JP4213263B2 - Nonaqueous electrolyte secondary battery discharge capacity measurement method - Google Patents

Nonaqueous electrolyte secondary battery discharge capacity measurement method Download PDF

Info

Publication number
JP4213263B2
JP4213263B2 JP25529798A JP25529798A JP4213263B2 JP 4213263 B2 JP4213263 B2 JP 4213263B2 JP 25529798 A JP25529798 A JP 25529798A JP 25529798 A JP25529798 A JP 25529798A JP 4213263 B2 JP4213263 B2 JP 4213263B2
Authority
JP
Japan
Prior art keywords
discharge
secondary battery
discharge capacity
current value
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25529798A
Other languages
Japanese (ja)
Other versions
JP2000090987A (en
Inventor
良弘 樫原
雅規 北川
雅哉 菅藤
清美 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP25529798A priority Critical patent/JP4213263B2/en
Publication of JP2000090987A publication Critical patent/JP2000090987A/en
Application granted granted Critical
Publication of JP4213263B2 publication Critical patent/JP4213263B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、二次電池を満充電にした状態から放電終止電圧に至るまで放電させたときに取り出された電気容量を示す放電容量の測定方法に関するもので、特に環境温度の影響を受けやすいリチウムイオン二次電池等の非水電解液二次電池の放電容量測定方法に関するものである。
【0002】
【従来の技術】
二次電池の容量測定方法として、二次電池を満充電状態にした後、二次電池の電圧が放電終止電圧となるまで一定の放電電流値により放電させ、この放電電流値(mA)と放電持続時間(h)とを乗算して二次電池の放電容量(mAh)を測定する方法が知られている。この従来の放電容量測定方法を公称電圧4.2Vのリチウムイオン二次電池に適用した具体例で示すと、次のようである。
【0003】
満充電状態にしたリチウムイオン二次電池から200mAの定電流で放電させ、電池電圧が3.0Vの放電終止電圧となるまでの放電持続時間を測定する。ここから測定された放電持続時間を用いて「放電電流値×放電持続時間」から放電容量を算出する。測定された放電持続時間が300分となったとき、ここから算出された放電容量は1000mAhとなる。
【0004】
【発明が解決しようとする課題】
しかしながら、リチウムイオン二次電池のような非水電解液二次電池では、電池温度により放電容量に影響を受けやすく、放電電流値が大きいほどその影響が顕著になる。従って、放電容量測定時の放電電流値は比較的小さな値に設定する必要があり、そのために電池電圧が放電終止電圧となるまでの放電持続時間が長くなり、測定時間を要する問題点があった。
【0005】
この測定時間を短縮するために、従来測定方法において放電電流値を大きくすると、放電持続時間が短くなって測定時間を短縮することができるが、測定に大きな誤差が生じる。因みに、上記測定における放電電流値を200mAから1000mAに増加させると放電持続時間は58.32分と一気に短縮されるが、これから算出される放電容量は972mAhとなり、−28mAhの測定誤差が発生する。放電電流値を更に大きくして2000mAにすると、放電持続時間は28.47分と更に短縮されるが、ここから算出される放電容量は949mAhで、−51mAhもの測定誤差が発生して実用化できるものとならない。
【0006】
本発明が目的とするところは、電池温度の影響を抑制し且つ測定時間を短くして放電容量を測定できるようにした非水電解液二次電池の放電容量測定方法を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するための本発明に係る非水電解液二次電池の放電容量測定方法は、満充電状態にした二次電池から所定の放電電流値で放電終止電圧に達するまで放電させ、前記放電電流値と前記放電終止電圧に達するまでの放電持続時間とを乗算して二次電池の放電容量を測定する非水電解液二次電池の放電容量測定方法において、前記満充電状態から各回の放電電流値が先の放電回ほど大きくなるようにして複数回に分割して放電させ、各回の放電持続時間と放電電流値とから算出される各放電容量を合計することによって放電容量を測定することを特徴とする。
【0008】
この放電容量測定方法では、放電を複数回に分割し、先の放電回ほど放電電流値を大きく設定する。この大きな放電電流値での放電により測定時間が削減され、後の放電を比較的小さい放電電流値で放電終了させることにより、測定誤差の発生が抑制されるので、環境温度による誤差を少なくして効率的な放電容量測定を行うことができる。
【0009】
上記測定方法は、初回の放電により基準とする放電容量の1/2を放電させ、次回の放電により残存容量を放電させるようにすると、放電の分割を2回として、測定時間の短縮を図ることができる。
【0010】
【発明の実施の形態】
以下、添付図面を参照して本発明の一実施形態について説明し、本発明の理解に供する。尚、以下に示す実施形態は本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。
【0011】
本実施形態は、非水電解液二次電池の一例であるリチウムイオン二次電池について、従来から採用されている放電容量測定方法と、本発明による放電容量測定方法とを比較し、従来の放電容量測定方法を基準として、測定誤差と、測定時間と、電池温度による影響とについて比較検証したものである。
【0012】
まず、放電容量測定を行う二次電池を基準となる満充電状態にするための充電条件について説明する。
【0013】
リチウムイオン二次電池の公称電圧は4.2Vなので、1000mAの定電流で充電し、電池電圧が4.2Vになったとき、定電圧制御により定電圧充電を行って充電電流が所定の値になったときに充電を停止し、これを満充電状態とする。このように均等に満充電状態としたリチウムイオン二次電池について、放電容量測定の条件を変えて放電容量を測定し、基準となる放電容量測定方法により測定された基準放電容量と比較する。
【0014】
〔基準放電容量〕
環境温度を20℃に設定し、前記満充電状態の二次電池から200mAの定電流で放電させ、電池電圧が3.0Vの放電終止電圧となるまでの放電持続時間を測定し、「放電電流値×放電持続時間」から放電容量を算出する。この測定方法により測定された放電持続時間は300分となり、これから算出された放電容量は1000mAhであり、これを基準放電容量とする。
【0015】
〔実施例による放電容量測定方法〕
前記のようにして満充電状態とした二次電池から、異なる放電電流値により複数回に分けて放電させ、各回の「放電電流値×放電持続時間」から算出された各回の放電容量を加算して放電容量を求める。また、測定時の環境温度を変えて温度による放電容量測定の精度を検証する。
【0016】
本発明の目的である測定時間の短縮を図るためには、放電電流値を増加させることが必要となるが、徒に放電電流値を増加させると測定誤差が大きくなることは従来技術において示した通りである。そこで、大きな放電電流値の状態と小さい放電電流値の状態とを組み合わせて放電させることにより、測定誤差を少なくして測定時間の短縮を図ることが可能となり、また、環境温度の影響も少なくなる。
【0017】
図1は、以下に示す実施例1〜3それぞれに対応する放電容量測定の手順を示すもので、これを参照して測定方法を説明する。
【0018】
(実施例1)
まず、測定する電池の温度を左右する環境温度を設定する(S1)。実施例1においては環境温度は20℃に設定する。次に、放電電流値を変えて2回に分割して放電させる初回の放電電流値A1を設定し(S2)、初回の放電量を設定する(S3)。ここでは満充電状態から初回の放電電流値A1=1500mAの定電流で前記基準放電容量の50%まで放電させる。この初回の放電電流値で基準放電容量の50%まで放電するまでの放電持続時間T1を測定する(S4)。
【0019】
次いで、2回目の放電電流値A2で放電終止電圧に達するまで放電させ(S5)、この間の放電持続時間T2を測定する(S6)。ここでは、2回目の放電電流値A2=200mAの定電流で3.0Vの放電終止電圧になるまで放電させる。
【0020】
上記手順により測定された初回の放電持続時間T1と放電電流値A1とを乗算して初回放電による放電容量C1を算出する(S7)。また、2回目の放電持続時間T2と放電電流値A2とを乗算して2回目放電による放電容量C2を算出する(S8)。各回の放電容量C1、C2を加算することにより放電容量の測定は終了する(S9)。
【0021】
実際に測定された初回及び2回目の放電持続時間の合計は、170.40分となった。各回の「放電電流値×放電持続時間」から算出される各回毎の放電容量を加算して得られた放電容量は、1002mAhとなった。
【0022】
(実施例2)
環境温度を30℃に設定して、実施例1と同一条件にて放電させ、各回の放電持続時間を計測する。このとき測定された初回及び2回目の放電持続時間の合計は、170.85分となった。各回の「放電電流値×放電持続時間」から算出される各回毎の放電容量を加算して得られた放電容量は、1005mAhとなった。
【0023】
(実施例3)
環境温度を40℃に設定して、実施例1と同一条件にて放電させ、各回の放電持続時間を計測する。このとき測定された初回及び2回目の放電持続時間の合計は、171.36分となった。各回の「放電電流値×放電持続時間」から算出される各回毎の放電容量を加算して得られた放電容量は、1008mAhとなった。
【0024】
上記各実施例1、2、3による放電容量測定結果と、基準とする放電容量測定方法から得られた測定結果とを比較すると、表1に示すようになる。
【0025】
【表1】

Figure 0004213263
【0026】
表1からわかるように、環境温度20℃の同一条件では、実施例方法は放電持続時間が基準測定方法に比して大幅に短縮され、測定誤差は+2mAhとなっている。これは僅かの測定誤差で測定時間が短縮されたことを示しており、実用上で問題ない誤差範囲で効率的な放電容量測定ができることになる。
【0027】
また、実施例方法では環境温度が変わった場合にも測定誤差は許容範囲内となり、実施例2、3のように温度差が10℃、20℃になるまでに大きく変化した状態でも実用上で問題ない放電容量測定ができることになる。
【0028】
本実施例による放電容量測定方法は、放電を複数回に分けて実行することを特徴としているが、分割回数を多くすると測定時間が増加するので、効率的な測定を実施するためには分割数は「2」とするのが好適である。
【0029】
また、放電を複数回(n)に分けて実行するときの各回の放電電流値(A)の設定は、先の回の放電電流値が後の回の放電電流値より大きくなるように、下式(1)の関係が成立するように設定する。
【0030】
An−k>An……(1)
(但し、n、kは、n≧2、n>k≧1の関係を満たす整数である)
因みに、上記実施例と逆に、先の回の放電電流値を後の回の放電電流値より小さく設定すると、測定時間の短縮を図ることはできるが、測定誤差が大きくなる。これを具体例で示す。
【0031】
環境温度を20℃に設定して、満充電状態から初回の放電電流値A1=200mAの定電流で前記基準放電容量の50%まで放電させた後、2回目の放電電流値A2=1500mAの定電流で3.0Vの放電終止電圧になるまで放電させ、各回の放電持続時間を計測する。このとき測定された初回及び2回目の放電持続時間の合計は、163.20分となった。各回の「放電電流値×放電持続時間」から算出される各回毎の放電容量を加算して得られた放電容量は、960mAhとなった。このように測定時間は実施例1の場合より少なくなるが、測定誤差は−40mAhと大きくなってしまう。
【0032】
また、各回毎に放電させる放電量の設定は、基準放電容量をC(mAh)として、下式(2)の関係が成立するように設定する。
【0033】
C/n>Cn−k>0……(2)
(但し、kは、n>k>0の関係を満たす整数である)
【0034】
【発明の効果】
以上の説明の通り本発明によれば、二次電池の放電容量の測定時間を短縮することができ、測定時の環境温度による影響による測定誤差の発生を抑制した非水電解液二次電池の放電容量測定方法を提供することができる。
【図面の簡単な説明】
【図1】実施形態に係る放電容量測定方法の手順を示すフローチャート。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method for measuring a discharge capacity that indicates an electric capacity taken out when a secondary battery is discharged from a fully charged state to a discharge end voltage, and is particularly liable to be affected by environmental temperature. The present invention relates to a method for measuring the discharge capacity of a non-aqueous electrolyte secondary battery such as an ion secondary battery.
[0002]
[Prior art]
As a method for measuring the capacity of the secondary battery, after the secondary battery is fully charged, it is discharged at a constant discharge current value until the secondary battery voltage reaches the end-of-discharge voltage, and this discharge current value (mA) and discharge A method of measuring the discharge capacity (mAh) of a secondary battery by multiplying the duration (h) is known. A specific example in which this conventional discharge capacity measuring method is applied to a lithium ion secondary battery having a nominal voltage of 4.2 V is as follows.
[0003]
The lithium ion secondary battery in a fully charged state is discharged at a constant current of 200 mA, and the discharge duration until the battery voltage reaches a discharge end voltage of 3.0 V is measured. The discharge capacity is calculated from “discharge current value × discharge duration” using the discharge duration measured from here. When the measured discharge duration is 300 minutes, the discharge capacity calculated from this is 1000 mAh.
[0004]
[Problems to be solved by the invention]
However, in a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, the discharge capacity is easily affected by the battery temperature, and the influence becomes more significant as the discharge current value is larger. Therefore, it is necessary to set the discharge current value at the time of measuring the discharge capacity to a relatively small value. For this reason, the discharge duration time until the battery voltage reaches the end-of-discharge voltage becomes long, and there is a problem that the measurement time is required. .
[0005]
In order to shorten the measurement time, if the discharge current value is increased in the conventional measurement method, the discharge duration is shortened and the measurement time can be shortened, but a large error occurs in the measurement. Incidentally, when the discharge current value in the above measurement is increased from 200 mA to 1000 mA, the discharge duration is shortened to 58.32 minutes at a stretch, but the discharge capacity calculated from this becomes 972 mAh, and a measurement error of −28 mAh occurs. If the discharge current value is further increased to 2000 mA, the discharge duration is further shortened to 28.47 minutes. However, the discharge capacity calculated from this is 949 mAh, and a measurement error of −51 mAh occurs, which can be put into practical use. It doesn't become a thing.
[0006]
An object of the present invention is to provide a method for measuring the discharge capacity of a non-aqueous electrolyte secondary battery in which the influence of the battery temperature is suppressed and the measurement time is shortened so that the discharge capacity can be measured.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a non-aqueous electrolyte secondary battery discharge capacity measuring method according to the present invention comprises discharging a fully charged secondary battery at a predetermined discharge current value until reaching a final discharge voltage, In the method for measuring the discharge capacity of a non-aqueous electrolyte secondary battery in which the discharge capacity of the secondary battery is measured by multiplying the discharge current value and the discharge duration until the discharge end voltage is reached, each time from the fully charged state The discharge capacity is measured by summing up the discharge capacities calculated from the discharge duration and the discharge current value of each discharge in such a manner that the discharge current value becomes larger as the previous discharge times and is divided into multiple times. It is characterized by that.
[0008]
In this discharge capacity measuring method, the discharge is divided into a plurality of times, and the discharge current value is set to be larger as the previous discharge times. The measurement time is reduced by the discharge at this large discharge current value, and the generation of measurement errors is suppressed by terminating the subsequent discharge at a relatively small discharge current value. Efficient discharge capacity measurement can be performed.
[0009]
In the above measurement method, when half of the reference discharge capacity is discharged by the first discharge and the remaining capacity is discharged by the next discharge, the discharge is divided into two times to shorten the measurement time. Can do.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings for understanding of the present invention. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.
[0011]
In this embodiment, a lithium ion secondary battery which is an example of a non-aqueous electrolyte secondary battery is compared with a discharge capacity measurement method conventionally employed and a discharge capacity measurement method according to the present invention. The measurement error, the measurement time, and the influence of the battery temperature are compared and verified based on the capacity measurement method.
[0012]
First, a description will be given of charging conditions for setting a secondary battery that performs discharge capacity measurement as a reference full charge state.
[0013]
Since the nominal voltage of the lithium ion secondary battery is 4.2V, it is charged with a constant current of 1000mA, and when the battery voltage reaches 4.2V, constant voltage charging is performed by constant voltage control, and the charging current becomes a predetermined value. When this happens, charging is stopped and this is fully charged. With respect to the lithium ion secondary battery that has been fully charged in this way, the discharge capacity is measured under different discharge capacity measurement conditions, and compared with the reference discharge capacity measured by the reference discharge capacity measurement method.
[0014]
[Standard discharge capacity]
The environmental temperature was set to 20 ° C., the secondary battery in the fully charged state was discharged at a constant current of 200 mA, and the discharge duration until the battery voltage reached the discharge end voltage of 3.0 V was measured. The discharge capacity is calculated from “value × discharge duration”. The discharge duration measured by this measurement method is 300 minutes, and the discharge capacity calculated therefrom is 1000 mAh, which is used as the reference discharge capacity.
[0015]
[Method of measuring discharge capacity according to examples]
From the fully charged secondary battery as described above, discharge in multiple times with different discharge current values, and add the discharge capacity of each time calculated from `` discharge current value × discharge duration '' of each time. To obtain the discharge capacity. In addition, the accuracy of discharge capacity measurement by temperature is verified by changing the environmental temperature at the time of measurement.
[0016]
In order to shorten the measurement time which is the object of the present invention, it is necessary to increase the discharge current value, but it has been shown in the prior art that the measurement error increases when the discharge current value is increased. Street. Therefore, it is possible to reduce the measurement error and shorten the measurement time by combining the state of the large discharge current value and the state of the small discharge current value, and to reduce the influence of the environmental temperature. .
[0017]
FIG. 1 shows a procedure for measuring a discharge capacity corresponding to each of Examples 1 to 3 described below, and the measurement method will be described with reference to this.
[0018]
Example 1
First, an environmental temperature that affects the temperature of the battery to be measured is set (S1). In Example 1, the environmental temperature is set to 20 ° C. Next, the first discharge current value A1 to be divided and discharged twice by changing the discharge current value is set (S2), and the first discharge amount is set (S3). Here, the battery is discharged to 50% of the reference discharge capacity with a constant current of the first discharge current value A1 = 1500 mA from the fully charged state. The discharge duration T1 until the first discharge current value is discharged to 50% of the reference discharge capacity is measured (S4).
[0019]
Next, discharge is performed until the discharge end voltage is reached at the second discharge current value A2 (S5), and the discharge duration T2 during this period is measured (S6). Here, the discharge is performed at a constant current of the second discharge current value A2 = 200 mA until the discharge end voltage is 3.0V.
[0020]
A discharge capacity C1 by the first discharge is calculated by multiplying the first discharge duration T1 measured by the above procedure and the discharge current value A1 (S7). Moreover, the discharge capacity C2 by the second discharge is calculated by multiplying the second discharge duration T2 and the discharge current value A2 (S8). The discharge capacity measurement is completed by adding the discharge capacities C1 and C2 of each time (S9).
[0021]
The total of the first and second discharge durations actually measured was 170.40 minutes. The discharge capacity obtained by adding the discharge capacity for each time calculated from “discharge current value × discharge duration” for each time was 1002 mAh.
[0022]
(Example 2)
The environmental temperature is set to 30 ° C., discharge is performed under the same conditions as in Example 1, and the discharge duration of each time is measured. The total of the first and second discharge durations measured at this time was 170.85 minutes. The discharge capacity obtained by adding the discharge capacity for each time calculated from “discharge current value × discharge duration” for each time was 1005 mAh.
[0023]
(Example 3)
The environmental temperature is set to 40 ° C., discharging is performed under the same conditions as in Example 1, and each discharge duration is measured. The total of the first and second discharge durations measured at this time was 171.36 minutes. The discharge capacity obtained by adding the discharge capacity for each time calculated from “discharge current value × discharge duration” for each time was 1008 mAh.
[0024]
Table 1 compares the discharge capacity measurement results obtained in Examples 1, 2, and 3 with the measurement results obtained from the reference discharge capacity measurement method.
[0025]
[Table 1]
Figure 0004213263
[0026]
As can be seen from Table 1, under the same conditions of the environmental temperature of 20 ° C., the discharge duration time of the example method is significantly shorter than that of the reference measurement method, and the measurement error is +2 mAh. This indicates that the measurement time has been shortened by a slight measurement error, and an efficient discharge capacity measurement can be performed within an error range that is not problematic in practice.
[0027]
Further, in the embodiment method, the measurement error is within the allowable range even when the environmental temperature is changed, and even in a state where the temperature difference is greatly changed to 10 ° C. or 20 ° C. as in Embodiments 2 and 3, it is practical. It will be possible to measure the discharge capacity without any problems.
[0028]
The discharge capacity measurement method according to the present embodiment is characterized in that the discharge is performed in a plurality of times. However, if the number of divisions is increased, the measurement time increases. Therefore, the number of divisions is required for efficient measurement. Is preferably "2".
[0029]
In addition, the discharge current value (A) is set for each time when the discharge is divided into a plurality of times (n) so that the discharge current value of the previous time is larger than the discharge current value of the subsequent time. It sets so that the relationship of Formula (1) may be materialized.
[0030]
An-k> An (1)
(However, n and k are integers satisfying the relationship of n ≧ 2, n> k ≧ 1)
Incidentally, contrary to the above embodiment, if the previous discharge current value is set smaller than the subsequent discharge current value, the measurement time can be shortened, but the measurement error increases. This is shown by a specific example.
[0031]
After setting the ambient temperature to 20 ° C. and discharging from the fully charged state to the 50% of the reference discharge capacity at the first discharge current value A1 = 200 mA, the second discharge current value A2 = 1500 mA. Discharge until the discharge end voltage of 3.0 V is reached with current, and measure the duration of each discharge. The total of the first and second discharge durations measured at this time was 163.20 minutes. The discharge capacity obtained by adding the discharge capacity for each time calculated from “discharge current value × discharge duration” for each time was 960 mAh. As described above, the measurement time is shorter than that in the first embodiment, but the measurement error is as large as −40 mAh.
[0032]
Further, the discharge amount to be discharged each time is set so that the relationship of the following expression (2) is established with the reference discharge capacity being C (mAh).
[0033]
C / n>Cn-k> 0 (2)
(Where k is an integer that satisfies the relationship n>k> 0)
[0034]
【The invention's effect】
As described above, according to the present invention, the measurement time of the discharge capacity of the secondary battery can be shortened, and the non-aqueous electrolyte secondary battery in which the generation of measurement errors due to the influence of the environmental temperature at the time of measurement is suppressed can be achieved. A discharge capacity measuring method can be provided.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a procedure of a discharge capacity measuring method according to an embodiment.

Claims (2)

満充電状態にした二次電池から所定の放電電流値で放電終止電圧に達するまで放電させ、前記放電電流値と前記放電終止電圧に達するまでの放電持続時間とを乗算して二次電池の放電容量を測定する非水電解液二次電池の放電容量測定方法において、
前記満充電状態から各回の放電電流値が先の放電回ほど大きくなるようにして複数回に分割して放電させ、各回の放電持続時間と放電電流値とから算出される各放電容量を合計することによって放電容量を測定することを特徴とする非水電解液二次電池の放電容量測定方法。
Discharge the secondary battery from a fully charged secondary battery at a predetermined discharge current value until the discharge end voltage is reached, and multiply the discharge current value by the discharge duration until the discharge end voltage is reached. In the method for measuring the discharge capacity of a non-aqueous electrolyte secondary battery for measuring capacity,
From the fully charged state, the discharge current value of each time becomes larger as the previous discharge times, and the discharge is divided into a plurality of times, and the discharge capacities calculated from the discharge duration and the discharge current value of each time are totaled. A discharge capacity measuring method for a non-aqueous electrolyte secondary battery, characterized in that the discharge capacity is measured by:
初回の放電により基準とする放電容量の1/2を放電させ、次回の放電により残存容量を放電させる請求項1記載の非水電解液二次電池の放電容量測定方法。The method for measuring the discharge capacity of a non-aqueous electrolyte secondary battery according to claim 1, wherein half of the reference discharge capacity is discharged by the first discharge and the remaining capacity is discharged by the next discharge.
JP25529798A 1998-09-09 1998-09-09 Nonaqueous electrolyte secondary battery discharge capacity measurement method Expired - Fee Related JP4213263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25529798A JP4213263B2 (en) 1998-09-09 1998-09-09 Nonaqueous electrolyte secondary battery discharge capacity measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25529798A JP4213263B2 (en) 1998-09-09 1998-09-09 Nonaqueous electrolyte secondary battery discharge capacity measurement method

Publications (2)

Publication Number Publication Date
JP2000090987A JP2000090987A (en) 2000-03-31
JP4213263B2 true JP4213263B2 (en) 2009-01-21

Family

ID=17276824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25529798A Expired - Fee Related JP4213263B2 (en) 1998-09-09 1998-09-09 Nonaqueous electrolyte secondary battery discharge capacity measurement method

Country Status (1)

Country Link
JP (1) JP4213263B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62274570A (en) * 1986-05-22 1987-11-28 Matsushita Electric Ind Co Ltd Manufacture of rechargeable cell
JP3212639B2 (en) * 1991-07-31 2001-09-25 株式会社東芝 Non-aqueous solvent secondary battery
JP3435731B2 (en) * 1993-05-26 2003-08-11 ソニー株式会社 Non-aqueous electrolyte secondary battery
JPH07105935A (en) * 1993-10-07 1995-04-21 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP3692547B2 (en) * 1994-04-22 2005-09-07 ソニー株式会社 Charging method
JPH0884437A (en) * 1994-09-12 1996-03-26 Ryobi Ltd Battery life judging device
JP3223111B2 (en) * 1996-05-15 2001-10-29 三洋電機株式会社 Non-aqueous electrolyte battery
JP3653873B2 (en) * 1996-06-24 2005-06-02 日産自動車株式会社 How to charge the battery

Also Published As

Publication number Publication date
JP2000090987A (en) 2000-03-31

Similar Documents

Publication Publication Date Title
JP5994521B2 (en) State estimation device, open-circuit voltage characteristics generation method
EP3872957B1 (en) Charging method, electronic apparatus, and storage medium
JP4759795B2 (en) Rechargeable battery remaining capacity detection method
JP5456395B2 (en) How to measure the state of charge of a battery during the charge or discharge phase at constant current
CN109964137B (en) Apparatus and method for estimating capacity retention rate of secondary battery
US8823326B2 (en) Method for determining the state of charge of a battery in charging or discharging phase
JP2017511104A (en) Apparatus and method for controlling a plurality of cells of a battery
CN112689934B (en) Charging method, electronic device, and storage medium
JP2014202551A (en) State estimation device and state estimation method
US20210119461A1 (en) Electronic device and method for charging battery
JP7452924B2 (en) Battery SOH estimation device and method
CN112557926A (en) Method and device for calculating residual charging time
CN113424391A (en) Charging method, electronic device, and storage medium
CN115843397A (en) Method, system and device for determining full charge capacity and health condition of battery pack
JP4213263B2 (en) Nonaqueous electrolyte secondary battery discharge capacity measurement method
CN115902653A (en) Method and device for determining battery aging degree, storage medium and electronic equipment
JP7250914B2 (en) Charging method, electronic device and storage medium
JPH1189104A (en) Charging method for lead battery
JP2020520624A (en) Battery management system and method for optimizing internal resistance of battery
CN114879053A (en) Method for predicting service life of energy storage lithium iron phosphate battery
CN113608128A (en) State of charge estimation method, computer device and computer storage medium
CN113253137A (en) Device and method for determining state of charge of battery pack
JP4244194B2 (en) Life prediction method for nickel metal hydride storage battery
CN113805072B (en) Capacity determining method and device, capacity dividing method and power battery system
CN115629317B (en) Method and system for estimating power of nickel-hydrogen battery in mixed storage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081030

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees