JP2701327B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP2701327B2
JP2701327B2 JP63161573A JP16157388A JP2701327B2 JP 2701327 B2 JP2701327 B2 JP 2701327B2 JP 63161573 A JP63161573 A JP 63161573A JP 16157388 A JP16157388 A JP 16157388A JP 2701327 B2 JP2701327 B2 JP 2701327B2
Authority
JP
Japan
Prior art keywords
carbonate
lithium
secondary battery
aqueous electrolyte
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63161573A
Other languages
Japanese (ja)
Other versions
JPH0210666A (en
Inventor
博美 奥野
秀 越名
信夫 江田
幸雄 西川
彰克 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63161573A priority Critical patent/JP2701327B2/en
Publication of JPH0210666A publication Critical patent/JPH0210666A/en
Application granted granted Critical
Publication of JP2701327B2 publication Critical patent/JP2701327B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解液二次電池に関し、特にその電解
液の改良に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to an improvement in the electrolyte.

従来の技術 従来、この種の非水電解液電池は、高電圧・高エネル
ギー密度を有し、かつ貯蔵性,耐漏液性などの信頼性に
すぐれるため、広く民生用電子機器の電源に用いられて
いる。また、最近ではこの電池を二次電池化する試みが
盛んでなる。二次電池は負極にリチウム合金あるいは金
属リチウム、正極には負極から溶出したリチウムイオン
を収納できる反応席をもった、結晶構造が層状あるいは
トンネル構造を有する遷移金属の酸化物やカルコゲン化
合物が検討されており、充放電リチウムイオンが電解液
を介し正極,負極の間を移動する。電解液については、
一次電池においてプロピレンカーボネートが、その支持
塩をよく溶かし、リチウムに対し安定で、しかも放電特
性に優れるという性質からリチウム/二酸化マンガン,
リチウム/酸化銅電池などの一次電池で広く用いられて
いる。
2. Description of the Related Art Conventionally, this type of non-aqueous electrolyte battery has been widely used as a power source for consumer electronic devices because it has a high voltage and a high energy density, and has excellent reliability such as storability and leakage resistance. Have been. In recent years, attempts to convert this battery to a secondary battery have become active. Secondary batteries have a reaction site that can store lithium alloy or metallic lithium in the negative electrode and lithium ions eluted from the negative electrode in the positive electrode, and oxides and chalcogen compounds of transition metals that have a layered or tunneled crystal structure have been studied. The lithium ions move between the positive electrode and the negative electrode via the electrolyte. For the electrolyte,
In a primary battery, propylene carbonate dissolves its supporting salt well, is stable against lithium, and has excellent discharge characteristics.
Widely used in primary batteries such as lithium / copper oxide batteries.

発明が解決しようとする課題 このように一次電池では優れた電解液であるプロピレ
ンカーボネートであるが、二次電池の電解液として用い
る場合、確かに充電効率はほぼ100%の値を示すが、充
放電効率(放電容量÷充電容量)は約50〜60%と低い。
Problems to be Solved by the Invention As described above, propylene carbonate is an excellent electrolytic solution in a primary battery, but when used as an electrolytic solution in a secondary battery, the charging efficiency certainly shows a value of almost 100%. Discharge efficiency (discharge capacity divided by charge capacity) is as low as about 50-60%.

これは多くの文献などに示されているように、電析し
た活性なリチウムとプロピレンカーボネートとが反応し
てプロピレンカーボネートが分解するためである。この
ため、二次電池には用いがたい。
This is because, as shown in many documents, the active lithium deposited reacts with propylene carbonate to decompose propylene carbonate. For this reason, it is difficult to use for a secondary battery.

その反応は次に示す式に従って起こる。 The reaction takes place according to the following equation:

また負極にリチウム−アルミニウム合金などのリチウ
ム合金を用いた場合でも同じことがおこるといえる。
The same can be said to occur when a lithium alloy such as a lithium-aluminum alloy is used for the negative electrode.

本発明にはこのような従来の問題点を解消し、電解液
中のプロピレンカーボネートと電析する活性なリチウム
との接触を妨げ、プロピレンカーボネートの分解による
ガス発生を抑制して二次電池としての実使用にたえるこ
とができるようにすることを目的とするものである。
The present invention solves such conventional problems, prevents contact between propylene carbonate in the electrolytic solution and active lithium to be deposited, suppresses gas generation due to decomposition of propylene carbonate, and as a secondary battery. It is intended to be able to be used for actual use.

課題を解決するための手段 そこで、本発明は、プロピレンカーボネートとジメト
キシエタンとの混合溶媒を用いた非水電解液にジメチル
カーボネート,ジエチルカーボネートのうちの少なくも
1つを添加したものである。
Means for Solving the Problems Thus, the present invention is one in which at least one of dimethyl carbonate and diethyl carbonate is added to a non-aqueous electrolyte using a mixed solvent of propylene carbonate and dimethoxyethane.

作用 このように電解液にジメチルカーボネート,ジエチル
カーボネートのうちの少なくとも1つを添加することに
より、電析リチウムと電解液中のプロピレンカーボネー
トとの接触を妨げることができるとともに、低粘度溶媒
であるジメトキシエタンの存在により電解液の電子伝導
度を高めて充放電効率を上げることができる。
Action By adding at least one of dimethyl carbonate and diethyl carbonate to the electrolytic solution as described above, contact between the electrodeposited lithium and propylene carbonate in the electrolytic solution can be prevented, and the low viscosity solvent dimethoxy Due to the presence of ethane, the electron conductivity of the electrolytic solution can be increased to increase the charge / discharge efficiency.

実 施 例 以下、本発明の一実施例を、図面とともに説明する。Embodiment Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

第1図は実施例に用いたコイン形二次電池の断面図で
ある。図で1は耐食性ステンレス製のケース、2は同じ
材質の封口板、3は封口板2の内面にスポット溶接した
ニッケルのグリッド、4はリチウム−アルミニウム合金
(リチウム80重量%)で、直径15mm,厚さ0.24mmのディ
スク状に打ち抜いた負極活物質であり、ニッケルグリッ
ド3に固着されている。5はポリプロピレン製のセパレ
ータである。6は正極で、市販の電解二酸化マンガンを
大気中において350℃で5時間熱処理したもの100重量部
に導電材としてカーボンブラック10重量部とフッ素樹脂
結着剤10重量部を混合し、その0.10gを直径15mm,厚さ0.
7mmに成型したものである。
FIG. 1 is a sectional view of a coin-type secondary battery used in an example. In the figure, 1 is a corrosion-resistant stainless steel case, 2 is a sealing plate of the same material, 3 is a nickel grid spot-welded to the inner surface of the sealing plate 2, 4 is a lithium-aluminum alloy (lithium 80% by weight), 15 mm in diameter, A negative electrode active material punched into a disk having a thickness of 0.24 mm, which is fixed to the nickel grid 3. 5 is a polypropylene separator. Reference numeral 6 denotes a positive electrode, which is obtained by heat-treating commercially available electrolytic manganese dioxide at 350 ° C. for 5 hours in the air. The diameter is 15mm, thickness is 0.
It is molded to 7mm.

電解液はプロピレカーボネート(PC),ジメトキシエ
チン(DME)の二種に加え、ジメチルカーボネート(DM
C),ジエチルカーボネート(DEC)の少なくともいずれ
かひとつから成る混合溶媒に過塩素酸リチウムを1モル
/の濃度に溶解したものを用いたが、添加剤(ジメチ
ルカーボネート,ジエチルカーボネート)の効果を調べ
るため、次の〜に示す11種類の溶媒をそれぞれ用い
たコイン形電池を作製し、それぞれの電池について充放
電試験を行った。
Electrolyte is dimethyl carbonate (DM) in addition to propylene carbonate (PC) and dimethoxyethyne (DME).
C) A mixture of at least one of diethyl carbonate (DEC) and lithium perchlorate dissolved at a concentration of 1 mol / was used. The effect of additives (dimethyl carbonate, diethyl carbonate) was examined. For this reason, coin-type batteries using each of the following 11 types of solvents were prepared, and charge / discharge tests were performed on each of the batteries.

スタンダード:PC:DMC=50:50(容量混合比) PC:DMC:DME=45:5:50 PC:DMC:DME=40:10:50 PC:DMC:DME=35:15:50 PC:DMC:DME=30:20:50 PC:DMC:DME=25:25:50 以上DMC添加グループとする。 Standard: PC: DMC = 50: 50 (volume mixing ratio) PC: DMC: DME = 45: 5: 50 PC: DMC: DME = 40: 10: 50 PC: DMC: DME = 35: 15: 50 PC: DMC : DME = 30: 20: 50 PC: DMC: DME = 25: 25: 50 More DMC added group.

PC:DEC:DME=45:5:50 PC:DEC:DME=40:10:50 PC:DEC:DME=35:15:50 PC:DEC:DME=30:20:50 PC:DEC:DME=25:25:50 以上DEC添加グループとする。 PC: DEC: DME = 45: 5: 50 PC: DEC: DME = 40: 10: 50 PC: DEC: DME = 35: 15: 50 PC: DEC: DME = 30: 20: 50 PC: DEC: DME = 25:25:50 or more DEC addition group.

電解液を封口板内に注液後、上記の正極6を載置し、
7のポリプロピレン製ガスケットとともにかしめ、封口
した。
After injecting the electrolyte into the sealing plate, the positive electrode 6 is placed,
And crimped together with the polypropylene gasket No. 7 and sealed.

これらの電池を20℃で2mAで充電が3.90V,放電が20Vま
での範囲で充放電試験を行った。
Charge and discharge tests were performed on these batteries at 20 ° C. at 2 mA with a charge of 3.90 V and a discharge of 20 V.

このときのそれぞれの電池の5サイクル目の充放電効
率を第2図に示す。又、11種類の電池について、2つの
グループ(DMC添加,DEC添加)に分け、電解液中の溶媒
成分の容積比,添加した鎖状カーボネートとPCとモル
比,電池の充放電効率を以下の表1に示す。電池にはA
〜Kのアルファベット名を便宜上つけた。
FIG. 2 shows the charge / discharge efficiency at the fifth cycle of each battery at this time. The eleven types of batteries were divided into two groups (DMC addition and DEC addition). The volume ratio of the solvent component in the electrolyte, the molar ratio of the added chain carbonate to PC and the charging and discharging efficiency of the battery were as follows. It is shown in Table 1. A for battery
KK are given for convenience.

以上の実施例において第2図から明らかなようにDMC
の添加量は電解液全量の5〜15%の範囲、言い換えれば
PCに対するモル比が0.1〜0.4の範囲で充放電効率は比較
的高い値を示す。これは添加しない場合に比べ放電容量
が増加したためである。又、DECを添加した場合にも電
解液全量に対して添加率が10〜20重量%,PCに対するモ
ル比が約0.15〜0.5の範囲で放電容量の増加による充放
電効率のアップが見られた。これらの結果に対する考察
を以下に示す。
In the above embodiment, as is apparent from FIG.
Is in the range of 5 to 15% of the total amount of the electrolyte, in other words,
When the molar ratio to PC is in the range of 0.1 to 0.4, the charge / discharge efficiency shows a relatively high value. This is because the discharge capacity was increased as compared with the case where no additive was added. In addition, even when DEC was added, the addition rate was 10 to 20% by weight based on the total amount of the electrolytic solution, and the molar ratio to PC was in the range of about 0.15 to 0.5. . Considerations for these results are given below.

DMC,DECはそれぞれ次の様な構造を持つ鎖状カーボネ
ートである。
DMC and DEC are chain carbonates having the following structures, respectively.

DMC(ジメチルカーボネート) DEC(ジエチルカーボネート) リチウムとジメチルカーボネートの反応からはリチウ
ムメタノキシド,リチウムとジエチルカーボネートから
はリチウムエタノキシドが生成される。それらのリチウ
ムアルコキシドがリチウム表面上を膜状に被い、そのた
め電析した活性なリチウムとプロピレンカーボネートの
反応を阻止していると考えられる。
DMC (dimethyl carbonate) DEC (diethyl carbonate) Lithium methoxide is produced from the reaction of lithium and dimethyl carbonate, and lithium ethoxide is produced from lithium and diethyl carbonate. It is considered that those lithium alkoxides cover the lithium surface in a film-like manner, thereby preventing the reaction between the deposited active lithium and propylene carbonate.

発明の効果 以上のように本発明によれば、プロピレンカーボネー
トとジメトキシエタンを含む非水電解液にジメチルカー
ボネートをプロピレンカーボネートに対して体積比で0.
1〜0.4の割合で添加するか、もしくはジエチルカーボネ
ートをプロピレンカーボネートに対して体積比で0.2〜
0.7の割合で添加した非水電解液電池を構成することに
より、プロピレンカーボネートと電析した活性なリチウ
ムとの反応を防止し、充放電効率を向上するという優れ
た結果が得られる。
Effect of the Invention As described above, according to the present invention, dimethyl carbonate is added to propylene carbonate in a nonaqueous electrolyte containing propylene carbonate and dimethoxyethane at a volume ratio of 0.
It is added at a ratio of 1 to 0.4, or diethyl carbonate is added at a volume ratio of 0.2 to
By constituting the non-aqueous electrolyte battery added at a ratio of 0.7, an excellent result of preventing the reaction of propylene carbonate with the electrodeposited active lithium and improving the charge / discharge efficiency can be obtained.

なお、実施例では正極活物質に二酸化マンガンを用い
たが、他の例えば、クロム酸化物(Cr3O8,Cr2O5
ど),三硫化モリブデン,酸化バナジウム(V2O5,V
6O13,V3O8),二硫化チタン,オキシリン酸銅,硫化バ
ナジウム(V2S5),LiMnO4などであってもよい。
In the examples, manganese dioxide was used as the positive electrode active material. However, other materials such as chromium oxide (Cr 3 O 8 , Cr 2 O 5 ), molybdenum trisulfide, and vanadium oxide (V 2 O 5 , V
6 O 13 , V 3 O 8 ), titanium disulfide, copper oxyphosphate, vanadium sulfide (V 2 S 5 ), LiMnO 4, etc.

又、負極活物質にはリチウム−アルミニウム合金を用
いたが、リチウムとアルミニウム以外との合金や、純金
属リチウムであってもよい。
Although a lithium-aluminum alloy is used as the negative electrode active material, an alloy of lithium and aluminum other than aluminum or pure metal lithium may be used.

又、電解液の溶質に過塩素酸リチウムを用いたが、こ
れもLiAsF6,LiCF3SO3,LiBF4,LiAlCl4などであってもよ
い。
In addition, although lithium perchlorate was used as a solute of the electrolytic solution, it may be LiAsF 6 , LiCF 3 SO 3 , LiBF 4 , LiAlCl 4 or the like.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例におけるコイン形電池の断面
図、第2図は11種類の電池のそれぞれの5サイクル目の
充放電効率を示す図である。 1……ケース、2……封口板、3……ニッケルのグリッ
ド、4……リチウム−アルミニウム合金、5……セパレ
ータ、6……正極、7……ガスケット。
FIG. 1 is a cross-sectional view of a coin-type battery according to an embodiment of the present invention, and FIG. 2 is a diagram showing charge / discharge efficiency at the fifth cycle of each of 11 types of batteries. DESCRIPTION OF SYMBOLS 1 ... Case, 2 ... Sealing plate, 3 ... Nickel grid, 4 ... Lithium-aluminum alloy, 5 ... Separator, 6 ... Positive electrode, 7 ... Gasket.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西川 幸雄 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 守田 彰克 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 米国特許4056663(US,A) ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Yukio Nishikawa 1006 Kadoma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (56) References US Pat. No. 4,056,633 (US, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リチウムイオンを吸蔵・放出できる合金、
あるいは金属リチウムからなる負極と、プロピレンカー
ボネートとジメトキシエタンとの混合溶媒を用いた非水
電解液と、正極とを備え、上記非水電解液に鎖状カーボ
ネートを添加した非水電解液二次電池。
An alloy capable of occluding and releasing lithium ions.
Alternatively, a nonaqueous electrolyte secondary battery including a negative electrode made of metallic lithium, a nonaqueous electrolyte using a mixed solvent of propylene carbonate and dimethoxyethane, and a positive electrode, wherein a chain carbonate is added to the nonaqueous electrolyte .
【請求項2】非水電解液に添加する鎖状カーボネート
が、ジメチルカーボネート、ジエチルカーボネートのう
ち少なくとも1つである特許請求の範囲第1項記載の非
水電解液二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the chain carbonate added to the non-aqueous electrolyte is at least one of dimethyl carbonate and diethyl carbonate.
【請求項3】非水電解液に添加する鎖状カーボネートの
うち、ジメチルカーボネートの添加率がプロピレンカー
ボネートに対して体積比で0.1〜0.4の割合、もしくはジ
エチルカーボネートの添加率がプロピレンカーボネート
に対して体積比で0.2〜0.7の割合である特許請求の範囲
第1項又は第2項に記載の非水電解液二次電池。
3. The chain carbonate to be added to the non-aqueous electrolyte, wherein the addition ratio of dimethyl carbonate is 0.1 to 0.4 by volume relative to propylene carbonate, or the addition ratio of diethyl carbonate is relative to propylene carbonate. The non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the volume ratio is 0.2 to 0.7.
JP63161573A 1988-06-29 1988-06-29 Non-aqueous electrolyte secondary battery Expired - Lifetime JP2701327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63161573A JP2701327B2 (en) 1988-06-29 1988-06-29 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63161573A JP2701327B2 (en) 1988-06-29 1988-06-29 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH0210666A JPH0210666A (en) 1990-01-16
JP2701327B2 true JP2701327B2 (en) 1998-01-21

Family

ID=15737681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63161573A Expired - Lifetime JP2701327B2 (en) 1988-06-29 1988-06-29 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2701327B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6291108B1 (en) 1989-12-12 2001-09-18 Sanyo Electric Co., Ltd. Non-aqueous electrolyte cell
WO1994014205A1 (en) * 1992-12-04 1994-06-23 Sony Corporation Secondary cell of nonaqueous electrolyte
US5639575A (en) * 1992-12-04 1997-06-17 Sony Corporation Non-aqueous liquid electrolyte secondary battery
US5437945A (en) * 1993-03-19 1995-08-01 Sony Corporation Secondary battery having non-aqueous electrolyte
EP0696077B1 (en) 1994-07-07 1999-03-31 Mitsui Chemicals, Inc. Non-aqueous electrolyte solutions and secondary cells comprising the same
JP5076560B2 (en) * 2007-03-07 2012-11-21 日本電気株式会社 Electricity storage device
KR101075319B1 (en) 2008-05-21 2011-10-19 삼성에스디아이 주식회사 Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same
KR20220038494A (en) * 2019-12-03 2022-03-28 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 Device comprising a secondary battery, an electrolyte, and a secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4056663A (en) 1975-11-03 1977-11-01 P. R. Mallory & Co. Inc. Performance in an organic electrolyte

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4056663A (en) 1975-11-03 1977-11-01 P. R. Mallory & Co. Inc. Performance in an organic electrolyte

Also Published As

Publication number Publication date
JPH0210666A (en) 1990-01-16

Similar Documents

Publication Publication Date Title
US7524581B2 (en) Non-aqueous electrochemical cells
JP3287376B2 (en) Lithium secondary battery and method of manufacturing the same
JP3258841B2 (en) Lithium secondary battery
JP2701327B2 (en) Non-aqueous electrolyte secondary battery
JP3212639B2 (en) Non-aqueous solvent secondary battery
JPH0745304A (en) Organic electrolyte secondary battery
JPH02148665A (en) Electrolyte for lithium secondary battery
JP3050885B2 (en) Non-aqueous solvent secondary battery and method of manufacturing the same
JPS62272473A (en) Nonaqueous solvent secondary battery
JP2797693B2 (en) Non-aqueous electrolyte secondary battery
JP4176435B2 (en) Non-aqueous electrolyte battery
JP2003157896A (en) Nonaqueous electrolyte secondary battery
JPH07230825A (en) Nonaqueous electrolyte battery
US6465131B1 (en) Lithium secondary cell with a stannous electrode material
JPH10312825A (en) Nonaqueous solvent secondary battery
JP3324365B2 (en) Negative electrode for lithium secondary battery
JPS62272472A (en) Nonaqueous solvent secondary battery
EP1406336A1 (en) Electrolyte composition having improved aluminium anticorrosive properties
JP2000106188A (en) Nonaqueous electrolyte secondary battery
JPH05198316A (en) Nonaqueous electrolyte battery
JP3050016B2 (en) Non-aqueous electrolyte secondary battery
JPH0935716A (en) Lithium battery
JP2656305B2 (en) Organic electrolyte secondary battery
JPH07288140A (en) Lithium secondary battery
JPH07272758A (en) Lithium secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 11