Comparative Preparation Examples 1 and 2 was used for the working electrode. The results of the charge / discharge test are shown in FIGS. As shown in FIGS. 35 and 36, it was shown that the positive electrode mixture electrodes prepared in Comparative Preparation Examples 1 and 2 cannot be charged and discharged.
実施例19
実施例1〜12と比較例2において得られた正極合剤についてCoK端XAFS測定を行い、そこから得られるCoK端XAFSにおけるプレエッジ強度を算出した結果を表2に示す。標準試料としてCoO(一酸化コバルト、平均配位数:6)、Co3O4(酸化コバルト、平均配位数:5.33(33%が4配位、67%が6配位))、CoAl2O4(平均配位数4)を用いた。実施例1〜4までについて実際のスペクトルを図37に図示した。実施例5〜8までについて実際のスペクトル、実施例9〜12までについて実際のスペクトル、及び、標準試料について実際のスペクトルをそれぞれ図38〜40に示した。
Example 19
Table 2 shows the results obtained by performing CoK-edge XAFS measurements on the positive electrode mixtures obtained in Examples 1 to 12 and Comparative Example 2, and calculating the pre-edge strength at the CoK-edge XAFS obtained therefrom. As standard samples, CoO (cobalt monoxide, average coordination number: 6), Co 3 O 4 (cobalt oxide, average coordination number: 5.33 (33% is 4-coordinate, 67% is 6-coordinate)), CoAl 2 O 4 (average coordination number 4) was used. The actual spectra for Examples 1 to 4 are shown in FIG. The actual spectrum for Examples 5 to 8, the actual spectrum for Examples 9 to 12, and the actual spectrum for the standard sample are shown in FIGS. 38 to 40, respectively.
標準試料のプレエッジ強度から分かるとおり、Coの配位数が小さくなるほどプレエッジ強度は増大する。実施例1〜12におけるプレエッジ強度はいずれの場合もそれぞれのCo前駆体のプレエッジ強度から大きく増大しており、標準試料との比較から実施例1〜12において大部分のCoは逆ホタル石構造のLi2Oの4配位サイトに部分的に固溶した状態であることが明らかとなった。一方で比較例2におけるプレエッジ高さは標準試料との比較からCoが6配位構造であることを示しており、本実施例にあるような特異的な構造を有していないことが明らかとなった。 As can be seen from the pre-edge strength of the standard sample, the pre-edge strength increases as the Co coordination number decreases. In each case, the pre-edge strength in Examples 1 to 12 is greatly increased from the pre-edge strength of each Co precursor, and in comparison with the standard sample, most of Co in Examples 1 to 12 has an inverted fluorite structure. It was revealed that the Li 2 O tetracoordinate site was partially dissolved. On the other hand, the pre-edge height in Comparative Example 2 indicates that Co has a six-coordinate structure from the comparison with the standard sample, and it is clear that it does not have a specific structure as in this example. became.
Claims (8)
[A2−xBx]O (1)
(式中、Aは、アルカリ金属原子を表す。Bは、遷移金属原子を表す。xは、0<x<2の数を表す。)で表されることを特徴とする請求項1に記載のヘテロ原子固溶アルカリ金属酸化物。 The heteroatom solid solution alkali metal oxide has the following formula (1):
[A 2-x B x] O (1)
(Wherein, A represents an alkali metal atom, B represents a transition metal atom, and x represents a number of 0 <x <2). Heteroatom solid solution alkali metal oxide.
該製造方法は、メカノケミカル処理によりアルカリ金属酸化物の結晶構造内にヘテロ原子を固溶させる工程を含むことを特徴とするヘテロ原子固溶アルカリ金属酸化物の製造方法。 A method for producing a heteroatom solid-solution alkali metal oxide having a structure in which a heteroatom is solid-solved at a 4-coordination site in a crystal structure of an alkali metal oxide having a reverse fluorite structure,
The method for producing a heteroatom solid-solution alkali metal oxide, comprising a step of solid-dissolving heteroatoms in the crystal structure of the alkali metal oxide by mechanochemical treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013251289A JP6281898B2 (en) | 2013-12-04 | 2013-12-04 | Heteroatom solid solution alkali metal oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013251289A JP6281898B2 (en) | 2013-12-04 | 2013-12-04 | Heteroatom solid solution alkali metal oxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015107890A true JP2015107890A (en) | 2015-06-11 |
JP6281898B2 JP6281898B2 (en) | 2018-02-21 |
Family
ID=53438587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013251289A Active JP6281898B2 (en) | 2013-12-04 | 2013-12-04 | Heteroatom solid solution alkali metal oxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6281898B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018041677A (en) * | 2016-09-09 | 2018-03-15 | 株式会社Gsユアサ | Positive electrode active material, positive electrode, and nonaqueous electrolyte power storage device |
WO2019163475A1 (en) | 2018-02-20 | 2019-08-29 | 株式会社Gsユアサ | Positive electrode active material, positive electrode, non-aqueous electrolyte power storage element, method for producing positive electrode active material, and method for producing non-aqueous electrolyte power storage element |
KR20200121312A (en) | 2018-02-20 | 2020-10-23 | 가부시키가이샤 지에스 유아사 | Positive electrode active material, positive electrode, non-aqueous electrolyte storage element, positive electrode active material manufacturing method, positive electrode manufacturing method, and non-aqueous electrolyte storage element manufacturing method |
