JP3258841B2 - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP3258841B2
JP3258841B2 JP33424994A JP33424994A JP3258841B2 JP 3258841 B2 JP3258841 B2 JP 3258841B2 JP 33424994 A JP33424994 A JP 33424994A JP 33424994 A JP33424994 A JP 33424994A JP 3258841 B2 JP3258841 B2 JP 3258841B2
Authority
JP
Japan
Prior art keywords
secondary battery
lithium secondary
positive electrode
present
mno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33424994A
Other languages
Japanese (ja)
Other versions
JPH08171935A (en
Inventor
良浩 小路
晃治 西尾
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP33424994A priority Critical patent/JP3258841B2/en
Publication of JPH08171935A publication Critical patent/JPH08171935A/en
Application granted granted Critical
Publication of JP3258841B2 publication Critical patent/JP3258841B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、リチウム二次電池に係
わり、詳しくはLiMO2 (但し、MはCo及びNiの
少なくとも一種)を正極活物質とするリチウム二次電池
の充放電サイクル特性を改善することを目的とした、正
極の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to a charge / discharge cycle characteristic of a lithium secondary battery using LiMO 2 (where M is at least one of Co and Ni) as a positive electrode active material. The present invention relates to improvement of a positive electrode for the purpose of improvement.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
リチウム二次電池が、水の分解電圧を考慮する必要がな
いことから、正極活物質を適宜選定することにより高電
圧化が可能である、エネルギー密度が高いなどの利点を
有することから、次世代の二次電池として、注目されて
いる。
2. Description of the Related Art In recent years,
Since the lithium secondary battery does not need to consider the decomposition voltage of water, it has the advantages of being able to achieve a higher voltage by appropriately selecting the positive electrode active material and having a high energy density. Has attracted attention as a secondary battery.

【0003】而して、高電圧型のリチウム二次電池の正
極活物質として、充電状態において高電位を示すLiC
oO2 、LiNiO2 、LiNi0.5 Co0.5 2 等の
一般式LiMO2 (但し、MはCo及びNiの少なくと
も一種)で表されるリチウム含有遷移金属酸化物が提案
されている。
As a positive electrode active material of a high-voltage lithium secondary battery, LiC which exhibits a high potential in a charged state is used.
Lithium-containing transition metal oxides represented by a general formula LiMO 2 (where M is at least one of Co and Ni) such as oO 2 , LiNiO 2 , and LiNi 0.5 Co 0.5 O 2 have been proposed.

【0004】しかしながら、この種の正極活物質を使用
したリチウム二次電池には、非水電解液の溶媒の分解に
対して正極活物質が高い活性を有することに起因して、
正極の表面で溶媒の分解が起こるために、充放電サイク
ル特性が良くないという問題がある。
However, a lithium secondary battery using this kind of positive electrode active material has a problem in that the positive electrode active material has high activity against decomposition of a solvent in a non-aqueous electrolyte.
Since the solvent is decomposed on the surface of the positive electrode, there is a problem that the charge / discharge cycle characteristics are not good.

【0005】本発明は、この問題を解決するべくなされ
たものであって、その目的とするところは、溶媒の分解
が起こりにくい、充放電サイクル特性に優れたリチウム
二次電池を提供するにある。
The present invention has been made to solve this problem, and an object of the present invention is to provide a lithium secondary battery which does not easily decompose a solvent and has excellent charge / discharge cycle characteristics. .

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明に係るリチウム二次電池(以下「本発明電池」
と称する。)は、正極と、負極と、溶質及び溶媒からな
る非水電解液とを備えるリチウム二次電池において、前
記正極が、少なくとも粒子表面にLi 2 MnO 3 が存在
する、Li2 MnO3 と、LiMO2 (但し、MはCo
及びNiから選ばれた少なくとも一種の元素)との複合
体粒子を電極材料とするものである。
In order to achieve the above object, a lithium secondary battery according to the present invention (hereinafter referred to as "battery of the present invention")
Called. ) Comprises a positive electrode, a negative electrode, a lithium secondary battery and a nonaqueous electrolyte comprising a solute and a solvent, wherein the positive electrode, the Li 2 MnO 3 on at least the particle surface there
To a Li 2 MnO 3, LiMO 2 (where, M is Co
And at least one element selected from Ni and Ni) as an electrode material.

【0007】上記複合体粒子としては、例えば、LiM
2 を粒子内部に、Li2 MnO3を粒子表面に、それ
ぞれ含有するものや、LiMO2 とLi2 MnO3 とが
粒子中に均一に混在するものが挙げられる。LiMO2
を粒子内部に、Li2 MnO3 を粒子表面に、それぞれ
含有する複合体粒子が、放電容量の大きいリチウム二次
電池を得る上で好ましい。
The composite particles include, for example, LiM
Examples include those containing O 2 inside the particle and Li 2 MnO 3 on the particle surface, and those containing LiMO 2 and Li 2 MnO 3 uniformly mixed in the particle. LiMO 2
Are contained in the inside of the particle and Li 2 MnO 3 is contained in the surface of the particle, respectively, in order to obtain a lithium secondary battery having a large discharge capacity.

【0008】また、本発明電池に於ける複合体粒子は、
M及びMnの総原子数に対するMnの原子数の比の値が
0.005〜0.2のものが好ましい。この比の値が、
この範囲を外れると、充放電サイクル特性が低下する傾
向がある。
Further, the composite particles in the battery of the present invention include:
It is preferable that the value of the ratio of the number of Mn atoms to the total number of M and Mn atoms is 0.005 to 0.2. The value of this ratio is
Outside this range, the charge / discharge cycle characteristics tend to decrease.

【0009】本発明電池の非水電解液の溶媒としては、
充放電サイクル特性に特に優れたリチウム二次電池を得
る上で、環状炭酸エステル、非環状炭酸エステル又は環
状炭酸エステルと非環状炭酸エステルとの混合溶媒が好
ましい。
The solvent of the non-aqueous electrolyte of the battery of the present invention includes:
In order to obtain a lithium secondary battery having particularly excellent charge / discharge cycle characteristics, a cyclic carbonate, an acyclic carbonate, or a mixed solvent of a cyclic carbonate and an acyclic carbonate is preferable.

【0010】環状炭酸エステルとしては、エチレンカー
ボネート、プロピレンカーボネート、ブチレンカーボネ
ート、ビニレンカーボネートが例示され、また非環状炭
酸エステルとしては、ジメチルカーボネート、ジエチル
カーボネート、メチルエチルカーボネートが例示され
る。環状炭酸エステルの中では、エチレンカーボネート
が特に好ましい。
Examples of the cyclic carbonate include ethylene carbonate, propylene carbonate, butylene carbonate and vinylene carbonate, and examples of the non-cyclic carbonate include dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate. Among cyclic carbonates, ethylene carbonate is particularly preferred.

【0011】本発明電池の非水電解液の溶質としては、
LiPF6 、LiClO4 、LiBF4 、LiCF3
3 が例示されるが、特に制限されない。
The solute of the non-aqueous electrolyte of the battery of the present invention includes:
LiPF 6 , LiClO 4 , LiBF 4 , LiCF 3 S
O 3 is exemplified, but is not particularly limited.

【0012】本発明電池の負極としては、リチウムイオ
ンを吸蔵及び放出することが可能な物質又は金属リチウ
ムを電極材料とするものが例示される。リチウムイオン
を吸蔵及び放出することが可能な物質としては、黒鉛、
コークス、有機物焼成体等の炭素材料や、リチウム−ア
ルミニウム合金、リチウム−錫合金、リチウム−鉛合金
等のリチウム合金が例示される。
Examples of the negative electrode of the battery of the present invention include those using a substance capable of inserting and extracting lithium ions or metallic lithium as an electrode material. Materials that can occlude and release lithium ions include graphite,
Examples thereof include carbon materials such as coke and fired organic substances, and lithium alloys such as a lithium-aluminum alloy, a lithium-tin alloy, and a lithium-lead alloy.

【0013】[0013]

【作用】少なくとも粒子表面にLi 2 MnO 3 が存在す
る、Li2 MnO3 とLiMO2 (活物質)との複合体
粒子が正極材料として使用されているので、正極の表面
での溶媒の分解が起こりにくくなり、充放電サイクル特
性が向上する。これは、粒子表面に存在するLi2 Mn
3 が、溶媒の分解に対して高い活性を示すLiMO2
の活性を低下させるためと考えられる。因みに、Li2
MnO3 は、充放電には関与しない。
[Function] At least Li 2 MnO 3 exists on the particle surface
Since the composite particles of Li 2 MnO 3 and LiMO 2 (active material) are used as the positive electrode material, decomposition of the solvent on the surface of the positive electrode is less likely to occur, and the charge / discharge cycle characteristics are improved. This is because Li 2 Mn present on the particle surface
O 3 is LiMO 2 showing high activity against decomposition of solvent
Is considered to decrease the activity of By the way, Li 2
MnO 3 does not participate in charge and discharge.

【0014】特に、LiMO2 を粒子内部に、Li2
nO3 を粒子表面に、それぞれ含有する複合体粒子を正
極材料として使用した場合には、充放電サイクル特性が
向上するだけでなく、理由は現在のところ定かでない
が、LiMO2 の利用率が向上して放電容量も増大す
る。
In particular, LiMO 2 is contained inside the particles, Li 2 M
When the composite particles containing nO 3 on the particle surface are used as the cathode material, not only the charge-discharge cycle characteristics are improved, but also the reason is not clear at present, but the utilization rate of LiMO 2 is improved. As a result, the discharge capacity also increases.

【0015】[0015]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention may be practiced by appropriately changing the gist of the invention. Is possible.

【0016】(実施例1) 〔正極の作製〕Li2 CO3 とCoCO3 とを、Li:
Coの原子比1.2:1.0で混合した後、850°C
で10時間熱処理して、Li1.2 CoO2 を得た。次い
で、このLi1.2 CoO2 と、MnO2 とを、Co:M
nの原子比1.0:0.1で混合した後、850°Cで
10時間熱処理して、正極材料を作製した。
(Example 1) [Preparation of positive electrode] Li 2 CO 3 and CoCO 3 were mixed with Li:
After mixing at an atomic ratio of Co of 1.2: 1.0, 850 ° C.
For 10 hours to obtain Li 1.2 CoO 2 . Next, the Li 1.2 CoO 2 and MnO 2 were converted into Co: M
After mixing at an atomic ratio of n of 1.0: 0.1, the mixture was heat-treated at 850 ° C. for 10 hours to prepare a positive electrode material.

【0017】この正極材料を、X線光電子分光法を用い
て、Arイオンエッチングにより徐々に表面から粒子内
部まで分析したところ、Mnが表面にしか存在しないこ
とが分かった。この事実から、この正極材料が、LiC
oO2 を粒子内部に、Li2MnO3 を粒子表面に、そ
れぞれ含有する複合体粒子からなるものであることを確
認した。
When this positive electrode material was gradually analyzed from the surface to the inside of the particles by Ar ion etching using X-ray photoelectron spectroscopy, it was found that Mn was present only on the surface. From this fact, this cathode material is made of LiC
It was confirmed that the particles consisted of composite particles containing oO 2 inside the particles and Li 2 MnO 3 on the particle surfaces.

【0018】次いで、上記正極材料と、導電剤としての
炭素粉末と、結着剤としてのフッ素樹脂とを、重量比8
0:10:10で混合した後、ペレット状に成型して、
正極を作製した。
Next, the above positive electrode material, carbon powder as a conductive agent, and a fluororesin as a binder were mixed at a weight ratio of 8%.
After mixing at 0:10:10, the mixture is molded into a pellet,
A positive electrode was produced.

【0019】〔負極の作製〕金属リチウム圧延板を打ち
抜いて負極を作製した。
[Preparation of Negative Electrode] A rolled metal lithium plate was punched to prepare a negative electrode.

【0020】〔非水電解液の調製〕エチレンカーボネー
ト(EC)にLiPF6 を1モル/リットル溶かして非
水電解液を調製した。
[Preparation of Nonaqueous Electrolyte] A nonaqueous electrolyte was prepared by dissolving LiPF 6 in ethylene carbonate (EC) at 1 mol / L.

【0021】〔電池の組立〕上記の正極、負極及び非水
電解液を用いて扁平型の正極支配の本発明電池A1を組
み立てた(電池寸法:外径24.0mm、厚み3.0m
m)。なお、セパレータとしては、ポリプロピレン製の
微多孔膜を使用した。
[Assembly of Battery] Using the above-mentioned positive electrode, negative electrode and non-aqueous electrolyte, a flat type positive electrode-dominated battery A1 of the present invention was assembled (battery dimensions: outer diameter 24.0 mm, thickness 3.0 m).
m). In addition, a microporous film made of polypropylene was used as the separator.

【0022】(実施例2)Li2 CO3 とCoCO3
MnO2 とを、Li:Co:Mnの原子比1.2:1.
0:0.1で混合した後、850°Cで20時間熱処理
して、正極材料を作製した。
(Example 2) Li 2 CO 3 , CoCO 3 and MnO 2 were mixed at an atomic ratio of Li: Co: Mn of 1.2: 1.
After mixing at 0: 0.1, the mixture was heat-treated at 850 ° C. for 20 hours to prepare a positive electrode material.

【0023】この正極材料を、先と同様のX線光電子分
光法により分析したところ、Mnが表面から内部にわた
って均一に分布していることが分かった。この事実か
ら、この正極材料が、LiCoO2 とLi2 MnO3
が粒子中に均一に混在した複合体粒子からなるものであ
ることを確認した。
When this cathode material was analyzed by the same X-ray photoelectron spectroscopy method as above, it was found that Mn was uniformly distributed from the surface to the inside. From this fact, it was confirmed that this positive electrode material was composed of composite particles in which LiCoO 2 and Li 2 MnO 3 were uniformly mixed in the particles.

【0024】次いで、この正極材料を使用したこと以外
は実施例1と同様にして、本発明電池A2を組み立て
た。
Next, a battery A2 of the present invention was assembled in the same manner as in Example 1 except that this positive electrode material was used.

【0025】(実施例3)Li2 CO3 とCoCO3
Ni(OH)2 とを、Li:Co:Niの原子比1.
2:0.5:0.5で混合した後、850°Cで10時
間熱処理して、Li 1.2 Co0.5 Ni0.5 2 を得た。
次いで、このLi1.2 Co0.5 Ni0.5 2と、MnO
2 とを、Co+Ni:Mnの原子比1.0:0.1で混
合した後、850°Cで10時間熱処理して、正極材料
を作製した。
Example 3 LiTwoCOThreeAnd CoCOThreeWhen
Ni (OH)TwoAnd an atomic ratio of Li: Co: Ni of 1.
After mixing at 2: 0.5: 0.5, 10 hours at 850 ° C
Heat treatment for Li 1.2Co0.5Ni0.5OTwoI got
Then, this Li1.2Co0.5Ni0.5OTwoAnd MnO
TwoAre mixed at an atomic ratio of Co + Ni: Mn of 1.0: 0.1.
After being combined, heat-treated at 850 ° C for 10 hours,
Was prepared.

【0026】この正極材料を、先と同様のX線光電子分
光法により分析したところ、Mnが表面にしか存在しな
いことが分かった。この事実から、この正極材料が、L
iCo0.5 Ni0.5 2 を粒子内部に、Li2 MnO3
を粒子表面に、それぞれ含有する複合体粒子からなるも
のであることを確認した。
When this positive electrode material was analyzed by the same X-ray photoelectron spectroscopy method as above, it was found that Mn was present only on the surface. From this fact, this cathode material is
iCo 0.5 Ni 0.5 O 2 inside the particles, Li 2 MnO 3
On the surface of the particles was confirmed to be composed of composite particles.

【0027】次いで、この正極材料を使用したこと以外
は実施例1と同様にして、本発明電池A3を組み立て
た。
Next, a battery A3 of the present invention was assembled in the same manner as in Example 1 except that this positive electrode material was used.

【0028】(比較例1)Li2 CO3 とCoCO3
を、Li:Coの原子比1.0:1.0で混合した後、
850°Cで20時間熱処理して、LiCoO2 を得
た。このLiCoO2 を正極材料として使用したこと以
外は実施例1と同様にして、比較電池B1を組み立て
た。
(Comparative Example 1) Li 2 CO 3 and CoCO 3 were mixed at an atomic ratio of Li: Co of 1.0: 1.0.
Heat treatment was performed at 850 ° C. for 20 hours to obtain LiCoO 2 . A comparative battery B1 was assembled in the same manner as in Example 1 except that this LiCoO 2 was used as a positive electrode material.

【0029】(比較例2)Li2 CO3 とCoCO3
Ni(OH)2 とを、Li:Co:Niの原子比1.
0:0.5:0.5で混合した後、850°Cで20時
間熱処理して、LiCo0.5 Ni0.5 2 を得た。この
LiCo0.5 Ni0.5 2 を正極材料として使用したこ
と以外は実施例1と同様にして、比較電池B2を組み立
てた。
Comparative Example 2 Li 2 CO 3 , CoCO 3, and Ni (OH) 2 were prepared by mixing Li: Co: Ni at an atomic ratio of 1.
After mixing at 0: 0.5: 0.5, the mixture was heat-treated at 850 ° C. for 20 hours to obtain LiCo 0.5 Ni 0.5 O 2 . A comparative battery B2 was assembled in the same manner as in Example 1 except that this LiCo 0.5 Ni 0.5 O 2 was used as a positive electrode material.

【0030】〔充放電サイクル試験〕本発明電池A1〜
A3及び比較電池B1,B2について、3mAで4.1
Vまで充電した後、3mAで3.0Vまで放電する工程
を1サイクルとする充放電サイクル試験を行い、各電池
の充放電サイクル特性を調べた。結果を図1に示す。図
1は、各電池の充放電サイクル特性を、縦軸に放電容量
(mAh)を、また横軸にサイクル数(回)をとって示
したグラフである。また、表1に、各電池の1サイクル
目及び100サイクル目の各放電容量を示す。
[Charge / Discharge Cycle Test] Batteries A1 to A4 of the present invention
For A3 and comparative batteries B1 and B2, 4.1 mA at 3 mA
After the battery was charged to V, a charge / discharge cycle test was performed in which the process of discharging to 3.0 V at 3 mA was one cycle, and the charge / discharge cycle characteristics of each battery were examined. The results are shown in FIG. FIG. 1 is a graph showing the charge / discharge cycle characteristics of each battery, the vertical axis representing the discharge capacity (mAh), and the horizontal axis representing the number of cycles (times). Table 1 shows the discharge capacity at the first cycle and the 100th cycle of each battery.

【0031】[0031]

【表1】 [Table 1]

【0032】図1及び表1より、本発明電池A1〜A3
は、比較電池B1,B2に比べて、充放電の繰り返しに
伴う放電容量の低下が少なく、充放電サイクル特性に優
れていることが分かる。
FIG. 1 and Table 1 show that the batteries A1 to A3 of the present invention were obtained.
It can be seen that, compared to the comparative batteries B1 and B2, the decrease in the discharge capacity due to the repetition of charge / discharge was small and the charge / discharge cycle characteristics were excellent.

【0033】特に、LiMO2 を粒子内部に、Li2
nO3 を粒子表面に、それぞれ含有する複合体粒子を正
極材料として使用した本発明電池A1及びA3では、充
放電サイクル初期の放電容量も増大することが分かる。
In particular, LiMO 2 is contained inside the particles, and Li 2 M
It can be seen that in the batteries A1 and A3 of the present invention using the composite particles each containing nO 3 on the particle surface as a positive electrode material, the discharge capacity at the beginning of the charge / discharge cycle is also increased.

【0034】〔非水電解液の溶媒の種類と充放電サイク
ル特性の関係〕非水電解液の溶媒として、エチレンカー
ボネートに代えて表2に示す種々の溶媒を使用したこと
以外は実施例1と同様にして、溶媒のみが異なる12種
の本発明電池A4〜A15を組み立てた。次いで、これ
らの各電池について、先と同じ条件で充放電サイクル試
験を行い、各電池の1サイクル目及び100サイクル目
の各放電容量を求めた。結果を表2に示す。なお、表2
には、実施例1で組み立てた本発明電池A1の結果も、
表1より転記して示してある。
[Relationship between Type of Solvent of Nonaqueous Electrolyte and Charge / Discharge Cycle Characteristics] The procedure of Example 1 was repeated except that various solvents shown in Table 2 were used instead of ethylene carbonate as the solvent of the nonaqueous electrolyte. Similarly, twelve kinds of batteries A4 to A15 of the present invention differing only in the solvent were assembled. Next, a charge / discharge cycle test was performed on each of these batteries under the same conditions as above, and the respective discharge capacities at the first cycle and the 100th cycle of each battery were determined. Table 2 shows the results. Table 2
Shows the result of the battery A1 of the present invention assembled in Example 1,
It is transcribed and shown from Table 1.

【0035】[0035]

【表2】 [Table 2]

【0036】表2に示すように、本発明電池A1,A4
〜A11は、本発明電池A12〜A15に比べて、10
0サイクル目の放電容量が特に大きく、充放電サイクル
特性に極めて優れている。この事実から、本発明に於け
る非水電解液の溶媒としては、環状炭酸エステル、非環
状炭酸エステル又は環状炭酸エステルと非環状炭酸エス
テルとの混合溶媒を使用することが好ましいことが分か
る。
As shown in Table 2, the batteries A1 and A4 of the present invention
To A11 are 10 times smaller than the batteries A12 to A15 of the present invention.
The discharge capacity at the 0th cycle is particularly large, and the charge / discharge cycle characteristics are extremely excellent. From this fact, it is understood that it is preferable to use a cyclic carbonate, a non-cyclic carbonate, or a mixed solvent of a cyclic carbonate and a non-cyclic carbonate as a solvent of the non-aqueous electrolyte in the present invention.

【0037】〔複合体粒子のLi2 MnO3 含有量と充
放電サイクル特性の関係〕実施例1と同様の方法によ
り、複合体粒子のLi2 MnO3 含有量が異なる9種の
正極材料を作製し、これらの正極材料を各同量使用した
こと以外は実施例1と同様にして、リチウム二次電池を
組み立てた。次いで、これらの各電池について、先と同
じ条件で充放電サイクル試験を行い、各電池の1サイク
ル目及び100サイクル目の各放電容量を求めた。結果
を図2に示す。
[Relationship between Li 2 MnO 3 content of composite particles and charge / discharge cycle characteristics] Nine kinds of positive electrode materials having different Li 2 MnO 3 contents of composite particles were produced in the same manner as in Example 1. Then, a lithium secondary battery was assembled in the same manner as in Example 1 except that the same amount of each of these positive electrode materials was used. Next, a charge / discharge cycle test was performed on each of these batteries under the same conditions as above, and the respective discharge capacities at the first cycle and the 100th cycle of each battery were determined. The results are shown in FIG.

【0038】図2は、各電池に使用した複合体粒子のL
2 MnO3 含有量と充放電サイクル特性の関係を、縦
軸に1サイクル目又は100サイクル目の放電容量(m
Ah)を、横軸に複合体粒子中のCo及びMnの総原子
数に対するMnの原子数の比の値〔Mnの原子数/(C
oの原子数+Mnの原子数)〕をとって示したグラフで
ある。同図より、充放電サイクル特性に特に優れたリチ
ウム二次電池を得るためには、Co及びMnの総原子数
に対するMnの原子数の比の値が0.005〜0.2で
ある特定のLi2 MnO3 含有量の複合体粒子からなる
正極材料を使用することが好ましいことが分かる。
FIG. 2 shows the L of the composite particles used for each battery.
The vertical axis indicates the relationship between the i 2 MnO 3 content and the charge / discharge cycle characteristics.
Ah) represents the value of the ratio of the number of Mn atoms to the total number of Co and Mn atoms in the composite particles [the number of Mn atoms / (C
o is the number of atoms of O + the number of atoms of Mn)]. As shown in the figure, in order to obtain a lithium secondary battery having particularly excellent charge / discharge cycle characteristics, a specific value of the ratio of the number of Mn atoms to the total number of Co and Mn atoms of 0.005 to 0.2 is required. It can be seen that it is preferable to use a positive electrode material composed of composite particles having a Li 2 MnO 3 content.

【0039】上記実施例では、本発明を扁平型電池に適
用する場合を例に挙げて説明したが、本発明は電池の形
状に特に制限があるわけではなく、円筒型、角型など、
他の種々の形状のリチウム二次電池に適用し得るもので
ある。
In the above embodiment, the case where the present invention is applied to a flat type battery has been described as an example. However, the present invention is not particularly limited in the shape of the battery.
The present invention can be applied to other various shapes of lithium secondary batteries.

【0040】[0040]

【発明の効果】非水電解液の溶媒の分解に対して高い活
性を有するLiMO2 の活性が粒子表面に存在するLi
2 MnO 3 により低下しているので、正極の表面での溶
媒の分解が起こりにくく、充放電を繰り返しても非水電
解液が劣化しにくい。このため、本発明電池は充放電サ
イクル特性に優れる。
Li activity of LiMO 2 is present on the particle surface with a high activity for decomposition of the solvent of the nonaqueous electrolytic solution according to the present invention
Since the concentration is lowered by 2 MnO 3 , the solvent is hardly decomposed on the surface of the positive electrode, and the non-aqueous electrolyte is hardly deteriorated even if charge and discharge are repeated. For this reason, the battery of the present invention is excellent in charge / discharge cycle characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で組み立てた本発明電池及び比較電池の
充放電サイクル特性を示すグラフである。
FIG. 1 is a graph showing charge / discharge cycle characteristics of a battery of the present invention and a comparative battery assembled in an example.

【図2】複合体粒子のLi2 MnO3 含有量と充放電サ
イクル特性の関係を示したグラフである。
FIG. 2 is a graph showing the relationship between the Li 2 MnO 3 content of composite particles and charge / discharge cycle characteristics.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C01G 53/00 C01G 53/00 A (56)参考文献 特開 平5−28995(JP,A) 特開 昭63−114064(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/58 H01M 4/02 H01M 10/40 ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 7 Identification symbol FI C01G 53/00 C01G 53/00 A (56) References JP-A-5-28995 (JP, A) JP-A-63-114064 ( JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) H01M 4/58 H01M 4/02 H01M 10/40

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】正極と、負極と、溶質及び溶媒からなる非
水電解液とを備えるリチウム二次電池において、前記正
極が、少なくとも粒子表面にLi 2 MnO 3 が存在す
る、Li2 MnO3 と、LiMO2 (但し、MはCo及
びNiから選ばれた少なくとも一種の元素)との複合体
粒子を電極材料とすることを特徴とするリチウム二次電
池。
1. A lithium secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte comprising a solute and a solvent, wherein the positive electrode has Li 2 MnO 3 at least on the particle surface .
That, and Li 2 MnO 3, LiMO 2 (where, M represents at least one element selected from Co and Ni) lithium secondary battery, characterized in that the electrode material of the composite particles with.
【請求項2】前記複合体粒子が、LiMO2 を粒子内部
に、Li2 MnO3 を粒子表面に、それぞれ含有してな
るものである請求項1記載のリチウム二次電池。
2. The lithium secondary battery according to claim 1, wherein the composite particles contain LiMO 2 inside the particles and Li 2 MnO 3 on the particle surfaces.
【請求項3】前記複合体粒子は、LiMO2 とLi2
nO3 とが粒子中に均一に混在してなるものである請求
項1記載のリチウム二次電池。
3. The composite particles are composed of LiMO 2 and Li 2 M.
2. The lithium secondary battery according to claim 1, wherein nO 3 is uniformly mixed in the particles.
【請求項4】前記複合体粒子は、M及びMnの総原子数
に対するMnの原子数の比の値が0.005〜0.2の
ものである請求項1記載のリチウム二次電池。
4. The lithium secondary battery according to claim 1, wherein the composite particles have a ratio of the number of Mn atoms to the total number of M and Mn atoms of 0.005 to 0.2.
【請求項5】前記溶媒が、環状炭酸エステル、非環状炭
酸エステル又は環状炭酸エステルと非環状炭酸エステル
との混合溶媒である請求項1〜4のいずれかに記載のリ
チウム二次電池。
5. The lithium secondary battery according to claim 1, wherein the solvent is a cyclic carbonate, an acyclic carbonate, or a mixed solvent of a cyclic carbonate and an acyclic carbonate.
JP33424994A 1994-12-16 1994-12-16 Lithium secondary battery Expired - Fee Related JP3258841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33424994A JP3258841B2 (en) 1994-12-16 1994-12-16 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33424994A JP3258841B2 (en) 1994-12-16 1994-12-16 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH08171935A JPH08171935A (en) 1996-07-02
JP3258841B2 true JP3258841B2 (en) 2002-02-18

Family

ID=18275222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33424994A Expired - Fee Related JP3258841B2 (en) 1994-12-16 1994-12-16 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3258841B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063838A1 (en) 2007-11-12 2009-05-22 Gs Yuasa Corporation Active material for lithium rechargeable battery, lithium rechargeable battery, and process for producing the same
US8241791B2 (en) 2001-04-27 2012-08-14 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
EP3486978A1 (en) * 2017-11-15 2019-05-22 Ecopro Bm Co., Ltd. Cathode active material and preparation method thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3582161B2 (en) * 1995-08-11 2004-10-27 ソニー株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery using the same
DE69620154T2 (en) * 1995-11-24 2002-10-02 Fuji Chemical Industry Co., Ltd. LITHIUM-NICKEL COMPOSITE OXIDE, METHOD FOR THE PRODUCTION THEREOF AND POSITIVE ACTIVE MATERIAL FOR SECONDARY BATTERY
WO2011040383A1 (en) * 2009-09-30 2011-04-07 戸田工業株式会社 Positive electrode active material powder, method for producing same, and nonaqueous electrolyte secondary battery
KR20140009364A (en) * 2011-02-18 2014-01-22 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Composite particles, methods of making the same, and articles including the same
CN102683666B (en) * 2011-03-17 2014-11-19 比亚迪股份有限公司 Positive electrode material of lithium cell, preparation method of positive electrode material and lithium cell
US10741841B2 (en) 2013-07-29 2020-08-11 Lg Chem, Ltd. Electrode active material having improved energy density and lithium secondary battery including the same
JP6156078B2 (en) 2013-11-12 2017-07-05 日亜化学工業株式会社 Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP6524651B2 (en) 2013-12-13 2019-06-05 日亜化学工業株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same
KR101758992B1 (en) * 2014-10-02 2017-07-17 주식회사 엘지화학 Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery comprising the same
DE102017207683A1 (en) 2016-05-09 2017-11-09 Nichia Corporation A process for producing a nickel-cobalt composite hydroxide and a process for producing an active material of a positive electrode for an anhydrous electrolyte secondary battery
KR102324691B1 (en) * 2019-12-19 2021-11-09 주식회사 포스코 Cathode active material method for manufacturing the same, and lithium ion battery including the same
CN111628157B (en) * 2020-06-30 2024-03-26 蜂巢能源科技有限公司 Positive electrode material, preparation method thereof and lithium ion battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8241791B2 (en) 2001-04-27 2012-08-14 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
US8685565B2 (en) 2001-04-27 2014-04-01 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
WO2009063838A1 (en) 2007-11-12 2009-05-22 Gs Yuasa Corporation Active material for lithium rechargeable battery, lithium rechargeable battery, and process for producing the same
EP2278642A1 (en) 2007-11-12 2011-01-26 GS Yuasa International Ltd. Method for producing an active material for lithium secondary battery and a lithium secondary battery
EP3486978A1 (en) * 2017-11-15 2019-05-22 Ecopro Bm Co., Ltd. Cathode active material and preparation method thereof

Also Published As

Publication number Publication date
JPH08171935A (en) 1996-07-02

Similar Documents

Publication Publication Date Title
JP3172388B2 (en) Lithium secondary battery
JP5232631B2 (en) Non-aqueous electrolyte battery
US20050266316A1 (en) Non-aqueous electrolyte secondary battery
JP3258841B2 (en) Lithium secondary battery
US6551743B1 (en) Nonaqueous secondary battery
JPH1027626A (en) Lithium secondary battery
JPH06342673A (en) Lithium secondary battery
JP3426689B2 (en) Non-aqueous electrolyte secondary battery
JP3717544B2 (en) Lithium secondary battery
JP3349399B2 (en) Lithium secondary battery
EP1649531A1 (en) Lithium ion battery having an improved conserved property at a high temperature
JPH09147910A (en) Lithium secondary battery
JP3573971B2 (en) Lithium secondary battery
JP3050885B2 (en) Non-aqueous solvent secondary battery and method of manufacturing the same
JP3229769B2 (en) Lithium secondary battery
JP3358777B2 (en) Negative electrode for secondary battery
JP4356127B2 (en) Lithium secondary battery
JPH11317242A (en) Manufacture of nonaqueous electrolyte battery
JP2001015109A (en) Lithium secondary battery
JP3050016B2 (en) Non-aqueous electrolyte secondary battery
JPH1125973A (en) Negative electrode mateal for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery having negative electrode using the same
JP3289259B2 (en) Negative electrode for lithium secondary battery
JP2000277113A (en) Lithium secondary battery
JPH07288140A (en) Lithium secondary battery
JP3358773B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091207

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees