JPH08190932A - Secondary battery having nonaqueous solvent electrolyte - Google Patents

Secondary battery having nonaqueous solvent electrolyte

Info

Publication number
JPH08190932A
JPH08190932A JP7015578A JP1557895A JPH08190932A JP H08190932 A JPH08190932 A JP H08190932A JP 7015578 A JP7015578 A JP 7015578A JP 1557895 A JP1557895 A JP 1557895A JP H08190932 A JPH08190932 A JP H08190932A
Authority
JP
Japan
Prior art keywords
lithium
electrolyte
negative electrode
secondary battery
diethyl malonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7015578A
Other languages
Japanese (ja)
Inventor
Katsuya Hayashi
克也 林
Shinichi Tobishima
真一 鳶島
Junichi Yamaki
準一 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP7015578A priority Critical patent/JPH08190932A/en
Publication of JPH08190932A publication Critical patent/JPH08190932A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE: To provide a lithium secondary battery with excellent high voltage resistance and high negative electrode charging characteristics by using diethyl malonate as an electrolyte. CONSTITUTION: A lithium secondary battery comprises a stainless steel negative case 1, a negative electrode 2, an electrolyte 3 using a nonaqueous solvent, a separator 4, a positive electrode 5, a stainless steel positive case 6, and a gasket 7. As the positive electrode 5, a composite oxide of a composite oxide of Li and Co, or Li and Ni with Li and a transition metal can be used. As the negative electrode, a material capable of charging/discharging a lithium ion, such as lithium metal, a lithium alloy, and others is used. As an electrolyte of the electrolyte solution, LiClO4 , LiPF6 , LiAsF6 , LiBrF4 , or LiAlCl4 alone or a mixture of these compounds is used. By using diethyl malonate as the solvent of a nonaqueous solvent electrolyte, the secondary battery with long life and high energy density is obtained. For example, the electrolyte prepared by dissolving one molar LiClO4 in diethyl malonate is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に高電圧、高エネル
ギー密度で、充放電容量が大きい非水溶媒電解液を有す
る二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery having a non-aqueous solvent electrolyte having a high voltage, a high energy density and a large charge / discharge capacity.

【0002】[0002]

【従来の技術】携帯用電子機器の小型軽量化が進み、そ
の電源として高エネルギー密度電池の開発が要求されて
いる。このような要求に答える電池として、リチウムイ
オンを充放電可能な負極とリチウムイオンと可逆的な電
気化学反応可能な正極を有する高性能二次電池の開発が
期待されている。リチウムイオンを充放電可能な負極と
しては、例えば、(i)リチウム金属負極、(ii)リチ
ウムイオンを充電及び放電可能なリチウム合金負極、
(iii)リチウムイオンを充放電可能な負極活物質保持体
を主体とする負極が挙げられる。上記(ii)のリチウム
イオンが充放電可能なリチウム合金負極としては、例え
ば、LiとAlを主体とするリチウム合金、LiとC
d、In、Pb、Bi等のリチウム合金、LiとMgの
リチウム合金等が知られている。また、上記(iii)の、
リチウムイオンを充放電可能な負極活物質保持体を主体
とする負極としては、例えば、種々の炭素材料、Nb2
5 、WO2 、Fe2 3 等の金属酸化物、ポリチオフ
ェン、ポリアセチレン等の高分子化合物等を用いること
が試みられている。また、上記のリチウムイオンと可逆
的な電気化学反応可能(充電及び放電可能)な正極とし
ては、例えば、Lix CoO2 (0≦x≦1)、Lix
NiO2 (0≦x≦1)、Lix Mn2 4 (0≦x≦
1)、結晶あるいは非結晶のV2 5 、ポリアニリン、
ポリピロール等を用いることが検討されている。本明細
書では、これらのリチウムイオンを充放電可能な電池の
ことをリチウム二次電池と称する。この種の電池とし
て、負極活物質保持体として炭素を、正極活物質として
LiCoO2 を使用した電池、負極活物質保持体として
炭素を、正極活物質としてV2 5 を使用した電池、負
極活物質保持体としてNb2 5 を、正極活物質として
2 5 を使用した電池が既に市販されている。この種
のリチウム二次電池には、充放電サイクル寿命が長いこ
とが基本的に要求され、充放電性能は選択した非水電解
液材料によって大きく影響される。使用する非水電解液
には負極活物質保持体あるいはリチウム金属に対する化
学的安定性(耐還元性が高い)が要求される。また、こ
の種の電池の電圧が4V付近の高電圧である場合には、
電解液には高い耐酸化性能(酸化電位が高いこと)を有
することも要求される。したがって、この種の電池に使
用される非水電解液には、負極の充放電性能が良好なこ
と、耐還元性及び耐酸化性が高いことが同時に要求され
る。上記の非水電解液に対する要求条件に答えるため
に、特に、酸化電位が高い電解液の検討が行われてい
る。例えば、ジメチルカーボネートやジエチルカーボネ
ート等のジアルキルカーボネートやメチルホルメート、
酢酸メチル、酢酸エチル等の直鎖構造を有するエステル
系の溶媒を使用した電解液が検討されている〔ジャーナ
ル オブ エレクトロケミカル ソサイエティ(Jiorna
l of Electrochemical Society) 、第136巻、第7
号、第1865〜1869頁(1985)〕。しかし、
これらの溶媒を使用した電解液は酸化電位は高いが、還
元電位が低く、リチウムを吸蔵した負極やリチウム金属
との反応性が大きい。また、負極の充放電特性が良好な
ものとして知られているもの(例えば、ジオキソランや
2−メチルテトラヒドロフラン)はエーテル類であり、
耐還元性は強いが酸化され易く、高電圧電池の充放電特
性や保存性は悪い。更に、プロピレンカーボネート等の
環状カーボネートは、酸化電位は、実用上使用可能な値
を有しているが、還元電位はエーテル類より高く、充分
な負極の充放電性能を得られない。このため、充放電性
能が良好で、耐酸化性が高く、かつ耐還元性も高いリチ
ウム二次電池用電解液が求められているが、この条件を
満たす電解液は提案されていない。
2. Description of the Related Art As portable electronic devices have become smaller and lighter, it has been required to develop a high energy density battery as a power source thereof. As a battery that meets such requirements, development of a high-performance secondary battery having a negative electrode capable of charging and discharging lithium ions and a positive electrode capable of reversible electrochemical reaction with lithium ions is expected. Examples of the negative electrode capable of charging and discharging lithium ions include (i) a lithium metal negative electrode, (ii) a lithium alloy negative electrode capable of charging and discharging lithium ions,
(Iii) A negative electrode mainly composed of a negative electrode active material holder capable of charging and discharging lithium ions can be mentioned. Examples of the lithium alloy negative electrode (ii) capable of charging and discharging lithium ions include, for example, a lithium alloy mainly composed of Li and Al, Li and C
Known lithium alloys such as d, In, Pb, and Bi, lithium alloys of Li and Mg, and the like are known. Also, in (iii) above,
Examples of the negative electrode mainly composed of a negative electrode active material holder capable of charging and discharging lithium ions include various carbon materials, Nb 2
Attempts have been made to use metal oxides such as O 5 , WO 2 and Fe 2 O 3 and polymer compounds such as polythiophene and polyacetylene. Examples of the positive electrode capable of reversible electrochemical reaction (chargeable and dischargeable) with the lithium ion include Li x CoO 2 (0 ≦ x ≦ 1), Li x
NiO 2 (0 ≦ x ≦ 1), Li x Mn 2 O 4 (0 ≦ x ≦
1), crystalline or amorphous V 2 O 5 , polyaniline,
The use of polypyrrole or the like is being studied. In the present specification, a battery capable of charging and discharging these lithium ions is referred to as a lithium secondary battery. As this type of battery, a battery using carbon as a negative electrode active material holder and LiCoO 2 as a positive electrode active material, a battery using carbon as a negative electrode active material holder and V 2 O 5 as a positive electrode active material, a negative electrode active material Batteries using Nb 2 O 5 as the substance holder and V 2 O 5 as the positive electrode active material are already on the market. This type of lithium secondary battery is basically required to have a long charge / discharge cycle life, and the charge / discharge performance is greatly affected by the selected non-aqueous electrolyte solution material. The non-aqueous electrolyte used is required to have chemical stability (high reduction resistance) to the negative electrode active material holder or lithium metal. Also, when the voltage of this type of battery is a high voltage around 4V,
The electrolytic solution is also required to have high oxidation resistance (high oxidation potential). Therefore, the non-aqueous electrolytic solution used in this type of battery is required to have good negative electrode charge / discharge performance and high reduction resistance and oxidation resistance. In order to meet the above-mentioned requirements for the non-aqueous electrolytic solution, an electrolytic solution having a particularly high oxidation potential has been studied. For example, a dialkyl carbonate such as dimethyl carbonate or diethyl carbonate or methyl formate,
Electrolytes using ester-based solvents with a linear structure such as methyl acetate and ethyl acetate have been investigated [Jiorna
l of Electrochemical Society), Vol. 136, No. 7
No., 1865-1869 (1985)]. But,
The electrolytic solution using these solvents has a high oxidation potential, but has a low reduction potential, and has a high reactivity with the negative electrode that has occluded lithium and lithium metal. Further, what is known to have good charge and discharge characteristics of the negative electrode (for example, dioxolane and 2-methyltetrahydrofuran) are ethers,
Although it has strong resistance to reduction, it is easily oxidized, and the charge / discharge characteristics and storage stability of high-voltage batteries are poor. Further, cyclic carbonates such as propylene carbonate have a practically usable value for the oxidation potential, but the reduction potential is higher than that of ethers, and sufficient charge / discharge performance of the negative electrode cannot be obtained. Therefore, there is a demand for an electrolytic solution for a lithium secondary battery, which has good charge / discharge performance, high oxidation resistance, and high reduction resistance, but no electrolytic solution satisfying these conditions has been proposed.

【0003】[0003]

【発明が解決しようとする課題】本発明は上述の問題点
にかんがみなされたものであり、耐高電圧に優れ、かつ
負極の充放電特性が優れたリチウム二次電池を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to provide a lithium secondary battery having excellent withstand high voltage and excellent charge / discharge characteristics of the negative electrode. To do.

【0004】[0004]

【課題を解決するための手段】本発明を概説すれば、本
発明は非水溶媒電解液を有する二次電池に関する発明で
あって、リチウムイオンを充放電可能な負極と、リチウ
ムイオンと可逆的な電気化学反応可能な正極、及び非水
溶媒にイオン解離性のリチウム塩を溶解した電解液を有
する二次電池において、上記非水溶媒に下記の構造式
(化1):
The present invention will be described in brief. The present invention relates to a secondary battery having a non-aqueous solvent electrolyte, which is a negative electrode capable of charging and discharging lithium ions, and reversible with lithium ions. In a secondary battery having a positive electrode capable of electrochemical reaction and an electrolytic solution in which an ion dissociative lithium salt is dissolved in a non-aqueous solvent, the following structural formula (Formula 1) is added to the non-aqueous solvent:

【0005】[0005]

【化1】CH3 −CH2 −O−CO−CH2 −CO−O
−CH2 −CH3
Embedded image CH 3 —CH 2 —O—CO—CH 2 —CO—O
-CH 2 -CH 3

【0006】で表されるマロン酸ジエチルを用いること
を特徴とする。
It is characterized by using diethyl malonate represented by

【0007】本発明によれば、例えば、正極としてリチ
ウムとコバルトの複合酸化物、リチウムとニッケルの複
合酸化物、リチウムとマンガンの複合酸化物、リチウム
と鉄の複合酸化物、若しくは、上記複合酸化物のそれぞ
れコバルト、ニッケル、マンガン、鉄を他の遷移金属で
一部置換したものを用いることができる。
According to the present invention, for example, as a positive electrode, a composite oxide of lithium and cobalt, a composite oxide of lithium and nickel, a composite oxide of lithium and manganese, a composite oxide of lithium and iron, or the above composite oxide. It is possible to use those obtained by partially substituting cobalt, nickel, manganese, and iron with other transition metals.

【0008】負極はリチウムイオンを充放電可能なもの
を用いることができ、リチウムイオンを充放電可能な負
極材料としては、(1)リチウム金属負極、(2)リチ
ウムイオンを充電及び放電可能なリチウム合金負極、例
えば、LiとAlを主体とするリチウム合金、LiとC
d、In、Pb、Bi等のリチウム合金、(3)リチウ
ムイオンを充放電可能な負極活物質保持体を主体とする
負極、例えば、種々の炭素材料、Nb2 5 、WO2
Fe2 3 等の金属酸化物、ポリチオフェン、ポリアセ
チレン等の高分子化合物等がある。
As the negative electrode, one capable of charging and discharging lithium ions can be used. As the negative electrode material capable of charging and discharging lithium ions, (1) lithium metal negative electrode and (2) lithium capable of charging and discharging lithium ions. Alloy negative electrode, for example, lithium alloy mainly composed of Li and Al, Li and C
Lithium alloys such as d, In, Pb and Bi, (3) Negative electrodes mainly containing a negative electrode active material holder capable of charging and discharging lithium ions, for example, various carbon materials, Nb 2 O 5 , WO 2 ,
Examples include metal oxides such as Fe 2 O 3 and polymer compounds such as polythiophene and polyacetylene.

【0009】電解液の電解質としてはLiClO4 、L
iPF6 、LiAsF6 、LiBF4 、LiAlC
4 、LiCF3 SO3 、LiSbF6 、LiSCN、
LiCl、LiC6 5 SO3 、LiN(CF3
2 2 、LiC(CF3 SO2 3、LiCF3 SO
3 等のリチウム塩を、単独又は2種以上混合して用いる
ことができる。非水溶媒電解液の溶媒として、マロン酸
ジエチルを電解液の溶媒に用いることによって長寿命で
あってエネルギー密度の高い非水溶媒電解液を有する二
次電池を提供することができる。
LiClO 4 , L is used as the electrolyte of the electrolytic solution.
iPF 6, LiAsF 6, LiBF 4 , LiAlC
l 4 , LiCF 3 SO 3 , LiSbF 6 , LiSCN,
LiCl, LiC 6 H 5 SO 3 , LiN (CF 3 S
O 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiCF 3 SO
Lithium salts such as 3 can be used alone or in admixture of two or more. By using diethyl malonate as the solvent of the non-aqueous solvent electrolytic solution, it is possible to provide a secondary battery having a non-aqueous solvent electrolytic solution having a long life and a high energy density.

【0010】本発明の非水溶媒電解液を有する二次電池
においては、例えば、次のような特徴を有する。すなわ
ち正極活物質としてリチウムとマンガンの複合酸化物を
用いた電池は安価でサイクル寿命が長いという特徴を有
している。リチウムとコバルトの複合酸化物を用いた電
池は、電圧が高く、エネルギー密度が大きいという特徴
を有している。リチウムとニッケルの複合酸化物を用い
た電池は、充放電容量が大きく、エネルギー密度が大き
いという特徴を有している。リチウムと鉄の複合酸化物
を用いた電池は安価で軽いという特徴を有している。ま
た、上記複合酸化物のそれぞれコバルト、ニッケル、マ
ンガン、鉄を他の遷移金属で一部置換したものは、置換
することにより特に結晶構造が安定し充放電寿命が長く
なるという特徴を有する。電解液には、耐還元性及び耐
酸化性が高いマロン酸ジエチルを溶媒に用いることによ
り、長い充放電寿命を達成することができる。
The secondary battery having the non-aqueous solvent electrolyte of the present invention has the following features, for example. That is, a battery using a composite oxide of lithium and manganese as a positive electrode active material is inexpensive and has a long cycle life. A battery using a composite oxide of lithium and cobalt has features of high voltage and high energy density. A battery using a composite oxide of lithium and nickel has characteristics of high charge / discharge capacity and high energy density. A battery using a composite oxide of lithium and iron is inexpensive and lightweight. In addition, each of the above composite oxides in which cobalt, nickel, manganese, and iron are partially replaced with another transition metal has a characteristic that the crystal structure is particularly stable and the charge / discharge life is extended by the replacement. By using diethyl malonate, which has high reduction resistance and oxidation resistance, as a solvent for the electrolytic solution, a long charge / discharge life can be achieved.

【0011】[0011]

【実施例】以下に実施例及び比較例を用いて、本発明の
効果を説明するが、本発明はこれら実施例に限定されな
い。
EXAMPLES The effects of the present invention will be described below with reference to examples and comparative examples, but the present invention is not limited to these examples.

【0012】実施例1 マロン酸ジエチルに過塩素酸リチウム(LiClO4
を1M溶解した電解液を用い、グラッシ−カーボンを作
用極として0.1mV/secで電圧を掃引した。この
時電流値が急速に上昇する電位を酸化電位とみなすこと
ができる。比較として1M LiClO4 −PC/DM
E(PC:プロピレンカーボネート、DME:ジメトキ
シエタン)電解液も同様に測定した。1M LiClO
4 −PC/DMEは、4.8V付近で溶媒の酸化による
電流の増加で分解しているのに対して、マロン酸ジエチ
ルにLiClO4 を1M溶解した電解液では、5.6V
まで、溶媒の分解による電流値の増加すなわち電解液の
分解は認められない。なお、これらは電解質をLiPF
6 、LiBF4 、LiAsF6 等にしてもほぼ同様であ
る。
EXAMPLE 1 Lithium perchlorate (LiClO 4 ) in diethyl malonate
Was dissolved in 1 M, and the voltage was swept at 0.1 mV / sec using the glassy carbon as a working electrode. At this time, the potential at which the current value rises rapidly can be regarded as the oxidation potential. For comparison, 1M LiClO 4 -PC / DM
The E (PC: propylene carbonate, DME: dimethoxyethane) electrolytic solution was also measured in the same manner. 1M LiClO
4- PC / DME is decomposed by an increase in current due to the oxidation of the solvent at around 4.8 V, whereas it is 5.6 V in the electrolytic solution in which 1 M of LiClO 4 is dissolved in diethyl malonate.
Up to this point, no increase in current value due to decomposition of the solvent, that is, decomposition of the electrolytic solution was observed. In addition, in these, the electrolyte is LiPF
6 , LiBF 4 , LiAsF 6, etc. are almost the same.

【0013】実施例2 マロン酸ジエチルにLiClO4 を1M溶解した電解液
を用い、ステンレス板状にリチウムを電気化学的に2m
Ah電析させた後、これを電気化学的に放電溶解させた
時の充放電効率の変化を図1中のaに示す。比較として
1M LiClO4 −PC/DME電解液も用いた時の
充放電効率の変化を図1中のbに示す。図1において横
軸はサイクル数を、縦軸は充放電効率(%)を示す。図
1の結果からbが充放電サイクルと共に充放電サイクル
が急激に低下しているのに対してaが安定した特性を示
していることがわかる。なお、これらは電解質をLiP
6 、LiBF4 、LiAsF6 等にしてもほぼ同様で
ある。
Example 2 Using an electrolytic solution in which 1M of LiClO 4 was dissolved in diethyl malonate, lithium was electrochemically treated in an amount of 2 m on a stainless plate.
A in FIG. 1 shows the change in charging / discharging efficiency when Ah was electrodeposited and then electrochemically dissolved by discharge. For comparison, a change in charge / discharge efficiency when a 1M LiClO 4 -PC / DME electrolyte solution was also used is shown in b in FIG. 1. In FIG. 1, the horizontal axis represents the number of cycles and the vertical axis represents the charge / discharge efficiency (%). From the results in FIG. 1, it can be seen that b shows a stable characteristic while the charge / discharge cycle sharply decreases with the charge / discharge cycle. In addition, these are electrolytes with LiP
The same applies to F 6 , LiBF 4 , LiAsF 6, etc.

【0014】実施例3 マロン酸ジエチルにLiClO4 を1M溶解した電解液
を用い、負極として、炭素の一種であるアセチレンブラ
ック(層間距離は3.47−3.48オングストロー
ム)を用いて、図2に示したコイン電池(直径23m
m、厚さ2mm)を作製した(この電池を“電池c”と
称する)。すなわち、図2は本発明の電池の断面図であ
り、符号1はステンレス製の負極ケース、2は負極、3
は非水溶媒を用いた電解液、4はセパレータ、5は正
極、6はステンレス製正極ケース、7はガスケットを意
味する。また、本発明の効果を示すための比較として、
1M LiClO4 −PC/DME電解液を用いた以外
は上記と同一のコイン電池を作製した(この電池を“電
池d”と称する)。これらの電池について、0.5mA
/cm2 の放電及び充電電流密度で、放電電圧の下限を
0V、充電電圧の上限を2.0Vとする電圧規制充放電
サイクルを繰返した。この試験は、放電によりアセチレ
ンブラックにリチウムを吸蔵し、充電によりアセチレン
ブラックに吸蔵されたリチウムを放出する試験であり、
負極保持体(この実施例では、アセチレンブラック)に
リチウムを吸蔵した負極の充放電性能に与える電解液材
料の影響を知るための試験である。この試験における、
アセチレンブラック重量当りの放電容量(mAh/g、
縦軸)とサイクル数(横軸)の関係を図3中のc及びd
に示す。比較例の“電池d”(図3中のd)は、約50
サイクルで放電容量が初期容量の50%に低下した。一
方、本発明の“電池c”(図3中のc)はサイクル毎の
放電容量が比較例の“電池d”より大きく、かつ50サ
イクル以上、安定した充放電サイクルが可能であった。
なお、これらは電解質をLiPF6 、LiBF4、Li
AsF6 等にしてもほぼ同様である。
Example 3 An electrolytic solution of 1M LiClO 4 dissolved in diethyl malonate was used, and acetylene black, which is a kind of carbon (interlayer distance: 3.47-3.48 Å), was used as a negative electrode. Coin battery shown in (diameter 23m
m, thickness 2 mm) was prepared (this battery is referred to as "battery c"). That is, FIG. 2 is a cross-sectional view of the battery of the present invention, in which reference numeral 1 is a negative electrode case made of stainless steel, 2 is a negative electrode, and 3 is a negative electrode.
Is an electrolytic solution using a non-aqueous solvent, 4 is a separator, 5 is a positive electrode, 6 is a stainless steel positive electrode case, and 7 is a gasket. Further, as a comparison for showing the effect of the present invention,
A coin battery identical to that described above was prepared except that 1M LiClO 4 -PC / DME electrolyte was used (this battery is referred to as “battery d”). 0.5 mA for these batteries
At the discharge and charging current densities of / cm 2 , the voltage-controlled charging / discharging cycle in which the lower limit of the discharging voltage was 0 V and the upper limit of the charging voltage was 2.0 V was repeated. This test is a test in which lithium is occluded in acetylene black by discharging and releasing lithium occluded in acetylene black by charging,
This is a test for knowing the influence of the electrolyte solution material on the charge and discharge performance of the negative electrode in which lithium is stored in the negative electrode holder (acetylene black in this example). In this test,
Discharge capacity per acetylene black weight (mAh / g,
The relationship between the vertical axis) and the number of cycles (horizontal axis) is shown as c and d in FIG.
Shown in The “battery d” (d in FIG. 3) of the comparative example is about 50.
The discharge capacity decreased to 50% of the initial capacity with cycling. On the other hand, the “battery c” of the present invention (c in FIG. 3) has a larger discharge capacity per cycle than the “battery d” of the comparative example, and a stable charge / discharge cycle of 50 cycles or more was possible.
In addition, these electrolytes are LiPF 6 , LiBF 4 , and Li.
The same applies to AsF 6 etc.

【0015】[0015]

【発明の効果】以上説明したように、本発明は、電解液
にマロン酸ジエチルを用いることにより、充放電特性に
優れた非水溶媒電解液を有する二次電池を実現できる。
As described above, according to the present invention, by using diethyl malonate as the electrolytic solution, a secondary battery having a non-aqueous solvent electrolytic solution excellent in charge / discharge characteristics can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本明細書実施例2における電解液の充放電効率
の変化を示した図で、aは本発明構成電解液(1M L
iClO4 −マロン酸ジエチル)、bは1M LiCl
4 −PC/DMEの場合を示す図である。
FIG. 1 is a diagram showing a change in charge / discharge efficiency of an electrolytic solution in Example 2 of the present specification, in which a is an electrolytic solution (1M L
iClO 4 -diethyl malonate), b is 1M LiCl
O 4 is a diagram showing a case of -PC / DME.

【図2】本発明の電池の断面図である。FIG. 2 is a cross-sectional view of the battery of the present invention.

【図3】本明細書実施例3におけるアセチレンブラック
重量当りの放電容量の変化を示した図で、cは本発明構
成電解液(1M LiClO4 −マロン酸ジエチル)、
dは1M LiClO4 −PC/DMEの場合を示す図
である。
FIG. 3 is a diagram showing a change in discharge capacity per weight of acetylene black in Example 3 of the present specification, where c is an electrolyte solution of the present invention (1M LiClO 4 -diethyl malonate),
d is a diagram showing a case of 1M LiClO 4 -PC / DME.

【符号の説明】[Explanation of symbols]

1:ステンレス製の負極ケース、2:負極、3:非水溶
媒を用いた電解液、4:セパレータ、5:正極、6:ス
テンレス製正極ケース、7:ガスケット
1: Stainless steel negative electrode case, 2: Negative electrode, 3: Electrolyte using non-aqueous solvent, 4: Separator, 5: Positive electrode, 6: Stainless steel positive electrode case, 7: Gasket

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンを充放電可能な負極と、
リチウムイオンと可逆的な電気化学反応可能な正極、及
び非水溶媒にイオン解離性のリチウム塩を溶解した電解
液を有する二次電池において、上記非水溶媒に下記の構
造式(化1)で表されるマロン酸ジエチルを用いること
を特徴とする非水溶媒電解液を有する二次電池。 【化1】CH3 −CH2 −O−CO−CH2 −CO−O
−CH2 −CH3
1. A negative electrode capable of charging and discharging lithium ions,
In a secondary battery having a positive electrode capable of reversibly electrochemically reacting with lithium ions and an electrolytic solution in which an ion dissociative lithium salt is dissolved in a non-aqueous solvent, the non-aqueous solvent is represented by the following structural formula (Formula 1). A secondary battery having a non-aqueous solvent electrolyte, characterized by using diethyl malonate represented. Embedded image CH 3 —CH 2 —O—CO—CH 2 —CO—O
-CH 2 -CH 3
JP7015578A 1995-01-06 1995-01-06 Secondary battery having nonaqueous solvent electrolyte Pending JPH08190932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7015578A JPH08190932A (en) 1995-01-06 1995-01-06 Secondary battery having nonaqueous solvent electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7015578A JPH08190932A (en) 1995-01-06 1995-01-06 Secondary battery having nonaqueous solvent electrolyte

Publications (1)

Publication Number Publication Date
JPH08190932A true JPH08190932A (en) 1996-07-23

Family

ID=11892620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7015578A Pending JPH08190932A (en) 1995-01-06 1995-01-06 Secondary battery having nonaqueous solvent electrolyte

Country Status (1)

Country Link
JP (1) JPH08190932A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000001027A1 (en) * 1998-06-26 2000-01-06 Duracell Inc. Solvent for electrolytic solutions
WO2002011229A1 (en) * 2000-08-02 2002-02-07 Solvay Fluor Und Derivative Gmbh Novel use of difluoromalonic acid esters
JP2004172120A (en) * 2002-11-16 2004-06-17 Samsung Sdi Co Ltd Nonaqueous electrolyte and lithium cell adopting it
KR100459882B1 (en) * 1998-06-19 2005-01-15 삼성전자주식회사 Non-aqueous electrolytes for lithium rechargeable battery and lithium rechargeable battery using the same
US9293787B2 (en) 2010-09-22 2016-03-22 Fujifilm Corporation Nonaqueous electrolyte for secondary battery and lithium secondary battery
JP2019160617A (en) * 2018-03-14 2019-09-19 Tdk株式会社 Lithium ion secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100459882B1 (en) * 1998-06-19 2005-01-15 삼성전자주식회사 Non-aqueous electrolytes for lithium rechargeable battery and lithium rechargeable battery using the same
WO2000001027A1 (en) * 1998-06-26 2000-01-06 Duracell Inc. Solvent for electrolytic solutions
US6045950A (en) * 1998-06-26 2000-04-04 Duracell Inc. Solvent for electrolytic solutions
WO2002011229A1 (en) * 2000-08-02 2002-02-07 Solvay Fluor Und Derivative Gmbh Novel use of difluoromalonic acid esters
JP2004172120A (en) * 2002-11-16 2004-06-17 Samsung Sdi Co Ltd Nonaqueous electrolyte and lithium cell adopting it
US7312001B2 (en) 2002-11-16 2007-12-25 Samsung Sdi Co., Ltd. Non-aqueous electrolytic solution and lithium battery employing the same
US9293787B2 (en) 2010-09-22 2016-03-22 Fujifilm Corporation Nonaqueous electrolyte for secondary battery and lithium secondary battery
JP2019160617A (en) * 2018-03-14 2019-09-19 Tdk株式会社 Lithium ion secondary battery

Similar Documents

Publication Publication Date Title
US7416813B2 (en) Lithium secondary battery
US5620812A (en) Non-aqueous electrolyte secondary battery
US8871389B2 (en) Non-aqueous electrolyte secondary battery
US7635542B2 (en) Non-aqueous electrolyte secondary battery
JPH11339850A (en) Lithium-ion secondary battery
JPH11288715A (en) Nonaqueous electrolyte secondary battery
JP3199426B2 (en) Non-aqueous electrolyte secondary battery
JP3252414B2 (en) Non-aqueous electrolyte secondary battery
JPH0520874B2 (en)
JP3212639B2 (en) Non-aqueous solvent secondary battery
JP3082117B2 (en) Non-aqueous electrolyte secondary battery
JP2002319430A (en) Nonaqueous electrolyte secondary cell
JP3546566B2 (en) Non-aqueous electrolyte secondary battery
JPH08190932A (en) Secondary battery having nonaqueous solvent electrolyte
JPH08162154A (en) Secondary battery having nonaqueous solvent electrolyt
JPH0757780A (en) Non-aqueous electrolyte secondary battery and manufacture thereof
JP2965674B2 (en) Lithium secondary battery
JPH10144346A (en) Secondary battery containing nonaqueous solvent electrolytic solution
JP3209319B2 (en) Secondary battery with non-aqueous solvent electrolyte
KR100378012B1 (en) Positive active material composition for lithium secondary battery and lithium secondary battery using same
JP2002110155A (en) Nonaqueous electrolyte secondary battery
JP3663694B2 (en) Non-aqueous electrolyte secondary battery
JPH0722068A (en) Secondary battery having nonaqueous solvent electrolyte
JPH07302618A (en) Secondary battery with nonaqueous solvent electrolyte
JPH09306538A (en) Secondary battery having nonaqueous solvent electrolyte