JP2021057274A (en) * | 2019-09-30 | 2021-04-08 | 株式会社Gsユアサ | Abnormality determination device, abnormality determination method, and computer program |
KR20220024988A (en) | 2019-08-20 | 2022-03-03 | 가부시키가이샤 지에스 유아사 | A positive electrode active material, a positive electrode, a nonaqueous electrolyte storage device, a method for manufacturing a positive electrode active material, a method for manufacturing a positive electrode, and a method for manufacturing a nonaqueous electrolyte storage device |
WO2024162107A1 (en) * | 2023-01-31 | 2024-08-08 | パナソニックIpマネジメント株式会社 | Positive electrode active material and battery |
WO2024162103A1 (en) * | 2023-01-31 | 2024-08-08 | パナソニックIpマネジメント株式会社 | Battery |
WO2024162104A1 (en) * | 2023-01-31 | 2024-08-08 | パナソニックIpマネジメント株式会社 | Battery |
WO2024162105A1 (en) * | 2023-01-31 | 2024-08-08 | パナソニックIpマネジメント株式会社 | Battery |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5911920A (en) * | 1997-03-25 | 1999-06-15 | Mitsubishi Heavy Industries, Ltd. | Manufacturing method for Li composite oxides employed as electrode materials in Li batteries |
JPH11283627A (en) * | 1998-01-30 | 1999-10-15 | Canon Inc | Lithium secondary battery and manufacture thereof |
JP2003068302A (en) * | 2001-08-29 | 2003-03-07 | Hitachi Ltd | Positive material for secondary lithium ion battery and secondary lithium ion battery having positive pole made of positive material |
JP2004207055A (en) * | 2002-12-25 | 2004-07-22 | Sanyo Electric Co Ltd | Lithium battery and manufacturing method |
JP2005276612A (en) * | 2004-03-24 | 2005-10-06 | Sanyo Electric Co Ltd | Positive electrode for nonaqueous electrolyte battery, its manufacturing method, battery using it, and manufacturing method of battery |
-
2013
- 2013-12-04 JP JP2013251289A patent/JP6281898B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5911920A (en) * | 1997-03-25 | 1999-06-15 | Mitsubishi Heavy Industries, Ltd. | Manufacturing method for Li composite oxides employed as electrode materials in Li batteries |
JPH11283627A (en) * | 1998-01-30 | 1999-10-15 | Canon Inc | Lithium secondary battery and manufacture thereof |
JP2003068302A (en) * | 2001-08-29 | 2003-03-07 | Hitachi Ltd | Positive material for secondary lithium ion battery and secondary lithium ion battery having positive pole made of positive material |
JP2004207055A (en) * | 2002-12-25 | 2004-07-22 | Sanyo Electric Co Ltd | Lithium battery and manufacturing method |
JP2005276612A (en) * | 2004-03-24 | 2005-10-06 | Sanyo Electric Co Ltd | Positive electrode for nonaqueous electrolyte battery, its manufacturing method, battery using it, and manufacturing method of battery |
Non-Patent Citations (3)
Title |
---|
CHUN-CHIEH CHANG, PRASHANT N. KUMTA: "Mechanochemical synsthesis of LiNiO2", MATERIALS SCIENCE AND ENGINEERING B, vol. 116, no. 3, JPN6017014488, 2005, pages 341 - 345, ISSN: 0003676191 * |
HEUNG-WOO YOU, ET AL.: "Syntehsis of LiCoO2 by mechanical alloying", J.MATER.SCI.LETT., vol. 17, no. 11, JPN6017014490, 1998, pages 931 - 934, ISSN: 0003676190 * |
岩波 理化学事典 第5版, JPN6017020351, 20 February 1998 (1998-02-20), JP, pages 490, ISSN: 0003676192 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018041677A (en) * | 2016-09-09 | 2018-03-15 | 株式会社Gsユアサ | Positive electrode active material, positive electrode, and nonaqueous electrolyte power storage device |
WO2019163475A1 (en) | 2018-02-20 | 2019-08-29 | 株式会社Gsユアサ | Positive electrode active material, positive electrode, non-aqueous electrolyte power storage element, method for producing positive electrode active material, and method for producing non-aqueous electrolyte power storage element |
KR20200120646A (en) | 2018-02-20 | 2020-10-21 | 가부시키가이샤 지에스 유아사 | Positive electrode active material, positive electrode, non-aqueous electrolyte storage device, method of manufacturing positive electrode active material, and method of manufacturing non-aqueous electrolyte storage device |
KR20200121312A (en) | 2018-02-20 | 2020-10-23 | 가부시키가이샤 지에스 유아사 | Positive electrode active material, positive electrode, non-aqueous electrolyte storage element, positive electrode active material manufacturing method, positive electrode manufacturing method, and non-aqueous electrolyte storage element manufacturing method |
US11276857B2 (en) | 2018-02-20 | 2022-03-15 | Gs Yuasa International Ltd. | Positive active material, positive electrode, nonaqueous electrolyte energy storage device, method of producing positive active material, and method of producing nonaqueous electrolyte |
KR20220024988A (en) | 2019-08-20 | 2022-03-03 | 가부시키가이샤 지에스 유아사 | A positive electrode active material, a positive electrode, a nonaqueous electrolyte storage device, a method for manufacturing a positive electrode active material, a method for manufacturing a positive electrode, and a method for manufacturing a nonaqueous electrolyte storage device |
JP2021057274A (en) * | 2019-09-30 | 2021-04-08 | 株式会社Gsユアサ | Abnormality determination device, abnormality determination method, and computer program |
JP7427901B2 (en) | 2019-09-30 | 2024-02-06 | 株式会社Gsユアサ | Abnormality determination device, abnormality determination method, and computer program |
WO2024162107A1 (en) * | 2023-01-31 | 2024-08-08 | パナソニックIpマネジメント株式会社 | Positive electrode active material and battery |
WO2024162103A1 (en) * | 2023-01-31 | 2024-08-08 | パナソニックIpマネジメント株式会社 | Battery |
WO2024162104A1 (en) * | 2023-01-31 | 2024-08-08 | パナソニックIpマネジメント株式会社 | Battery |
WO2024162105A1 (en) * | 2023-01-31 | 2024-08-08 | パナソニックIpマネジメント株式会社 | Battery |
Also Published As
Publication number | Publication date |
---|---|
JP6281898B2 (en) | 2018-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6281898B2 (en) | Heteroatom solid solution alkali metal oxide | |
Guo et al. | Pineapple-shaped ZnCo 2 O 4 microspheres as anode materials for lithium ion batteries with prominent rate performance | |
Hwang et al. | A comprehensive study of the role of transition metals in O3-type layered Na [Ni x Co y Mn z] O 2 (x= 1/3, 0.5, 0.6, and 0.8) cathodes for sodium-ion batteries | |
Mao et al. | O3-type NaNi0. 5Mn0. 5O2 hollow microbars with exposed {0 1 0} facets as high performance cathode materials for sodium-ion batteries | |
You et al. | Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries | |
JP6230149B2 (en) | Secondary battery, positive electrode active material, positive electrode material, and manufacturing method thereof | |
Xin et al. | A lithiation/delithiation mechanism of monodispersed MSn 5 (M= Fe, Co and FeCo) nanospheres | |
Ye et al. | Understanding the stepwise capacity increase of high energy low-Co Li-rich cathode materials for lithium ion batteries | |
JP5987401B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery | |
Guo et al. | Stable interface Co3O4-coated LiNi0. 5Mn1. 5O4 for lithium-ion batteries | |
JP2015201432A (en) | Positive electrode active material particle powder for nonaqueous electrolyte secondary battery, method of manufacturing the same, and nonaqueous electrolyte secondary battery | |
JP2009064731A (en) | Positive electrode active material, manufacturing method thereof, and electrochemical device | |
Hu et al. | Synthesis and electrochemical performance of NaV 6 O 15 microflowers for lithium and sodium ion batteries | |
JP6179944B2 (en) | Transition metal solid solution alkali metal compounds | |
Guo et al. | Effects of sodium substitution on properties of LiMn2O4 cathode for lithium ion batteries | |
JP2013030420A (en) | Negative electrode material for lithium ion battery containing surface-fluorinated b-type titanium oxide and manufacturing method thereof, and lithium ion battery using the same | |
KR20160059948A (en) | Positive active material for rechargeable lithium battery, and positive active material layer and rechargeable lithium battery including the same | |
Wu et al. | Effect of Cu substitution on structures and electrochemical properties of Li [NiCo 1− x Cu x Mn] 1/3 O 2 as cathode materials for lithium ion batteries | |
Tang et al. | Fabrication of a highly stable Nb 2 O 5@ C/CNTs based anolyte for lithium slurry flow batteries | |
Shang et al. | Synthesis and characterization of MnCo2O4 microspheres based air electrode for rechargeable sodium-air batteries | |
Liu et al. | A high-entropy layered P2-type cathode with high stability for sodium-ion batteries | |
JP2017069099A (en) | Active material | |
JP2016033887A (en) | Nonaqueous electrolyte secondary battery | |
JP6213998B2 (en) | Active material | |
Wang et al. | Facile synthesis of electrochemically active α-LiFeO 2 nanoparticles in absolute ethanol at ambient temperature |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160915 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20160915 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170525 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170606 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170727 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171107 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171218 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180117 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6281898 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |