JP3082117B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery

Info

Publication number
JP3082117B2
JP3082117B2 JP04284836A JP28483692A JP3082117B2 JP 3082117 B2 JP3082117 B2 JP 3082117B2 JP 04284836 A JP04284836 A JP 04284836A JP 28483692 A JP28483692 A JP 28483692A JP 3082117 B2 JP3082117 B2 JP 3082117B2
Authority
JP
Japan
Prior art keywords
potential
battery
positive electrode
secondary battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04284836A
Other languages
Japanese (ja)
Other versions
JPH06203829A (en
Inventor
芳明 新田
和典 原口
茂雄 小林
一広 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP04284836A priority Critical patent/JP3082117B2/en
Publication of JPH06203829A publication Critical patent/JPH06203829A/en
Application granted granted Critical
Publication of JP3082117B2 publication Critical patent/JP3082117B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池に
関し、特にリチウム複合酸化物を正極の活物質材料に用
い、負極に炭素材料を用いた非水電解液二次電池に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery using a lithium composite oxide as a positive electrode active material and a negative electrode using a carbon material.

【0002】[0002]

【従来の技術】近年、オーディオ・ビデオ機器あるいは
パソコンなどの電子機器のポータブル化、コードレス化
が急速に進んでおり、これらの駆動用電源として小形、
軽量で高エネルギー密度を有する二次電池への要求が高
い。このような点で非水系二次電池、特にリチウム二次
電池は、とりわけ高電圧、高エネルギー密度を有する電
池として期待が大きい。
2. Description of the Related Art In recent years, portable and cordless electronic devices such as audio / video devices and personal computers have been rapidly advanced.
There is a high demand for a secondary battery that is lightweight and has a high energy density. From such a viewpoint, non-aqueous secondary batteries, particularly lithium secondary batteries, are expected to have high voltage and high energy density.

【0003】上記の要望を満たす正極活物質材料として
リチウムをインターカレーション、デインターカレーシ
ョンすることのできる層状化合物として、たとえばLi
1-xNiO2(但し0≦x<1、米国特許4302518
号明細書)、LiyNi2-y2(特開平2−40861
号公報)、またはLiyNixCo1-x2(但し0<x≦
0.75,y≦1、特開昭63−299056号公報)
などのリチウムと遷移金属を主体とする複合酸化物(以
下、リチウム複合酸化物と記す)が提案され、負極に炭
素材料を用いた電池系が、高エネルギー密度をもったリ
チウム二次電池として注目を集めている。この電池系の
特徴は、電池電圧が高い(たとえばLi1-xNiO2がL
iに対して4Vの高い電圧を有するため)ことと、正、
負極ともに活物質のインターカレーション、デインター
カレーションを利用しているところにある。特に、負極
に金属Liを用いていないので、デンドライト状のLi
の析出による短絡などが生じることなく安全性が高ま
り、急速充電も期待できるものである。
As a layered compound capable of intercalating and deintercalating lithium as a positive electrode active material satisfying the above demand, for example, Li
1-x NiO 2 (where 0 ≦ x <1, US Pat. No. 4,302,518)
Specification), Li y Ni 2-y O 2 (JP-A-2-40861)
Publication) or Li y Ni x Co 1-x O 2 (where 0 <x ≦
0.75, y ≦ 1, JP-A-63-299056)
And lithium-transition metal-based composite oxides (hereinafter referred to as lithium composite oxides) have been proposed, and a battery system using a carbon material for the negative electrode has attracted attention as a lithium secondary battery with a high energy density Are gathering. The feature of this battery system is that the battery voltage is high (for example, Li 1-x NiO 2
i) because it has a high voltage of 4V with respect to i)
The negative electrode utilizes active material intercalation and deintercalation. In particular, since metal Li is not used for the negative electrode, dendritic Li
The safety is improved without causing a short circuit or the like due to the precipitation of, and rapid charging can be expected.

【0004】[0004]

【発明が解決しようとする課題】一般に、この種の二次
電池は基本的に高出力、高容量で長寿命であることが要
望されている。最近の電子機器の高機能化にともない、
機器を使用していない状態でもメモリーバックアップや
他の制御回路のコントロールで電力を消費するものが増
えてきた。すなわち、電池を機器に装着したまま放置す
ると電池は放電し続け、容量が尽きて電池電圧は最終的
に0Vに達することになる。したがって、電池は、この
ような放電(以下過放電と記す)を経験した後でも再び
充電することによって回復できうるものでなければ実用
性が乏しい。
Generally, a secondary battery of this type is basically required to have a high output, a high capacity and a long life. With the recent advancement of electronic devices,
Even when the equipment is not used, the power consumption by memory backup and control of other control circuits has increased. That is, if the battery is left attached to the device, the battery continues to be discharged, the capacity runs out, and the battery voltage finally reaches 0V. Therefore, a battery is poor in practicality unless it can be recovered by recharging even after experiencing such discharge (hereinafter, referred to as overdischarge).

【0005】しかし、Li1-xNiO2からなる正極と、
炭素材料からなる負極と、有機電解液からなるLi二次
電池を充放電した後、抵抗を接続して過放電すると、L
i参照電極基準での正、負極それぞれの単極電位挙動は
図10に示すようになる。正、負極が等電位(電池電圧
が0V)になった時点で正、負極ともLiに対して3.
2V近くの電位に達していることがわかる。正極は通常
この電位域でも使われており問題はないと考えられる
が、負極は通常Liに対して1V以下の電位で使われて
いるので、過放電により負極がこのように極めて貴な酸
化領域の電位に維持されると、酸化反応により炭素材料
の結晶相が破壊され、再び充電しても元の容量に回復せ
ず電池容量が少なくなる。
However, a positive electrode made of Li 1-x NiO 2 ,
After charging and discharging a negative electrode made of a carbon material and a Li secondary battery made of an organic electrolyte, and connecting a resistor to overdischarge, L
The unipolar potential behavior of each of the positive and negative electrodes based on the i reference electrode is as shown in FIG. When the positive and negative electrodes become equipotential (battery voltage is 0 V), both the positive and negative electrodes become 3.
It can be seen that the potential has reached near 2V. The positive electrode is usually used in this potential region, and it is considered that there is no problem. However, since the negative electrode is usually used at a potential of 1 V or less with respect to Li, the negative electrode is extremely noble due to overdischarge. When the potential is maintained, the crystal phase of the carbon material is destroyed by the oxidation reaction, and the battery capacity is reduced without being restored to the original capacity even when charged again.

【0006】負極の電位と電池性能劣化の関係を定電位
ステップ方式で調べたところ、Liに対して3Vを越え
ると、負極の容量特性が著しく劣化することがわかっ
た。
The relationship between the potential of the negative electrode and the deterioration of the battery performance was examined by a constant potential step method. As a result, it was found that when the voltage exceeded 3 V with respect to Li, the capacity characteristics of the negative electrode were significantly deteriorated.

【0007】したがって、正、負極が等電位になった時
点で、その電位をより卑な電位(3V以下)に維持する
ことができれば、負極の酸化反応による過放電劣化が抑
制できると考えられる。
[0007] Therefore, if the potential can be maintained at a lower level (3 V or less) when the positive and negative electrodes become equipotential, it is considered that overdischarge deterioration due to the oxidation reaction of the negative electrode can be suppressed.

【0008】そのためには、開回路電位が3V以下でも
安定した領域を持ち、かつ充放電反応に対応した電気化
学的可逆性に富んだ正極材料が望まれる。
For this purpose, a positive electrode material which has a stable region even when the open circuit potential is 3 V or less and is rich in electrochemical reversibility corresponding to a charge / discharge reaction is desired.

【0009】そこで、負極の電位を卑な電位のレベルに
抑える手段として、特開平2−265167号公報でL
xMoO3などの既にLiを含み、かつLi1-xNiO2
より卑な放電電位を有する酸化物を正極に添加する手法
が示されている。
Therefore, as means for suppressing the potential of the negative electrode to a lower potential level, Japanese Patent Laid-Open Publication No.
includes already Li such i x MoO 3, and Li 1-x NiO 2
A method is disclosed in which an oxide having a lower discharge potential is added to a positive electrode.

【0010】この手法により、正極中に含まれるLi源
が増えることで、過放電劣化の抑制に多少の効果がみら
れた。しかし、これは添加した低電位添加物との混成電
位で正極の平衡電位が若干下がったことによる因子の方
が大きく、その効果も十分でなく1カ月以上も長期間放
置すると、その劣化は無添加のものとほとんど変わらな
い。
According to this method, an increase in the number of Li sources contained in the positive electrode provided some effect in suppressing deterioration due to overdischarge. However, this is largely due to the fact that the equilibrium potential of the positive electrode slightly decreased due to the mixed potential with the added low-potential additive, and the effect was not sufficient. It is almost the same as the added one.

【0011】本発明は、このような課題を解決するもの
で、長期の過放電劣化を十分に抑制し、良好な充電回復
性を持たせる非水電解液二次電池を提供することを目的
とするものである。
An object of the present invention is to provide a non-aqueous electrolyte secondary battery that sufficiently suppresses long-term over-discharge deterioration and has good charge recovery properties. Is what you do.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に本発明の非水電解液二次電池は化学式Li y Ni 1-x
x 2 (0.01≦x≦0.4、0.4≦y<1.6)
で表される材料からなる正極と、リチウムのインターカ
レーションとデインターカレーションが可能な炭素材料
からなる負極と、非水電解液を具備していて、前記電池
の充放電を化学式Li y Ni 1-x Mn x 2 で表される材料
空間群P
In order to achieve the above object, a non-aqueous electrolyte secondary battery according to the present invention has a chemical formula of Li y Ni 1-x M
n x O 2 (0.01 ≦ x ≦ 0.4,0.4 ≦ y <1.6)
A positive electrode made of a material represented by
Carbon material that can be intercalated and deintercalated
A negative electrode comprising: a non-aqueous electrolyte;
Material expressed by the chemical formula Li y Ni 1-x Mn x O 2 charging and discharging of the
Is the space group P

【0013】[0013]

【外3】[Outside 3]

【0014】mlと空間群Ml and space group R

【0015】[0015]

【外4】[Outside 4]

【0016】mの2種類をとる領域で行い、かつ過放電
で正、負極が等電位になっても負極電位をリチウム金属
に対し3V以下に維持が可能な構成としたものである。
M is performed in an area having two types of m , and overdischarge is performed.
Even if the positive and negative electrodes become equipotential, the negative electrode potential is changed to lithium metal.
Is maintained at 3 V or less.

【0017】[0017]

【作用】この構成により、正極活物質として放電状態で
ある電池構成時に予め、より多くのLiを保持させたL
yNi1-xMnx2(1.0<y<1.6)を用いるこ
とにより、正極活物質は3V以下の低電位領域を有し、
この正極活物質からLiをデインターカレートした充電
状態(0.4<y<1.0)では3V以上の高電位領域
を有することにより、通常の充放電反応においても電気
化学的な可逆性を有するとともに、過放電で正、負極が
等電位になっても負極電位を負極の酸化反応による過放
電劣化が起こらない3V以下の卑な電位に維持できるこ
ととなる。
According to this structure, when a battery in a discharged state is used as a positive electrode active material, a large amount of Li is held in advance.
The use of i y Ni 1-x Mn x O 2 (1.0 <y <1.6), the positive electrode active material has the following low potential region 3V,
In the charged state (0.4 <y <1.0) in which Li is deintercalated from the positive electrode active material, by having a high potential region of 3 V or more, electrochemical reversibility is obtained even in a normal charge / discharge reaction. And the negative electrode potential can be maintained at a lower potential of 3 V or less where overdischarge deterioration due to the oxidation reaction of the negative electrode does not occur even if the positive electrode and the negative electrode become equipotential by overdischarge.

【0018】[0018]

【実施例】以下、本発明の一実施例の非水電解液二次電
池について図面を参照して説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A non-aqueous electrolyte secondary battery according to one embodiment of the present invention will be described below with reference to the drawings.

【0019】開回路電位が3V以下でも安定した領域を
持ち、かつ充放電反応に対応した電気化学的可逆性に富
んだ、電位決定因子が活物質中のLi量に起因する正極
材料から見い出した、式LiyNi1-xMnx2系化合物
のy値に対する開回路電位の結果を図2に、また電解液
としてプロピレンカーボネートとエチレンカーボネート
との等容積混合溶媒に過塩素酸リチウム1モル/リット
ルの割合で溶解した溶液中における充放電挙動(電流密
度1mA/g・正極活物質)を図3に示す。
A potential determinant was found from a positive electrode material which had a stable region even at an open circuit potential of 3 V or less and was rich in electrochemical reversibility corresponding to a charge / discharge reaction and caused by the amount of Li in the active material. formula Li y Ni 1-x Mn x O 2 system the results of open-circuit potential with respect to the y value of the compounds in FIG. 2, also propylene carbonate and lithium perchlorate 1 mole equal volume mixed solvent of ethylene carbonate as an electrolyte FIG. 3 shows the charge / discharge behavior (current density: 1 mA / g, positive electrode active material) in a solution dissolved at a rate of 1 / liter.

【0020】この物質は、電位が式中のy値で与えら
れ、0.4≦y<1.6の範囲で電気化学的な可逆性を
持ち、開回路電位が3V以下を示すy値(y>1)の領
域を持つ。すなわち、電池構成時に予めより多くのLi
を保持(1.0<y<1.6)して3V以下の低電位領
域を持ち合わせながら、しかも充電反応でLiをデイン
ターカレート(0.4≦y≦1.0)して通常の充放電
で使用しても電気化学的な可逆性が維持できる。
This substance has a potential given by the y value in the formula, has electrochemical reversibility in the range of 0.4 ≦ y <1.6, and has a y value (open circuit potential of 3 V or less). y> 1). In other words, more Li
Is maintained (1.0 <y <1.6) and a low potential region of 3 V or less is provided, and Li is deintercalated by charge reaction (0.4 ≦ y ≦ 1.0) to obtain a normal voltage. Even when used in charge and discharge, electrochemical reversibility can be maintained.

【0021】なお、このように3V付近で分かれる二つ
の電位領域を持つ結晶構造のうち、高電位領域は空間群
In the crystal structure having two potential regions divided near 3 V, the high potential region corresponds to the space group R.

【0022】[0022]

【外5】[Outside 5]

【0023】mに、低電位領域は主として空間群PIn m, the low-potential region mainly includes the space group P

【0024】[0024]

【外6】[Outside 6]

【0025】mlと一部の空間群Ml and some space groups R

【0026】[0026]

【外7】[Outside 7]

【0027】mの混合晶に属することが図4に示すX線
回折図からわかっており、層状構造を有するこれらの両
結晶相間で可逆性があるものと考えている。
It is known from the X-ray diffraction diagram shown in FIG. 4 that it belongs to the mixed crystal of m, and it is considered that there is reversibility between these two crystal phases having a layered structure.

【0028】これにより、過放電で正、負極が等電位に
なっても負極電位を卑な電位(3V以下)に維持でき、
負極の劣化問題が解決できる。
As a result, the negative electrode potential can be maintained at a low potential (3 V or less) even if the positive and negative electrodes become equal in potential due to overdischarge.
The problem of deterioration of the negative electrode can be solved.

【0029】LiyNi1-xMnx2(0.01≦x≦
0.4,0.4≦y≦1.0)の合成に当たっては、た
とえば主材料としてLi2O,LiNO3,LiOH,L
2CO3の群の中から選ばれた少なくとも一種のリチウ
ム化合物とNi(OH)2,NiO,NiCO3の群の中
から選ばれた少なくとも一種のニッケル化合物とMnO
2を用い、x値は量論比、y値はyが示す1.1〜1.
3倍のLi原子モル数に相当するLi添加量を処方と
し、焼成処理温度は700〜900℃で空気もしくは酸
素などの酸化雰囲気で合成した。
[0029] Li y Ni 1-x Mn x O 2 (0.01 ≦ x ≦
In the synthesis of 0.4, 0.4 ≦ y ≦ 1.0), for example, Li 2 O, LiNO 3 , LiOH, L
at least one lithium compound selected from the group of i 2 CO 3 and at least one nickel compound selected from the group of Ni (OH) 2 , NiO, NiCO 3 and MnO
2 , x value is stoichiometric, and y value is 1.1 to 1.
The amount of Li added was equivalent to three times the number of moles of Li atoms, and synthesis was performed at a firing temperature of 700 to 900 ° C. in an oxidizing atmosphere such as air or oxygen.

【0030】これにより得られた正極活物質は、層状の
結晶構造で格子定数はa0が2.83〜2.88Å,同
じくc0が14.15〜14.31Åとなり、空間群R
[0030] Thus obtained positive electrode active material, the lattice constant in the crystal structure of the layered is a 0 2.83~2.88Å, also c 0 is 14.15~14.31Å, and the space group R

【0031】[0031]

【外8】[Outside 8]

【0032】mに帰属することがわかる。It can be seen that it belongs to m.

【0033】また、同様にLiyNi1-xMnx2(0.
01≦x≦0.4,1.0<y<1.6)の合成は、上
記の方法と同様であるが、y値については、yが示す
1.3倍のLi原子モル数に相当するLi添加量を加え
て合成するか、またはy値が0.4≦y≦1.0である
活物質を電気化学的還元処理によりLiを挿入すること
で得ることができる。
Further, as Li y Ni 1-x Mn x O 2 (0.
The synthesis of 01 ≦ x ≦ 0.4, 1.0 <y <1.6) is the same as the above method, but the y value is equivalent to 1.3 times the number of moles of Li atoms indicated by y. Or an active material having a y value of 0.4 ≦ y ≦ 1.0 can be obtained by inserting Li by an electrochemical reduction treatment.

【0034】これにより得られた正極活物質は、層状の
結晶構造で格子定数は主として、a0が3.09〜3.
11Å,c0が5.07〜5.11Åである空間群P
The positive electrode active material thus obtained has a layered crystal structure, mainly having a lattice constant, and a 0 of 3.09 to 3.0.
11}, space group P in which c 0 is 5.07 to 5.11

【0035】[0035]

【外9】[Outside 9]

【0036】mlに帰属するものと、一部a0が2.8
3〜2.88Å,c0が14.15〜14.31Åであ
る前記の空間群R
Attributed to ml and partly a 0 is 2.8
3 to 2.88 ° and the space group R whose c 0 is 14.15 to 14.31 °

【0037】[0037]

【外10】[Outside 10]

【0038】mに帰属するものであることがわかった。
x=0.2の時、種々のy値に対応する格子定数を図5
に示す。この図からyが1.0まではR
It was found that the property belongs to m.
When x = 0.2, the lattice constants corresponding to various y values are shown in FIG.
Shown in From this figure, when y is 1.0, R

【0039】[0039]

【外11】[Outside 11]

【0040】m帰属の結晶構造が維持されるが、それ以
降では空間群
Although the crystal structure assigned to m is maintained, the space group P

【0041】[0041]

【外12】[Outside 12]

【0042】mlと空間群Ml and space group R

【0043】[0043]

【外13】[Outside 13]

【0044】mが混合された結晶形態を持ち、yが増加
するにつれて空間群
M has a mixed crystal form, and as y increases, the space group R

【0045】[0045]

【外14】[Outside 14]

【0046】m帰属のピークは減少することがわかっ
た。すなわち、y値が1.0を境に空間群
It was found that the peak assigned to m decreased. That is, the space group R at the y value of 1.0

【0047】[0047]

【外15】[Outside 15]

【0048】m主体から空間群From the m subject to the space group P

【0049】[0049]

【外16】[Outside 16]

【0050】ml主体へと変化することがわかった。It was found that the content changed to mainly ml.

【0051】正極活物質の最適組成値を選択するため、
試料極の電位走査を行ってカソード応答電流のピーク電
流値を検討した。なお、試料電極の構成は、正極活物質
とアセチレンブラックとふっ素樹脂系結着剤が重量費で
7:1.5:1.5となるように混合した正極合剤を8
cm2の電極に充填し、対極Li、参照極を別のLi、
電解液をエチレンカーボネートとプロピレンカーボネー
ト1:1の混合溶媒1リットルにLiPF6を1モル溶
解したものとし、走査速度2mV/sで3.1V〜4.
5Vの範囲で行った。
In order to select the optimum composition value of the positive electrode active material,
The peak current value of the cathode response current was examined by scanning the potential of the sample electrode. The structure of the sample electrode is a positive electrode mixture in which a positive electrode active material, acetylene black and a fluororesin-based binder are mixed at a weight ratio of 7: 1.5: 1.5.
cm 2 electrode, the counter electrode Li, the reference electrode is another Li,
The electrolyte was prepared by dissolving 1 mol of LiPF 6 in 1 liter of a mixed solvent of ethylene carbonate and propylene carbonate at a ratio of 1: 1 and scanning at a scanning speed of 2 mV / s.
The test was performed in a range of 5V.

【0052】yを0.2,0.4,1.0,1.6,
1.8としたときの各x値に対応するカソード応答電流
のピーク電流値を図6に示す。
Let y be 0.2, 0.4, 1.0, 1.6,
FIG. 6 shows the peak current value of the cathode response current corresponding to each x value when 1.8 is set.

【0053】図6からわかるように、LiyNi1-xMn
x2のx値が0.01から0.4で良好なピーク電流値
が得られている。また、y値は1の時に最も良好である
が、0.2,1.8ではピーク電流値が低下している。
これらの結果から、xは0.01から0.4で、yは
0.4から1.6の範囲で良好な特性が得られる。
As can be seen from FIG. 6, Li y Ni 1-x Mn
When the x value of xO 2 is 0.01 to 0.4, a good peak current value is obtained. Further, the y value is the best when it is 1, but the peak current value decreases when it is 0.2 and 1.8.
From these results, good characteristics can be obtained when x is in the range of 0.01 to 0.4 and y is in the range of 0.4 to 1.6.

【0054】以下、電池での評価について説明する。Hereinafter, the evaluation using the battery will be described.

【0055】図1において正極1は、活物質に導電剤で
ある炭素粉末を活物質に対して5重量%、接着剤である
ポリ四ふっ化エチレン樹脂粉末を活物質に対して7重量
%混合し、これを正極ケース2の内側にスポット溶接で
固定したチタンネット3上にプレス成型したものであ
る。また、負極4は炭素材料(ここではピッチ系球状黒
鉛を用いた)の粉末に結着剤であるポリアクリル酸系樹
脂粉末を炭素材料に対して5重量%混合したもので、封
口板5の内側にスポット溶接で固定したステンレスネッ
ト6上にプレス成型したものである。そして、これら正
・負極の間にポリプロピレン製セパレータ7を配置し、
適量の電解液8を注入するとともにポリプロピレン製の
ガスケット9を介してケース2で封口板5を密封し、直
径20mm、高さ1.6mmの完成電池とした。なお、
電解液は1モルの過塩素酸リチウムをプロピレンカーボ
ネートとエチレンカーボネートとの等容積混合溶媒1リ
ットル中に溶かしたものを用いた。
In FIG. 1, the positive electrode 1 was prepared by mixing a carbon powder, which is a conductive agent, as an active material with 5% by weight of the active material, and a polytetrafluoroethylene resin powder as an adhesive with 7% by weight with respect to the active material. This is press-formed on a titanium net 3 fixed to the inside of the positive electrode case 2 by spot welding. The negative electrode 4 is a mixture of a carbon material powder (here, pitch-based spheroidal graphite is used) and a polyacrylic acid-based resin powder serving as a binder mixed at 5% by weight with respect to the carbon material. It is press-formed on a stainless steel net 6 fixed inside by spot welding. Then, a polypropylene separator 7 is arranged between these positive and negative electrodes,
An appropriate amount of electrolyte 8 was injected, and the sealing plate 5 was sealed with the case 2 via a gasket 9 made of polypropylene to obtain a completed battery having a diameter of 20 mm and a height of 1.6 mm. In addition,
The electrolytic solution used was a solution in which 1 mol of lithium perchlorate was dissolved in 1 liter of an equal volume mixed solvent of propylene carbonate and ethylene carbonate.

【0056】この電池は試作直後は放電状態にあり、充
電から開始する。先ず比較例の電池の正極活物質とし
て、LiyNi1-xMnx2で0.01≦x≦0.4,
0.4≦y≦1.0を用いた電池について説明する。図
9の破線で示した曲線は、2mAの定電流充放電を充電
終止電圧を4.1V、放電終了電圧3.0Vに設定して
行ったときの10サイクル目の充放電電圧特性である。
This battery is in a discharged state immediately after trial production, and starts from charging. First, as the positive electrode active material of the battery of Comparative Example, Li y Ni 1-x Mn x O 2 with 0.01 ≦ x ≦ 0.4,
A battery using 0.4 ≦ y ≦ 1.0 will be described. The curve shown by the broken line in FIG. 9 is the charge / discharge voltage characteristic at the 10th cycle when the constant current charge / discharge of 2 mA is performed with the charge end voltage set to 4.1 V and the discharge end voltage 3.0 V.

【0057】次に比較例の電池の過放電に伴う電池性能
の劣化程度について検討した。過放電は上記条件で10
サイクルの充放電を行った後、放電状態で電池を取り出
し、これを50Ωの定抵抗負荷で放電し、0Vに達した
後に抵抗を接続したままさらに10日間放置するという
ものである。この過放電を10サイクル目に経験させて
再び充放電を行った結果、その充放電電圧特性は図9の
実線で示すように容量が20%近く低下し、さらに充放
電サイクルをくり返しても容量が低下したままであっ
た。従って、この電池は過放電を経験することによっ
て、容量特性が劣化するものであることがわかった。
Next, the degree of deterioration of battery performance due to overdischarge of the battery of the comparative example was examined. Overdischarge is 10
After charge / discharge of a cycle is performed, the battery is taken out in a discharged state, discharged with a constant resistance load of 50Ω, and, after reaching 0 V, left for another 10 days with the resistance connected. As a result of experiencing this overdischarge at the 10th cycle and performing charge / discharge again, the charge / discharge voltage characteristic shows that the capacity is reduced by nearly 20% as shown by the solid line in FIG. Remained low. Therefore, it was found that the capacity characteristics of this battery were deteriorated by experiencing overdischarge.

【0058】次に本実施例の電池の正極活物質としてL
yNi1-xMnx2(0.01≦x≦0.4,1.0<
y<1.6)を用いた電池について説明する。
Next, as the positive electrode active material of the battery of this embodiment, L
i y Ni 1-x Mn x O 2 (0.01 ≦ x ≦ 0.4,1.0 <
A battery using y <1.6) will be described.

【0059】y=1.5としたときの過放電後充放電電
圧特性の結果を図7に示す。破線は図9の破線と同一の
ものである。実線は本実施例の空間群P
FIG. 7 shows the results of the charge / discharge voltage characteristics after overdischarge when y = 1.5. The broken line is the same as the broken line in FIG. The solid line is the space group P of this embodiment.

【0060】[0060]

【外17】[Outside 17]

【0061】ml構造を有する正極活物質を用いた過放
電後の充放電電圧曲線である。図7からわかるように、
10サイクル目に過放電を経験した後でも充放電特性が
改善されており、さらに充放電サイクルをくり返しても
容量劣化はおこらなかった。この結果の要因について図
8を用いて説明する。図8で示したように、電池が過放
電に至る直前から正・負極の単極電位挙動を観察する
と、正・負両極が等電位に至ってもその電位がLi基準
で2.4V付近に位置しており、3V以下の電位領域で
平衡に達している。
6 is a charge / discharge voltage curve after overdischarge using a positive electrode active material having a ml structure. As can be seen from FIG.
The charge / discharge characteristics were improved even after experiencing overdischarge at the tenth cycle, and the capacity did not deteriorate even if the charge / discharge cycle was repeated. The cause of this result will be described with reference to FIG. As shown in FIG. 8, when observing the unipolar potential behavior of the positive and negative electrodes immediately before the battery reaches overdischarge, even when both the positive and negative electrodes reach the same potential, the potential is near 2.4 V with respect to Li. And reaches an equilibrium in a potential region of 3 V or less.

【0062】これは、電池構成時に予めより多くのLi
が蓄積でき、電位的に3V以下の開回路電位を持つこと
のできるP
This is because a larger amount of Li
Can accumulate and have an open circuit potential of 3 V or less in potential.

【0063】[0063]

【外18】[Outside 18]

【0064】ml構造の正極活物質を用いたことによる
もので、過放電で正・負極の電位が等電位に達しても負
極炭素材の酸化反応による劣化を未然に防ぐことができ
たことによる。
This is due to the use of the positive electrode active material having a ml structure, which prevents deterioration of the carbon material of the negative electrode due to an oxidation reaction even if the potentials of the positive and negative electrodes reach the same potential due to overdischarge. .

【0065】[0065]

【発明の効果】以上の説明で明らかなように、本発明の
非水電解液二次電池によれば、機器に装着されたままの
電池が過放電されても、再び充電することによって性能
が回復するので、実用上極めて有利で、かつ高容量の非
水電解液二次電池を提供し得る。
As is clear from the above description, according to the nonaqueous electrolyte secondary battery of the present invention, even if the battery mounted on the device is overdischarged, the performance is improved by recharging. Since it recovers, it is possible to provide a non-aqueous electrolyte secondary battery which is extremely advantageous in practice and has a high capacity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の非水電解液二次電池の縦断
面図
FIG. 1 is a longitudinal sectional view of a nonaqueous electrolyte secondary battery according to one embodiment of the present invention.

【図2】同正極活物質Liy Ni1-x Mnx 2 (0.0
1≦x≦0.4)のLi基準における開回路電位を示すグ
ラフ
[2] the positive electrode active material Li y Ni 1-x Mn x O 2 (0.0
Graph showing the open circuit potential on the basis of Li when 1 ≦ x ≦ 0.4)

【図3】同正極活物質Liy Ni1-x Mnx 2 (0.0
1≦x≦0.4)のLi基準における充放電挙動を示すグ
ラフ
[3] the positive electrode active material Li y Ni 1-x Mn x O 2 (0.0
A graph showing the charge / discharge behavior on the Li basis (1 ≦ x ≦ 0.4)

【図4】同正極活物質Liy Ni1-x Mnx 2 (0.0
1≦x≦0.4,y=0.4,1.6)のX線回折図
[4] the positive electrode active material Li y Ni 1-x Mn x O 2 (0.0
X-ray diffraction diagram of 1 ≦ x ≦ 0.4, y = 0.4, 1.6)

【図5】同正極活物質Liy Ni1-x Mnx 2 (x=
0.2)の格子定数を示すグラフ
[5] the positive electrode active material Li y Ni 1-x Mn x O 2 (x =
Graph showing lattice constant of 0.2)

【図6】同正極活物質Liy Ni1-x Mnx 2 (y=
0.2,0.4,1.0,1.6,1.8)のカソードピーク電流
値を示すグラフ
[6] the positive electrode active material Li y Ni 1-x Mn x O 2 (y =
Graph showing cathode peak current values of 0.2, 0.4, 1.0, 1.6, 1.8)

【図7】同充放電電圧特性を示すグラフFIG. 7 is a graph showing the same charge / discharge voltage characteristics.

【図8】同正・負極の過放電時の電位挙動を示すグラフFIG. 8 is a graph showing the potential behavior of the positive and negative electrodes during overdischarge.

【図9】比較例の電池の充放電電圧特性を示すグラフFIG. 9 is a graph showing charge / discharge voltage characteristics of a battery of a comparative example.

【図10】従来の電池の正・負極の過放電時の電位挙動
を示すグラフ
FIG. 10 is a graph showing the potential behavior of the conventional battery when the positive and negative electrodes are overdischarged.

【符号の説明】[Explanation of symbols]

1 正極 4 負極 7 セパレータ 1 positive electrode 4 negative electrode 7 separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡村 一広 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平4−141954(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/04 H01M 4/36 - 4/62 ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kazuhiro Okamura 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-4-141954 (JP, A) (58) Survey Fields (Int.Cl. 7 , DB name) H01M 4/02-4/04 H01M 4/36-4/62

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】化学式Li y Ni 1-x Mn x 2 (0.01≦
x≦0.4、0.4≦y<1.6)で表される材料から
なる正極と、リチウムのインターカレーションとデイン
ターカレーションが可能な炭素材料からなる負極と、非
水電解液を具備する非水電解液二次電池であって、 前記電池の充放電を化学式Li y Ni 1-x Mn x 2 で表さ
れる材料が空間群P 【外1】 mlと、空間群R 【外2】 mの2種類をとる領域で行い、かつ過放電で正,負極
が等電位になっても負極電位をリチウム金属に対し3V
以下に維持が可能なことを特徴とする非水電解液二次電
池。
1. A chemical formula Li y Ni 1-x Mn x O 2 (0.01 ≦
x ≦ 0.4, 0.4 ≦ y <1.6)
Comprising a positive electrode, a negative electrode consisting of intercalating and de-intercalation carbon material capable of lithium, a nonaqueous electrolyte secondary battery comprising a nonaqueous electrolytic solution, the chemical formula Li a charge and discharge of the battery represented by y Ni 1-x Mn x O 2
The material to be used is in a region in which two types of space group P [1] ml and space group R [2] m are taken.
The negative electrode potential is kept at 3 V with respect to lithium metal even if
A non-aqueous electrolyte secondary battery characterized in that it can be maintained as follows.
JP04284836A 1992-10-23 1992-10-23 Non-aqueous electrolyte secondary battery Expired - Lifetime JP3082117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04284836A JP3082117B2 (en) 1992-10-23 1992-10-23 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04284836A JP3082117B2 (en) 1992-10-23 1992-10-23 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH06203829A JPH06203829A (en) 1994-07-22
JP3082117B2 true JP3082117B2 (en) 2000-08-28

Family

ID=17683645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04284836A Expired - Lifetime JP3082117B2 (en) 1992-10-23 1992-10-23 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3082117B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526225U (en) * 1991-09-24 1993-04-06 日立工機株式会社 Reciprocating saw

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3550783B2 (en) * 1994-05-16 2004-08-04 東ソー株式会社 Lithium-containing transition metal composite oxide, method for producing the same, and use thereof
JP3833331B2 (en) * 1996-03-04 2006-10-11 シャープ株式会社 Non-aqueous secondary battery
JPH09298061A (en) * 1996-03-04 1997-11-18 Sharp Corp Nonaqueous secondary battery
US6553263B1 (en) 1999-07-30 2003-04-22 Advanced Bionics Corporation Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries
US6596439B1 (en) 2000-04-26 2003-07-22 Quallion Llc Lithium ion battery capable of being discharged to zero volts
EP1652819A1 (en) * 2003-07-18 2006-05-03 Tosoh Corporation Lithium-nickel-manganese composite oxide, process for producing the same and use thereof
US9209634B2 (en) 2012-09-07 2015-12-08 Greatbatch Ltd. Method of improving battery recharge efficiency by statistical analysis
US9225190B2 (en) 2012-09-07 2015-12-29 Manufacturers And Traders Trust Company Implant current controlled battery charging based on temperature
US9142989B2 (en) 2012-09-07 2015-09-22 Greatbatch Ltd. Method of minimizing interruptions to implantable medical device recharging

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526225U (en) * 1991-09-24 1993-04-06 日立工機株式会社 Reciprocating saw

Also Published As

Publication number Publication date
JPH06203829A (en) 1994-07-22

Similar Documents

Publication Publication Date Title
EP0827231B1 (en) Non-aqueous electrolyte lithium secondary battery
EP0696075B1 (en) Non-aqueous electrolyte secondary battery
JPH08213015A (en) Positive active material for lithium secondary battery and lithium secondary battery
EP0874410B1 (en) Non-aqueous electrolyte secondary batteries
JP3252414B2 (en) Non-aqueous electrolyte secondary battery
KR20100106242A (en) Nonaqueous secondary battery
JPH10188953A (en) Non-aqueous electrolyte secondary battery
JPH06342673A (en) Lithium secondary battery
JP3082117B2 (en) Non-aqueous electrolyte secondary battery
JP4530822B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JP3030996B2 (en) Non-aqueous electrolyte secondary battery
JP3003431B2 (en) Non-aqueous electrolyte secondary battery
JPH05144472A (en) Secondary battery with nonaqueous electrolyte
JP3111324B2 (en) Non-aqueous electrolyte secondary battery
JP2003163029A (en) Secondary non-aqueous electrolyte battery
KR101463648B1 (en) positive-electrode active material with improved OUTPUT and Lithium secondary battery including them
JP2009129632A (en) Nonaqueous electrolyte battery
JP3229531B2 (en) Non-aqueous electrolyte secondary battery
JPH06267542A (en) Nonaqueous electrolyte battery
JP3049973B2 (en) Non-aqueous electrolyte secondary battery
US6465131B1 (en) Lithium secondary cell with a stannous electrode material
JP3030995B2 (en) Non-aqueous electrolyte secondary battery
JPH08190932A (en) Secondary battery having nonaqueous solvent electrolyte
JPH08162154A (en) Secondary battery having nonaqueous solvent electrolyt
JP2006040557A (en) Organic electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080630

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 13