JPH0547384A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH0547384A
JPH0547384A JP3201597A JP20159791A JPH0547384A JP H0547384 A JPH0547384 A JP H0547384A JP 3201597 A JP3201597 A JP 3201597A JP 20159791 A JP20159791 A JP 20159791A JP H0547384 A JPH0547384 A JP H0547384A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
secondary battery
discharge
over
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3201597A
Other languages
Japanese (ja)
Other versions
JP3111324B2 (en
Inventor
Junichi Yamaura
純一 山浦
Teruyoshi Morita
彰克 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP03201597A priority Critical patent/JP3111324B2/en
Publication of JPH0547384A publication Critical patent/JPH0547384A/en
Application granted granted Critical
Publication of JP3111324B2 publication Critical patent/JP3111324B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a battery with excellent overdischarge resistance at a high temperature in particular by improving a positive electrode in a nonaqueous electrolyte secondary battery using LiCoO2 for the positive electrode and a carbon material for a negative electrode. CONSTITUTION:A Li-containing oxide for controlling potential and an oxide made of Nb, Bi, As, Sb serving as a catalyst poison for suppressing the overdischarge deterioration reaction are added to a positive electrode 1. A composite oxide of Nb, Bi, As, Sb, Li is added to the positive electrode 1, thus the overdischarge deterioration at a high temperature is suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非水電解液二次電池、特
にリチウムとコバルトとの複合酸化物(LiCoO2
を正極活物質に用い、負極に炭素質材料を用いた電池に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, particularly a composite oxide of lithium and cobalt (LiCoO 2 )
And a carbonaceous material for the negative electrode.

【0002】[0002]

【従来の技術】近年、電子機器のポータブル化、コード
レス化が急速に進んでおり、これらの駆動用電源として
小形・軽量で、高エネルギー密度を有する二次電池への
要望が高い。このような点で非水系二次電池、特にリチ
ウム二次電池はとりわけ高電圧・高エネルギー密度を有
する電池として期待が大きい。
2. Description of the Related Art In recent years, portable electronic devices and cordless electronic devices have been rapidly developed, and there is a great demand for a small and lightweight secondary battery having a high energy density as a power source for driving these electronic devices. From this point of view, non-aqueous secondary batteries, particularly lithium secondary batteries, are particularly expected as batteries having high voltage and high energy density.

【0003】特に最近、LiCoO2 を正極活物質と
し、負極に炭素材を用いた電池系が、高エネルギー密度
のリチウム二次電池として注目を集めている。この電池
系の特徴は、電池電圧が高い(LiCoO2 がLiに対
して4Vの高電圧を有するため)ことと、正負極ともに
インターカレーション反応を利用しているところにあ
る。特に、負極に金属Liを用いていないので、デンド
ライト状Liの析出による短絡等がなく安全性、および
急速充電が期待できるものである。
In particular, recently, a battery system using LiCoO 2 as a positive electrode active material and a carbon material as a negative electrode has been attracting attention as a high energy density lithium secondary battery. The characteristics of this battery system are that the battery voltage is high (because LiCoO 2 has a high voltage of 4 V with respect to Li) and that both positive and negative electrodes utilize an intercalation reaction. In particular, since metal Li is not used for the negative electrode, there is no short circuit due to the deposition of dendrite Li and safety and rapid charging can be expected.

【0004】一般に、この種の二次電池には高出力、高
容量で使用寿命が長いことが基本的に要望されている
が、最近の電子機器の高機能化にともない、機器を使用
していない状態でもメモリーバックアップや他の制御回
路のコントロールで電力を消費するものが増えてきた。
すなわち、電池を機器に装着したまま放置すると電池は
放電し続け、容量が尽きて電池電圧は最終的に0Vに達
することになる。従って、電池は、このような放電(過
放電と呼んでいる)を経験した後でも再び充電すること
によって回復するものでなければ実用性が低い。ところ
が、LiCoO2 を正極に用い、炭素質材料を負極に用
いたリチウム二次電池の場合、このような過放電を行な
うと、再び充放電しても元の容量に回復せず、電池容量
が低くなる欠点があった。そして、この電池系における
過放電対策として、特開昭63−228573や特開昭
63−314778でMoO3 ,V2 5 ,TiO2
の酸化物を正極に添加する手段が開示された。しかし、
この電池系の場合、Li源はLiCoO2 のみであり、
充放電に寄与するLiの一部が添加した物質によって消
費されるため、充放電容量が低くなることと過放電劣化
の抑制の効果がそれほど大きくないことが指摘された。
そのため、さらにこの改良形として、特開平2−265
167で既にLiを含むLix MoO3 等を正極中に副
活物質として加える手段が開示された。この手段の効果
を確認する検討を行った結果、既にLiを含むため充放
電に寄与するLiの一部が添加した物質によって消費さ
れることもなく、過放電劣化の抑制の効果も大きいもの
であった。ところが、この検討をさらに進めた結果、確
かに室温付近(20℃〜30℃)ではすぐれた効果を示
したが、高温、たとえば60℃の環境下で過放電を行う
と、再び充放電しても元の容量に回復せず、電池容量が
低くなる欠点があった。実際には、機器に装着されたま
ま過放電放置されることは、室温付近ばかりではなく高
温でもありうるので、この場合でも過放電劣化を抑制で
きる何等かの対策を構じなければならないと考えられ
る。
Generally, a secondary battery of this kind is basically required to have a high output, a high capacity and a long service life. However, with the recent sophistication of electronic equipment, the equipment is being used. Even when there is no memory, more and more devices consume power for memory backup and control of other control circuits.
That is, if the battery is left attached to the device, the battery continues to be discharged, the capacity is exhausted, and the battery voltage finally reaches 0V. Therefore, the battery is not practical unless it is recovered by being charged again after experiencing such discharge (which is called over-discharge). However, in the case of a lithium secondary battery in which LiCoO 2 is used for the positive electrode and a carbonaceous material is used for the negative electrode, when such over-discharging is performed, the original capacity is not restored even when charging and discharging again, and the battery capacity is reduced. It had the drawback of becoming low. Then, the over-discharge protection in this cell system, means for adding at Sho 63-228573 and Sho 63-314778 and MoO 3, V 2 O 5, TiO 2 oxide such the positive electrode have been disclosed. But,
In the case of this battery system, the Li source is LiCoO 2 only,
It was pointed out that a part of Li that contributes to charging / discharging is consumed by the added substance, so that the charging / discharging capacity becomes low and the effect of suppressing the overdischarge deterioration is not so great.
Therefore, as a further improved form thereof, JP-A-2-265
167 discloses a means for adding Li x MoO 3 containing Li as a secondary active material to the positive electrode. As a result of a study for confirming the effect of this means, a part of Li, which already contains Li and contributes to charge and discharge, is not consumed by the added substance, and the effect of suppressing over-discharge deterioration is large. there were. However, as a result of further proceeding with this study, although it certainly showed an excellent effect in the vicinity of room temperature (20 ° C. to 30 ° C.), when over-discharging was performed in an environment of high temperature, for example, 60 ° C., charging and discharging were performed again However, there is a drawback that the battery capacity becomes low without recovering the original capacity. Actually, it is considered that it is necessary to take some measures to suppress over-discharge deterioration even in this case, because it can be left at over-discharge while being attached to the device not only near room temperature but also at high temperature. Be done.

【0005】そこでLiCoO2 からなる正極と、炭素
質材料からなる負極と、有機電解質からなるリチウム二
次電池を試作し充放電した後、抵抗を接続して過放電し
た。そして、その時の正負極それぞれの単極挙動をLi
を参照極として測定した結果、図4に示すように電池電
圧が0Vに達した時点で正負極ともLiに対して3.3V
近くの電位に達していることがわかった。これは、正負
極が等電位(電池電圧が0V)になった時点でその電位
が正極に支配されていることを意味している。正極は通
常この付近の電位で使われており、かつLiに対して1
V近くまで放電しても可逆性をそこなうことはないと言
われているので問題はないと考えられる。一方、負極は
通常Liに対して1V以下の電位で使われている。すな
わち、過放電により負極の電位がこのように極めて貴な
電位に維持されることが問題であると考えられる。例え
ば特開平2−265167では、負極がこのような貴な
電位になるため負極集電体が溶解し、劣化を引き起こす
と指摘している。そこで、負極の電位と性能劣化の関係
を定電位ステップ方式で調べた結果、Liに対して3V
を超えると、負極の容量特性が著しく劣化することがわ
かった。従って、正負極が等電位(電池電圧が0V)に
なった時点でその電位を支配している正極の平衡電位を
より卑な電位(3V以下)に維持し、過放電劣化を抑制
するというのが特開平2−265167の主旨であり、
加える副活物質はLiの損失を最小限に押さえるために
予めLiを含んでいるLi化合物であることが好ましい
というものであった。この手段を用いることで、過放電
時の電位を低く抑え、負極の容量特性の劣化を抑えるこ
とは可能であったが、この効果は室温付近でのみ有効な
もので、例えば60℃の環境下で過放電を行なうと、過
放電後にやはり容量特性の劣化が認められた。従って、
従来の電位を制御する手段のみでは高温での過放電に対
する対策としては十分であるとはいえない。そこで、高
温の環境下での過放電劣化の原因を探る検討を行なった
結果、電解液の分解を起こしていることがわかった。さ
らに、この電解液の分解反応を検討した結果、正極の表
面でその反応が起こっていることが判明し、これは従来
の手段で電位を制御しても起こりうるものであることが
わかった。過放電で0Vに達した時点では正負極間に電
荷移動はないと考えると、この高温の過放電劣化は正極
表面で単独に起こる副反応である可能性が強い。一般
に、活物質であるLiCoO2 等のCo酸化物は有機物
に対する強い酸化触媒であると言われている。特に、こ
のような触媒反応活性は高温の環境下で促進されるもの
と考えられることから、高温下での過放電時には有機物
である電解液の触媒分解反応が副反応として起こり、過
放電劣化の原因になっていると予想される。従ってとく
に高温度下において過放電をした二次電池の回復には困
難な技術上の問題があった。
Then, a positive electrode made of LiCoO 2 , a negative electrode made of a carbonaceous material, and a lithium secondary battery made of an organic electrolyte were prototyped, charged and discharged, and then over-discharged by connecting a resistor. Then, the unipolar behavior of each of the positive and negative electrodes at that time is described as Li
As a result of measurement with the reference electrode, as shown in FIG. 4, when the battery voltage reaches 0 V, both positive and negative electrodes are 3.3 V against Li.
It was found that the electric potential was reached nearby. This means that when the positive and negative electrodes become equipotential (battery voltage is 0V), the potential is dominated by the positive electrode. The positive electrode is usually used at a potential around this, and 1 for Li.
Since it is said that reversibility is not impaired even when discharged to near V, it is considered that there is no problem. On the other hand, the negative electrode is usually used at a potential of 1 V or less with respect to Li. That is, it is considered to be a problem that the potential of the negative electrode is maintained at such an extremely noble potential due to overdischarge. For example, in Japanese Patent Laid-Open No. 2-265167, it is pointed out that the negative electrode has such a noble potential, so that the negative electrode current collector is dissolved and deteriorates. Therefore, as a result of investigating the relationship between the potential of the negative electrode and the performance deterioration by the constant potential step method, it was found that
It was found that when the value exceeds 1.0, the capacity characteristic of the negative electrode is significantly deteriorated. Therefore, when the positive and negative electrodes become equipotential (battery voltage is 0V), the equilibrium potential of the positive electrode that controls the potential is maintained at a more base potential (3V or less) to suppress overdischarge deterioration. Is the purpose of JP-A-2-265167,
It was preferable that the auxiliary active material to be added be a Li compound containing Li in advance in order to minimize the loss of Li. By using this means, it was possible to suppress the potential during over-discharging to a low level and suppress the deterioration of the capacity characteristics of the negative electrode, but this effect is effective only near room temperature. For example, in an environment of 60 ° C. When over-discharging was carried out at 1, the deterioration of the capacity characteristics was also recognized after the over-discharging. Therefore,
It cannot be said that the conventional means for controlling the potential alone is sufficient as a countermeasure against the over-discharge at high temperature. Therefore, as a result of a study for investigating the cause of over-discharge deterioration in a high temperature environment, it was found that the electrolyte was decomposed. Further, as a result of examining the decomposition reaction of this electrolytic solution, it was found that the reaction occurred on the surface of the positive electrode, and it was found that this reaction can also occur even if the potential is controlled by the conventional means. Considering that there is no charge transfer between the positive and negative electrodes when 0 V is reached by overdischarge, it is highly possible that this high-temperature overdischarge deterioration is a side reaction that occurs independently on the surface of the positive electrode. Generally, it is said that a Co oxide such as LiCoO 2 which is an active material is a strong oxidation catalyst for organic substances. In particular, since it is considered that such catalytic reaction activity is promoted in a high temperature environment, a catalytic decomposition reaction of the electrolyte solution, which is an organic substance, occurs as a side reaction during overdischarge at high temperature, which causes deterioration of overdischarge. It is expected to be the cause. Therefore, there is a technical problem that is difficult to recover the secondary battery which is over-discharged especially at a high temperature.

【0006】[0006]

【発明が解決しようとする課題】本発明が解決しようと
する従来の問題点は、前述のように高温、例えば60℃
の環境下で過放電をした二次電池を、再び充放電しても
元の電池容量を維持することができず、すなわち高温に
おける過放電劣化の抑制ができないという点である。
The conventional problems to be solved by the present invention are, as mentioned above, high temperatures such as 60 ° C.
The secondary battery, which has been over-discharged under the above environment, cannot maintain the original battery capacity even when it is charged and discharged again, that is, the over-discharge deterioration at high temperature cannot be suppressed.

【0007】[0007]

【課題を解決するための手段】本発明はLiCoO2
主体とする正極と、炭素質材料を主体とする負極を用い
る非水電解液二次電池において、上記課題を解決するた
めにはNb,As,Sb,Biの群から選ばれた少なく
とも一つの金属とLiとの複合酸化物を含むものであ
る。さらに上記正極はLiに対して3V以下の放電電位
を有するLi含有酸化物を含み、かつ上記群から選ばれ
た少なくとも一つの金属、またはその金属の化合物を含
むものである。特に、上記金属の化合物は酸化物である
ことが好ましいというものである。
The present invention is a non-aqueous electrolyte secondary battery using a positive electrode mainly composed of LiCoO 2 and a negative electrode mainly composed of a carbonaceous material. It contains a composite oxide of at least one metal selected from the group of As, Sb and Bi and Li. Further, the positive electrode contains a Li-containing oxide having a discharge potential of 3 V or less with respect to Li, and at least one metal selected from the above group, or a compound of the metal. Particularly, the compound of the above metal is preferably an oxide.

【0008】[0008]

【作用】本発明では、Nb,As,Sb,Biの群から
選ばれた金属の化合物を正極に加えることを特徴とする
もので、これらの化合物がCo酸化物の有機物に対する
酸化触媒活性を抑制する触媒毒としての作用をするもの
である。実際に電位の制御に加えてこれらの化合物を用
いることによって高温の過放電劣化を抑制できる結果と
なった。このことからも、高温下での過放電劣化の一つ
の原因が電解液の触媒分解反応であり、この反応の抑制
を目的とした本発明の手段がきわめて有効な手段である
ことは明らかである。従って、過放電劣化を抑制するた
めには、正極はLiに対して3V以下の放電電位を有す
る副活物質を含み、さらに高温でもこの効果を発揮する
ためにはNb,As,Sb,Biの群から選ばれた少な
くとも一つの金属、またはその金属の化合物を含ませる
手段が有効であるといえる。特に、上記群から選ばれた
少なくとも一つの金属とLiとの複合化合物を用いる
と、電位の制御と電解液の触媒分解反応の抑制が同時に
達成できる。また、さらに検討を加えた結果、副活物質
も、加える上記金属の化合物もともに酸化物であるこ
と、そしてLiとの複合化合物とする場合も複合酸化物
であることが、好ましいものであることを究明したもの
である。
The present invention is characterized in that a compound of a metal selected from the group of Nb, As, Sb and Bi is added to the positive electrode, and these compounds suppress the oxidation catalytic activity of Co oxide with respect to organic substances. It acts as a catalyst poison. By using these compounds in addition to actually controlling the potential, it was possible to suppress the over-discharge deterioration at high temperature. From this, it is clear that one cause of over-discharge deterioration under high temperature is the catalytic decomposition reaction of the electrolytic solution, and the means of the present invention for suppressing this reaction is a very effective means. .. Therefore, in order to suppress deterioration due to over-discharge, the positive electrode contains a secondary active material having a discharge potential of 3 V or less with respect to Li, and in order to exert this effect even at high temperature, Nb, As, Sb, Bi It can be said that a means for containing at least one metal selected from the group or a compound of the metal is effective. In particular, when a composite compound of at least one metal selected from the above group and Li is used, control of the potential and suppression of the catalytic decomposition reaction of the electrolytic solution can be achieved at the same time. Further, as a result of further studies, it is preferable that both the side active material and the compound of the above-mentioned metal to be added are oxides, and that the compound oxide is also preferable when forming a compound compound with Li. It is a study of.

【0009】[0009]

【実施例】以下、図面とともに本発明の実施例と比較例
の説明をする。
Embodiments of the present invention and comparative examples will be described below with reference to the drawings.

【0010】図1は本発明の実施例と比較例の電池特性
を実証するために用いたコイン形電池の縦断面である。
図1において、正極1は活物質に導電材である炭素粉末
(活物質に対して5重量%)と結着材である四フッ化エ
チレン樹脂粉末(活物質に対して7重量%)を混合した
もので、正極ケース2の内側にスポット溶接で固定した
チタンネット3上にプレス成型したものである。また、
負極4は活物質である炭素質材の粉末に結着材であるポ
リアクリル酸系の樹脂粉末(炭素質材に対して5重量
%)を混合したもので、封口板5の内側にスポット溶接
で固定したステンレスネット6上にプレス成型したもの
である。そして、これらをポリプロピレン製のセパレー
タ7、及び電解液8と共にポリプロピレン製のガスケッ
ト9を介して密封し、直径20ミリ、高さ1.6ミリの完
成電池とした。なお、電解液には1モルの過塩素酸リチ
ウムを炭酸プロピレンと炭酸エチレンとの混合溶媒中に
溶かしたものを用いた。この電池は試作直後は放電状態
にあり、充電から開始する。
FIG. 1 is a vertical cross section of a coin-type battery used to demonstrate the battery characteristics of the embodiment of the present invention and the comparative example.
In FIG. 1, the positive electrode 1 is a mixture of an active material with carbon powder (5% by weight based on the active material) which is a conductive material, and tetrafluoroethylene resin powder (7% by weight based on the active material) which is a binder. The titanium net 3 is fixed by spot welding to the inside of the positive electrode case 2 and is press-molded. Also,
The negative electrode 4 is a mixture of carbonaceous material powder which is an active material and polyacrylic acid type resin powder (5% by weight based on the carbonaceous material) which is a binder, and is spot-welded inside the sealing plate 5. It is press-molded on the stainless steel net 6 fixed by. Then, these were sealed together with a polypropylene separator 7 and an electrolytic solution 8 through a polypropylene gasket 9 to obtain a completed battery having a diameter of 20 mm and a height of 1.6 mm. The electrolytic solution used was 1 mol of lithium perchlorate dissolved in a mixed solvent of propylene carbonate and ethylene carbonate. This battery is in a discharged state immediately after trial manufacture and starts from charging.

【0011】(比較例1)図5中の破線で示した曲線
は、比較例1の電池(正極にLiCoO2 のみを用いた
電池)の場合における2mAの定電流充放電を充電終始電
圧を4.1V、放電終始電圧を3.0Vに設定して行なった
時の10サイクル目の充放電電圧特性である。この電池
の場合、放電平均電圧は3.7Vであった。図6中の破線
で示した曲線は、この充放電をくり返し行なったときの
放電容量−サイクル特性を示したものである。図6から
も明らかなように100サイクル経過しても放電容量は
初期の90%以上を維持しておりサイクル可逆性にすぐ
れていることがわかる。そこでまず、室温下(20℃)
での過放電にともなう電池性能の劣化程度について検討
した。過放電は、上記条件で10サイクルの充放電を行
なった後、放電状態で電池を取り出し、これを50Ωの
抵抗で放電し、0Vに達した後に抵抗を接続したままさ
らに10日間放置するというものである。この過放電を
10サイクル目に経験させた後、再び充放電を行なった
結果、その充放電電圧特性は容量が20%近く低下し
た。そして、さらにサイクルをくり返しても図6の実線
で示したように容量が低下したままであった。従って、
この電池は室温下の過放電を経験することによって、容
量特性が劣化するものであることがわかった。
(Comparative Example 1) The curve shown by the broken line in FIG. 5 is a constant current charge / discharge of 2 mA in the case of the battery of Comparative Example 1 (battery using only LiCoO 2 for the positive electrode), and the charge end voltage was 4 It is the charging / discharging voltage characteristic of the 10th cycle when the voltage is set to .1 V and the discharge end voltage to 3.0 V. In the case of this battery, the average discharge voltage was 3.7V. The curve shown by the broken line in FIG. 6 shows the discharge capacity-cycle characteristics when this charging / discharging is repeated. As is clear from FIG. 6, the discharge capacity is maintained at 90% or more of the initial value even after 100 cycles, and the cycle reversibility is excellent. Therefore, first, at room temperature (20 ° C)
The degree of deterioration of the battery performance due to over-discharge in the above was investigated. Over-discharging means that after 10 cycles of charging and discharging under the above conditions, the battery is taken out in a discharged state, discharged with a resistance of 50Ω, and after reaching 0 V, it is left for 10 days with the resistance connected. Is. After this over-discharging was experienced at the 10th cycle, charging and discharging were performed again, and as a result, the charge-discharge voltage characteristics were reduced in capacity by nearly 20%. Then, even when the cycle was repeated, the capacity remained low as shown by the solid line in FIG. Therefore,
It was found that the capacity characteristics of this battery deteriorated by experiencing over-discharge at room temperature.

【0012】(比較例2)次に、正極の電位を制御する
副活物質を加えて過放電劣化の抑制を行なう比較例2を
適用した電池について示す。正極中にLiCoO2 に加
えてLiMn2 4 を5モル%混合した活物質を用い、
前記と同様のコイン形電池を試作した。そして比較例1
と同様の条件で室温下の過放電を含む充放電試験を行な
った。図7中の破線で示した曲線はこの電池の10サイ
クル目の充放電電圧特性で、比較例1の特性(図5の破
線)とほとんど変わらないことがわかる。また、放電容
量−サイクル特性も図8中の破線で示したように比較例
1の電池の特性(図6の破線)とほとんど変わらないこ
とがわかる。従って、正極中にLiMn2 4 を添加す
ることは、少なくとも通常の充放電特性にはほとんど悪
影響を与えるものではないと考えられる。次いで、この
電池を上記と同様の過放電を経験させた後、再び充放電
を行なった結果、図7の実線で示したように容量劣化は
わずか2%程度であった。そして、さらにサイクルをく
り返しても図8の実線で示したようにその後のサイクル
特性はすぐれたものであった。以上のように、LiMn
2 4 を正極に加えることによって過放電劣化を抑制す
る効果があることが明らかとなった。この原因を調べる
ために正負極の単極挙動を測定した結果、0Vに達した
時点での正負極の電位がLiに対して3.0V以下の位置
にあることがわかり、そのために負極の容量特性の劣化
が抑えられたものと推測される。
(Comparative Example 2) Next, the potential of the positive electrode is controlled.
Comparative Example 2 in which a secondary active material is added to suppress over-discharge deterioration
The applied battery is shown below. LiCoO in the positive electrode2In addition to
By LiMn2O FourUsing an active material in which 5 mol% of
A coin-type battery similar to the above was prototyped. And Comparative Example 1
Perform a charge-discharge test including over-discharge at room temperature under the same conditions as above.
It was. The curve shown by the broken line in FIG.
The characteristics of the charge and discharge voltage of the fourth cell are those of Comparative Example 1 (breakdown of FIG. 5).
You can see that it is almost the same as the line). Also, the discharge capacity
The quantity-cycle characteristics are also shown in the comparative example as shown by the broken line in FIG.
The characteristics of the battery No. 1 (dashed line in Fig. 6) are almost the same.
I understand. Therefore, in the positive electrode, LiMn2OFourAdd
Is almost unfavorable for at least normal charge / discharge characteristics.
It is not considered to have any impact. Then this
Batteries undergo the same over discharge as above, and then charge and discharge again.
As a result, as shown by the solid line in FIG.
It was only about 2%. And cycle further
Even after returning, as shown by the solid line in Fig. 8, the subsequent cycle
The characteristics were excellent. As described above, LiMn
2OFourSuppresses over-discharge deterioration by adding
It became clear that there is an effect. Investigate this cause
As a result, the unipolar behavior of the positive and negative electrodes was measured, and as a result, it reached 0V.
Position where the potential of positive and negative electrodes at time is less than 3.0V against Li
It was found that the deterioration of the negative electrode capacity characteristics
It is speculated that this was suppressed.

【0013】ところが、この電池で上記と同様の過放電
を60℃の環境下で経験させた後、再び充放電を行なっ
た結果、図2の破線で示したように容量劣化は25%程
度もあり、図7と比較しても明らかなように特に電圧特
性が大きく変化する(分極が大きくなる)ものとなっ
た。そして、さらにサイクルをくり返しても特性が回復
することはなく容量が低下したままであった。特に、こ
のように分極が大きくなる原因としては、高温での過放
電中に何等かの副反応(電解液の分解と考えられる)が
起こり、これが電極反応を阻害するためであると予想さ
れる。本比較例2では副活物質としてLiMn2 4
用いたが、他のLi含有複合酸化物、例えばMo,Vま
たはFe等とLiからなるもの、さらにLi含有複合硫
化物等の酸化物以外のものについても検討を加えた。そ
の結果、いずれも程度の差はあるが電位を制御する効果
を示し、室温での過放電劣化の抑制には有効であった。
しかし、上記Li含有複合化合物のほとんどが高温(6
0℃)の環境下で過放電を行なうと劣化した。従って、
電位を制御する手段だけでは、高温における過放電劣化
を抑えるには不十分であると考えられた。
However, as a result of the battery being subjected to the same over-discharging as described above in an environment of 60 ° C. and then charged and discharged again, the capacity deterioration was about 25% as shown by the broken line in FIG. However, as is clear from comparison with FIG. 7, the voltage characteristics in particular change significantly (polarization increases). The characteristics did not recover even after repeated cycles, and the capacity remained low. In particular, it is expected that the cause of such large polarization is that some side reaction (which is considered to be decomposition of the electrolytic solution) occurs during overdischarge at high temperature, and this inhibits the electrode reaction. .. Although LiMn 2 O 4 was used as the sub-active material in Comparative Example 2, other Li-containing composite oxides, for example, those composed of Mo, V, Fe or the like and Li, and oxides other than Li-containing composite sulfide or the like were used. I also examined the thing. As a result, all showed the effect of controlling the electric potential to some extent, and were effective in suppressing the over-discharge deterioration at room temperature.
However, most of the above Li-containing composite compounds have high temperatures (6
It deteriorated when over-discharged in an environment of 0 ° C. Therefore,
It was considered that the means for controlling the potential alone was not sufficient to suppress the over-discharge deterioration at high temperature.

【0014】(実施例1)次に、正極の電位を制御する
副活物質を加えて過放電劣化の抑制を行なう比較例2を
適用した電池をさらに改良した本発明の電池についてそ
の実施例を示す。正極にはLiCoO2 に加えてLiM
2 4 を5モル%混合した比較例2で用いた活物質
に、さらにNb2 5 を3モル%混合した活物質を用い
た。そして、この活物質でコイン形電池を試作した。次
いで、比較例2と同様の条件の60℃の環境下での過放
電を経験させた後、再び充放電を行なった結果、図2の
実線で示したように容量特性は比較例2の電池の特性
(図2の破線)に比べてすぐれたものであった。さらに
その後、サイクルをくり返したが、そのサイクル可逆性
はすぐれたもので、過放電を経験しない電池の特性とほ
とんど変わらないものが得られた。この結果から、他の
特性にほとんど影響を与えることなくNb2 5 が高温
での過放電劣化を抑える効果を有することは明らかであ
る。特に、Nb2 5 の添加は、高温での過放電中に起
こる副反応を正極の酸化触媒反応によるものと仮定し、
この反応の触媒毒として働くことを予想して行なったも
のであった。このように、Nb2 5 を用いることによ
って好結果を示したことからも、触媒毒という考え方を
適用することで高温での過放電劣化を抑えることができ
るものと考えられる。そこで、触媒毒として可能性のあ
るBi,As,Sb等の金属またはこれらの金属の酸化
物についてもその添加効果を検討した結果、いずれも高
温過放電に好結果を示した。ところが、同様の効果を期
待して、Nb,Bi,As,Sb等の硫化物やセレン化
物を添加する検討も行なったが、過放電劣化は無添加に
比べて小さいものの、その効果は酸化物に比べて小さか
った。特に、硫化物やセレン化物を用いた場合、電解液
中に硫黄やセレンの成分が溶出していることがわかっ
た。また、正極の電位を制御する副活物質として、本実
施例1ではLiMn2 4 を用いたがLi2 MnO4
Li3 VO4 ,Li2 SnO3 等の他の酸化物について
も検討した結果、いずれの場合も同様の効果を示すこと
がわかった。ところが、正極の電位を制御するLiを含
む副活物質として硫化物やセレン化物を用いた場合、室
温の過放電ではすぐれた効果を示したが、高温の過放電
を行なった場合、上記と同様に電解液中に硫黄やセレン
の成分が溶出し、その効果は小さかった。そこで、Li
CoO2 に加える電位制御のための副活物質、及び触媒
毒となる添加剤の両者についてさらに検討を加えた結
果、高温の過放電劣化を抑制するためには、その高温で
の化学的安定性からいずれの場合も酸化物であることが
望ましいことがわかった。
(Example 1) Next, the potential of the positive electrode is controlled.
Comparative Example 2 in which a secondary active material is added to suppress over-discharge deterioration
Regarding the battery of the present invention, which is a further improvement of the applied battery,
An example of is shown. LiCoO for the positive electrode2In addition to LiM
n2OFourOf the active material used in Comparative Example 2 containing 5 mol% of
And further Nb2OFiveUsing an active material containing 3 mol% of
It was Then, a coin-type battery was prototyped using this active material. Next
Under the same conditions as in Comparative Example 2 under an environment of 60 ° C.
After being charged and discharged again, the result of Fig. 2
As shown by the solid line, the capacity characteristics are those of the battery of Comparative Example 2.
It was superior to (dotted line in FIG. 2). further
After that, the cycle was repeated, but the cycle was reversible.
Is excellent and has the characteristics and characteristics of a battery that does not experience over discharge.
I got something that didn't change much. From this result,
Nb with almost no effect on characteristics2OFiveIs hot
It is clear that it has the effect of suppressing over-discharge deterioration at
It Especially Nb2O FiveAddition occurs during overdischarge at high temperature.
Assuming that this side reaction is due to the oxidation catalyst reaction of the positive electrode,
It was performed in anticipation of acting as a catalyst poison for this reaction.
It was. Thus, Nb2OFiveBy using
Therefore, the idea of catalyst poison
By applying it, it is possible to suppress over-discharge deterioration at high temperature.
It is considered to be one. Therefore, there is a possibility as a catalyst poison.
Bi, As, Sb and other metals or oxidation of these metals
As a result of examining the effect of addition,
It showed good results for thermal overdischarge. However, a similar effect is expected.
Wait, Nb, Bi, As, Sb and other sulfides and selenization
We also examined the addition of substances, but did not add over-discharge deterioration.
Although smaller than the oxide, is the effect smaller than the oxide?
It was. Especially when sulfide or selenide is used,
It was found that sulfur and selenium components were eluted in the
It was In addition, as a side active material that controls the potential of the positive electrode,
In Example 1, LiMn2OFourWas used, but Li2MnOFour
Li3VOFour, Li2SnO3Other oxides such as
As a result of examining also, the same effect is shown in any case.
I understood. However, it does not contain Li that controls the potential of the positive electrode.
If sulfide or selenide is used as a secondary active material,
The effect of warm over-discharging was excellent, but that of high-temperature over-discharging
In the same manner as above, when sulfur or selenium is added to the electrolyte,
The component was eluted and its effect was small. So Li
CoO2Active material for controlling the potential applied to the catalyst and catalyst
The results of further studies on both of the poisonous additives
As a result, in order to suppress the over discharge deterioration at high temperature,
In any case, due to the chemical stability of
I found it desirable.

【0015】次いで、LiCoO2 に加える電位制御の
ための副活物質、及び触媒毒となる添加剤の添加量につ
いて検討した。その結果、電位制御のために加える副活
物質(Liを含む複合酸化物)はLiCoO2 に対して
少なくとも3モル%以上で、触媒毒となる添加剤(酸化
物)は少なくとも2モル%以上必要であることがわかっ
た。
Next, the amount of the auxiliary active material added to LiCoO 2 for controlling the potential and the additive amount of the catalyst poison were examined. As a result, the auxiliary active material (composite oxide containing Li) added for controlling the potential should be at least 3 mol% or more with respect to LiCoO 2 , and the additive (oxide) that becomes a catalyst poison should be at least 2 mol% or more. I found out.

【0016】(実施例2)次に、LiCoO2 に加える
電位制御のための副活物質、及び触媒毒となる添加剤の
両方の効果を同時に発揮することを期待して、本発明に
係るところのLiとNbの複合酸化物であるLi3 Nb
4 を添加する検討を行なった。活物質はLiCoO2
に対してLi3 NbO4 を5モル%加えたものを用い
た。そしてこの活物質を用いて上記実施例1と同様のコ
イン形電池を試作した。次いで、上記実施例1と同様の
条件で60℃の環境下での過放電を経験させた後、再び
充放電を行なった。図3はこの電池の充放電電圧特性を
示したもので、過放電を行なう前の特性(図3中破線)
と上記高温での過放電を経験した後の特性(実線)を比
較したもので、この電池の場合も実施例1の本発明の電
池と同様に高温での過放電での性能劣化はきわめて少な
くすぐれたものであった。さらにその後、サイクルをく
り返したが、そのサイクル可逆性はすぐれたもので、過
放電を経験しない電池の特性とほとんど変わらないもの
が得られた。従って、この電池の場合も他の特性にほと
んど影響を与えることなく電位制御と触媒毒の両方の効
果を同時に発揮できるものであることは明らかである。
本実施例2ではLiとNbの複合酸化物に関する結果を
述べたが、Nbの代わりにBi,AsまたはSbとした
ものについても検討した結果、ほぼ同様の効果が得られ
ることがわかった。
(Embodiment 2) Next, according to the present invention, it is expected that the effects of both a side active material for controlling the potential added to LiCoO 2 and an additive which becomes a catalyst poison will be exhibited at the same time. Li 3 Nb which is a complex oxide of Li and Nb
A study was conducted to add O 4 . The active material is LiCoO 2
Was used to which 5 mol% of Li 3 NbO 4 was added. Then, using this active material, a coin-type battery similar to that of the above-described Example 1 was manufactured. Next, under the same conditions as in Example 1 above, after experiencing over-discharge in an environment of 60 ° C., charging / discharging was performed again. Fig. 3 shows the charge / discharge voltage characteristics of this battery. The characteristics before over-discharging (broken line in Fig. 3)
And a characteristic (solid line) after undergoing over-discharge at the above-mentioned high temperature, and also in the case of this battery, similarly to the battery of the present invention of Example 1, the performance deterioration due to the over-discharge at the high-temperature is extremely small. It was excellent. After that, the cycle was repeated, but the cycle reversibility was excellent, and the characteristics which were almost the same as the characteristics of the battery that did not experience overdischarge were obtained. Therefore, it is clear that even in the case of this battery, the effects of both potential control and catalyst poison can be exhibited at the same time with almost no effect on other characteristics.
In Example 2, although the result concerning the composite oxide of Li and Nb was described, as a result of examining the case of using Bi, As or Sb instead of Nb, it was found that almost the same effect was obtained.

【0017】次いで、LiCoO2 に加える上記複合酸
化物の添加量について検討した。その結果、上記いずれ
の複合酸化物の場合もLiCoO2 に対して少なくとも
3モル%以上加えると十分な効果が得られることがわか
った。従って、実施例1で述べた本発明の電池に比べて
その添加量が少なくて済み、この手段の方がより有効な
手段と考えられる。
Next, the amount of the above composite oxide added to LiCoO 2 was examined. As a result, it was found that in any of the above-mentioned composite oxides, a sufficient effect can be obtained by adding at least 3 mol% or more to LiCoO 2 . Therefore, the amount of addition is smaller than that of the battery of the present invention described in Example 1, and this means is considered to be a more effective means.

【0018】[0018]

【発明の効果】以上の説明で明らかなように、本発明を
適用することにより、機器に装着されたまま電池が過放
電されても、特に高温で過放電されても、再び充電する
ことによって性能が回復するので、実用上きわめて有利
な非水電解液電池を提供しうる。
As is apparent from the above description, by applying the present invention, even if the battery is over-discharged while it is still attached to the device, especially when it is over-discharged at a high temperature, the battery can be charged again. Since the performance is restored, it is possible to provide a non-aqueous electrolyte battery which is extremely advantageous in practical use.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例と比較例に用いたコイン形電池
の縦断面図
FIG. 1 is a vertical sectional view of coin type batteries used in Examples of the present invention and Comparative Examples.

【図2】本発明の実施例1と比較例2の電池の充放電電
圧特性の比較を示す図
FIG. 2 is a diagram showing a comparison of charge / discharge voltage characteristics of the batteries of Example 1 and Comparative Example 2 of the present invention.

【図3】本発明の実施例2の電池の充放電電圧特性を示
す図
FIG. 3 is a diagram showing charge / discharge voltage characteristics of the battery of Example 2 of the present invention.

【図4】正負極の過放電時の単極挙動を示す図FIG. 4 is a diagram showing unipolar behavior during positive and negative electrode overdischarge.

【図5】比較例1の電池の充放電電圧特性を示す図5 is a diagram showing charge / discharge voltage characteristics of the battery of Comparative Example 1. FIG.

【図6】同電池の容量−サイクル特性を示す図FIG. 6 is a diagram showing capacity-cycle characteristics of the battery.

【図7】比較例2の電池の充放電電圧特性を示す図7 is a diagram showing charge / discharge voltage characteristics of the battery of Comparative Example 2. FIG.

【図8】同電池の容量−サイクル特性を示す図FIG. 8 is a diagram showing capacity-cycle characteristics of the battery.

【符号の説明】[Explanation of symbols]

1 正極 2 正極ケース 3 チタンネット 4 負極 5 封口板 6 ステンレスネット 7 セパレータ 8 電解液 9 ガスケット 1 Positive electrode 2 Positive electrode case 3 Titanium net 4 Negative electrode 5 Sealing plate 6 Stainless steel net 7 Separator 8 Electrolyte 9 Gasket

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】リチウムとコバルトとの複合酸化物を主体
とする正極と、炭素質材料を主体とする負極を用いる非
水電解液二次電池であって、上記正極はNb,As,S
b,Biの群から選ばれた少なくとも一つの金属とリチ
ウムとの複合酸化物を含む非水電解液二次電池。
1. A non-aqueous electrolyte secondary battery using a positive electrode mainly composed of a composite oxide of lithium and cobalt and a negative electrode mainly composed of a carbonaceous material, wherein the positive electrode is Nb, As, S.
A non-aqueous electrolyte secondary battery containing a composite oxide of at least one metal selected from the group of b and Bi and lithium.
【請求項2】正極が含むNb,As,Sb,Biの群か
ら選ばれた少なくとも一つの金属とリチウムとの複合酸
化物はLiCoO2 に対して3モル%を下限とする請求
項1記載の非水電解液二次電池。
2. The composite oxide of at least one metal selected from the group of Nb, As, Sb and Bi contained in the positive electrode and lithium has a lower limit of 3 mol% with respect to LiCoO 2 . Non-aqueous electrolyte secondary battery.
【請求項3】リチウムとコバルトとの複合酸化物を主体
とする正極と、炭素質材料を主体とする負極を用いる非
水電解液二次電池であって、上記正極はLiに対して3
V以下の放電電位を有するリチウム含有化合物を副活物
質として含み、かつNb,As,Sb,Biの群から選
ばれた少くとも一つの金属またはその金属の化合物を添
加剤として含む非水電解液二次電池。
3. A non-aqueous electrolyte secondary battery using a positive electrode mainly composed of a composite oxide of lithium and cobalt and a negative electrode mainly composed of a carbonaceous material, wherein the positive electrode is 3 relative to Li.
Non-aqueous electrolyte containing a lithium-containing compound having a discharge potential of V or less as a secondary active material and containing at least one metal selected from the group of Nb, As, Sb and Bi or a compound of the metal as an additive. Secondary battery.
【請求項4】正極が含む副活物質はリチウム含有酸化物
である請求項3記載の非水電解液二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 3, wherein the secondary active material contained in the positive electrode is a lithium-containing oxide.
【請求項5】正極が含む添加剤は酸化物である請求項3
または4記載の非水電解液二次電池。
5. The additive contained in the positive electrode is an oxide.
Alternatively, the non-aqueous electrolyte secondary battery described in 4.
【請求項6】正極が含む副活物質はLiCoO2 に対し
て3モル%を下限とする請求項3,4または5記載の非
水電解液二次電池。
6. The non-aqueous electrolyte secondary battery according to claim 3, 4 or 5, wherein the lower limit of the sub-active material contained in the positive electrode is 3 mol% with respect to LiCoO 2 .
【請求項7】正極が含む添加剤はLiCoO2 に対して
2モル%を下限とする請求項3,4,5または6記載の
非水電解液二次電池。
7. The non-aqueous electrolyte secondary battery according to claim 3, 4, 5 or 6, wherein the lower limit of the additive contained in the positive electrode is 2 mol% with respect to LiCoO 2 .
JP03201597A 1991-08-12 1991-08-12 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3111324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03201597A JP3111324B2 (en) 1991-08-12 1991-08-12 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03201597A JP3111324B2 (en) 1991-08-12 1991-08-12 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH0547384A true JPH0547384A (en) 1993-02-26
JP3111324B2 JP3111324B2 (en) 2000-11-20

Family

ID=16443695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03201597A Expired - Fee Related JP3111324B2 (en) 1991-08-12 1991-08-12 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3111324B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05182665A (en) * 1991-12-27 1993-07-23 Sharp Corp Nonaqueous secondary battery
JP2001273899A (en) * 1999-08-27 2001-10-05 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery
US6489060B1 (en) 1999-05-26 2002-12-03 E-One Moli Energy (Canada) Limited Rechargeable spinel lithium batteries with greatly improved elevated temperature cycle life
US6596439B1 (en) 2000-04-26 2003-07-22 Quallion Llc Lithium ion battery capable of being discharged to zero volts
US7177691B2 (en) 1999-07-30 2007-02-13 Advanced Bionics Corporation Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries
WO2008078695A1 (en) 2006-12-26 2008-07-03 Mitsubishi Chemical Corporation Lithium transition metal compound powder, process for production thereof, spray-dried product useful as firing precursor, and positive electrode for lithium secondary battery and lithium secondary battery made by using the same
JP2008277307A (en) * 2001-10-16 2008-11-13 Hanyang Hak Won Co Ltd Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery containing the same
WO2017169145A1 (en) * 2016-03-31 2017-10-05 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05182665A (en) * 1991-12-27 1993-07-23 Sharp Corp Nonaqueous secondary battery
US6489060B1 (en) 1999-05-26 2002-12-03 E-One Moli Energy (Canada) Limited Rechargeable spinel lithium batteries with greatly improved elevated temperature cycle life
US7177691B2 (en) 1999-07-30 2007-02-13 Advanced Bionics Corporation Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries
US7184836B1 (en) 1999-07-30 2007-02-27 Advanced Bionics Corporation Implantable devices using rechargeable zero-volt technology lithium-ion batteries
US7248929B2 (en) 1999-07-30 2007-07-24 Advanced Bionics Corporation Implantable devices using rechargeable zero-volt technology lithium-ion batteries
US7818068B2 (en) 1999-07-30 2010-10-19 Boston Scientific Neuromodulation Corporation Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries
JP2001273899A (en) * 1999-08-27 2001-10-05 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery
US8637184B2 (en) 2000-04-26 2014-01-28 Quallion Llc Rechargeable lithium battery for tolerating discharge to zero volts
US6596439B1 (en) 2000-04-26 2003-07-22 Quallion Llc Lithium ion battery capable of being discharged to zero volts
US7101642B2 (en) 2000-04-26 2006-09-05 Quallion Llc Rechargeable lithium battery for tolerating discharge to zero volts
JP2008277307A (en) * 2001-10-16 2008-11-13 Hanyang Hak Won Co Ltd Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery containing the same
WO2008078695A1 (en) 2006-12-26 2008-07-03 Mitsubishi Chemical Corporation Lithium transition metal compound powder, process for production thereof, spray-dried product useful as firing precursor, and positive electrode for lithium secondary battery and lithium secondary battery made by using the same
EP2341570A1 (en) 2006-12-26 2011-07-06 Mitsubishi Chemical Corporation Lithium transition metal based compound powder and method for manufacturing the same
EP2337125A1 (en) 2006-12-26 2011-06-22 Mitsubishi Chemical Corporation Lithium transition metal based compound powder and method for manufacturing the same
WO2017169145A1 (en) * 2016-03-31 2017-10-05 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
JPWO2017169145A1 (en) * 2016-03-31 2019-02-21 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP3111324B2 (en) 2000-11-20

Similar Documents

Publication Publication Date Title
JP3269396B2 (en) Non-aqueous electrolyte lithium secondary battery
EP2108202B1 (en) A secondary battery with improved safety
JP5095098B2 (en) Nonaqueous electrolyte secondary battery
JP4604460B2 (en) Nonaqueous electrolyte secondary battery and battery charge / discharge system
KR19990007966A (en) Rechargeable Lithium Battery with Improved Reversible Capacity
EP0874410B1 (en) Non-aqueous electrolyte secondary batteries
JP4055241B2 (en) Nonaqueous electrolyte secondary battery
JP5103961B2 (en) Lithium ion secondary battery
JP3252414B2 (en) Non-aqueous electrolyte secondary battery
WO2000033399A1 (en) Non-aqueous electrolyte secondary cell
EP2639864B1 (en) Lithium secondary battery
EP0809868A1 (en) Delithiated cobalt oxide and nickel oxide phases and method of preparing same
JP3003431B2 (en) Non-aqueous electrolyte secondary battery
JP3426869B2 (en) Non-aqueous electrolyte secondary battery
JP2001126765A (en) Nonaqueous electrolyte secondary battery
JP3111324B2 (en) Non-aqueous electrolyte secondary battery
JP3082117B2 (en) Non-aqueous electrolyte secondary battery
US8253386B2 (en) Method of controlling charge and discharge of non-aqueous electrolyte secondary cell
US6451482B1 (en) Non-aqueous electrolyte secondary batteries
KR100709833B1 (en) Lithium rechargeable battery free from gushing out of copper
JPH0487268A (en) Nonaqueous electrolyte secondary battery
JPH06267542A (en) Nonaqueous electrolyte battery
JPH05174872A (en) Nonaqueous electrolyte secondary battery
JP2000188132A (en) Nonaqueous electrode secondary battery
JP2000306610A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees