JP3212639B2 - Non-aqueous solvent secondary battery - Google Patents

Non-aqueous solvent secondary battery

Info

Publication number
JP3212639B2
JP3212639B2 JP21319691A JP21319691A JP3212639B2 JP 3212639 B2 JP3212639 B2 JP 3212639B2 JP 21319691 A JP21319691 A JP 21319691A JP 21319691 A JP21319691 A JP 21319691A JP 3212639 B2 JP3212639 B2 JP 3212639B2
Authority
JP
Japan
Prior art keywords
lithium
aqueous solvent
secondary battery
phosphorus
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21319691A
Other languages
Japanese (ja)
Other versions
JPH0536411A (en
Inventor
修司 山田
隆久 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21319691A priority Critical patent/JP3212639B2/en
Publication of JPH0536411A publication Critical patent/JPH0536411A/en
Application granted granted Critical
Publication of JP3212639B2 publication Critical patent/JP3212639B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非水溶媒二次電池に関
し、特に正極の活物質を改良した非水溶媒二次電池に係
わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous solvent secondary battery, and more particularly to a non-aqueous solvent secondary battery having an improved active material for a positive electrode.

【0002】[0002]

【従来の技術】近年、負極活物質としてリチウム、ナト
リウム、アルミニウム等の軽金属を用いた非水溶媒電池
は高エネルギ―密度電池として注目されており、正極活
物質に二酸化マンガン(MnO2 )、フッ化炭素[(C
n )]、塩化チオニル(SOCl2 )等を用いた一次
電池は既に電卓、時計の電源やメモリのバックアップ電
池として多用されている。更に、近年、VTR、通信機
器等の各種の電子機器の小形、軽量化に伴い、それらの
電源として高エネルギ―密度の二次電池の要求が高ま
り、軽金属を負極活物質とする非水溶媒二次電池の研究
が活発に行われている。
2. Description of the Related Art In recent years, non-aqueous solvent batteries using a light metal such as lithium, sodium, or aluminum as a negative electrode active material have attracted attention as high energy density batteries, and manganese dioxide (MnO 2 ) and fluorine have been used as positive electrode active materials. Carbonized [(C
F n )], primary batteries using thionyl chloride (SOCl 2 ) and the like are already widely used as backup batteries for power supplies for calculators, watches and memories. Further, in recent years, with the miniaturization and weight reduction of various electronic devices such as VTRs and communication devices, demands for secondary batteries having a high energy density as a power source for these devices have increased, and non-aqueous solvents using light metals as negative electrode active materials have been required. Research on secondary batteries is being actively conducted.

【0003】非水溶媒二次電池は、負極にリチウム、ナ
トリウム、アルミニウム等の軽金属を用い、電解液とし
て炭酸プロピレン(PC)、1,2−ジメトキシエタン
(DME)、γ−ブチロラクトン(γ−BL)、テトラ
ヒドロフラン(THF)などの非水溶媒中にLiClO
4 、LiBF4 、LiAsF6 、LiPF6 等のリチウ
ム塩を溶解したものから構成され、正極活物質としては
主にTiS2 、MoS2 、V2 5 、V6 13等が研究
されている。さらに、最近ではLiMn2 O4、LiC
oO2 、LiNiO2 などは脱リチウムがなされて4V
という高い電圧を示すことから、これらの正極活物質は
より高エネルギー密度が期待されている。しかしなが
ら、電圧が高くなると電解液が酸化分解されて充放電サ
イクル寿命特性が劣るという問題があった。
A non-aqueous solvent secondary battery uses a light metal such as lithium, sodium, or aluminum as a negative electrode, and uses propylene carbonate (PC), 1,2-dimethoxyethane (DME), γ-butyrolactone (γ-BL) as an electrolyte. ), LiClO in a non-aqueous solvent such as tetrahydrofuran (THF)
4 , LiBF 4 , LiAsF 6 , LiPF 6, etc., which are formed by dissolving lithium salts. As the positive electrode active material, TiS 2 , MoS 2 , V 2 O 5 , V 6 O 13, etc. are mainly studied. . More recently, LiMn 2 O 4, LiC
oO 2 , LiNiO 2, etc. are delithiated and 4V
Therefore, these positive electrode active materials are expected to have a higher energy density. However, when the voltage is increased, there is a problem that the electrolyte is oxidatively decomposed and the charge / discharge cycle life characteristic is deteriorated.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記従来の
問題点を解決するためになされたもので、充放電サイク
ル特性および大電流充放電特性の優れた非水溶媒二次電
池を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and an object of the present invention is to provide a non-aqueous solvent secondary battery having excellent charge / discharge cycle characteristics and large current charge / discharge characteristics. It is assumed that.

【0005】[0005]

【課題を解決するための手段】本発明に係る非水溶媒二
次電池は、リチウム、リチウム合金またはリチウムを含
む化合物からなる負極と、LiCoO2 およびLiNi
2 から選ばれた少なくとも1種を正極活物質として含
む正極と、非水溶媒に電解質を溶解した電解液とを備え
た非水溶媒二次電池において、前記正極活物質としてリ
ンを添加したものを用いることを特徴とするものであ
る。
A non-aqueous solvent secondary battery according to the present invention comprises a negative electrode made of lithium, a lithium alloy or a compound containing lithium, LiCoO 2 and LiNi.
A non-aqueous solvent secondary battery including a positive electrode containing at least one selected from O 2 as a positive electrode active material and an electrolyte solution in which an electrolyte is dissolved in a non-aqueous solvent, wherein phosphorus is added as the positive electrode active material Is used.

【0006】前記負極を構成するリチウム合金として
は、例えばLiAl、LiPb、LiSn、LiBi等
を、リチウムを含む化合物としては例えばリチウムイオ
ンをドープしたポリアセタール、ポリアセチレン、ポリ
ピロールなどの導電性高分子、リチウムイオンをドープ
させた有機焼結体からなる炭素材等を、挙げることがで
きる。
The lithium alloy constituting the negative electrode is, for example, LiAl, LiPb, LiSn, LiBi or the like, and the lithium-containing compound is, for example, a conductive polymer such as polyacetal, polyacetylene or polypyrrole doped with lithium ion; And a carbon material made of an organic sintered body doped with a.

【0007】前記正極活物質に添加するリン(P)とし
ては、リン(P)、五酸化リン(P2 5 )、リン酸リ
チウム(Li3 PO4 )、リン酸二水素リチウム(Li
2PO4 )、リン酸アンモニウム[(NH4 )3 PO
4 ・3H2 O]等の化合物を用いることができる。かか
るリンは、前記LiMn2 4 、LiCoO2 、LiN
iO2 の活物質にMn、Co、Niに対して0.05〜
0.2モル比添加することが望ましい。
The phosphorus (P) added to the positive electrode active material includes phosphorus (P), phosphorus pentoxide (P 2 O 5 ), lithium phosphate (Li 3 PO 4 ), and lithium dihydrogen phosphate (Li).
H 2 PO 4 ), ammonium phosphate [(NH 4) 3 PO
4 , 3H 2 O]. Such phosphorus is used in the LiMn 2 O 4 , LiCoO 2 , LiN
For the active material of iO 2 , 0.05 to Mn, Co, and Ni
It is desirable to add 0.2 mole ratio.

【0008】前記リンを添加したLiCoO2 は、例え
ば(a)CoO、Co2 3 、Co3 4 などのコバル
ト酸化物または炭酸コバルト(CoCO3 )、硝酸コバ
ルト[Co(NO3 2 ・4H2 O]などのコバルト化
合物と(b)酸化リチウム(Li2 O)、炭酸リチウム
(Li2 CO3 )、硝酸リチウム(LiNO3 )または
ハロゲン化リチウムなどのリチウム塩と(c)前記リン
化合物との混合物を加熱して反応させることにより得る
ことができる。
The LiCoO 2 added with phosphorus is, for example, (a) cobalt oxide such as CoO, Co 2 O 3 , Co 3 O 4 or cobalt carbonate (CoCO 3 ); cobalt nitrate [Co (NO 3 ) 2. 4H 2 O] and (b) a lithium salt such as lithium oxide (Li 2 O), lithium carbonate (Li 2 CO 3 ), lithium nitrate (LiNO 3 ) or lithium halide and (c) the phosphorus compound Can be obtained by heating and reacting the mixture.

【0009】前記リンを添加したLiNiO2 は、例え
ば(a)NiO、Ni2 3 、Ni3 4 などのニッケ
ル酸化物または炭酸ニッケル(NiCO3 )、硝酸ニッ
ケル[Ni(NO3 2 ・6H2 O]などのニッケル化
合物と(b)酸化リチウム(Li2 O)、炭酸リチウム
(Li2 CO3 )、硝酸リチウム(LiNO3 )または
ハロゲン化リチウムなどのリチウム塩と(c)前記リン
化合物との混合物を加熱して反応させることにより得る
ことができる。
The above-mentioned phosphorus-added LiNiO 2 is, for example, (a) nickel oxide such as NiO, Ni 2 O 3 , Ni 3 O 4 or nickel carbonate (NiCO 3 ), nickel nitrate [Ni (NO 3 ) 2. 6H 2 O] and (b) a lithium salt such as lithium oxide (Li 2 O), lithium carbonate (Li 2 CO 3 ), lithium nitrate (LiNO 3 ) or lithium halide and (c) the phosphorus compound Can be obtained by heating and reacting the mixture.

【0010】前記正極は、例えば(1)前記正極活物質
に導電材、結着剤と共に成形してペレット状にしたも
の、(2)前記正極活物質に導電材、結着剤と共に混
練、シート化したシート状物、(3)前記正極活物質に
導電材、結着剤を適当な溶媒に懸濁し、これに集電体に
塗布、乾燥して膜状としたもの、等を挙げることができ
る。前記導電材としては、例えばアセチレンブラック、
黒鉛等を、前記結着剤としては例えばポリテトラフルオ
ロエチレン等を用いることができる。前記正極活物質、
導電材および結着剤の配合割合は、正極活物質80〜〜
90重量%、導電材5〜20重量%、結着剤2〜7重量
%の範囲することが望ましい。
The positive electrode may be, for example, (1) a pellet formed by molding the positive electrode active material with a conductive material and a binder, and (2) kneading the positive electrode active material with a conductive material and a binder. And (3) a conductive material and a binder suspended in an appropriate solvent in the positive electrode active material, applied to a current collector, and dried to form a film. it can. As the conductive material, for example, acetylene black,
Graphite or the like can be used, and as the binder, for example, polytetrafluoroethylene or the like can be used. The positive electrode active material,
The mixing ratio of the conductive material and the binder is from 80 to
It is desirable that the content is 90% by weight, the conductive material is 5 to 20% by weight, and the binder is 2 to 7% by weight.

【0011】前記電解液を構成する非水溶媒としては、
例えばエチレンカーボネート、2−メメチルテトラヒド
ロフラン、1,2−ジメトキシエタン、ジエトキシエタ
ン、1,3−ジオキソラン、1,3−ジメトキシプロパ
ンから選ばれる1種または2種以上の混合物を挙げるこ
とができる。前記電解液を構成する電解質としては、例
えばホウフッ化リチウム(LiBF4 )、六フッ化リン
酸リチウム(LiPF6 )、過塩素酸リチウム(LiC
lO4 )、六フッ化砒素リチウム(LiAsF6 )、ト
リフルオロメタンスルホン酸リチウム(LiCF3 SO
3 )、塩化アルミニウムリチウム(LiAlCl4)か
ら選ばれる1種または2種以上のリチウム塩を挙げるこ
とができる。前記電解質の非水溶媒に対する溶解量は、
0.5〜1.5モル/lとすることが望ましい。
The non-aqueous solvent constituting the electrolytic solution includes:
For example, one type or a mixture of two or more types selected from ethylene carbonate, 2-methyltetrahydrofuran, 1,2-dimethoxyethane, diethoxyethane, 1,3-dioxolan, and 1,3-dimethoxypropane can be exemplified. Examples of the electrolyte constituting the electrolyte include lithium borofluoride (LiBF 4 ), lithium hexafluorophosphate (LiPF 6 ), and lithium perchlorate (LiC 6 ).
lO 4 ), lithium arsenic hexafluoride (LiAsF 6 ), lithium trifluoromethanesulfonate (LiCF 3 SO
3 ) and one or more lithium salts selected from lithium aluminum chloride (LiAlCl 4 ). The amount of the electrolyte dissolved in the non-aqueous solvent is
It is desirably 0.5 to 1.5 mol / l.

【0012】[0012]

【作用】本発明によれば、リンを添加したLiCoO2
およびLiNiO2 から選ばれた少なくとも一種の正極
活物質を含む正極を用いることによって、充放電時にお
けるリチウムイオンの正極内での移動を容易にでき、充
電過電圧を小さくすることができる。したがって、充放
電サイクル特性および大電流充放電特性の優れた非水溶
媒二次電池を得ることができる。
According to the present invention, LiCoO 2 containing phosphorus is added.
By using a positive electrode containing at least one positive electrode active material selected from LiNiO 2 and LiNiO 2, lithium ions can easily move in the positive electrode during charge and discharge, and a charge overvoltage can be reduced. Therefore, a non-aqueous solvent secondary battery having excellent charge / discharge cycle characteristics and high current charge / discharge characteristics can be obtained.

【0013】[0013]

【実施例】以下、本発明を円筒形非水溶媒二次電池に適
用した例を図1を参照して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a cylindrical non-aqueous solvent secondary battery will be described in detail with reference to FIG.

【0014】参考例1 図中の1は、底部に絶縁体2が配置された有底円筒状の
ステンレス容器である。この容器1内には、電極群3が
収納されている。この電極群3は、正極4、セパレ―タ
5及び負極6をこの順序で積層した帯状物を該負極6が
外側に位置するように渦巻き状に巻回した構造になって
いる。前記正極4は、以下に示す方法により作製したも
のを用い、前記セパレータ5はポリプロピレン製多孔質
フィルムからなるものを、前記負極6は帯状リチウム箔
からなるものをそれぞれも用いた。
REFERENCE EXAMPLE 1 Reference numeral 1 in the figure denotes a bottomed cylindrical stainless steel container having an insulator 2 disposed at the bottom. In this container 1, an electrode group 3 is housed. The electrode group 3 has a structure in which a band formed by laminating a positive electrode 4, a separator 5 and a negative electrode 6 in this order is spirally wound so that the negative electrode 6 is located outside. The positive electrode 4 was prepared by the following method, the separator 5 was formed of a porous film made of polypropylene, and the negative electrode 6 was formed of a band-shaped lithium foil.

【0015】まず、三二酸化マンガン(Mn2 3 )と
炭酸リチウム(Li2 CO3 )と五酸化リン(P
2 5 )とをLi:Mn:P=1.3:2:0.1のモ
ル比になるように配合し、乳鉢で十分混合した後、空気
中、900℃で10時間熱処理した。得られた生成物を
X線回折測定したところ、LiMn2 4 相が存在する
ことが確認された。つづいて、前記リン添加LiMn2
4 粉末80重量%をアセチレンブラック15重量%お
よびポリテトラフルオロエチレン粉末5重量%と共に混
合し、シート化し、エキスパンドメタル集電体に圧着す
ることによって幅40mm、長さ200mmの帯状正極
を作製した。
First, manganese trioxide (Mn 2 O 3 ), lithium carbonate (Li 2 CO 3 ) and phosphorus pentoxide (P
2 O 5 ) and a molar ratio of Li: Mn: P = 1.3: 2: 0.1, sufficiently mixed in a mortar, and heat-treated in air at 900 ° C. for 10 hours. X-ray diffraction measurement of the obtained product confirmed that a LiMn 2 O 4 phase was present. Subsequently, the phosphorus-added LiMn 2
80% by weight of O 4 powder was mixed with 15% by weight of acetylene black and 5% by weight of polytetrafluoroethylene powder, formed into a sheet, and pressed on an expanded metal current collector to produce a band-shaped positive electrode having a width of 40 mm and a length of 200 mm. .

【0016】前記容器1内には、六フッ化リン酸リチウ
ム(LiPF6 )を炭酸プロピレンと1,2−ジメトキ
シエタンの混合溶媒(混合体積比率1:1)に1.0モ
ル/l溶解した組成の電解液が収容されている。前記電
極群3上には、中央部が開口された絶縁紙7が載置され
ている。更に、前記容器 1の上部開口部には、絶縁封口
板8が該容器1へのかしめ加工等により液密に設けられ
ており、かつ該絶縁封口板8の中央には正極端子9が嵌
合されている。この正極端子9は、前記電極群3の正極
4に正極リ―ド10を介して接続されている。なお、電
極群3の負極6は図示しない負極リ―ドを介して負極端
子である前記容器1に接続されている。
In the container 1, 1.0 mol / l of lithium hexafluorophosphate (LiPF 6 ) was dissolved in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane (mixing volume ratio 1: 1). An electrolyte of the composition is contained. On the electrode group 3, an insulating paper 7 having a central opening is placed. Further, an insulating sealing plate 8 is provided in the upper opening of the container 1 in a liquid-tight manner by caulking the container 1 or the like, and a positive electrode terminal 9 is fitted into the center of the insulating sealing plate 8. Have been. The positive terminal 9 is connected to the positive electrode 4 of the electrode group 3 via a positive electrode lead 10. In addition, the negative electrode 6 of the electrode group 3 is connected to the container 1 as a negative electrode terminal via a negative lead (not shown).

【0017】比較例1 三二酸化マンガン(Mn2 3 )と炭酸リチウム(Li
2 CO3 )をLiMn2 4 の組成となるように配合
し、乳鉢で十分混合した後、空気中、900℃で10時
間熱処理した。得られた生成物をX線回折測定したとこ
ろ、LiMn2 4 相が存在することが確認された。か
かる生成物を正極活物質として用いた以外、参考例1と
同様な非水溶媒二次電池を組み立てた。
Comparative Example 1 Manganese trioxide (Mn 2 O 3 ) and lithium carbonate (Li)
2 CO 3 ) was blended to have a composition of LiMn 2 O 4 , mixed well in a mortar, and then heat-treated at 900 ° C. in air for 10 hours. X-ray diffraction measurement of the obtained product confirmed that a LiMn 2 O 4 phase was present. A non-aqueous solvent secondary battery similar to that of Reference Example 1 was assembled except that this product was used as a positive electrode active material.

【0018】参考例1及び比較例1の非水溶媒二次電池
について充電電流300mAで4.3Vまで充電し、放
電電流600mAで3.0Vまで放電する充放電を繰り
返した。また、放電電流値を変えて放電容量を測定し
た。その結果を図2〜図4に示した。なお、図2は参考
例1および比較例1の電池の充電特性を示す線図、図3
は前記各電池における放電電流値と放電容量の関係を示
す線図、図4は各電池の充放電サイクル数に対する放電
容量を示す線図である。
The non-aqueous solvent secondary batteries of Reference Example 1 and Comparative Example 1 were repeatedly charged and discharged at a charging current of 300 mA to 4.3 V and discharged at a discharging current of 600 mA to 3.0 V. Further, the discharge capacity was measured while changing the discharge current value. The results are shown in FIGS. FIG. 2 is a diagram showing charging characteristics of the batteries of Reference Example 1 and Comparative Example 1, and FIG.
Is a diagram showing the relationship between the discharge current value and the discharge capacity of each battery, and FIG. 4 is a diagram showing the discharge capacity with respect to the number of charge / discharge cycles of each battery.

【0019】実施例1 炭酸コバルト(CoCO3 )と炭酸リチウム(Li2
3 )とリン酸リチウム(Li3 PO4 )とをLi:C
o:P=1.15:1:0.05のモル比になるように
配合し、乳鉢で十分混合した後、空気中、900℃で1
0時間熱処理した。得られた生成物をX線回折測定した
ところ、LiCoO2 相が存在することが確認された。
かかる生成物を正極活物質として用いた以外、参考例1
と同様な非水溶媒二次電池を組み立てた。
Example 1 Cobalt carbonate (CoCO 3 ) and lithium carbonate (Li 2 C)
O 3 ) and lithium phosphate (Li 3 PO 4 ) with Li: C
o: P = 1.15: 1: 0.05, and mixed well in a mortar.
Heat treatment was performed for 0 hours. X-ray diffraction measurement of the obtained product confirmed that a LiCoO 2 phase was present.
Reference Example 1 except that such a product was used as a positive electrode active material.
A non-aqueous solvent secondary battery similar to the above was assembled.

【0020】比較例2 炭酸コバルト(CoCO3 )と炭酸リチウム(Li2
3 )とをLi:Co=1:1のモル比になるように配
合し、乳鉢で十分混合した後、空気中、900℃で10
時間熱処理した。得られた生成物をX線回折測定したと
ころ、LiCoO2 相が存在することが確認された。か
かる生成物を正極活物質として用いた以外、参考例1と
同様な非水溶媒二次電池を組み立てた。
Comparative Example 2 Cobalt carbonate (CoCO 3 ) and lithium carbonate (Li 2 C)
O 3 ) and Li: Co = 1: 1 in a molar ratio and thoroughly mixed in a mortar.
Heat treated for hours. X-ray diffraction measurement of the obtained product confirmed that a LiCoO 2 phase was present. A non-aqueous solvent secondary battery similar to that of Reference Example 1 was assembled except that this product was used as a positive electrode active material.

【0021】実施例1及び比較例2の非水溶媒二次電池
について充電電流300mAで4.3Vまで充電し、放
電電流600mAで3.0Vまで放電する充放電を繰り
返した。また、放電電流値を変えて放電容量を測定し
た。その結果を図5〜図7に示した。なお、図5は実施
例1および比較例2の電池の充電特性を示す線図、図6
は前記各電池における放電電流値と放電容量の関係を示
す線図、図7は各電池の充放電サイクル数に対する放電
容量を示す線図である。
The non-aqueous solvent secondary batteries of Example 1 and Comparative Example 2 were repeatedly charged and discharged at a charging current of 300 mA to 4.3 V and discharged at a discharging current of 600 mA to 3.0 V. Further, the discharge capacity was measured while changing the discharge current value. The results are shown in FIGS. FIG. 5 is a diagram showing the charging characteristics of the batteries of Example 1 and Comparative Example 2, and FIG.
Is a diagram showing the relationship between the discharge current value and the discharge capacity in each of the batteries, and FIG. 7 is a diagram showing the discharge capacity with respect to the number of charge / discharge cycles of each battery.

【0022】図5から明らかなように本実施例1の電池
は、比較例2の電池に比べて充電電圧を50〜100m
V低くすることができ、電解液の劣化を抑制できること
がわかる。また、図6から明らかなように本実施例1の
電池は比較例2の電池に比べて大電流放電での放電容量
を向上できることがわかる。さらに、図7から明らかな
ように本実施例1の電池は比較例2の電池に比べてサイ
クル寿命が格段に向上できることがわかる。
As is apparent from FIG. 5, the battery of Example 1 has a charging voltage of 50 to 100 m compared to the battery of Comparative Example 2.
It can be seen that V can be lowered, and deterioration of the electrolytic solution can be suppressed. In addition, as is clear from FIG. 6, the battery of Example 1 can improve the discharge capacity at a large current discharge as compared with the battery of Comparative Example 2. Furthermore, as is clear from FIG. 7, it can be seen that the battery of Example 1 can significantly improve the cycle life as compared with the battery of Comparative Example 2.

【0023】実施例2 炭酸ニッケル(NiCO3 )と炭酸リチウム(Li2
3 )とリン酸リチウム(Li3 PO4 )とをLi:N
i:P=1.15:1:0.05のモル比になるように
配合し、乳鉢で十分混合した後、空気中、900℃で1
0時間熱処理した。得られた生成物をX線回折測定した
ところ、LiNiO2 相が存在することが確認された。
かかる生成物を正極活物質として用いた以外、参考例1
と同様な非水溶媒二次電池を組み立てた。
Example 2 Nickel carbonate (NiCO 3 ) and lithium carbonate (Li 2 C)
O 3 ) and lithium phosphate (Li 3 PO 4 ) with Li: N
i: P = 1.15: 1: 0.05, and the mixture was sufficiently mixed in a mortar.
Heat treatment was performed for 0 hours. X-ray diffraction measurement of the obtained product confirmed that a LiNiO 2 phase was present.
Reference Example 1 except that such a product was used as a positive electrode active material.
A non-aqueous solvent secondary battery similar to the above was assembled.

【0024】比較例3 炭酸ニッケル(NiCO3 )と炭酸リチウム(Li2
3 )とをLi:Ni=1:1のモル比になるように配
合し、乳鉢で十分混合した後、空気中、900℃で10
時間熱処理した。得られた生成物をX線回折測定したと
ころ、LiNiO2 相が存在することが確認された。か
かる生成物を正極活物質として用いた以外、参考例1と
同様な非水溶媒二次電池を組み立てた。
Comparative Example 3 Nickel carbonate (NiCO 3 ) and lithium carbonate (Li 2 C)
O 3) and a Li: Ni = 1: formulated to be 1 molar ratio, were thoroughly mixed in a mortar, in air, 10 at 900 ° C.
Heat treated for hours. X-ray diffraction measurement of the obtained product confirmed that a LiNiO 2 phase was present. A non-aqueous solvent secondary battery similar to that of Reference Example 1 was assembled except that this product was used as a positive electrode active material.

【0025】実施例2及び比較例3の非水溶媒二次電池
について充電電流300mAで4.3Vまで充電し、放
電電流600mAで3.0Vまで放電する充放電を繰り
返した。また、放電電流値を変えて放電容量を測定し
た。その結果を図8〜図10に示した。なお、図8は本
実施例2および比較例3の電池の充電特性を示す線図、
図9は前記各電池における放電電流値と放電容量の関係
を示す線図、図10は各電池の充放電サイクル数に対す
る放電容量を示す線図である。
The non-aqueous solvent secondary batteries of Example 2 and Comparative Example 3 were repeatedly charged and discharged at a charging current of 300 mA up to 4.3 V and at a discharging current of 600 mA up to 3.0 V. Further, the discharge capacity was measured while changing the discharge current value. The results are shown in FIGS. FIG. 8 is a diagram showing charging characteristics of the batteries of Example 2 and Comparative Example 3,
FIG. 9 is a diagram showing the relationship between the discharge current value and the discharge capacity of each of the batteries, and FIG. 10 is a diagram showing the discharge capacity with respect to the number of charge / discharge cycles of each of the batteries.

【0026】図8から明らかなように本実施例2の電池
は、比較例3の電池に比べて充電電圧を50〜100m
V低くすることができ、電解液の劣化を抑制できること
がわかる。また、図9から明らかなように本実施例2の
電池は比較例3の電池に比べて大電流放電での放電容量
を向上できることがわかる。さらに、図10から明らか
なように本実施例2の電池は比較例3の電池に比べてサ
イクル寿命が格段に向上できることがわかる。
As is apparent from FIG. 8, the battery of Example 2 has a charging voltage of 50 to 100 m compared to the battery of Comparative Example 3.
It can be seen that V can be lowered, and deterioration of the electrolytic solution can be suppressed. Further, as is clear from FIG. 9, the battery of Example 2 can improve the discharge capacity at a large current discharge as compared with the battery of Comparative Example 3. Further, as is clear from FIG. 10, the battery of the second embodiment can significantly improve the cycle life as compared with the battery of the third comparative example.

【0027】[0027]

【発明の効果】以上詳述した如く、本発明によれば充放
電サイクル特性および大電流充放電特性の優れた非水溶
媒二次電池を提供できる。
As described above, according to the present invention, a non-aqueous solvent secondary battery having excellent charge / discharge cycle characteristics and high current charge / discharge characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】参考例1,実施例1,2および比較例1〜3に
おける円筒形非水溶媒二次電池を示す部分断面図。
FIG. 1 is a partial sectional view showing a cylindrical nonaqueous solvent secondary battery in Reference Example 1, Examples 1 and 2, and Comparative Examples 1 to 3.

【図2】参考例1および比較例1の電池の充電特性を示
す線図。
FIG. 2 is a diagram showing charging characteristics of the batteries of Reference Example 1 and Comparative Example 1.

【図3】参考例1および比較例1の電池における放電電
流値と放電容量の関係を示す線図。
FIG. 3 is a diagram showing a relationship between a discharge current value and a discharge capacity in the batteries of Reference Example 1 and Comparative Example 1.

【図4】参考例1および比較例1の電池における充放電
サイクル数に対する放電容量を示す線図。
FIG. 4 is a diagram showing the discharge capacity with respect to the number of charge / discharge cycles in the batteries of Reference Example 1 and Comparative Example 1.

【図5】実施例1および比較例2の電池の充電特性を示
す線図。
FIG. 5 is a diagram showing charging characteristics of the batteries of Example 1 and Comparative Example 2.

【図6】実施例1および比較例2の電池における放電電
流値と放電容量の関係を示す線図。
FIG. 6 is a diagram showing a relationship between a discharge current value and a discharge capacity in the batteries of Example 1 and Comparative Example 2.

【図7】実施例1および比較例2の電池における充放電
サイクル数に対する放電容量を示す線図。
FIG. 7 is a graph showing the discharge capacity with respect to the number of charge / discharge cycles in the batteries of Example 1 and Comparative Example 2.

【図8】実施例2および比較例3の電池の充電特性を示
す線図。
FIG. 8 is a diagram showing charging characteristics of the batteries of Example 2 and Comparative Example 3.

【図9】実施例2および比較例3の電池における放電電
流値と放電容量の関係を示す線図。
FIG. 9 is a diagram showing a relationship between a discharge current value and a discharge capacity in the batteries of Example 2 and Comparative Example 3.

【図10】実施例2および比較例3の電池における充放
電サイクル数に対する放電容量を示す線図。
FIG. 10 is a graph showing the discharge capacity with respect to the number of charge / discharge cycles in the batteries of Example 2 and Comparative Example 3.

【符号の説明】[Explanation of symbols]

1…ステンレス容器、 3…電極群、 4…正極、 5…セパレ―タ、 6…負極、 8…封口板、 9…正極端子。 DESCRIPTION OF SYMBOLS 1 ... Stainless steel container, 3 ... Electrode group, 4 ... Positive electrode, 5 ... Separator, 6 ... Negative electrode, 8 ... Sealing plate, 9 ... Positive electrode terminal.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/04 H01M 4/50 - 4/58 H01M 10/40 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 4/02-4/04 H01M 4/50-4/58 H01M 10/40

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 リチウム、リチウム合金またはリチウム
を含む化合物からなる負極と、LiCoO2 およびLi
NiO2 から選ばれた少なくとも1種を正極活物質とし
て含む正極と、非水溶媒に電解質を溶解した電解液とを
備えた非水溶媒二次電池において、 前記正極活物質としてリンを添加したものを用いること
を特徴とする非水溶媒二次電池。
1. A negative electrode comprising lithium, a lithium alloy or a compound containing lithium, LiCoO 2 and Li
A non-aqueous solvent secondary battery including a positive electrode containing at least one selected from NiO 2 as a positive electrode active material and an electrolytic solution obtained by dissolving an electrolyte in a non-aqueous solvent, wherein phosphorus is added as the positive electrode active material Non-aqueous solvent secondary battery characterized by using.
【請求項2】 前記リチウムを含む化合物は、リチウム
イオンをドープさせた有機焼結体からなる炭素材である
ことを特徴とする請求項1記載の非水溶媒二次電池。
2. The non-aqueous solvent secondary battery according to claim 1, wherein the lithium-containing compound is a carbon material made of an organic sintered body doped with lithium ions.
【請求項3】 リンを添加したLiCoO2 からなる前
記正極活物質は、(a)CoO、Co2 3 、Co3
4 から選ばれるコバルト酸化物または炭酸コバルト(C
oCO3 )、硝酸コバルト[Co(NO3 2 ・4H2
O]から選ばれるコバルト化合物と(b)酸化リチウム
(Li2 O)、炭酸リチウム(Li2CO3 )、硝酸リ
チウム(LiNO3 )またはハロゲン化リチウムから選
ばれるリチウム塩と(c)リン(P)または五酸化リン
(P2 5 )、リン酸リチウム(Li3 PO4 )、リン
酸二水素リチウム(LiH2 PO4 )、リン酸アンモニ
ウム[(NH4 )3 PO4 ・3H2 O]から選ばれるリ
ン化合物との混合物を加熱して反応させることにより得
られることを特徴とする請求項1記載の非水溶媒二次電
池。
3. The positive electrode active material comprising LiCoO 2 to which phosphorus has been added comprises: (a) CoO, Co 2 O 3 , Co 3 O
Cobalt oxide or cobalt carbonate selected from 4 (C
oCO 3 ), cobalt nitrate [Co (NO 3 ) 2 .4H 2
O], (b) lithium oxide (Li 2 O), lithium carbonate (Li 2 CO 3 ), lithium nitrate (LiNO 3 ) or lithium halide selected from lithium halide and (c) phosphorus (P) ) Or phosphorus pentoxide (P 2 O 5 ), lithium phosphate (Li 3 PO 4 ), lithium dihydrogen phosphate (LiH 2 PO 4 ), ammonium phosphate [(NH 4) 3 PO 4 .3H 2 O] The non-aqueous solvent secondary battery according to claim 1, wherein the non-aqueous solvent secondary battery is obtained by heating and reacting a mixture with a selected phosphorus compound.
【請求項4】 リンを添加したLiNiO2 からなる前
記正極活物質は、(a)NiO、Ni2 3 、Ni3
4 から選ばれるニッケル酸化物または炭酸ニッケル(N
iCO3 )、硝酸ニッケル[Ni(NO3 2 ・6H2
O]から選ばれるニッケル化合物と(b)酸化リチウム
(Li2 O)、炭酸リチウム(Li2CO3 )、硝酸リ
チウム(LiNO3 )またはハロゲン化リチウムから選
ばれるリチウム塩と(c)リン(P)または五酸化リン
(P2 5 )、リン酸リチウム(Li3 PO4 )、リン
酸二水素リチウム(LiH2 PO4 )、リン酸アンモニ
ウム[(NH4 )3 PO4 ・3H2 O]から選ばれるリ
ン化合物との混合物を加熱して反応させることにより得
られることを特徴とする請求項1記載の非水溶媒二次電
池。
4. The positive electrode active material comprising LiNiO 2 to which phosphorus has been added, comprises: (a) NiO, Ni 2 O 3 , Ni 3 O
Nickel oxide or nickel carbonate selected from 4 (N
iCO 3 ), nickel nitrate [Ni (NO 3 ) 2 .6H 2
O] and a lithium salt selected from (b) lithium oxide (Li 2 O), lithium carbonate (Li 2 CO 3 ), lithium nitrate (LiNO 3 ) or lithium halide and (c) phosphorus (P) ) Or phosphorus pentoxide (P 2 O 5 ), lithium phosphate (Li 3 PO 4 ), lithium dihydrogen phosphate (LiH 2 PO 4 ), ammonium phosphate [(NH 4) 3 PO 4 .3H 2 O] The non-aqueous solvent secondary battery according to claim 1, wherein the non-aqueous solvent secondary battery is obtained by heating and reacting a mixture with a selected phosphorus compound.
JP21319691A 1991-07-31 1991-07-31 Non-aqueous solvent secondary battery Expired - Fee Related JP3212639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21319691A JP3212639B2 (en) 1991-07-31 1991-07-31 Non-aqueous solvent secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21319691A JP3212639B2 (en) 1991-07-31 1991-07-31 Non-aqueous solvent secondary battery

Publications (2)

Publication Number Publication Date
JPH0536411A JPH0536411A (en) 1993-02-12
JP3212639B2 true JP3212639B2 (en) 2001-09-25

Family

ID=16635129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21319691A Expired - Fee Related JP3212639B2 (en) 1991-07-31 1991-07-31 Non-aqueous solvent secondary battery

Country Status (1)

Country Link
JP (1) JP3212639B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020863A (en) * 2011-07-13 2013-01-31 Nichia Chem Ind Ltd Method for producing positive electrode active material for nonaqueous electrolyte secondary battery
US8586246B2 (en) 2008-09-01 2013-11-19 Sony Corporation Positive electrode active material, positive electrode using the same and non-aqueous electrolyte secondary battery

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2966261B2 (en) * 1993-11-02 1999-10-25 三菱電線工業株式会社 Positive electrode material for lithium battery and method for producing the same
JP4213263B2 (en) * 1998-09-09 2009-01-21 パナソニック株式会社 Nonaqueous electrolyte secondary battery discharge capacity measurement method
JP4754209B2 (en) * 2004-12-16 2011-08-24 日本化学工業株式会社 Method for producing lithium cobalt composite oxide powder
US9277813B2 (en) 2010-11-12 2016-03-08 Sac Acquisition Llc Modular furniture assembly and display kit with magnetic coupling assembly
JP5077131B2 (en) 2007-08-02 2012-11-21 ソニー株式会社 Positive electrode active material, positive electrode using the same, and nonaqueous electrolyte secondary battery
JP4710916B2 (en) 2008-02-13 2011-06-29 ソニー株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
KR101623963B1 (en) 2008-08-04 2016-05-24 소니 가부시끼가이샤 Positive electrode active material, positive electrode using the same and non-aqueous electrolyte secondary battery
JP5508322B2 (en) * 2011-03-10 2014-05-28 日本化学工業株式会社 Lithium cobalt based composite oxide powder, lithium secondary battery positive electrode active material, and lithium secondary battery
JP5807747B2 (en) 2011-11-25 2015-11-10 ソニー株式会社 Electrode, secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP7052799B2 (en) 2017-08-30 2022-04-12 株式会社村田製作所 Positive electrode active material, positive electrode, battery, battery pack, electronic device, electric vehicle, power storage device and power system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8586246B2 (en) 2008-09-01 2013-11-19 Sony Corporation Positive electrode active material, positive electrode using the same and non-aqueous electrolyte secondary battery
JP2013020863A (en) * 2011-07-13 2013-01-31 Nichia Chem Ind Ltd Method for producing positive electrode active material for nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JPH0536411A (en) 1993-02-12

Similar Documents

Publication Publication Date Title
US5620812A (en) Non-aqueous electrolyte secondary battery
EP0827231B1 (en) Non-aqueous electrolyte lithium secondary battery
JP3195175B2 (en) Non-aqueous solvent secondary battery
EP1494302A1 (en) Nonaqueous electrolyte secondary battery
JPH08213015A (en) Positive active material for lithium secondary battery and lithium secondary battery
JP3212639B2 (en) Non-aqueous solvent secondary battery
JPH1027609A (en) Secondary battery with nonaqueous electrolyte
JP3050885B2 (en) Non-aqueous solvent secondary battery and method of manufacturing the same
KR20000071371A (en) Non-Aqueous Electrolyte Battery
JP3546566B2 (en) Non-aqueous electrolyte secondary battery
JP3802287B2 (en) Lithium secondary battery
USH1076H (en) Lithium ion rechargeable intercallation cell
JPH10302766A (en) Lithium ion secondary battery
JPH0935714A (en) Lithium secondary battery
US7172836B2 (en) Nonaqueous electrolyte battery and method for manufacturing it, and positive active material, and method for producing it
JPH08190932A (en) Secondary battery having nonaqueous solvent electrolyte
JP3050016B2 (en) Non-aqueous electrolyte secondary battery
JP2975727B2 (en) Non-aqueous electrolyte battery
JP3130531B2 (en) Non-aqueous solvent secondary battery
JP2001196073A (en) Nonaqueous electrolyte battery
JP3663694B2 (en) Non-aqueous electrolyte secondary battery
JP2559055B2 (en) Lithium battery
JP3013209B2 (en) Non-aqueous electrolyte secondary battery and method for producing negative electrode active material thereof
JP3081981B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH09306491A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees