JP3111324B2 - Non-aqueous electrolyte secondary battery - Google Patents
Non-aqueous electrolyte secondary batteryInfo
- Publication number
- JP3111324B2 JP3111324B2 JP03201597A JP20159791A JP3111324B2 JP 3111324 B2 JP3111324 B2 JP 3111324B2 JP 03201597 A JP03201597 A JP 03201597A JP 20159791 A JP20159791 A JP 20159791A JP 3111324 B2 JP3111324 B2 JP 3111324B2
- Authority
- JP
- Japan
- Prior art keywords
- battery
- positive electrode
- secondary battery
- active material
- electrolyte secondary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は非水電解液二次電池、特
にリチウムとコバルトとの複合酸化物(LiCoO2 )
を正極活物質に用い、負極に炭素質材料を用いた電池に
関するものである。The present invention is a non-aqueous electrolyte secondary battery BACKGROUND OF THE, especially composite oxide of lithium and cobalt (LiCoO 2)
And a battery using a carbonaceous material for a negative electrode.
【0002】[0002]
【従来の技術】近年、電子機器のポータブル化、コード
レス化が急速に進んでおり、これらの駆動用電源として
小形・軽量で、高エネルギー密度を有する二次電池への
要望が高い。このような点で非水系二次電池、特にリチ
ウム二次電池はとりわけ高電圧・高エネルギー密度を有
する電池として期待が大きい。2. Description of the Related Art In recent years, portable and cordless electronic devices have been rapidly advancing, and there is a high demand for a small and lightweight secondary battery having a high energy density as a drive power source for these devices. In this respect, non-aqueous secondary batteries, especially lithium secondary batteries, are expected to have high voltage and high energy density.
【0003】特に最近、LiCoO2 を正極活物質と
し、負極に炭素材を用いた電池系が、高エネルギー密度
のリチウム二次電池として注目を集めている。この電池
系の特徴は、電池電圧が高い(LiCoO2 がLiに対
して4Vの高電圧を有するため)ことと、正負極ともに
インターカレーション反応を利用しているところにあ
る。特に、負極に金属Liを用いていないので、デンド
ライト状Liの析出による短絡等がなく安全性、および
急速充電が期待できるものである。In particular, recently, a battery system using LiCoO 2 as a positive electrode active material and a carbon material as a negative electrode has attracted attention as a high energy density lithium secondary battery. The features of this battery system are that the battery voltage is high (because LiCoO 2 has a high voltage of 4 V with respect to Li) and that the positive and negative electrodes both use an intercalation reaction. In particular, since metal Li is not used for the negative electrode, there is no short circuit due to precipitation of dendritic Li, and safety and rapid charging can be expected.
【0004】一般に、この種の二次電池には高出力、高
容量で使用寿命が長いことが基本的に要望されている
が、最近の電子機器の高機能化にともない、機器を使用
していない状態でもメモリーバックアップや他の制御回
路のコントロールで電力を消費するものが増えてきた。
すなわち、電池を機器に装着したまま放置すると電池は
放電し続け、容量が尽きて電池電圧は最終的に0Vに達
することになる。従って、電池は、このような放電(過
放電と呼んでいる)を経験した後でも再び充電すること
によって回復するものでなければ実用性が低い。ところ
が、LiCoO2 を正極に用い、炭素質材料を負極に用
いたリチウム二次電池の場合、このような過放電を行な
うと、再び充放電しても元の容量に回復せず、電池容量
が低くなる欠点があった。そして、この電池系における
過放電対策として、特開昭63−228573や特開昭
63−314778でMoO3 ,V2 O5 ,TiO2 等
の酸化物を正極に添加する手段が開示された。しかし、
この電池系の場合、Li源はLiCoO2 のみであり、
充放電に寄与するLiの一部が添加した物質によって消
費されるため、充放電容量が低くなることと過放電劣化
の抑制の効果がそれほど大きくないことが指摘された。
そのため、さらにこの改良形として、特開平2−265
167で既にLiを含むLix MoO3 等を正極中に副
活物質として加える手段が開示された。この手段の効果
を確認する検討を行った結果、既にLiを含むため充放
電に寄与するLiの一部が添加した物質によって消費さ
れることもなく、過放電劣化の抑制の効果も大きいもの
であった。ところが、この検討をさらに進めた結果、確
かに室温付近(20℃〜30℃)ではすぐれた効果を示
したが、高温、たとえば60℃の環境下で過放電を行う
と、再び充放電しても元の容量に回復せず、電池容量が
低くなる欠点があった。実際には、機器に装着されたま
ま過放電放置されることは、室温付近ばかりではなく高
温でもありうるので、この場合でも過放電劣化を抑制で
きる何等かの対策を構じなければならないと考えられ
る。[0004] Generally, it is basically demanded that this type of secondary battery has a high output, a high capacity and a long service life. However, with the recent advancement of functions of electronic equipment, equipment has been used. Even in the absence of such a device, power consumption by memory backup and control of other control circuits has increased.
That is, if the battery is left attached to the device, the battery continues to be discharged, the capacity runs out, and the battery voltage finally reaches 0V. Therefore, a battery is of low practicality unless it is recovered by recharging after experiencing such discharge (called overdischarge). However, in the case of a lithium secondary battery using LiCoO 2 for the positive electrode and a carbonaceous material for the negative electrode, if such overdischarge is performed, the original capacity is not restored even if the battery is charged and discharged again, and the battery capacity is reduced. There was a drawback that it became lower. As measures against overdischarge in this battery system, JP-A-63-228573 and JP-A-63-314778 disclose means for adding an oxide such as MoO 3 , V 2 O 5 , and TiO 2 to the positive electrode. But,
In the case of this battery system, the Li source is only LiCoO 2 ,
It has been pointed out that since a part of Li contributing to charge and discharge is consumed by the added substance, the charge and discharge capacity is reduced and the effect of suppressing overdischarge deterioration is not so large.
Therefore, as an improved form, Japanese Patent Application Laid-Open No. 2-265
167 discloses means for adding Li x MoO 3 or the like already containing Li as a sub-active material to the positive electrode. As a result of examining the effect of this means, a portion of Li contributing to charging and discharging already containing Li is not consumed by the added substance, and the effect of suppressing over-discharge deterioration is great. there were. However, as a result of further study, the effect was surely excellent near room temperature (20 ° C. to 30 ° C.). However, when overdischarge was performed in a high temperature environment, for example, at 60 ° C., the battery was charged and discharged again. However, the battery capacity was not restored to the original capacity, and the battery capacity was reduced. In fact, over-discharge leaving the device mounted may not only be near room temperature but also at high temperatures, so it is necessary to take some measures to prevent over-discharge deterioration even in this case. Can be
【0005】そこでLiCoO2 からなる正極と、炭素
質材料からなる負極と、有機電解質からなるリチウム二
次電池を試作し充放電した後、抵抗を接続して過放電し
た。そして、その時の正負極それぞれの単極挙動をLi
を参照極として測定した結果、図4に示すように電池電
圧が0Vに達した時点で正負極ともLiに対して3.3V
近くの電位に達していることがわかった。これは、正負
極が等電位(電池電圧が0V)になった時点でその電位
が正極に支配されていることを意味している。正極は通
常この付近の電位で使われており、かつLiに対して1
V近くまで放電しても可逆性をそこなうことはないと言
われているので問題はないと考えられる。一方、負極は
通常Liに対して1V以下の電位で使われている。すな
わち、過放電により負極の電位がこのように極めて貴な
電位に維持されることが問題であると考えられる。例え
ば特開平2−265167では、負極がこのような貴な
電位になるため負極集電体が溶解し、劣化を引き起こす
と指摘している。そこで、負極の電位と性能劣化の関係
を定電位ステップ方式で調べた結果、Liに対して3V
を超えると、負極の容量特性が著しく劣化することがわ
かった。従って、正負極が等電位(電池電圧が0V)に
なった時点でその電位を支配している正極の平衡電位を
より卑な電位(3V以下)に維持し、過放電劣化を抑制
するというのが特開平2−265167の主旨であり、
加える副活物質はLiの損失を最小限に押さえるために
予めLiを含んでいるLi化合物であることが好ましい
というものであった。この手段を用いることで、過放電
時の電位を低く抑え、負極の容量特性の劣化を抑えるこ
とは可能であったが、この効果は室温付近でのみ有効な
もので、例えば60℃の環境下で過放電を行なうと、過
放電後にやはり容量特性の劣化が認められた。従って、
従来の電位を制御する手段のみでは高温での過放電に対
する対策としては十分であるとはいえない。そこで、高
温の環境下での過放電劣化の原因を探る検討を行なった
結果、電解液の分解を起こしていることがわかった。さ
らに、この電解液の分解反応を検討した結果、正極の表
面でその反応が起こっていることが判明し、これは従来
の手段で電位を制御しても起こりうるものであることが
わかった。過放電で0Vに達した時点では正負極間に電
荷移動はないと考えると、この高温の過放電劣化は正極
表面で単独に起こる副反応である可能性が強い。一般
に、活物質であるLiCoO2 等のCo酸化物は有機物
に対する強い酸化触媒であると言われている。特に、こ
のような触媒反応活性は高温の環境下で促進されるもの
と考えられることから、高温下での過放電時には有機物
である電解液の触媒分解反応が副反応として起こり、過
放電劣化の原因になっていると予想される。従ってとく
に高温度下において過放電をした二次電池の回復には困
難な技術上の問題があった。[0005] Then, a lithium secondary battery made of a positive electrode made of LiCoO 2 , a negative electrode made of a carbonaceous material, and an organic electrolyte was prototyped, charged and discharged, and then over-discharged by connecting a resistor. Then, the unipolar behavior of each of the positive and negative electrodes at that time is represented by Li
As a result, when the battery voltage reached 0 V, as shown in FIG.
It turned out that the potential reached near. This means that the potential is controlled by the positive electrode when the positive and negative electrodes become equipotential (the battery voltage becomes 0 V). The positive electrode is usually used at a potential in the vicinity of this, and is 1 to Li.
It is said that there is no loss of reversibility even if the battery is discharged to near V, so it is considered that there is no problem. On the other hand, the negative electrode is usually used at a potential of 1 V or less with respect to Li. That is, it is considered that there is a problem that the potential of the negative electrode is maintained at such a very noble potential due to overdischarge. For example, Japanese Patent Application Laid-Open No. 2-265167 points out that the negative electrode has such a noble potential so that the negative electrode current collector is dissolved to cause deterioration. Therefore, the relationship between the potential of the negative electrode and the performance degradation was examined by the constant potential step method.
It was found that the capacity characteristics of the negative electrode were significantly degraded when it exceeded. Accordingly, when the positive and negative electrodes become equipotential (battery voltage becomes 0 V), the equilibrium potential of the positive electrode that controls the potential is maintained at a lower potential (3 V or less) to suppress overdischarge deterioration. Is the gist of JP-A-2-265167,
The added secondary active material is preferably a Li compound containing Li in advance in order to minimize the loss of Li. By using this means, it was possible to suppress the potential at the time of overdischarge and to suppress the deterioration of the capacity characteristics of the negative electrode. However, this effect is effective only near room temperature, for example, in an environment of 60 ° C. When the overdischarge was carried out, the deterioration of the capacity characteristic was also observed after the overdischarge. Therefore,
The conventional means for controlling the potential alone is not sufficient as a measure against overdischarge at high temperatures. Therefore, as a result of an investigation for investigating the cause of the overdischarge deterioration in a high-temperature environment, it was found that the electrolytic solution was decomposed. Further, as a result of examining the decomposition reaction of this electrolytic solution, it was found that the reaction occurred on the surface of the positive electrode, and it was found that this reaction could occur even if the potential was controlled by conventional means. Considering that there is no charge transfer between the positive electrode and the negative electrode when the voltage reaches 0 V due to overdischarge, there is a strong possibility that this high-temperature overdischarge deterioration is a side reaction that occurs solely on the positive electrode surface. In general, it is said that a Co oxide such as LiCoO 2 as an active material is a strong oxidation catalyst for organic substances. In particular, such catalytic reaction activity is considered to be promoted in a high-temperature environment.Thus, at the time of over-discharge at high temperature, the catalytic decomposition reaction of the organic electrolyte occurs as a side reaction, resulting in over-discharge deterioration. It is expected to be the cause. Therefore, recovery of an overdischarged secondary battery particularly at a high temperature has a difficult technical problem.
【0006】[0006]
【発明が解決しようとする課題】本発明が解決しようと
する従来の問題点は、前述のように高温、例えば60℃
の環境下で過放電をした非水電解液を使用した二次電池
を、再び充放電しても元の電池容量を維持することがで
きず、すなわち高温における過放電劣化の抑制ができな
いという点である。The conventional problem to be solved by the present invention is, as described above, a high temperature, for example, 60 ° C.
Secondary battery using a non-aqueous electrolyte that has been over-discharged in the above environment, the original battery capacity cannot be maintained even when the battery is charged and discharged again, that is, the over-discharge deterioration at high temperatures cannot be suppressed. It is.
【0007】[0007]
【課題を解決するための手段】本発明はLiCoO2 を
正極活物質とする正極と、炭素質材料を負極材料とする
負極を用いる非水電解液二次電池において、上記課題を
解決するためにはNb,As,Sb,Biの群から選ば
れた少なくとも一つの金属とLiとの複合酸化物を二次
電池反応系において上記LiCoO 2 とは固溶体になる
ことなく、混合物として存在するようにしたものであ
る。さらに上記正極はLiに対して3V以下の放電電位
を有するLi含有酸化物を含み、かつ上記群から選ばれ
た少なくとも一つの金属の酸化物を混合したものであ
る。 SUMMARY OF THE INVENTION The present invention provides LiCoO 2
In a non-aqueous electrolyte secondary battery using a positive electrode as a positive electrode active material and a negative electrode using a carbonaceous material as a negative electrode material, in order to solve the above-described problems, a group of Nb, As, Sb, and Bi is used. Secondary composite oxide of at least one selected metal and Li
LiCoO 2 becomes a solid solution in the battery reaction system
Without being present as a mixture . Further, the positive electrode contains a Li-containing oxide having a discharge potential of 3 V or less with respect to Li, and is a mixture of at least one metal oxide selected from the above group.
You.
【0008】[0008]
【作用】本発明では、Nb,As,Sb,Biの群から
選ばれた金属の化合物を正極に加えることを特徴とする
もので、これらの化合物がCo酸化物の有機物に対する
酸化触媒活性を抑制する触媒毒としての作用をするもの
である。実際に電位の制御に加えてこれらの化合物を用
いることによって高温の過放電劣化を抑制できる結果と
なった。このことからも、高温下での過放電劣化の一つ
の原因が電解液の触媒分解反応であり、この反応の抑制
を目的とした本発明の手段がきわめて有効な手段である
ことは明らかである。従って、過放電劣化を抑制するた
めには、正極はLiに対して3V以下の放電電位を有す
る副活物質を含み、さらに高温でもこの効果を発揮する
ためにはNb,As,Sb,Biの群から選ばれた少な
くとも一つの金属、またはその金属の化合物を含ませる
手段が有効であるといえる。特に、上記群から選ばれた
少なくとも一つの金属とLiとの複合化合物を用いる
と、電位の制御と電解液の触媒分解反応の抑制が同時に
達成できる。また、さらに検討を加えた結果、副活物質
も、加える上記金属の化合物もともに酸化物であるこ
と、そしてLiとの複合化合物とする場合も複合酸化物
であることが、好ましいものであることを究明したもの
である。The present invention is characterized in that a metal compound selected from the group consisting of Nb, As, Sb and Bi is added to the positive electrode, and these compounds suppress the oxidation catalytic activity of the Co oxide against organic substances. It acts as a catalyst poison. By using these compounds in addition to actually controlling the potential, the result was that high-temperature overdischarge deterioration could be suppressed. From this, it is clear that one cause of the overdischarge deterioration at high temperature is the catalytic decomposition reaction of the electrolytic solution, and the means of the present invention aimed at suppressing this reaction is an extremely effective means. . Therefore, in order to suppress over-discharge deterioration, the positive electrode contains a sub-active material having a discharge potential of 3 V or less with respect to Li, and in order to exert this effect even at a high temperature, Nb, As, Sb, and Bi are used. Means for incorporating at least one metal selected from the group or a compound of the metal can be said to be effective. In particular, when a composite compound of at least one metal selected from the above group and Li is used, control of the potential and suppression of the catalytic decomposition reaction of the electrolytic solution can be achieved at the same time. Further, as a result of further study, it is preferable that both the sub-active material and the compound of the metal to be added are oxides, and it is preferable that the compound is also a compound oxide when the compound is combined with Li. Was determined.
【0009】[0009]
【実施例】以下、図面とともに本発明の実施例と比較例
の説明をする。Embodiments of the present invention and comparative examples will be described below with reference to the drawings.
【0010】図1は本発明の実施例と比較例の電池特性
を実証するために用いたコイン形電池の縦断面である。
図1において、正極1は活物質に導電材である炭素粉末
(活物質に対して5重量%)と結着材である四フッ化エ
チレン樹脂粉末(活物質に対して7重量%)を混合した
もので、正極ケース2の内側にスポット溶接で固定した
チタンネット3上にプレス成型したものである。また、
負極4は活物質である炭素質材の粉末に結着材であるポ
リアクリル酸系の樹脂粉末(炭素質材に対して5重量
%)を混合したもので、封口板5の内側にスポット溶接
で固定したステンレスネット6上にプレス成型したもの
である。そして、これらをポリプロピレン製のセパレー
タ7、及び電解液8と共にポリプロピレン製のガスケッ
ト9を介して密封し、直径20ミリ、高さ1.6ミリの完
成電池とした。なお、電解液には1モルの過塩素酸リチ
ウムを炭酸プロピレンと炭酸エチレンとの混合溶媒中に
溶かしたものを用いた。この電池は試作直後は放電状態
にあり、充電から開始する。FIG. 1 is a longitudinal section of a coin-shaped battery used to verify the battery characteristics of the embodiment of the present invention and the comparative example.
In FIG. 1, a positive electrode 1 is formed by mixing a carbon powder (5% by weight with respect to the active material) as an active material and an ethylene tetrafluoride resin powder (7% by weight with respect to the active material) as a binder. This is press-formed on a titanium net 3 fixed to the inside of the positive electrode case 2 by spot welding. Also,
The negative electrode 4 is obtained by mixing a powder of a carbonaceous material as an active material with a polyacrylic acid-based resin powder (5% by weight based on the carbonaceous material) as a binder, and spot-welding the inside of the sealing plate 5. It is press-formed on the stainless steel net 6 fixed by the above. These were sealed together with a separator 7 made of polypropylene and an electrolytic solution 8 via a gasket 9 made of polypropylene to obtain a completed battery having a diameter of 20 mm and a height of 1.6 mm. The electrolyte used was one in which 1 mol of lithium perchlorate was dissolved in a mixed solvent of propylene carbonate and ethylene carbonate. This battery is in a discharged state immediately after trial production, and starts from charging.
【0011】(比較例1)図5中の破線で示した曲線
は、比較例1の電池(正極にLiCoO2 のみを用いた
電池)の場合における2mAの定電流充放電を充電終始電
圧を4.1V、放電終始電圧を3.0Vに設定して行なった
時の10サイクル目の充放電電圧特性である。この電池
の場合、放電平均電圧は3.7Vであった。図6中の破線
で示した曲線は、この充放電をくり返し行なったときの
放電容量−サイクル特性を示したものである。図6から
も明らかなように100サイクル経過しても放電容量は
初期の90%以上を維持しておりサイクル可逆性にすぐ
れていることがわかる。そこでまず、室温下(20℃)
での過放電にともなう電池性能の劣化程度について検討
した。過放電は、上記条件で10サイクルの充放電を行
なった後、放電状態で電池を取り出し、これを50Ωの
抵抗で放電し、0Vに達した後に抵抗を接続したままさ
らに10日間放置するというものである。この過放電を
10サイクル目に経験させた後、再び充放電を行なった
結果、その充放電電圧特性は容量が20%近く低下し
た。そして、さらにサイクルをくり返しても図6の実線
で示したように容量が低下したままであった。従って、
この電池は室温下の過放電を経験することによって、容
量特性が劣化するものであることがわかった。(Comparative Example 1) A curve shown by a broken line in FIG. 5 indicates a constant current charge / discharge of 2 mA in the case of the battery of Comparative Example 1 (battery using only LiCoO 2 for the positive electrode) and a voltage of 4 at the end of charging. 10 shows the charge / discharge voltage characteristics at the 10th cycle when the discharge was performed with the discharge voltage set at 0.1 V and the discharge end voltage set at 3.0 V. In the case of this battery, the average discharge voltage was 3.7V. A curve shown by a broken line in FIG. 6 shows a discharge capacity-cycle characteristic when the charge and discharge are repeatedly performed. As is clear from FIG. 6, even after 100 cycles, the discharge capacity is maintained at 90% or more of the initial value, and the cycle reversibility is excellent. So first, at room temperature (20 ° C)
The degree of deterioration of battery performance due to over-discharge in the battery was examined. Overdischarge is to charge and discharge 10 cycles under the above conditions, take out the battery in a discharged state, discharge it with a resistance of 50 Ω, reach 0 V, and leave it for 10 days with the resistance connected It is. After the 10th cycle of this overdischarge, the battery was charged and discharged again. As a result, the capacity of the charge and discharge voltage characteristics was reduced by nearly 20%. Then, even if the cycle was further repeated, the capacity remained reduced as shown by the solid line in FIG. Therefore,
This battery was found to have deteriorated capacity characteristics by experiencing overdischarge at room temperature.
【0012】(比較例2)次に、正極の電位を制御する
副活物質を加えて過放電劣化の抑制を行なう比較例2を
適用した電池について示す。正極中にLiCoO2 に加
えてLiMn2 O 4 を5モル%混合した活物質を用い、
前記と同様のコイン形電池を試作した。そして比較例1
と同様の条件で室温下の過放電を含む充放電試験を行な
った。図7中の破線で示した曲線はこの電池の10サイ
クル目の充放電電圧特性で、比較例1の特性(図5の破
線)とほとんど変わらないことがわかる。また、放電容
量−サイクル特性も図8中の破線で示したように比較例
1の電池の特性(図6の破線)とほとんど変わらないこ
とがわかる。従って、正極中にLiMn2 O4 を添加す
ることは、少なくとも通常の充放電特性にはほとんど悪
影響を与えるものではないと考えられる。次いで、この
電池を上記と同様の過放電を経験させた後、再び充放電
を行なった結果、図7の実線で示したように容量劣化は
わずか2%程度であった。そして、さらにサイクルをく
り返しても図8の実線で示したようにその後のサイクル
特性はすぐれたものであった。以上のように、LiMn
2 O4 を正極に加えることによって過放電劣化を抑制す
る効果があることが明らかとなった。この原因を調べる
ために正負極の単極挙動を測定した結果、0Vに達した
時点での正負極の電位がLiに対して3.0V以下の位置
にあることがわかり、そのために負極の容量特性の劣化
が抑えられたものと推測される。(Comparative Example 2) Next, the potential of the positive electrode is controlled.
Comparative Example 2 in which over-discharge deterioration is suppressed by adding a sub-active material
The following shows the applied battery. LiCoO in the positive electrodeTwoJoin
LiMnTwoO FourUsing an active material containing 5 mol% of
A coin-shaped battery similar to that described above was prototyped. And Comparative Example 1
A charge / discharge test including overdischarge at room temperature was performed under the same conditions as
Was. The curve shown by the broken line in FIG.
In the charge / discharge voltage characteristics of the cell, the characteristics of Comparative Example 1 (breaking of FIG.
Line) and hardly any difference. Also, the discharge volume
The amount-cycle characteristics are also comparative examples as shown by the broken line in FIG.
The characteristics are almost the same as the characteristics of the battery 1 (broken line in FIG. 6).
I understand. Therefore, LiMn is contained in the positive electrode.TwoOFourAdd
Is at least almost a bad thing for normal charge / discharge characteristics.
It is not considered to have any effect. Then this
After the battery undergoes the same overdischarge as above, charge and discharge again
As a result, as shown by the solid line in FIG.
It was only about 2%. And go further cycles
Even after returning, as shown by the solid line in FIG.
The properties were excellent. As described above, LiMn
TwoOFourSuppresses over-discharge deterioration by adding
It became clear that there was an effect. Investigate this cause
As a result of measuring the unipolar behavior of the positive and negative electrodes, it reached 0V
Position where the potential of the positive and negative electrodes at the time is 3.0 V or less with respect to Li
And the deterioration of the capacity characteristics of the negative electrode
It is presumed that was suppressed.
【0013】ところが、この電池で上記と同様の過放電
を60℃の環境下で経験させた後、再び充放電を行なっ
た結果、図2の破線で示したように容量劣化は25%程
度もあり、図7と比較しても明らかなように特に電圧特
性が大きく変化する(分極が大きくなる)ものとなっ
た。そして、さらにサイクルをくり返しても特性が回復
することはなく容量が低下したままであった。特に、こ
のように分極が大きくなる原因としては、高温での過放
電中に何等かの副反応(電解液の分解と考えられる)が
起こり、これが電極反応を阻害するためであると予想さ
れる。本比較例2では副活物質としてLiMn2 O4 を
用いたが、他のLi含有複合酸化物、例えばMo,Vま
たはFe等とLiからなるもの、さらにLi含有複合硫
化物等の酸化物以外のものについても検討を加えた。そ
の結果、いずれも程度の差はあるが電位を制御する効果
を示し、室温での過放電劣化の抑制には有効であった。
しかし、上記Li含有複合化合物のほとんどが高温(6
0℃)の環境下で過放電を行なうと劣化した。従って、
電位を制御する手段だけでは、高温における過放電劣化
を抑えるには不十分であると考えられた。However, the battery was subjected to the same overdischarge in an environment of 60 ° C. and then charged and discharged again. As a result, as shown by the broken line in FIG. 2, the capacity deterioration was about 25%. In particular, as apparent from comparison with FIG. 7, the voltage characteristics particularly changed significantly (polarization increased). Then, even if the cycle was repeated, the characteristics were not recovered and the capacity was kept lowered. In particular, it is expected that the cause of such an increase in polarization is that some side reaction (considered as decomposition of the electrolytic solution) occurs during overdischarge at a high temperature, which inhibits the electrode reaction. . In Comparative Example 2, LiMn 2 O 4 was used as a sub-active material. However, other Li-containing composite oxides, for example, those made of Mo, V or Fe and Li, and other than oxides such as Li-containing composite sulfides We also considered the ones. As a result, each showed an effect of controlling the potential although varying to some extent, and was effective in suppressing overdischarge deterioration at room temperature.
However, most of the above-mentioned Li-containing composite compounds have a high temperature (6.
(0 ° C.), the battery deteriorated when overdischarged. Therefore,
It was considered that the means for controlling the potential alone was not enough to suppress overdischarge deterioration at high temperatures.
【0014】(実施例1)次に、正極の電位を制御する
副活物質を加えて過放電劣化の抑制を行なう比較例2を
適用した電池をさらに改良した本発明の電池についてそ
の実施例を示す。正極にはLiCoO2 に加えてLiM
n2 O4 を5モル%混合した比較例2で用いた活物質
に、さらにNb2 O5 を3モル%混合した活物質を用い
た。そして、この活物質でコイン形電池を試作した。次
いで、比較例2と同様の条件の60℃の環境下での過放
電を経験させた後、再び充放電を行なった結果、図2の
実線で示したように容量特性は比較例2の電池の特性
(図2の破線)に比べてすぐれたものであった。さらに
その後、サイクルをくり返したが、そのサイクル可逆性
はすぐれたもので、過放電を経験しない電池の特性とほ
とんど変わらないものが得られた。この結果から、他の
特性にほとんど影響を与えることなくNb2 O5 が高温
での過放電劣化を抑える効果を有することは明らかであ
る。特に、Nb2 O 5 の添加は、高温での過放電中に起
こる副反応を正極の酸化触媒反応によるものと仮定し、
この反応の触媒毒として働くことを予想して行なったも
のであった。このように、Nb2 O5 を用いることによ
って好結果を示したことからも、触媒毒という考え方を
適用することで高温での過放電劣化を抑えることができ
るものと考えられる。そこで、触媒毒として可能性のあ
るBi,As,Sb等の金属またはこれらの金属の酸化
物についてもその添加効果を検討した結果、いずれも高
温過放電に好結果を示した。ところが、同様の効果を期
待して、Nb,Bi,As,Sb等の硫化物やセレン化
物を添加する検討も行なったが、過放電劣化は無添加に
比べて小さいものの、その効果は酸化物に比べて小さか
った。特に、硫化物やセレン化物を用いた場合、電解液
中に硫黄やセレンの成分が溶出していることがわかっ
た。また、正極の電位を制御する副活物質として、本実
施例1ではLiMn2 O4 を用いたがLi2 MnO4 ,
Li3 VO4 ,Li2 SnO3 等の他の酸化物について
も検討した結果、いずれの場合も同様の効果を示すこと
がわかった。ところが、正極の電位を制御するLiを含
む副活物質として硫化物やセレン化物を用いた場合、室
温の過放電ではすぐれた効果を示したが、高温の過放電
を行なった場合、上記と同様に電解液中に硫黄やセレン
の成分が溶出し、その効果は小さかった。そこで、Li
CoO2 に加える電位制御のための副活物質、及び触媒
毒となる添加剤の両者についてさらに検討を加えた結
果、高温の過放電劣化を抑制するためには、その高温で
の化学的安定性からいずれの場合も酸化物であることが
望ましいことがわかった。(Embodiment 1) Next, the potential of the positive electrode is controlled.
Comparative Example 2 in which over-discharge deterioration is suppressed by adding a sub-active material
The battery of the present invention in which the applied battery is further improved
The following shows an example. LiCoO for the positive electrodeTwoPlus LiM
nTwoOFourUsed in Comparative Example 2 containing 5 mol% of
And NbTwoOFiveUsing an active material mixed with 3 mol%
Was. Then, a coin-type battery was prototyped with this active material. Next
Then, overdischarge under the same conditions as in Comparative Example 2 at 60 ° C.
After the battery was charged and discharged again,
As indicated by the solid line, the capacity characteristics are the characteristics of the battery of Comparative Example 2.
(Broken line in FIG. 2). further
After that, the cycle was repeated, but the cycle reversibility
Is excellent and has the characteristics and
I got something almost the same. From this result, other
Nb with almost no effect on characteristicsTwoOFiveBut high temperature
Has the effect of suppressing over-discharge deterioration in
You. In particular, NbTwoO FiveAddition occurs during overdischarge at high temperatures.
Assuming that this side reaction is due to the oxidation catalyst reaction of the positive electrode,
It was performed with the expectation that it would act as a catalyst poison for this reaction.
It was. Thus, NbTwoOFiveBy using
Of the catalyst poison,
By applying it, it is possible to suppress overdischarge deterioration at high temperatures.
It is considered to be. Therefore, there is a possibility as a catalyst poison.
Of Bi, As, Sb, etc. or oxidation of these metals
As a result of examining the effect of adding
Good results were obtained for overdischarge. However, similar effects are expected.
Wait, sulfides such as Nb, Bi, As, Sb and selenide
We examined the addition of a material, but no
Although smaller, the effect is smaller than oxide
Was. In particular, when sulfide or selenide is used, the electrolyte
It is understood that sulfur and selenium components are eluted in the
Was. In addition, it is used as a sub-active material to control the potential of the positive electrode.
In Example 1, LiMnTwoOFourWas used but LiTwoMnOFour,
LiThreeVOFour, LiTwoSnOThreeAbout other oxides such as
As a result of the investigation, the same effect was exhibited in each case.
I understood. However, it contains Li, which controls the potential of the positive electrode.
If sulfide or selenide is used as a secondary active material,
Excellent effect was obtained with overdischarge at high temperature.
In the same way as described above, sulfur and selenium
Was eluted, and the effect was small. Then, Li
CoOTwo-Active materials and catalysts for controlling the electric potential applied to the catalyst
Further investigation was conducted on both poisoning additives.
As a result, in order to suppress high-
Can be an oxide in any case due to the chemical stability of
It turned out to be desirable.
【0015】次いで、LiCoO2 に加える電位制御の
ための副活物質、及び触媒毒となる添加剤の添加量につ
いて検討した。その結果、電位制御のために加える副活
物質(Liを含む複合酸化物)はLiCoO2 に対して
少なくとも3モル%以上で、触媒毒となる添加剤(酸化
物)は少なくとも2モル%以上必要であることがわかっ
た。Next, the amount of a secondary active material added to LiCoO 2 for controlling the potential and the amount of an additive acting as a catalyst poison were examined. As a result, the amount of the secondary active material (composite oxide containing Li) added for controlling the electric potential is at least 3 mol% or more based on LiCoO 2 , and the amount of the additive (oxide) serving as a catalyst poison is at least 2 mol%. It turned out to be.
【0016】(実施例2)次に、LiCoO2 に加える
電位制御のための副活物質、及び触媒毒となる添加剤の
両方の効果を同時に発揮することを期待して、本発明に
係るところのLiとNbの複合酸化物であるLi3 Nb
O4 を添加する検討を行なった。活物質はLiCoO2
に対してLi3 NbO4 を5モル%加えたものを用い
た。そしてこの活物質を用いて上記実施例1と同様のコ
イン形電池を試作した。次いで、上記実施例1と同様の
条件で60℃の環境下での過放電を経験させた後、再び
充放電を行なった。図3はこの電池の充放電電圧特性を
示したもので、過放電を行なう前の特性(図3中破線)
と上記高温での過放電を経験した後の特性(実線)を比
較したもので、この電池の場合も実施例1の本発明の電
池と同様に高温での過放電での性能劣化はきわめて少な
くすぐれたものであった。さらにその後、サイクルをく
り返したが、そのサイクル可逆性はすぐれたもので、過
放電を経験しない電池の特性とほとんど変わらないもの
が得られた。従って、この電池の場合も他の特性にほと
んど影響を与えることなく電位制御と触媒毒の両方の効
果を同時に発揮できるものであることは明らかである。
本実施例2ではLiとNbの複合酸化物に関する結果を
述べたが、Nbの代わりにBi,AsまたはSbとした
ものについても検討した結果、ほぼ同様の効果が得られ
ることがわかった。(Example 2) Next, the present invention is expected to simultaneously exert the effects of both a sub-active material added to LiCoO 2 for controlling potential and an additive which becomes a poison for the catalyst. Li 3 Nb, a composite oxide of Li and Nb
A study was made to add O 4 . The active material is LiCoO 2
To which 5 mol% of Li 3 NbO 4 was added. Using this active material, a coin-shaped battery similar to that of the above-described example 1 was prototyped. Next, the battery was subjected to overdischarge in a 60 ° C. environment under the same conditions as in Example 1, and then charged and discharged again. FIG. 3 shows the charge / discharge voltage characteristics of this battery, and the characteristics before overdischarge (dashed line in FIG. 3).
And the characteristics (solid line) after experiencing the above-described overdischarge at a high temperature. In the case of this battery as well, the performance deterioration due to the overdischarge at a high temperature is extremely small as in the battery of the present invention of Example 1. It was excellent. After that, the cycle was repeated, but the cycle reversibility was excellent, and the battery characteristics were almost the same as those of the battery that did not undergo overdischarge. Therefore, it is apparent that this battery can simultaneously exert both the potential control and the catalyst poisoning effects without substantially affecting other characteristics.
In the present Example 2, the result regarding the composite oxide of Li and Nb was described. As a result of examining the case where Bi, As or Sb was used instead of Nb, it was found that almost the same effect was obtained.
【0017】次いで、LiCoO2 に加える上記複合酸
化物の添加量について検討した。その結果、上記いずれ
の複合酸化物の場合もLiCoO2 に対して少なくとも
3モル%以上加えると十分な効果が得られることがわか
った。従って、実施例1で述べた本発明の電池に比べて
その添加量が少なくて済み、この手段の方がより有効な
手段と考えられる。Next, the amount of the composite oxide added to LiCoO 2 was examined. As a result, it was found that a sufficient effect can be obtained by adding at least 3 mol% or more to LiCoO 2 in any of the above composite oxides. Therefore, the amount of addition is smaller than that of the battery of the present invention described in Example 1, and this means is considered to be a more effective means.
【0018】[0018]
【発明の効果】以上の説明で明らかなように、本発明を
適用することにより、機器に装着されたまま電池が過放
電されても、特に高温で過放電されても、再び充電する
ことによって性能が回復するので、実用上きわめて有利
な非水電解液電池を提供しうる。As is apparent from the above description, by applying the present invention, even if the battery is over-discharged while being attached to the device, especially if it is over-discharged at a high temperature, it can be recharged. Since the performance is restored, a practically advantageous nonaqueous electrolyte battery can be provided.
【図1】本発明の実施例と比較例に用いたコイン形電池
の縦断面図FIG. 1 is a longitudinal sectional view of a coin-type battery used in Examples and Comparative Examples of the present invention.
【図2】本発明の実施例1と比較例2の電池の充放電電
圧特性の比較を示す図FIG. 2 is a diagram showing a comparison of charge / discharge voltage characteristics of batteries of Example 1 of the present invention and Comparative Example 2.
【図3】本発明の実施例2の電池の充放電電圧特性を示
す図FIG. 3 is a diagram showing charge / discharge voltage characteristics of a battery according to Example 2 of the present invention.
【図4】正負極の過放電時の単極挙動を示す図FIG. 4 is a diagram showing the unipolar behavior of the positive and negative electrodes during overdischarge.
【図5】比較例1の電池の充放電電圧特性を示す図FIG. 5 is a diagram showing charge / discharge voltage characteristics of the battery of Comparative Example 1.
【図6】同電池の容量−サイクル特性を示す図FIG. 6 is a diagram showing capacity-cycle characteristics of the battery.
【図7】比較例2の電池の充放電電圧特性を示す図FIG. 7 is a diagram showing charge / discharge voltage characteristics of a battery of Comparative Example 2.
【図8】同電池の容量−サイクル特性を示す図FIG. 8 is a diagram showing capacity-cycle characteristics of the battery.
1 正極 2 正極ケース 3 チタンネット 4 負極 5 封口板 6 ステンレスネット 7 セパレータ 8 電解液 9 ガスケット DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Positive electrode case 3 Titanium net 4 Negative electrode 5 Sealing plate 6 Stainless steel net 7 Separator 8 Electrolyte 9 Gasket
フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 4/58 H01M 4/02 H01M 4/62 H01M 10/40 Continuation of the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 4/58 H01M 4/02 H01M 4/62 H01M 10/40
Claims (6)
極活物質とする正極と、炭素質材料を負極材料とする負
極を用いる非水電解液二次電池であって、上記正極にN
b,As,Sb,Biの群から選ばれた少なくとも一つ
の金属とリチウムとの複合酸化物を二次電池反応系にお
いて上記リチウムとコバルトとの複合酸化物とは固溶体
になることなく、混合物として存在するようにした非水
電解液二次電池。1. A non-aqueous electrolyte secondary battery using a positive electrode using a composite oxide of lithium and cobalt as a positive electrode active material and a negative electrode using a carbonaceous material as a negative electrode material, wherein the positive electrode has N
A composite oxide of at least one metal selected from the group consisting of b, As, Sb, and Bi and lithium is supplied to the secondary battery reaction system.
And the composite oxide of lithium and cobalt is a solid solution
A non-aqueous electrolyte secondary battery that is made to exist as a mixture without becoming a mixture .
の群から選ばれた少なくとも一つの金属とリチウムとの
複合酸化物はLiCoO2 に対して3モル%を下限とす
る請求項1記載の非水電解液二次電池。2. Nb, As, Sb, Bi mixed in a positive electrode
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the lower limit of the composite oxide of at least one metal selected from the group consisting of lithium and lithium is 3 mol% with respect to LiCoO 2 .
する添加剤を混合して含む正極と、炭素質材料を負極材
料とする負極を用いる非水電解液二次電池であって、上
記主活物質はリチウムとコバルトとの複合酸化物であ
り、上記副活物質はLiに対して3V以下の放電電位を
有するリチウム含有化合物であり、上記触媒毒として働
く添加剤はNb,As,Sb,Biの群から選ばれた少
なくとも一つの金属の酸化物である非水電解液二次電
池。3. A non-aqueous electrolyte secondary battery using a positive electrode containing a mixture of a main active material, a sub-active material, and an additive acting as a catalyst poison, and a negative electrode using a carbonaceous material as a negative electrode material, The main active material is a composite oxide of lithium and cobalt, the sub-active material is a lithium-containing compound having a discharge potential of 3 V or less with respect to Li, and the additive acting as a catalyst poison is Nb, As, A non-aqueous electrolyte secondary battery which is an oxide of at least one metal selected from the group consisting of Sb and Bi.
物である請求項3記載の非水電解液二次電池。4. The non-aqueous electrolyte secondary battery according to claim 3, wherein the secondary active material contained in the positive electrode is a lithium-containing oxide.
して3モル%を下限とする請求項3または4記載の非水
電解液二次電池。5. The secondary active material contained in the positive electrode corresponds to LiCoO 2 .
The non-aqueous electrolyte secondary battery according to claim 3 , wherein the lower limit is 3 mol% .
て2モル%を下限とする請求項3乃至5のいずれかに記
載の非水電解液二次電池。6. Additives nonaqueous electrolyte secondary battery to any one of claims 3 to 5 serial <br/> mounting the lower limit 2 mol% relative to LiCoO 2 positive electrode contains.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03201597A JP3111324B2 (en) | 1991-08-12 | 1991-08-12 | Non-aqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03201597A JP3111324B2 (en) | 1991-08-12 | 1991-08-12 | Non-aqueous electrolyte secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0547384A JPH0547384A (en) | 1993-02-26 |
JP3111324B2 true JP3111324B2 (en) | 2000-11-20 |
Family
ID=16443695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03201597A Expired - Fee Related JP3111324B2 (en) | 1991-08-12 | 1991-08-12 | Non-aqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3111324B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2643046B2 (en) * | 1991-12-27 | 1997-08-20 | シャープ株式会社 | Non-aqueous secondary battery |
US6489060B1 (en) | 1999-05-26 | 2002-12-03 | E-One Moli Energy (Canada) Limited | Rechargeable spinel lithium batteries with greatly improved elevated temperature cycle life |
US6553263B1 (en) | 1999-07-30 | 2003-04-22 | Advanced Bionics Corporation | Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries |
JP4834901B2 (en) * | 1999-08-27 | 2011-12-14 | 三菱化学株式会社 | Positive electrode material for lithium secondary battery |
US6596439B1 (en) | 2000-04-26 | 2003-07-22 | Quallion Llc | Lithium ion battery capable of being discharged to zero volts |
KR100413816B1 (en) * | 2001-10-16 | 2004-01-03 | 학교법인 한양학원 | Electrode active materials for lithium secondary batteries, method for preparing the same, and lithium secondary batteries using the same |
WO2008078695A1 (en) | 2006-12-26 | 2008-07-03 | Mitsubishi Chemical Corporation | Lithium transition metal compound powder, process for production thereof, spray-dried product useful as firing precursor, and positive electrode for lithium secondary battery and lithium secondary battery made by using the same |
JPWO2017169145A1 (en) * | 2016-03-31 | 2019-02-21 | パナソニックIpマネジメント株式会社 | Nonaqueous electrolyte secondary battery |
-
1991
- 1991-08-12 JP JP03201597A patent/JP3111324B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0547384A (en) | 1993-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0827231B1 (en) | Non-aqueous electrolyte lithium secondary battery | |
JP2855877B2 (en) | Non-aqueous electrolyte secondary battery | |
EP0874410B1 (en) | Non-aqueous electrolyte secondary batteries | |
KR19990007966A (en) | Rechargeable Lithium Battery with Improved Reversible Capacity | |
JP3252414B2 (en) | Non-aqueous electrolyte secondary battery | |
JP4055241B2 (en) | Nonaqueous electrolyte secondary battery | |
JPH0562712A (en) | Non-aqueous electrolyte secondary cell | |
JP3111324B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3063320B2 (en) | Non-aqueous electrolyte secondary battery | |
EP0809868A1 (en) | Delithiated cobalt oxide and nickel oxide phases and method of preparing same | |
JP3003431B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3030996B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3082117B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3426869B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH01204361A (en) | Secondary battery | |
JP2002042864A (en) | Nonaqueous electrolyte secondary battery | |
JPH10208748A (en) | Non-aqueous electrolyte secondary battery | |
KR101463648B1 (en) | positive-electrode active material with improved OUTPUT and Lithium secondary battery including them | |
US6451482B1 (en) | Non-aqueous electrolyte secondary batteries | |
JPH06267542A (en) | Nonaqueous electrolyte battery | |
JPH05174872A (en) | Nonaqueous electrolyte secondary battery | |
JP3030995B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3596225B2 (en) | Non-aqueous secondary battery and method of manufacturing the same | |
JPH08162154A (en) | Secondary battery having nonaqueous solvent electrolyt | |
JP4560877B2 (en) | Lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |