JPH10144346A - Secondary battery containing nonaqueous solvent electrolytic solution - Google Patents

Secondary battery containing nonaqueous solvent electrolytic solution

Info

Publication number
JPH10144346A
JPH10144346A JP8318497A JP31849796A JPH10144346A JP H10144346 A JPH10144346 A JP H10144346A JP 8318497 A JP8318497 A JP 8318497A JP 31849796 A JP31849796 A JP 31849796A JP H10144346 A JPH10144346 A JP H10144346A
Authority
JP
Japan
Prior art keywords
dimethyl carbonate
secondary battery
lithium
electrolyte
aqueous solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8318497A
Other languages
Japanese (ja)
Inventor
Katsuya Hayashi
克也 林
Yasue Nemoto
康恵 根本
Shinichi Tobishima
真一 鳶島
Junichi Yamaki
準一 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP8318497A priority Critical patent/JPH10144346A/en
Publication of JPH10144346A publication Critical patent/JPH10144346A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an alkaline, especially, lithium secondary battery with high withstand voltage, excellent charging and discharging performance of an anode, and excellent low temperature property. SOLUTION: In a secondary battery having a negative electrode which can charge and discharge alkali metal ion, a positive electrode which can reversely carry out electrochemical reaction with the alkali metal ion, and a non aqueous solvent electrolytic solution produced by dissolving an ion dissociable alkali metal salt, the non-aqueous solvent of the non-aqueous solvent electrolytic solution contains a dimethyl carbonate derivative. Dimethyl carbonate compounds of one hydrogen or more are substituted with halogens having formula CH3 -O- CO-O-CH2 -(-O-CO-O-CH2 )n-O-CO-O-CH3 (n = zero or positive integer) are examples of the dimethyl carbonate derivatives.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特に、高電圧、高
エネルギー密度で、充放電容量が大きい非水溶媒電解液
を有する二次電池に関する。
The present invention particularly relates to a secondary battery having a non-aqueous solvent electrolyte having a high voltage, a high energy density, and a large charge / discharge capacity.

【0002】[0002]

【従来の技術】携帯用電子機器の小型軽量化が進み、そ
の電源として高エネルギー密度電池の開発が要求されて
いる。このような要求に答える電池として、リチウムイ
オンを充放電可能な負極とリチウムイオンを充放電可能
な正極を有する高性能二次電池の開発が期待されてい
る。リチウムイオンを充放電可能な負極としては、例え
ば、(i)リチウム金属負極、(ii)リチウムイオンを
充電及び放電可能なリチウム合金負極、(iii)リチウム
イオンを充放電可能な負極活物質保持体を主体とする負
極が挙げられる。上記(ii)のリチウムイオンが充放電
可能なリチウム合金負極としては、例えば、LiとAl
を主体とするリチウム合金、LiとCd、In、Pb、
Bi等とのリチウム合金、LiとMgとのリチウム合金
等が知られている。また、上記(iii)の、リチウムイオ
ンを充放電可能な負極活物質保持体を主体とする負極と
しては、例えば、種々の炭素材料、Nb2 5 、W
2 、Fe2 3 等の金属酸化物、ポリチオフェン、ポ
リアセチレン等の高分子化合物等を用いることが試みら
れている。また、上記のリチウムイオンと可逆的な電気
化学反応可能(充電及び放電可能)な正極としては、例
えば、Lix CoO2 (0≦x≦1)、Lix NiO2
(0≦x≦1)、Lix Mn2 4 (0≦x≦1)、結
晶あるいは非結晶のV2 5 、ポリアニリン、ポリピロ
ール等を用いることが検討されている。本明細書では、
これらのリチウムイオンを充放電可能な電池のことをリ
チウム二次電池と称する。この種の電池として、負極活
物質保持体として炭素を、正極活物質としてLiCoO
2 を使用した電池、負極活物質保持体として炭素を、正
極活物質としてV2 5 を使用した電池、負極活物質保
持体としてNb2 5 を、正極活物質としてV2 5
使用した電池が既に市販されている。この種のリチウム
二次電池には、充放電サイクル寿命が長いことが基本的
に要求され、充放電性能は選択した非水電解液材料によ
って大きく影響される。使用する非水電解液には負極活
物質保持体あるいはリチウム金属に対する化学的安定性
(耐還元性が高い)が要求される。また、この種の電池
の電圧が4V付近の高電圧である場合には、電解液には
高い耐酸化性能(酸化電位が高いこと)を有することも
要求される。したがって、この種の電池に使用される非
水電解液には、負極の充放電性能が良好なこと、耐還元
性及び耐酸化性が高いことが同時に要求される。上記の
非水電解液に対する要求条件に答えるために、特に、酸
化電位が高い電解液の検討が行われている。例えば、炭
酸ジエチル等の炭酸ジアルキルやギ酸メチル、酢酸メチ
ル、酢酸エチル等の直鎖構造を有するエステル系の溶媒
を使用した電解液が検討されている〔ジャーナル オブ
エレクトロケミカル ソサィエティ(Journal of Ele
ctrochemical Society)、第136巻、第7号、第18
65〜1869頁(1985)〕。しかし、これらの溶
媒を使用した電解液は酸化電位は高いが、還元電位が低
く、リチウムを吸蔵した負極やリチウム金属との反応性
が大きい。また、アセトニトリル等のニトリルは、高い
導電率を有するが、リチウム金属との反応性が非常に高
いために、電解液の溶媒として用いることができない。
負極の充放電特性が良好なものとして知られているもの
(例えば、ジオキソランや2−メチルテトラヒドロフラ
ン)はエーテル類であり、耐還元性は強いが酸化され易
く、高電圧電池の充放電特性や保存性は悪い。更に、炭
酸プロピレン等の環状炭酸エステルは、酸化電位は、実
用上使用可能な値を有しているが、還元電位はエーテル
類より高く、充分な負極の充放電性能を得られない。こ
のため、充放電性能が良好で、耐酸化性が高く、かつ耐
還元性も高いリチウム二次電池用電解液が求められてい
るが、この条件を満たす電解液は提案されていない。炭
酸ジメチルは粘度が低く、これを含む電解液は高いリチ
ウムイオン導電率を与える。更に負極にリチウム金属を
用いた場合でも良好な充放電特性を示す。しかし、融点
が3℃と高く、沸点が90℃と低いために広い温度範囲
において用いるためには十分ではない。炭酸ジメチルを
各種溶媒と混合することが提案されているが、必ずしも
十分ではない。
2. Description of the Related Art As portable electronic devices have become smaller and lighter, the development of high energy density batteries as power sources has been required. As a battery that meets such requirements, development of a high-performance secondary battery having a negative electrode capable of charging and discharging lithium ions and a positive electrode capable of charging and discharging lithium ions is expected. Examples of the negative electrode capable of charging and discharging lithium ions include (i) a lithium metal negative electrode, (ii) a lithium alloy negative electrode capable of charging and discharging lithium ions, and (iii) a negative electrode active material holder capable of charging and discharging lithium ions. The main component is a negative electrode. Examples of the lithium alloy negative electrode (ii) capable of charging and discharging lithium ions include Li and Al
Lithium alloy mainly composed of, Li and Cd, In, Pb,
A lithium alloy with Bi or the like, a lithium alloy with Li and Mg, and the like are known. Examples of the negative electrode mainly composed of the negative electrode active material holder capable of charging / discharging lithium ions of the above (iii) include various carbon materials, Nb 2 O 5 , W
Attempts have been made to use metal oxides such as O 2 and Fe 2 O 3 and high molecular compounds such as polythiophene and polyacetylene. Examples of the positive electrode capable of performing a reversible electrochemical reaction (charge and discharge) with the lithium ion include Li x CoO 2 (0 ≦ x ≦ 1) and Li x NiO 2.
(0 ≦ x ≦ 1), Li x Mn 2 O 4 (0 ≦ x ≦ 1), crystalline or amorphous V 2 O 5 , polyaniline, polypyrrole, and the like are being studied. In this specification,
These batteries capable of charging and discharging lithium ions are referred to as lithium secondary batteries. As this type of battery, carbon is used as a negative electrode active material holder, and LiCoO is used as a positive electrode active material.
Cells using 2, carbon as an anode active material retainer, using V 2 O 5 cell using V 2 O 5 as a positive electrode active material, the Nb 2 O 5 as a negative electrode active material retainer, as a cathode active material Batteries are already commercially available. This type of lithium secondary battery is basically required to have a long charge / discharge cycle life, and the charge / discharge performance is greatly affected by the selected non-aqueous electrolyte material. The nonaqueous electrolyte to be used is required to have chemical stability (high reduction resistance) with respect to the negative electrode active material holder or lithium metal. In addition, when the voltage of this type of battery is a high voltage near 4 V, the electrolyte is also required to have high oxidation resistance (high oxidation potential). Therefore, the non-aqueous electrolyte used for this type of battery is required to have good charge / discharge performance of the negative electrode and high resistance to reduction and oxidation at the same time. In order to meet the above requirements for the non-aqueous electrolyte, an electrolyte having a particularly high oxidation potential has been studied. For example, an electrolyte using a dialkyl carbonate such as diethyl carbonate or an ester-based solvent having a linear structure such as methyl formate, methyl acetate, or ethyl acetate has been studied [Journal of Electrochemical Society].
ctrochemical Society), Vol.136, No.7, No.18
65-1869 (1985)]. However, an electrolytic solution using these solvents has a high oxidation potential, but a low reduction potential, and has high reactivity with a negative electrode that has stored lithium and lithium metal. Nitriles such as acetonitrile have high electrical conductivity, but cannot be used as a solvent for an electrolytic solution because of their extremely high reactivity with lithium metal.
Those known as having good charge / discharge characteristics of the negative electrode (eg, dioxolane and 2-methyltetrahydrofuran) are ethers, and have strong reduction resistance, but are easily oxidized, and have high charge / discharge characteristics and storage characteristics for high-voltage batteries. Sex is bad. Furthermore, cyclic carbonates such as propylene carbonate have oxidation potentials that are practically usable, but have reduction potentials higher than ethers, and do not provide sufficient charge / discharge performance of the negative electrode. For this reason, an electrolyte solution for a lithium secondary battery having good charge / discharge performance, high oxidation resistance, and high reduction resistance is required, but no electrolyte solution satisfying these conditions has been proposed. Dimethyl carbonate has a low viscosity, and the electrolyte containing it provides high lithium ion conductivity. Furthermore, even when lithium metal is used for the negative electrode, good charge / discharge characteristics are exhibited. However, since the melting point is as high as 3 ° C. and the boiling point is as low as 90 ° C., it is not sufficient for use in a wide temperature range. It has been proposed to mix dimethyl carbonate with various solvents, but this is not always sufficient.

【0003】[0003]

【発明が解決しようとする課題】本発明は上述の問題点
にかんがみてなされたものであり、耐高電圧に優れ、か
つ負極の充放電特性及び低温特性に優れる、アルカリ、
特にリチウム二次電池を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has an alkali, which is excellent in high withstand voltage and excellent in charge / discharge characteristics and low-temperature characteristics of a negative electrode.
In particular, it is an object to provide a lithium secondary battery.

【0004】[0004]

【課題を解決するための手段】本発明を概説すれば、本
発明の第1の発明は非水溶媒電解液を有する二次電池に
関する発明であって、アルカリ金属イオンを充放電可能
な負極と、アルカリ金属イオンと可逆的な電気化学反応
可能な正極と、イオン解離性のアルカリ金属塩を溶解し
た非水溶媒電解液とを有する二次電池において、前記非
水溶媒が、炭酸ジメチル誘導体を含有するものであるこ
とを特徴とする。本発明の第2の発明は、第1の発明の
アルカリ金属がリチウムであることを特徴とする。ま
た、本発明の第3の発明は、第1の発明の非水溶媒が、
下記構造式(化1):
SUMMARY OF THE INVENTION To summarize the present invention, a first invention of the present invention relates to a secondary battery having a non-aqueous solvent electrolyte, comprising a negative electrode capable of charging and discharging alkali metal ions. In a secondary battery having a positive electrode capable of performing a reversible electrochemical reaction with an alkali metal ion and a nonaqueous solvent electrolyte in which an ion dissociable alkali metal salt is dissolved, the nonaqueous solvent contains a dimethyl carbonate derivative. It is characterized by that. The second invention of the present invention is characterized in that the alkali metal of the first invention is lithium. Further, according to a third aspect of the present invention, the non-aqueous solvent according to the first aspect comprises:
The following structural formula (Formula 1):

【0005】[0005]

【化1】 Embedded image

【0006】(式中、R1 〜R6 は、同一又は異なり、
水素又はハロゲンを示すが、少なくとも1つのRはハロ
ゲンを示す)で表される、分子中の少なくとも1つの水
素をハロゲンで置換した炭酸ジメチル誘導体を含むこと
を特徴とする。更に、本発明の第4の発明は、第1の発
明の炭酸ジメチル誘導体が、下記構造式(化2):
Wherein R 1 to R 6 are the same or different;
Wherein at least one hydrogen in the molecule is substituted with a halogen. Further, according to a fourth aspect of the present invention, the dimethyl carbonate derivative of the first aspect is represented by the following structural formula (Formula 2):

【0007】[0007]

【化2】CH3-O-CO-O-CH2-(-O-CO-O-CH2)n -O-CO-O-CH3 Embedded image CH 3 —O—CO—O—CH 2 — (— O—CO—O—CH 2 ) n —O—CO—O—CH 3

【0008】(式中、nは、零又は正の整数を示す)で
表される炭酸ジメチル誘導体であることを特徴とする。
(Wherein, n represents a zero or a positive integer).

【0009】[0009]

【発明の実施の形態】以下、本発明を具体的に説明す
る。本発明によれば、例えば、正極としてリチウムとコ
バルトの複合酸化物、リチウムとニッケルの複合酸化
物、リチウムとマンガンの複合酸化物、リチウムと鉄の
複合酸化物、若しくは、上記複合酸化物中のそれぞれコ
バルト、ニッケル、マンガン、鉄を他の遷移金属で一部
置換したものを用いることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below. According to the present invention, for example, a composite oxide of lithium and cobalt, a composite oxide of lithium and nickel, a composite oxide of lithium and manganese, a composite oxide of lithium and iron, or Those in which cobalt, nickel, manganese, and iron are each partially substituted with another transition metal can be used.

【0010】リチウムイオンを充放電可能な負極材料と
しては、1)リチウム金属負極、2)リチウムイオンを
充電及び放電可能なリチウム合金負極、例えば、Liと
Alを主体とするリチウム合金、LiとCd、In、P
b、Bi等とのリチウム合金、3)リチウムイオンを充
放電可能な負極活物質保持体を主体とする負極、例え
ば、種々の炭素材料、Nb2 5 、WO2 、Fe2 3
等の金属酸化物、ポリチオフェン、ポリアセチレン等の
高分子化合物、Li2.5 Co0.5 N、Li2.5 Cu0.5
N、Li2.5 Ni0.5 N、Li3 FeN2 、Li7 Mn
4 等の窒化物等を用いることができる。電解液の電解
質としてはLiClO4 、LiPF6 、LiAsF6
LiBF4 、LiAlCl4 、LiCF3 SO3 、Li
SbF6 、LiSCN、LiCl、LiC6 5
3 、LiN(CF3 SO2 2 、LiC(CF3 SO
2 3、LiCF3 SO3 等のリチウム塩を、単独又は
2種以上混合して用いることができる。
As negative electrode materials capable of charging and discharging lithium ions, 1) a lithium metal negative electrode, 2) a lithium alloy negative electrode capable of charging and discharging lithium ions, for example, a lithium alloy mainly composed of Li and Al, and Li and Cd , In, P
b) Lithium alloy with Bi, etc. 3) Negative electrode mainly composed of negative electrode active material holder capable of charging and discharging lithium ions, for example, various carbon materials, Nb 2 O 5 , WO 2 , Fe 2 O 3
Such as metal oxides, polymer compounds such as polythiophene and polyacetylene, Li 2.5 Co 0.5 N, Li 2.5 Cu 0.5
N, Li 2.5 Ni 0.5 N, Li 3 FeN 2 , Li 7 Mn
A nitride such as N 4 can be used. Examples of the electrolyte of the electrolyte include LiClO 4 , LiPF 6 , LiAsF 6 ,
LiBF 4 , LiAlCl 4 , LiCF 3 SO 3 , Li
SbF 6 , LiSCN, LiCl, LiC 6 H 5 S
O 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO
2 ) 3 and lithium salts such as LiCF 3 SO 3 can be used alone or in combination of two or more.

【0011】非水溶媒電解液の溶媒に含有される炭酸ジ
メチル誘導体の例としては、前記第3の発明における一
般式(化1)で表される化合物が挙げられ、例えば、フ
ルオロ炭酸メチル、ジフルオロ炭酸メチル、トリフルオ
ロ炭酸メチル等のフッ素にて置換した炭酸メチル、クロ
ロ炭酸メチル、ジクロロ炭酸メチル、トリクロロ炭酸メ
チルなど塩素にて置換した炭酸メチル、ブロモ炭酸メチ
ル、ジブロモ炭酸メチル、トリブロモ炭酸メチルなど臭
素にて置換した炭酸メチル、ヨード炭酸メチル、ジヨー
ド炭酸メチル、トリヨード炭酸メチルなどヨウ素にて置
換した炭酸メチル、また、二種類以上のハロゲンを用い
て水素を置換した炭酸メチルを用いることができる。更
に、これらはすべての異性体に関しても用いることがで
きる。また、上記炭酸ジメチル誘導体の他の例として
は、前記第4の発明における一般式(化2)で表される
化合物が挙げられる。上記したような炭酸ジメチル誘導
体は、単独で使用してもよく、あるいは他の非水溶媒と
混合して使用してもよい。炭酸ジメチル誘導体と混合す
る非水溶媒に特に制限はなく、炭酸プロピレン、炭酸エ
チレン等の環状炭酸エステル、γ−ブチロラクトン等の
環状脂肪酸エステル、炭酸ジメチル、炭酸エチルメチ
ル、炭酸ジエチル、炭酸エチルプロピル、炭酸ジプロピ
ル等の鎖状炭酸エステル、ギ酸メチル、ギ酸エチル、ギ
酸プロピル、酢酸メチル、酢酸エチル、酢酸プロピル、
プロピオン酸メチル、プロピオン酸エチル、プロピオン
酸プロピル、酪酸メチル、酪酸エチル、酪酸プロピル等
の鎖状脂肪酸エステル等、ジメトキシエタン、ジエトキ
シエタン、エトキシメトキシエタン等の直鎖エーテル、
テトラヒドロフラン、2−メチルテトラヒドロフランを
1種、又は1種類以上混合して用いることができる。こ
れらを電解液の溶媒に用いることによって長寿命であっ
てエネルギー密度の高い非水溶媒電解液を有する二次電
池を提供することができる。
Examples of the dimethyl carbonate derivative contained in the solvent of the non-aqueous solvent electrolyte include the compound represented by the general formula (Chemical Formula 1) in the third aspect of the present invention. Examples thereof include methyl fluorocarbonate and difluorocarbonate. Bromine such as methyl carbonate, methyl chlorocarbonate, methyl dichlorocarbonate, methyl trichlorocarbonate and the like substituted with methyl chloride, methyl bromocarbonate, methyl dibromocarbonate, methyl tribromocarbonate, etc. Methyl carbonate substituted with iodine, such as methyl carbonate, methyl iodocarbonate, methyl diiodocarbonate, and methyl triiodocarbonate, and methyl carbonate substituted with hydrogen by using two or more halogens can be used. In addition, they can be used for all isomers. Another example of the dimethyl carbonate derivative is a compound represented by the general formula (Chemical Formula 2) in the fourth invention. The dimethyl carbonate derivative as described above may be used alone, or may be used as a mixture with another non-aqueous solvent. The non-aqueous solvent to be mixed with the dimethyl carbonate derivative is not particularly limited, and cyclic carbonates such as propylene carbonate and ethylene carbonate, cyclic fatty acid esters such as γ-butyrolactone, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl propyl carbonate, and carbonic acid Chain carbonates such as dipropyl, methyl formate, ethyl formate, propyl formate, methyl acetate, ethyl acetate, propyl acetate,
Chain fatty acid esters such as methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, ethyl butyrate, propyl butyrate, etc .; dimethoxyethane, diethoxyethane, straight-chain ethers such as ethoxymethoxyethane, etc.
Tetrahydrofuran and 2-methyltetrahydrofuran can be used alone or in combination of one or more. By using these as a solvent for the electrolytic solution, a secondary battery having a non-aqueous solvent electrolytic solution having a long life and a high energy density can be provided.

【0012】本発明の非水溶媒電解液を有する二次電池
においては、例えば、次のような特徴を有する。すなわ
ち正極活物質としてリチウムとマンガンの複合酸化物を
用いた電池は安価でサイクル寿命が長いという特徴を有
している。リチウムとコバルトの複合酸化物を用いた電
池は、電圧が高く、エネルギー密度が大きいという特徴
を有している。リチウムとニッケルの複合酸化物を用い
た電池は、充放電容量が大きく、エネルギー密度が大き
いという特徴を有している。リチウムと鉄の複合酸化物
を用いた電池は安価で軽いという特徴を有している。ま
た、上記複合酸化物のそれぞれコバルト、ニッケル、マ
ンガン、鉄を他の遷移金属で一部置換したものは、置換
することにより特に結晶構造が安定し充放電寿命が長く
なるという特徴を有する。電解液には、耐還元性及び耐
酸化性が高く、高い導電率を実現できる炭酸メチルのハ
ロゲン置換体を溶媒に用いることにより、長い充放電寿
命を達成することができる。
The secondary battery having the non-aqueous solvent electrolyte of the present invention has, for example, the following features. That is, a battery using a composite oxide of lithium and manganese as a positive electrode active material is characterized by being inexpensive and having a long cycle life. Batteries using a composite oxide of lithium and cobalt are characterized by high voltage and high energy density. Batteries using a composite oxide of lithium and nickel are characterized by high charge / discharge capacity and high energy density. A battery using a composite oxide of lithium and iron has the characteristics of being inexpensive and light. In addition, the composite oxides in which cobalt, nickel, manganese, and iron are partially substituted with other transition metals, respectively, have a characteristic that the substitution results in a particularly stable crystal structure and a long charge / discharge life. A long charge / discharge life can be achieved by using, as the solvent, a halogen-substituted product of methyl carbonate, which has high reduction resistance and oxidation resistance and can realize high conductivity, as the solvent.

【0013】[0013]

【実施例】以下に実施例及び比較例を用いて、本発明を
更に具体的に説明するが、本発明はこれら実施例に限定
されない。
EXAMPLES The present invention will be described more specifically with reference to the following Examples and Comparative Examples, but the present invention is not limited to these Examples.

【0014】まず、本発明の第3の発明に従い、炭酸ジ
メチル誘導体として一般式(化1)で表される化合物を
使用する実施例を説明する。表1に、少なくとも1つの
水素をハロゲンで置換した炭酸ジメチル誘導体例を示
す。これらの溶媒において表1に示す番号を下記実施例
に用いた。なお、表1及び後記の説明において、DMC
は炭酸ジメチルの略号である。
First, according to the third aspect of the present invention, an example using a compound represented by the general formula (Formula 1) as a dimethyl carbonate derivative will be described. Table 1 shows an example of a dimethyl carbonate derivative in which at least one hydrogen is substituted with a halogen. In these solvents, the numbers shown in Table 1 were used in the following Examples. In Table 1 and the following description, DMC
Is an abbreviation for dimethyl carbonate.

【0015】[0015]

【表1】 [Table 1]

【0016】図1は本発明による非水溶媒電解液を有す
る二次電池の断面図である。図1において、1はステン
レス製の負極ケースである。2は負極であり、ここで
は、所定の厚さのリチウム箔を直径16mmに打ち抜い
たものを1に圧着したものである。3は非水溶媒を用い
た電解液であり、下記実施例及び比較例に記載した電解
液を用いている。4はセパレータであり、例えはポリプ
ロピレン又はポリエチレンの多孔質フィルムからなる。
5はステンレス製正極ケースである。6は対極であり、
下記記載の実施例及び比較例において記載した電極、ス
テンレス基板、アセチレンブラック、そして、LiMn
1.9 Co0.1 4 である。7はガスケットであり、負極
1と正極ケース5との間の電気的絶縁を保つと同時に、
負極ケース開口縁が内側に折り曲げられ、かしめられる
ことによって、電池内容物を密閉、封止している。
FIG. 1 is a sectional view of a secondary battery having a non-aqueous solvent electrolyte according to the present invention. In FIG. 1, reference numeral 1 denotes a negative electrode case made of stainless steel. Reference numeral 2 denotes a negative electrode, in which a lithium foil having a predetermined thickness punched out to a diameter of 16 mm is pressure-bonded to 1. Reference numeral 3 denotes an electrolytic solution using a non-aqueous solvent, and uses the electrolytic solutions described in the following Examples and Comparative Examples. Reference numeral 4 denotes a separator, for example, a porous film of polypropylene or polyethylene.
Reference numeral 5 denotes a stainless steel positive electrode case. 6 is the opposite pole,
The electrodes, stainless steel substrates, acetylene black, and LiMn described in the following Examples and Comparative Examples
1.9 Co 0.1 O 4 . Reference numeral 7 denotes a gasket, which maintains electrical insulation between the negative electrode 1 and the positive electrode case 5, and
The opening of the negative electrode case is bent inward and crimped to seal and seal the battery contents.

【0017】実施例1〜21及び比較例1、2(Li極
の充放電効率) 炭酸ジメチル誘導体のハロゲンを変化させ、過塩素酸リ
チウムLiClO4 を1M溶解した電解液を作製し、図
1における対極をステンレス基板とし、その上にリチウ
ムを電気化学的に2mAh電析させた後、これを電気化
学的に放電溶解させた時の充放電効率の20サイクルま
での平均値、及び、比較例として1M−LiClO4
DMC、1M−LiClO4 −PC(PC:炭酸プロピ
レン)電解液を用いた時の値をそれぞれ表2に示す。表
2の結果から炭酸ジメチル誘導体がDMCとほぼ同様に
高い特性を示し、PC電解液よりも高い特性を示してい
ることがわかる。なお、これらは電解質をLiPF6
LiBF4 、LiAsF6等にしても、更に電解質濃度
を0.5〜2.0Mとしてもほぼ同様な結果が得られ
る。
Examples 1 to 21 and Comparative Examples 1 and 2 (Charge / Discharge Efficiency of Li Electrode) By changing the halogen of the dimethyl carbonate derivative, an electrolyte was prepared by dissolving 1 M of lithium perchlorate LiClO 4 . The counter electrode was a stainless steel substrate, and after lithium was electrochemically deposited on the substrate by 2 mAh, the average value of the charge and discharge efficiency up to 20 cycles when the lithium was electrochemically discharged and melted, and as a comparative example 1M-LiClO 4
Table 2 shows the values when DMC and 1M-LiClO 4 -PC (PC: propylene carbonate) electrolytes were used. From the results shown in Table 2, it can be seen that the dimethyl carbonate derivative shows almost the same high properties as DMC, and shows higher properties than the PC electrolyte. In addition, these use LiPF 6 as an electrolyte,
Almost the same results can be obtained with LiBF 4 , LiAsF 6, etc., even when the electrolyte concentration is set to 0.5 to 2.0 M.

【0018】[0018]

【表2】 [Table 2]

【0019】実施例22〜42及び比較例3、4(炭素
極のサイクル特性) 炭酸ジメチル誘導体のハロゲンを変化させ、過塩素酸リ
チウムLiClO4 を1M溶解した電解液を作製し、図
1における対極として、炭素の一種であるアセチレンブ
ラック(層間距離は3.47〜3.48オングストロー
ム)を用いてコイン型電池を作製した。これらの電池に
ついて、0.5mA/cm2 の放電及び充電電流密度
で、放電電圧の下限を0V、充電電圧の上限を2.0V
とする電圧規制充放電サイクルを繰り返した。この試験
は、放電によりアセチレンブラックにリチウムを吸蔵
し、充電によりアセチレンブラックに吸蔵されたリチウ
ムを放出する試験であり、負極保持体(この実施例及び
比較例では、アセチレンブラック)にリチウムを吸蔵し
た負極の充放電性能に与える電解液材料の影響を知るた
めの試験である。比較例として1M−LiClO4 −D
MC、1M−LiClO4 −PC電解液を用いた時の1
0、40、100サイクル時の取得容量をそれぞれ表3
に示す。表3の結果から炭酸ジメチル誘導体がDMCと
ほぼ同様な特性を示し、高い特性を示していることがわ
かる。なお、これらは電解質をLiPF6、LiB
4 、LiAsF6 等にしても、更に電解質濃度を0.
5〜2.0Mとしてもほぼ同様な結果が得られる。
Examples 22 to 42 and Comparative Examples 3 and 4 (Cycle Characteristics of Carbon Electrode) Electrolyte was prepared by dissolving 1 M of lithium perchlorate LiClO 4 by changing the halogen of the dimethyl carbonate derivative. A coin-type battery was manufactured using acetylene black which is a kind of carbon (interlayer distance is 3.47 to 3.48 angstroms). For these batteries, at a discharge and charge current density of 0.5 mA / cm 2 , the lower limit of the discharge voltage was 0 V and the upper limit of the charge voltage was 2.0 V.
The voltage regulation charge / discharge cycle was repeated. In this test, lithium was occluded in acetylene black by discharging, and lithium absorbed in acetylene black was released by charging. Lithium was occluded in the negative electrode holder (acetylene black in this example and comparative example). This is a test for knowing the influence of the electrolyte material on the charge / discharge performance of the negative electrode. As a comparative example, 1M-LiClO 4 -D
MC 1 when, using a 1M-LiClO 4 -PC electrolyte
Table 3 shows the obtained capacities at 0, 40, and 100 cycles, respectively.
Shown in From the results shown in Table 3, it can be seen that the dimethyl carbonate derivative shows almost the same properties as DMC and shows high properties. In these, electrolytes are LiPF 6 , LiB
Even when F 4 , LiAsF 6 or the like is used, the electrolyte concentration is further reduced to 0.1.
Approximately the same result can be obtained even with 5 to 2.0M.

【0020】[0020]

【表3】 [Table 3]

【0021】実施例43〜63及び比較例5、6(フル
セルのサイクル特性) 図1における対極をLiMn1.9 Co0.1 4 を用いて
構成された正極とした。これは、上記正極活物質を、導
電剤、結着剤と混合しスラリーとしたものをAl箔上に
所定の厚さに塗布し、乾燥させた後にそれを直径14m
mの電極部分を持つ直径16mmの大きさに切り出した
ものである。以上のように作製したコイン型電池につい
て、電池特性を評価するために20℃で充電終止電圧を
4.3V、放電終止電圧を3.3Vとして、充電電流密
度1mA/cm2 、放電電流密度3mA/cm2 でサイ
クル試験を行った。これらの電池において、炭酸ジメチ
ル誘電体のハロゲンを変化させ、過塩素酸リチウムLi
ClO4 を1M溶解した電解液を作製し、適応した。各
電解液を用いた電池において初期放電容量の1/2とな
った時をその時のサイクル寿命とし、その結果を表4に
示す。表4の結果から炭酸ジメチル誘導体がDMCとほ
ぼ同様に高い特性を示し、PC電解液よりも高い特性を
示していることがわかる。なお、これらは電解質をLi
PF6 、LiBF4 、LiAsF6 等にしても、更に電
解質濃度を0.5〜2.0Mとしてもほぼ同様な結果が
得られる。
Examples 43 to 63 and Comparative Examples 5 and 6 (Cycle Characteristics of Full Cell) The counter electrode in FIG. 1 was a positive electrode composed of LiMn 1.9 Co 0.1 O 4 . This is because a slurry prepared by mixing the above-mentioned positive electrode active material with a conductive agent and a binder is applied to an Al foil to a predetermined thickness, dried, and then dried to a diameter of 14 m.
It is cut out to a size of 16 mm in diameter having m electrode portions. With respect to the coin-type battery manufactured as described above, at 20 ° C., the charge end voltage was set to 4.3 V, the discharge end voltage was set to 3.3 V, the charge current density was 1 mA / cm 2 , and the discharge current density was 3 mA. / Cm 2 was subjected to a cycle test. In these batteries, the halogen in the dimethyl carbonate dielectric was changed to produce lithium perchlorate Li.
An electrolytic solution in which 1 M of ClO 4 was dissolved was prepared and adapted. In the battery using each electrolytic solution, the cycle life at half of the initial discharge capacity was defined as the cycle life at that time, and the results are shown in Table 4. From the results shown in Table 4, it can be seen that the dimethyl carbonate derivative shows almost the same characteristics as DMC, and shows higher characteristics than the PC electrolyte. In these, the electrolyte is Li
Almost the same results can be obtained by using PF 6 , LiBF 4 , LiAsF 6, etc. even when the electrolyte concentration is set to 0.5 to 2.0 M.

【0022】[0022]

【表4】 [Table 4]

【0023】実施例64〜84及び比較例7、8(フル
セルでの低温放電特性) 低温特性を評価するためにサイクル寿命の評価を行った
ときと同様に充放電サイクルを行い、その後、−10℃
とした後に6mA/cm2 で放電を行い、その時の放電
容量を見積もった。表5に結果を示した。炭酸ジメチル
誘導体がDMC、PCと比較して非常に高い放電容量が
得られた。なお、これらは電解質をLiPF6 、LiB
4 、LiAsF6 等にしてもほぼ同様な結果が得られ
る。通常のサイクル特性だけでなく、高負荷特性、低温
特性共に優れていることが明らかである。
Examples 64 to 84 and Comparative Examples 7 and 8 (low-temperature discharge characteristics in full cell) A charge / discharge cycle was performed in the same manner as when the cycle life was evaluated in order to evaluate low-temperature characteristics. ° C
After that, discharge was performed at 6 mA / cm 2 , and the discharge capacity at that time was estimated. Table 5 shows the results. The dimethyl carbonate derivative provided a very high discharge capacity as compared with DMC and PC. In these, electrolytes are LiPF 6 , LiB
Almost the same results can be obtained by using F 4 , LiAsF 6 or the like. It is clear that not only normal cycle characteristics but also high load characteristics and low temperature characteristics are excellent.

【0024】[0024]

【表5】 [Table 5]

【0025】以下、本発明の第4の発明に従い、炭酸ジ
メチル誘導体として一般式(化2)で表される化合物を
使用する実施例を説明する。 実施例85〜88及び比較例9、10(Li極の充放電
効率) 一般式(化2)で表される炭酸ジメチル誘導体でnを変
化させ、PCと体積混合比1:1とし、過塩素酸リチウ
ムLiClO4 を1M溶解した電解液を作製した。図1
における対極をステンレス基板とし、その上にリチウム
を電気化学的に2mAh電析させた後、これを電気化学
的に放電溶解させた時の充放電効率の20サイクルまで
の平均値及び比較例として1M−LiClO4 −PC/
DMC(1:1)、1M−LiClO4 −PC/DME
(1:1)(DME:ジメトキシエタン)電解液を用い
た時の値をそれぞれ表6に示す。表6の結果から炭酸ジ
メチル誘導体がDMCとほぼ同様に高い特性を示し、P
C/DME系電解液よりも高い特性を示していることが
わかる。なお、これらは電解質をLiPF6 、LiBF
4 、LiAsF6 等にしても、更に電解質濃度を0.5
〜2.0Mとしてもほぼ同様な結果が得られる。また、
PCの代りにEC(炭酸エチレン)を用いてもほぼ同様
な結果が得られる。
Hereinafter, according to the fourth aspect of the present invention, an example using a compound represented by the general formula (Formula 2) as a dimethyl carbonate derivative will be described. Examples 85 to 88 and Comparative Examples 9 and 10 (Charging / Discharging Efficiency of Li Electrode) The dimethyl carbonate derivative represented by the general formula (Chemical Formula 2) was used to change n to make the volume mixing ratio with PC 1: 1. An electrolyte was prepared by dissolving lithium acid LiClO 4 at 1M. FIG.
Was used as a counter electrode in a stainless steel substrate, and lithium was electrochemically deposited on the substrate by 2 mAh, and then this was electrochemically discharged and melted. The average value of charge and discharge efficiency up to 20 cycles and 1 M as a comparative example —LiClO 4 —PC /
DMC (1: 1), 1M-LiClO 4 -PC / DME
Table 6 shows the values when the (1: 1) (DME: dimethoxyethane) electrolyte was used. From the results in Table 6, the dimethyl carbonate derivative shows almost the same high properties as DMC,
It can be seen that the characteristics are higher than those of the C / DME-based electrolyte. In these, electrolytes are LiPF 6 , LiBF
4 , even with LiAsF 6 etc., the electrolyte concentration is further reduced to 0.5
Approximately the same result can be obtained even when it is set to 2.0M. Also,
Substantially similar results can be obtained by using EC (ethylene carbonate) instead of PC.

【0026】[0026]

【表6】 [Table 6]

【0027】実施例89〜92及び比較例11、12
(炭素極のサイクル特性) 一般式(化2)で表される炭酸ジメチル誘導体でnを変
化させ、PCと体積混合比1:1とし、過塩素酸リチウ
ムLiClO4 を1M溶解した電解液を作製した。図1
における対極として、炭素の一種であるアセチレンブラ
ック(層間距離は3.47〜3.48オングストロー
ム)を用いてコイン型電池を作製した。これらの電池に
ついて、0.5mA/cm2 の放電及び充電電流密度
で、放電電圧の下限を0V、充電電圧の上限を2.0V
とする電圧規制充放電サイクルを繰り返した。この試験
は、放電によりアセチレンブラックにリチウムを吸蔵
し、充電によりアセチレンブラックに吸蔵されたリチウ
ムを放出する試験であり、負極保持体(この実施例及び
比較例では、アセチレンブラック)にリチウムを吸蔵し
た負極の充放電性能に与える電解液材料の影響を知るた
めの試験である。比較例として1M−LiClO4 −P
C/DMC(1:1)、1M−LiClO4 −PC/D
ME(1:1)電解液を用いた時の10、40、100
サイクル時の取得容量をそれぞれ表7に示す。表7の結
果から炭酸ジメチル誘導体がDMCとほぼ同様な特性を
示し、高い特性を示していることがわかる。なお、これ
らは電解質をLiPF6 、LiBF4 、LiAsF6
にしても、更に電解質濃度を0.5〜2.0Mとしても
ほぼ同様な結果が得られる。また、PCの代りにECを
用いてもほぼ同様な結果が得られる。
Examples 89 to 92 and Comparative Examples 11 and 12
(Cycle Characteristics of Carbon Electrode) An electrolyte was prepared by changing n with a dimethyl carbonate derivative represented by the general formula (Chemical Formula 2) to a volume mixing ratio of 1: 1 with PC and dissolving 1 M of lithium perchlorate LiClO 4. did. FIG.
A coin-type battery was manufactured using acetylene black, a kind of carbon (interlayer distance: 3.47 to 3.48 angstroms), as a counter electrode in. For these batteries, at a discharge and charge current density of 0.5 mA / cm 2 , the lower limit of the discharge voltage was 0 V and the upper limit of the charge voltage was 2.0 V.
The voltage regulation charge / discharge cycle was repeated. In this test, lithium was occluded in acetylene black by discharging, and lithium absorbed in acetylene black was released by charging. Lithium was occluded in the negative electrode holder (acetylene black in this example and comparative example). This is a test for knowing the influence of the electrolyte material on the charge / discharge performance of the negative electrode. As a comparative example, 1M-LiClO 4 -P
C / DMC (1: 1), 1M-LiClO 4 -PC / D
10, 40, 100 when using ME (1: 1) electrolyte
Table 7 shows the obtained capacity during the cycle. From the results in Table 7, it can be seen that the dimethyl carbonate derivative shows almost the same properties as DMC, and shows high properties. Note that these are also the electrolyte LiPF 6, LiBF 4, LiAsF 6, etc., to obtain substantially the same results as further 0.5~2.0M the electrolyte concentration. Almost the same result can be obtained by using EC instead of PC.

【0028】[0028]

【表7】 [Table 7]

【0029】実施例93〜96及び比較例13、14
(フルセルのサイクル特性) 図1における対極をLiMn1.9 Co0.1 4 を用いて
構成された正極とした。これは、上記正極活物質を、導
電剤、結着剤と混合しスラリーとしたものをAl箔上に
所定の厚さに塗布し、乾燥させた後にそれを直径14m
mの電極部分を持つ直径16mmの大きさに切り出した
ものである。以上のように作製したコイン型電池につい
て、電池特性を評価するために20℃で充電終止電圧を
4.3V、放電終止電圧を3.3Vとして、充電電流密
度3mA/cm2 、放電電流密度0.5mA/cm2
サイクル試験を行った。これらの電池において、一般式
(化2)で表される炭酸ジメチル誘電体でnを変化さ
せ、PCと体積混合比1:1とし、過塩素酸リチウムL
iClO4 を1M溶解した電解液を作製し適応した。比
較例として1M−LiClO4 −PC/DMC(1:
1)、1M−LiClO4 −PC/DME(1:1)電
解液を用いた。各電解液を用いた電池において初期放電
容量の1/2となった時をサイクル寿命とした。表8の
結果から炭酸ジメチル誘導体がDMCとほぼ同様に高い
特性を示し、PC/DME系電解液よりも高い特性を示
していることがわかる。なお、これらは電解質をLiP
6 、LiBF4 、LiAsF6 等にしても、更に電解
質濃度を0.5〜2.0Mとしてもほぼ同様な結果が得
られる。また、PCの代りにECを用いてもほぼ同様な
結果が得られる。
Examples 93 to 96 and Comparative Examples 13 and 14
(Cycle Characteristics of Full Cell) The counter electrode in FIG. 1 was a positive electrode composed of LiMn 1.9 Co 0.1 O 4 . This is because a slurry prepared by mixing the above-mentioned positive electrode active material with a conductive agent and a binder is applied to an Al foil to a predetermined thickness, dried, and then dried to a diameter of 14 m.
It is cut out to a size of 16 mm in diameter having m electrode portions. In order to evaluate the battery characteristics of the coin-type battery manufactured as described above, at 20 ° C., the charge end voltage was set to 4.3 V, the discharge end voltage was set to 3.3 V, the charge current density was 3 mA / cm 2 , and the discharge current density was 0. The cycle test was performed at 0.5 mA / cm 2 . In these batteries, n was changed with a dimethyl carbonate dielectric represented by the general formula (Formula 2) to make the volume mixing ratio with PC 1: 1 and lithium perchlorate L
An electrolytic solution in which 1M iClO 4 was dissolved was prepared and adapted. As a comparative example, 1M-LiClO 4 -PC / DMC (1:
1), 1M-LiClO 4 -PC / DME (1: 1) using the electrolytic solution. The cycle life was defined as the time when the initial discharge capacity was 電池 of the battery using each electrolytic solution. From the results in Table 8, it can be seen that the dimethyl carbonate derivative shows almost the same high properties as DMC, and shows higher properties than the PC / DME-based electrolyte. In these, the electrolyte is LiP
Even when F 6 , LiBF 4 , LiAsF 6 or the like is used, the similar result can be obtained even when the electrolyte concentration is set to 0.5 to 2.0 M. Almost the same result can be obtained by using EC instead of PC.

【0030】[0030]

【表8】 [Table 8]

【0031】[0031]

【発明の効果】以上詳細に説明したように、本発明によ
れば、充放電特性に優れた非水溶媒電解液を有する二次
電池を実現できる。
As described in detail above, according to the present invention, a secondary battery having a non-aqueous solvent electrolyte having excellent charge / discharge characteristics can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電池の断面図である。FIG. 1 is a sectional view of a battery of the present invention.

【符号の説明】[Explanation of symbols]

1:ステンレス製の負極ケース、2:負極、3:非水溶
媒を用いた電解液、4:セパレータ、5:正極ケース、
6:対極、7:ガスケット
1: negative electrode case made of stainless steel, 2: negative electrode, 3: electrolytic solution using non-aqueous solvent, 4: separator, 5: positive electrode case,
6: Counter electrode, 7: Gasket

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山木 準一 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Junichi Yamaki Nippon Telegraph and Telephone Corporation 3-19-2 Nishishinjuku, Shinjuku-ku, Tokyo

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 アルカリ金属イオンを充放電可能な負極
と、アルカリ金属イオンと可逆的な電気化学反応可能な
正極と、イオン解離性のアルカリ金属塩を溶解した非水
溶媒電解液とを有する二次電池において、前記非水溶媒
が、炭酸ジメチル誘導体を含有するものであることを特
徴とする非水溶媒電解液を有する二次電池。
An anode comprising a negative electrode capable of charging / discharging an alkali metal ion, a positive electrode capable of reversible electrochemical reaction with the alkali metal ion, and a non-aqueous solvent electrolyte in which an ion-dissociable alkali metal salt is dissolved. A secondary battery comprising a nonaqueous solvent electrolyte, wherein the nonaqueous solvent contains a dimethyl carbonate derivative.
【請求項2】 請求項1記載のアルカリ金属がリチウム
であることを特徴とする請求項1記載の非水溶媒電解液
を有する二次電池。
2. The secondary battery according to claim 1, wherein the alkali metal according to claim 1 is lithium.
【請求項3】 請求項1記載の非水溶媒が、下記構造式
(化1): 【化1】 (式中、R1 〜R6 は、同一又は異なり、水素又はハロ
ゲンを示すが、少なくとも1つのRはハロゲンを示す)
で表される、分子中の少なくとも1つの水素をハロゲン
で置換した炭酸ジメチル誘導体を含むことを特徴とする
請求項1記載の非水溶媒電解液を有する二次電池。
3. The non-aqueous solvent according to claim 1, wherein the non-aqueous solvent has the following structural formula (Formula 1): (Wherein, R 1 to R 6 are the same or different and represent hydrogen or halogen, but at least one R represents halogen)
The secondary battery having a non-aqueous solvent electrolyte according to claim 1, wherein the secondary battery comprises a dimethyl carbonate derivative in which at least one hydrogen in the molecule has been replaced with a halogen represented by the formula:
【請求項4】 請求項1記載の炭酸ジメチル誘導体が、
下記構造式(化2): 【化2】CH3-O-CO-O-CH2-(-O-CO-O-CH2)n -O-CO-O-CH3 (式中、nは、零又は正の整数を示す)で表される炭酸
ジメチル誘導体であることを特徴とする請求項1記載の
非水溶媒電解液を有する二次電池。
4. The dimethyl carbonate derivative according to claim 1,
The following structural formula (Chemical formula 2): embedded image CH 3 —O—CO—O—CH 2 — (— O—CO—O—CH 2 ) n —O—CO—O—CH 3 (wherein, n Is a dimethyl carbonate derivative represented by the following formula:
JP8318497A 1996-11-15 1996-11-15 Secondary battery containing nonaqueous solvent electrolytic solution Pending JPH10144346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8318497A JPH10144346A (en) 1996-11-15 1996-11-15 Secondary battery containing nonaqueous solvent electrolytic solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8318497A JPH10144346A (en) 1996-11-15 1996-11-15 Secondary battery containing nonaqueous solvent electrolytic solution

Publications (1)

Publication Number Publication Date
JPH10144346A true JPH10144346A (en) 1998-05-29

Family

ID=18099788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8318497A Pending JPH10144346A (en) 1996-11-15 1996-11-15 Secondary battery containing nonaqueous solvent electrolytic solution

Country Status (1)

Country Link
JP (1) JPH10144346A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289189A (en) * 2001-03-23 2002-10-04 Hitachi Maxell Ltd Nonaqueous battery
EP1675209A1 (en) 2004-12-17 2006-06-28 Saft Lithium secondary battery operating at very low temperature
WO2006088009A1 (en) * 2005-02-16 2006-08-24 Daikin Industries, Ltd. Electrolyte solution
US8435679B2 (en) 2006-12-20 2013-05-07 3M Innovative Properties Counsel Fluorinated compounds for use in lithium battery electrolytes
US9293787B2 (en) 2010-09-22 2016-03-22 Fujifilm Corporation Nonaqueous electrolyte for secondary battery and lithium secondary battery
US20210135285A1 (en) * 2017-08-22 2021-05-06 Renewable Energy Platform Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery comprising same
CN113206298A (en) * 2021-04-13 2021-08-03 宁波梅山保税港区锂泰企业管理合伙企业(有限合伙) Ether-group-containing dicarbonate compound for nonaqueous electrolyte, nonaqueous electrolyte containing ether-group-containing dicarbonate compound, and secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289189A (en) * 2001-03-23 2002-10-04 Hitachi Maxell Ltd Nonaqueous battery
EP1675209A1 (en) 2004-12-17 2006-06-28 Saft Lithium secondary battery operating at very low temperature
US7722985B2 (en) 2004-12-17 2010-05-25 Saft Lithium battery operating at very low temperature
WO2006088009A1 (en) * 2005-02-16 2006-08-24 Daikin Industries, Ltd. Electrolyte solution
US8329344B2 (en) 2005-02-16 2012-12-11 Daikin Industries, Ltd. Electrolytic solution
US8435679B2 (en) 2006-12-20 2013-05-07 3M Innovative Properties Counsel Fluorinated compounds for use in lithium battery electrolytes
US9406977B2 (en) 2006-12-20 2016-08-02 3M Innovative Properties Company Fluorinated compounds for use in lithium battery electrolytes
US9293787B2 (en) 2010-09-22 2016-03-22 Fujifilm Corporation Nonaqueous electrolyte for secondary battery and lithium secondary battery
US20210135285A1 (en) * 2017-08-22 2021-05-06 Renewable Energy Platform Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery comprising same
US11855259B2 (en) * 2017-08-22 2023-12-26 Renewable Energy Platform Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery comprising same
CN113206298A (en) * 2021-04-13 2021-08-03 宁波梅山保税港区锂泰企业管理合伙企业(有限合伙) Ether-group-containing dicarbonate compound for nonaqueous electrolyte, nonaqueous electrolyte containing ether-group-containing dicarbonate compound, and secondary battery

Similar Documents

Publication Publication Date Title
JP4837614B2 (en) Lithium secondary battery
US20090169992A1 (en) Lithium Secondary Battery Using Ionic Liquid
JP3304187B2 (en) Electrolyte for lithium secondary battery
US20030124433A1 (en) Organic electrolytic solution and lithium secondary battery employing the same
US20030148191A1 (en) Non-aqueous electrolyte secondary battery
JPH11339850A (en) Lithium-ion secondary battery
JP4651279B2 (en) Nonaqueous electrolyte secondary battery
JPH08250108A (en) Manufacture of negative electrode for lithium secondary battery, and lithium secondary battery
JP3434677B2 (en) Secondary battery with non-aqueous solvent electrolyte
JP3546566B2 (en) Non-aqueous electrolyte secondary battery
JPH10144346A (en) Secondary battery containing nonaqueous solvent electrolytic solution
JPH11265710A (en) Lithium secondary battery and its manufacture
JP5360860B2 (en) Non-aqueous electrolyte secondary battery
US6503663B1 (en) Organic electrolyte and lithium secondary battery
JP3209319B2 (en) Secondary battery with non-aqueous solvent electrolyte
KR20020055572A (en) Non-aqueous electrolyte secondary battery
JP4710230B2 (en) Secondary battery electrolyte and secondary battery
JPH08190932A (en) Secondary battery having nonaqueous solvent electrolyte
JPH08162154A (en) Secondary battery having nonaqueous solvent electrolyt
JP2001143746A (en) Electrolyte for cell and non-aqueous electrolyte secondary cell
JP2000323171A (en) Nonaqueous electrolyte secondary battery
JP4134556B2 (en) Nonaqueous electrolyte secondary battery
JP4313982B2 (en) Nonaqueous electrolyte secondary battery
JP4759932B2 (en) Nonaqueous electrolyte secondary battery
JPH09171825A (en) Secondary battery having nonaqueous solvent