JPH07272758A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH07272758A
JPH07272758A JP6081092A JP8109294A JPH07272758A JP H07272758 A JPH07272758 A JP H07272758A JP 6081092 A JP6081092 A JP 6081092A JP 8109294 A JP8109294 A JP 8109294A JP H07272758 A JPH07272758 A JP H07272758A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
secondary battery
lithium secondary
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6081092A
Other languages
Japanese (ja)
Inventor
Takahisa Masashiro
尊久 正代
Shinichi Tobishima
真一 鳶島
Junichi Yamaki
準一 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6081092A priority Critical patent/JPH07272758A/en
Publication of JPH07272758A publication Critical patent/JPH07272758A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To extend a cycle life by using tungsten dioxide as a negative electrode active material holder, and using a mixed solvent as an electrolytic solvent, so as to provide high voltage, high energy density, large charge/discharge capacity and further high safety. CONSTITUTION:Tungsten dioxide (WO2) is used as a negative electrode active material holder, and further a mixed solvent, having ethylene carbonate (EC) as an inevitable component, is used as a nonaqueous electrolyte. Thus in electrode potential 0.0 to 1.0V relating to a lithium reference electrode conventionally called non-reversible in WO2, a large charge/discharge capacity and stable long cycle life are obtained. Consequently, even when the WO2 is used as the negative electrode active material holder, remarkably decreasing operating voltage of a battery is eliminated, and high voltage and high energy density can be attained. Further because of large specific gravity, in also a charge/ discharge capacity per negative electrode volume, a very large capacity can be obtained as compared with a graphite system negative electrode, and also a cycle life can be extended.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液二次電池に
関するものであり、特に、高電圧、高エネルギー密度
で、充放電容量が大きく、しかもサイクル寿命が長く、
かつ安全性の高い電池特性を提供するリチウム二次電池
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and particularly to a high voltage, a high energy density, a large charge / discharge capacity, and a long cycle life.
The present invention also relates to a lithium secondary battery that provides highly safe battery characteristics.

【0002】[0002]

【従来の技術】近年、電子機器の小型軽量化、携帯化が
進み、その電源として高エネルギー密度を有する電池の
開発が要求されている。このような要求に応える電池と
して、リチウム金属を負極活物質として用いたリチウム
二次電池が期待されている。リチウム二次電池は、基本
的に市販されている各種の二次電池、例えばニッケルカ
ドミウム電池、鉛蓄電池等に比べ、高電圧、高エネルギ
ー密度を有している。しかし、一般に負極活物質として
リチウム金属を用いたリチウム二次電池は、充電時に針
状リチウム(デンドライト)が生成し、放電時にこの針
状リチウムが切れ、電極基盤から脱離するため、充放電
に寄与しない死んだリチウムが生成する。また、析出し
た金属リチウム粒子は非常に活性であるため、電解液と
の反応により、リチウム金属が消費される。これらの理
由で、負極活物質としてリチウム金属を用いた電池は、
サイクル寿命が短くなるという問題を抱えており、負極
にリチウム金属あるいはリチウム合金を用いた電池系に
おいてはサイクル寿命の確保が非常に困難な状況にあ
る。リチウム金属あるいはリチウム合金に替わる新しい
負極活物質保持体として、リチウムのインターカレーシ
ョン反応を利用した層間化合物が注目されている。代表
的な層間化合物として、二酸化モリブデン(Mo
2 )、二酸化タングステン(WO2 )、二硫化チタン
(TiS2 )等の無機化合物や、天然黒鉛や人造黒鉛等
の炭素質材料が検討されているが、後述するような問題
がある。このような層間化合物は、リチウムをイオン化
した状態で骨格構造中に保持されているため、化学的に
活性な金属状態のリチウム負極に比べて安定であり、リ
チウム金属で見られたデンドライトの生成も無いためサ
イクル寿命は改善される。上記層間化合物の中で、炭素
質材料は、リチウム基準極(金属リチウム)に対し、0
〜1Vの卑な電極電位の範囲において、安定にリチウム
イオンを吸蔵放出することができ、150〜350mA
h/gと大きい充放電容量を有する。実際、負極活物質
保持体に炭素質材料を用いたリチウムイオン二次電池が
一部実用化されている。
2. Description of the Related Art In recent years, electronic devices have become smaller, lighter and more portable, and there has been a demand for the development of batteries having a high energy density as their power sources. As a battery that meets such a demand, a lithium secondary battery using lithium metal as a negative electrode active material is expected. The lithium secondary battery basically has higher voltage and higher energy density than various commercially available secondary batteries such as nickel cadmium battery and lead storage battery. However, in general, a lithium secondary battery using lithium metal as a negative electrode active material generates needle-shaped lithium (dendrites) during charging, and the needle-shaped lithium is cut off during discharging and is detached from the electrode substrate. Dead lithium is produced that does not contribute. Further, since the deposited metal lithium particles are very active, the lithium metal is consumed by the reaction with the electrolytic solution. For these reasons, batteries using lithium metal as the negative electrode active material are
There is a problem that the cycle life is shortened, and it is very difficult to secure the cycle life in a battery system using lithium metal or lithium alloy for the negative electrode. An intercalation compound utilizing the intercalation reaction of lithium has been attracting attention as a new negative electrode active material holder replacing lithium metal or lithium alloy. As a typical intercalation compound, molybdenum dioxide (Mo
Inorganic compounds such as O 2 ), tungsten dioxide (WO 2 ), titanium disulfide (TiS 2 ), and carbonaceous materials such as natural graphite and artificial graphite have been investigated, but there are problems as described below. Since such an intercalation compound is held in the skeleton structure in the state where lithium is ionized, it is more stable than a chemically active lithium negative electrode, and dendrite formation seen in lithium metal is also generated. Cycle life is improved because it is not present. Among the above-mentioned intercalation compounds, the carbonaceous material is 0 relative to the lithium reference electrode (metal lithium).
In the range of the base electrode potential of ˜1 V, lithium ions can be occluded and released stably, and 150 to 350 mA.
It has a large charge / discharge capacity of h / g. In fact, some lithium ion secondary batteries using a carbonaceous material for the negative electrode active material holder have been put to practical use.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、炭素質
材料を負極として用いた場合、重量当りの容量は、大き
いものの、これら炭素質材料の比重は1.6〜2.2g
/ccと小さく、実際の電極シートに加工した際の比重
は、1g/cc程度である。このため、負極体積当りの
容量が小さくなり、電池のエネルギー密度が、リチウム
金属を負極に用いた二次電池に比べて小さくなるという
問題がある。一方、上記層間化合物の中の無機化合物
は、比重は炭素質材料に比べて非常に大きく、負極体積
当りの容量は期待できるものの、一般に安定にリチウム
イオンを吸蔵放出することができる電極電位が、リチウ
ム基準極に対して0.5〜2.0Vと高いため、これら
無機化合物を負極活物質保持体として用いた場合、リチ
ウム二次電池の作動電位が0.5〜2.0V低下し、電
池のエネルギー密度が低下するという問題がある。これ
ら無機化合物の中で、ルチル型の結晶構造を有するWO
2 は、比重が12g/ccと大きく、しかも、WO
2 は、その電極電位が金属リチウムに対し、0.5〜
1.1Vの比較的卑な電位を有しており、リチウム二次
電池の負極活物質保持体として非常に有望である。しか
しながら、WO2 の1当量当り1当量以上のリチウムイ
オンを充放電すると、サイクルと共に充放電容量が著し
く低下し、サイクル寿命が非常に短くなるという問題点
が広く知られている。WO2 の1当量当り1当量のリチ
ウムイオンを吸蔵した時の電位は、金属リチウムに対し
て約0.5Vである。したがって、更に高電圧、高エネ
ルギー密度のリチウム二次電池を達成するためには、リ
チウム基準極に対してできるだけ低い電位、0.5V以
下の電極電位におけるWO2の充放電容量や可逆性が重
要となるが、これまでこの電極電位におけるWO2 のリ
チウムイオンの吸蔵放出は可逆的でないと報告されてい
る。本発明の目的は、上記のような従来技術のかかる問
題を解決し、高電圧、高エネルギー密度で、かつ充放電
容量が大きく、しかも安全性が確保され、サイクル寿命
が長いリチウム二次電池を提供することにある。
However, when a carbonaceous material is used as the negative electrode, although the capacity per weight is large, the specific gravity of these carbonaceous materials is 1.6 to 2.2 g.
The specific gravity when processed into an actual electrode sheet is about 1 g / cc. Therefore, there is a problem that the capacity per volume of the negative electrode becomes small, and the energy density of the battery becomes smaller than that of a secondary battery using lithium metal for the negative electrode. On the other hand, the inorganic compound in the intercalation compound has a specific gravity much larger than that of the carbonaceous material, and although the capacity per volume of the negative electrode can be expected, generally, the electrode potential capable of stably occluding and releasing lithium ions is: Since it is as high as 0.5 to 2.0 V with respect to the lithium reference electrode, when these inorganic compounds are used as the negative electrode active material holder, the working potential of the lithium secondary battery decreases by 0.5 to 2.0 V, and There is a problem in that the energy density of Among these inorganic compounds, WO having a rutile type crystal structure
2 has a large specific gravity of 12 g / cc, and is WO
2 has an electrode potential of 0.5 to 0.5 with respect to metallic lithium.
It has a relatively base potential of 1.1 V, and is very promising as a negative electrode active material holder for a lithium secondary battery. However, it is widely known that charging / discharging 1 equivalent or more of lithium ion per 1 equivalent of WO 2 causes a significant decrease in charging / discharging capacity along with a cycle, resulting in a very short cycle life. The potential when 1 equivalent of lithium ion is absorbed per equivalent of WO 2 is about 0.5 V with respect to metallic lithium. Therefore, in order to achieve a lithium secondary battery having a higher voltage and a higher energy density, the charge / discharge capacity and reversibility of WO 2 at an electrode potential of 0.5 V or less as low as possible with respect to the lithium reference electrode are important. However, it has been reported so far that the occlusion / release of lithium ions of WO 2 at this electrode potential is not reversible. An object of the present invention is to solve the above problems of the prior art, to provide a lithium secondary battery having high voltage, high energy density, large charge / discharge capacity, safety, and long cycle life. To provide.

【0004】[0004]

【課題を解決するための手段】本発明を概説すれば、本
発明はリチウム二次電池に関する発明であって、充電に
よりリチウムイオンを吸蔵し、放電によりリチウムイオ
ンを放出する負極活物質保持体を主体とする負極と、リ
チウムイオンと可逆的な電気化学反応が可能な正極と、
リチウムイオン導電性の非水電解液あるいは電解液含浸
型ポリマー電解質とからなるリチウム二次電池におい
て、前記負極活物質保持体として、WO2を用い、かつ
前記非水電解液あるいは含浸用電解液の溶媒として、エ
チレンカーボネートを必須成分として含む混合溶媒を用
いたことを特徴とする。
The present invention will be described in brief. The present invention relates to a lithium secondary battery, which comprises a negative electrode active material holder which occludes lithium ions by charging and releases lithium ions by discharging. A negative electrode as a main component, a positive electrode capable of reversible electrochemical reaction with lithium ions,
In a lithium secondary battery comprising a lithium ion conductive non-aqueous electrolytic solution or an electrolytic solution-impregnated polymer electrolyte, WO 2 is used as the negative electrode active material holder, and the non-aqueous electrolytic solution or the impregnating electrolytic solution is used. A mixed solvent containing ethylene carbonate as an essential component is used as the solvent.

【0005】本発明によるリチウム二次電池の要点は、
負極活物質保持体として、WO2 を用い、かつ非水電解
液の溶媒として、エチレンカーボネート(EC)を必須
成分として含む混合溶媒を用いたことを特徴とするもの
である。WO2 とECを含む混合溶媒を組合せることに
より、これまでWO2 において不可逆であると言われて
いたリチウム基準極に対する電極電位0.0〜1.0V
において、大きな充放電容量並びに安定で長いサイクル
寿命が得られることを実験により見出した。
The essential points of the lithium secondary battery according to the present invention are:
WO 2 is used as the negative electrode active material holder, and a mixed solvent containing ethylene carbonate (EC) as an essential component is used as the solvent of the non-aqueous electrolyte. By combining a mixed solvent containing WO 2 and EC, an electrode potential of 0.0 to 1.0 V with respect to a lithium reference electrode which has been said to be irreversible in WO 2 up to now.
In the above, it was found by experiments that a large charge / discharge capacity and stable and long cycle life can be obtained.

【0006】本発明を以下、更に詳しく説明する。本発
明に用いる負極活物質保持体としては、一般市販品であ
るWO2 を使用する。本発明に用いる非水電解液の溶媒
としては、ECを必須成分として含む混合溶媒を使用す
る。ECと混合する溶媒としては、プロピレンカーボネ
ート(PC)以外のこの種の電池に使用される溶媒が使
用可能であり、例えば、ジメチルカーボネート(DM
C)、ジエチルカーボネート(DEC)、メチルエチル
カーボネート(MEC)等の鎖状エステル類、γ−ブチ
ロラクトン等のγ−ラクトン類、1,2−ジメトキシエ
タン(DME)、1,2−ジエトキシエタン(DE
E)、エトキシメトキシエタン(EME)等の鎖状エー
テル類、テトラヒドロフラン等の環状エーテル類、アセ
トニトリル等のニトリル類等から選ばれた少なくとも1
種類以上の溶媒を用いることができる。また、非水電解
液の溶質としては、LiAsF6 、LiBF4 、LiP
6 、LiAlCl4 、LiClO4 、LiCF3 SO
3 、LiSbF6 、LiSCN、LiCl、LiC6
5 SO3 、LiN(CF3 SO2 2 、LiC(CF3
SO2 3 、C4 9 SO3 Li等のリチウム塩及びこ
れらの混合物を用いることができる。
The present invention will be described in more detail below. As the negative electrode active material holder used in the present invention, WO 2 which is a commercially available product is used. As the solvent of the non-aqueous electrolyte used in the present invention, a mixed solvent containing EC as an essential component is used. As a solvent to be mixed with EC, a solvent used in this type of battery other than propylene carbonate (PC) can be used, and for example, dimethyl carbonate (DM
C), chain esters such as diethyl carbonate (DEC) and methyl ethyl carbonate (MEC), γ-lactones such as γ-butyrolactone, 1,2-dimethoxyethane (DME), 1,2-diethoxyethane ( DE
E), at least one selected from chain ethers such as ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran, nitriles such as acetonitrile, etc.
More than one type of solvent can be used. The solute of the non-aqueous electrolyte solution is LiAsF 6 , LiBF 4 , LiP.
F 6 , LiAlCl 4 , LiClO 4 , LiCF 3 SO
3 , LiSbF 6 , LiSCN, LiCl, LiC 6 H
5 SO 3 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3
Lithium salts such as SO 2 ) 3 , C 4 F 9 SO 3 Li and mixtures thereof can be used.

【0007】更に、本発明の負極材料をリチウム二次電
池に用いる場合、正極活物質には、リチウムを含有す
る、チタン、モリブデン、タングステン、ニオブ、バナ
ジウム、マンガン、鉄、クロム、ニッケル、コバルトな
どの遷移金属の複合酸化物や複合硫化物等を用いること
ができる。特に、リチウム金属極に対する電極電位が3
V以上であり、高電圧、高エネルギー密度が期待でき
る、LiMn2 4 、LiCoO2 、LiNiO2 が、
正極活物質として好適である。
Furthermore, when the negative electrode material of the present invention is used in a lithium secondary battery, the positive electrode active material contains lithium, such as titanium, molybdenum, tungsten, niobium, vanadium, manganese, iron, chromium, nickel and cobalt. It is possible to use a complex oxide or complex sulfide of the above transition metal. In particular, the electrode potential with respect to the lithium metal electrode is 3
LiMn 2 O 4 , LiCoO 2 , and LiNiO 2 which are higher than V and are expected to have high voltage and high energy density are
It is suitable as a positive electrode active material.

【0008】本発明により、WO2 を負極活物質保持体
に用い、かつECを必須成分とする混合溶媒を非水電解
液として用いることにより、WO2 は、リチウム基準極
(金属リチウム)に対し、0〜1Vの卑な電極電位の範
囲において、安定にリチウムイオンを吸蔵放出すること
ができ、高容量の充放電領域を有する。また、比重が1
2g/ccと大きいため、従来この種の電池の負極活物
質保持体として用いられてきたグラファイト等に比べて
負極単位容積当りの充放電容量が著しく大きく、かつ充
放電の分極が小さいため、大電流での充放電が可能であ
り、更に充放電の繰返しによる不可逆物質の生成等の劣
化がほとんど見られず、極めて安定でサイクル寿命の長
い電池特性を得ることができるため、高電圧、高エネル
ギー密度で、かつ充放電容量が大きく、しかも安全性が
確保され、サイクル寿命が長いリチウム二次電池を提供
することができる。
According to the present invention, when WO 2 is used as a negative electrode active material holder and a mixed solvent containing EC as an essential component is used as a non-aqueous electrolyte, WO 2 is compared with a lithium reference electrode (metal lithium). In the range of the base electrode potential of 0 to 1 V, lithium ions can be occluded and released stably, and a high capacity charge / discharge region is provided. Also, the specific gravity is 1
Since it is as large as 2 g / cc, the charging / discharging capacity per unit volume of the negative electrode is remarkably large and the polarization of charging / discharging is small compared to graphite or the like which has been conventionally used as a negative electrode active material holder of this type of battery. It can be charged and discharged with electric current, and almost no deterioration such as generation of irreversible substances due to repeated charging and discharging can be seen, and extremely stable battery characteristics with long cycle life can be obtained, so high voltage, high energy It is possible to provide a lithium secondary battery that has a high density, a large charge / discharge capacity, safety is ensured, and a long cycle life.

【0009】このように安定でサイクル寿命の長い電池
特性が得られる理由は、必ずしも明らかではないが、次
のように推定される。これまで、WO2 を負極活物質保
持体に用いた非水系電解液二次電池では、過剰のリチウ
ムのインターカレーションにより、WO2 が相変化し、
不可逆な構造を形成するため充放電容量が著しく低下す
ると考えられていたが、本発明によるリチウム二次電池
では、安定にリチウムイオンを吸蔵放出することがで
き、著しい容量低下が認められなかったことから、この
容量低下の原因は、非水電解液が起因していると推定さ
れる。従来の技術では電解液にPCが用いられており、
このPCがWO2 と反応し、WO2 の表面にリチウムイ
オンが通過できない強固な保護膜を形成したため容量が
低下したと推定される。一方、本発明では、ECを用い
たため、WO2 の表面に形成された保護膜をリチウムイ
オンが容易に通過することができ、安定でサイクル特性
の長い電池特性が得られたと推定される。
The reason why such stable and long cycle life battery characteristics are obtained is not necessarily clear, but is presumed as follows. So far, in a non-aqueous electrolyte secondary battery using WO 2 as a negative electrode active material holder, WO 2 undergoes a phase change due to intercalation of excess lithium,
It was thought that the charge / discharge capacity was significantly reduced due to the formation of an irreversible structure, but in the lithium secondary battery according to the present invention, lithium ions could be occluded and released stably, and no significant reduction in capacity was observed. From this, it is estimated that the cause of this capacity decrease is due to the non-aqueous electrolyte. In the conventional technology, PC is used as the electrolyte,
The PC reacts with WO 2, lithium ions on the surface of the WO 2 capacity for forming a strong protective film can not pass through is estimated to have decreased. On the other hand, in the present invention, since EC is used, it is presumed that lithium ions can easily pass through the protective film formed on the surface of WO 2 , and stable and long-cycle battery characteristics can be obtained.

【0010】[0010]

【実施例】以下、実施例により本発明を更に詳しく説明
するが、本発明はこれら実施例に限定されない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0011】実施例1 図1は本発明によるリチウム二次電池の負極活物質保持
体の性能評価に用いたテストセルの断面図である。図1
において、1は対極ケースであり、ステンレス鋼板の板
を絞り加工したものである。2は対極としての金属リチ
ウムであり、所定の厚みのリチウム金属箔を直径16m
mに打ち抜いたものを圧着したものである。3は非水電
解液であり、ECはDMCの体積比1:1の混合溶媒
に、過塩素酸リチウム(LiClO4 )を1モル/リッ
トル溶解したものである。4はポリプロピレン又はポリ
エチレンの多孔質フィルムからなるセパレータである。
5はステンレス鋼の板を絞り加工した作用極ケースであ
る。6はWO2 を用いて構成された作用極である。この
作用極は、一般市販品であるWO2 と導電剤であるアセ
チレンブラックと結着剤であるポリテトラフルオロエチ
レンを重量比93:5:2で混合、圧延し、厚み250
μmのシートを作製し、直径16mmに打ち抜いたもの
である。7はTiネット製の集電体であり、前記作用極
6にかぶせた状態で、作用極ケース5にスポット溶接さ
れている。8はガスケットであり対極ケース1と作用極
ケース5との間の電気的絶縁を保つと共に、作用極ケー
ス開口縁が内側に折り曲げられ、かしめられることによ
って、電池内容物を密閉、封止している。
Example 1 FIG. 1 is a sectional view of a test cell used for performance evaluation of a negative electrode active material holder of a lithium secondary battery according to the present invention. Figure 1
In the above, reference numeral 1 is a counter case, which is formed by drawing a stainless steel plate. Reference numeral 2 is metallic lithium as a counter electrode, and a lithium metallic foil having a predetermined thickness has a diameter of 16 m.
It is the one punched out in m and crimped. Reference numeral 3 is a non-aqueous electrolytic solution, and EC is a solution in which 1 mol / liter of lithium perchlorate (LiClO 4 ) is dissolved in a mixed solvent of DMC in a volume ratio of 1: 1. 4 is a separator made of a polypropylene or polyethylene porous film.
Reference numeral 5 is a working electrode case obtained by drawing a stainless steel plate. Reference numeral 6 is a working electrode composed of WO 2 . This working electrode was prepared by mixing WO 2 which is a general commercial product, acetylene black which is a conductive agent, and polytetrafluoroethylene which is a binder in a weight ratio of 93: 5: 2, and rolling the mixture to a thickness of 250.
A sheet with a diameter of 16 μm was prepared and punched into a diameter of 16 mm. Reference numeral 7 denotes a Ti net current collector, which is spot-welded to the working electrode case 5 while being covered with the working electrode 6. Reference numeral 8 denotes a gasket, which maintains the electrical insulation between the counter electrode case 1 and the working electrode case 5, and the opening edge of the working electrode case is bent inward and caulked to seal and seal the battery contents. There is.

【0012】このテストセルを0.0〜1.0Vの電圧
範囲、1mAの電流で充放電試験した。この時の10サ
イクル目の充放電曲線を図2に示す。図2において、縦
軸は電圧(V)、横軸は充放電容量(mAh)を示す。
また、充放電容量(mAh、縦軸)とサイクル数(横
軸)の関係を図3に示す。図2及び図3から明らかなよ
うに、WO2 は0.0〜1.0Vの電圧範囲で、可逆的
にリチウムイオンを吸蔵、放出可能であり、サイクル寿
命は200回以上であった。しかも、安定に充放電を繰
返している時の容量は、28mAh得られ、これを作用
極の体積当りの容量に換算すると、560mAh/cc
得ることができ、グラファイト電極に比べて、約2倍の
容積当りの容量が得られた。
The test cell was subjected to a charge / discharge test in a voltage range of 0.0 to 1.0 V and a current of 1 mA. The charge / discharge curve at the 10th cycle at this time is shown in FIG. In FIG. 2, the vertical axis represents voltage (V) and the horizontal axis represents charge / discharge capacity (mAh).
Further, FIG. 3 shows the relationship between the charge / discharge capacity (mAh, vertical axis) and the number of cycles (horizontal axis). As is clear from FIGS. 2 and 3, WO 2 was capable of reversibly occluding and releasing lithium ions in the voltage range of 0.0 to 1.0 V, and the cycle life was 200 times or more. Moreover, the capacity during stable charge / discharge is 28 mAh, which is 560 mAh / cc when converted to the capacity per working electrode volume.
It was possible to obtain, and the capacity per volume was about twice that of the graphite electrode.

【0013】比較例1 比較のため、上記テストセルにおいて、非水電解液3の
ECをPCに替え、非水電解液としてPCとDMCの体
積比1:1の混合溶媒に、LiClO4 を1モル/リッ
トル溶解したものを用いた。このテストセルも実施例1
と同様の充放電条件で試験した。充放電容量とサイクル
数の関係を図3に示す。図3から明らかなように、EC
をPCに替えたテストセルは、サイクルと共に容量が急
激に低下し、10サイクルで充放電することができなく
なった。
Comparative Example 1 For comparison, in the above test cell, EC of the non-aqueous electrolyte 3 was replaced with PC, and LiClO 4 was added as a non-aqueous electrolyte in a mixed solvent of PC and DMC in a volume ratio of 1: 1. Mol / liter dissolved therein was used. This test cell is also the first embodiment.
Tested under the same charge and discharge conditions as in. The relationship between the charge / discharge capacity and the number of cycles is shown in FIG. As is clear from FIG. 3, EC
The capacity of the test cell in which PC was replaced with PC decreased sharply with the cycle, and it became impossible to charge and discharge in 10 cycles.

【0014】実施例2 図4は本発明によるリチウム二次電池の断面図である。
図4において、9は負極ケースである。10は負極活物
質保持体としてWO2 を用いた負極電極である。この負
極電極は、次のようにして作製した。負極活物質保持体
であるWO2 と導電剤であるアセチレンブラックを混合
したものを、結着剤であるエチレンプロピレンターポリ
マーが溶解しているシクロヘキサンに加え、十分かくは
んし、得られたスラリーをステンレス箔に塗布、乾燥
し、負極シートを作製した。負極活物質保持体、導電
剤、結着剤の重量比は93:5:2である。負極電極1
0は、この負極シートから直径16mmに打ち抜いたも
のを負極ケース9にスポット溶接し作製した。3は非水
電解液であり、ECとDMCの体積比1:1の混合溶媒
に、LiClO4 を1モル/リットル溶解したものであ
る。4はポリプロピレン又はポリエチレンの多孔質フィ
ルムからなるセパレータである。11は正極ケースであ
る。12は正極活物質としてリチウムマンガン複合酸化
物(LiMn2 4 )を用いた正極電極である。この正
極電極は、次のようにして作製した。正極活物質である
LiMn2 4と導電剤であるアセチレンブラックを混
合したものを、結着剤であるエチレンプロピレンターポ
リマーが溶解しているシクロヘキサンに加え、十分かく
はんし、得られたスラリーをステンレス箔に塗布、乾燥
し、正極シートを作製した。正極活物質、導電剤、結着
剤の重量比は93:5:2である。正極電極12は、こ
の正極シートから直径16mmに打ち抜いたものを正極
ケース11にスポット溶接し作製した。8はガスケット
であり負極ケース9と正極ケース11との間の電気的絶
縁を保つと共に、作用極ケース開口縁が内側に折り曲げ
られ、かしめられることによって、電池内容物を密閉、
封止している。
Example 2 FIG. 4 is a sectional view of a lithium secondary battery according to the present invention.
In FIG. 4, 9 is a negative electrode case. Reference numeral 10 is a negative electrode using WO 2 as a negative electrode active material holder. This negative electrode was produced as follows. A mixture of WO 2 which is a negative electrode active material holder and acetylene black which is a conductive agent was added to cyclohexane in which ethylene propylene terpolymer which was a binder was dissolved, and the mixture was sufficiently stirred, and the resulting slurry was made into stainless steel. The foil was applied and dried to prepare a negative electrode sheet. The weight ratio of the negative electrode active material holder, the conductive agent, and the binder was 93: 5: 2. Negative electrode 1
No. 0 was produced by spot-welding the negative electrode sheet punched out to a diameter of 16 mm to the negative electrode case 9. Reference numeral 3 is a non-aqueous electrolyte solution, which is prepared by dissolving 1 mol / liter of LiClO 4 in a mixed solvent of EC and DMC in a volume ratio of 1: 1. 4 is a separator made of a polypropylene or polyethylene porous film. Reference numeral 11 is a positive electrode case. Reference numeral 12 is a positive electrode using a lithium manganese composite oxide (LiMn 2 O 4 ) as a positive electrode active material. This positive electrode was manufactured as follows. A mixture of LiMn 2 O 4 that is the positive electrode active material and acetylene black that is the conductive agent was added to cyclohexane in which the ethylene propylene terpolymer that was the binder was dissolved, and the mixture was thoroughly stirred and the resulting slurry was made into stainless steel. The foil was applied and dried to prepare a positive electrode sheet. The weight ratio of the positive electrode active material, the conductive agent, and the binder was 93: 5: 2. The positive electrode 12 was produced by spot-welding the positive electrode sheet punched into a diameter of 16 mm to the positive electrode case 11. Reference numeral 8 denotes a gasket, which maintains electrical insulation between the negative electrode case 9 and the positive electrode case 11, and the working electrode case opening edge is bent inward and caulked to seal the battery contents,
It is sealed.

【0015】このリチウム二次電池を3.0〜4.2V
の電圧範囲、1mAの電流で充放電試験した。図5に充
放電容量(mAh、縦軸)とサイクル数(横軸)との関
係を示し、後記表1に充放電容量とサイクル寿命の関係
を示す。サイクル寿命は、容量が、安定に充放電を繰返
しているときの容量の半分になった時のサイクル数であ
る。図5から明らかなように、このリチウム二次電池は
非常に安定に充放電を繰返し、サイクル寿命も900回
と非常に長かった。また、充放電試験終了後、電池を分
解し、負極電極表面をSEMで観察したが、負極電極表
面に、リチウム金属の析出やデンドライトの成長を認め
ることができなかった。また、負極電極をX線回折装置
で分析したが、リチウム金属のX線回折パターンを認め
ることはできなかった。
This lithium secondary battery is operated at 3.0 to 4.2V.
The charge / discharge test was conducted in the voltage range of 1 mA. FIG. 5 shows the relationship between the charge / discharge capacity (mAh, vertical axis) and the number of cycles (horizontal axis), and Table 1 below shows the relationship between the charge / discharge capacity and the cycle life. The cycle life is the number of cycles when the capacity becomes half of the capacity during repeated stable charging and discharging. As is clear from FIG. 5, this lithium secondary battery was repeatedly charged and discharged very stably and had a very long cycle life of 900 times. After the charge / discharge test was completed, the battery was disassembled and the surface of the negative electrode was observed by SEM. No precipitation of lithium metal or growth of dendrite was observed on the surface of the negative electrode. Further, the negative electrode was analyzed by an X-ray diffractometer, but an X-ray diffraction pattern of lithium metal could not be recognized.

【0016】実施例3 実施例2のリチウム二次電池において、非水電解液3の
DMCをDEEに替え、非水電解液としてECとDEE
の体積比1:1の混合溶媒に、LiClO4 を1モル/
リットル溶解したものを用いた。非水電解液以外は、実
施例2と同じものを用いた。このリチウム二次電池も実
施例2と同様の充放電条件で試験した。後記表1に充放
電容量とサイクル寿命の関係を示す。このリチウム二次
電池も安定に充放電を繰返し、サイクル寿命は1000
回であった。
Example 3 In the lithium secondary battery of Example 2, the DMC of the non-aqueous electrolyte 3 was changed to DEE, and EC and DEE were used as the non-aqueous electrolyte.
LiClO 4 in a mixed solvent having a volume ratio of 1: 1 of 1 mol / mol
What was melt | dissolved in 1 liter was used. The same thing as Example 2 was used except the nonaqueous electrolytic solution. This lithium secondary battery was also tested under the same charge / discharge conditions as in Example 2. Table 1 below shows the relationship between charge / discharge capacity and cycle life. This lithium secondary battery is also repeatedly charged and discharged stably and has a cycle life of 1000.
It was once.

【0017】実施例4 実施例2のリチウム二次電池において、非水電解液3の
DMCをDECに替え、非水電解液としてECとDEC
の体積比1:1の混合溶媒に、LiClO4 を1モル/
リットル溶解したものを用いた。非水電解液以外は、実
施例2と同じものを用いた。このリチウム二次電池も実
施例2と同様の充放電条件で試験した。後記表1に充放
電容量とサイクル寿命の関係を示す。このリチウム二次
電池も安定に充放電を繰返し、サイクル寿命は800回
であった。
Example 4 In the lithium secondary battery of Example 2, the nonaqueous electrolytic solution 3 was replaced with DEC, and EC and DEC were used as the nonaqueous electrolytic solution.
LiClO 4 in a mixed solvent having a volume ratio of 1: 1 of 1 mol / mol
What was melt | dissolved in 1 liter was used. The same thing as Example 2 was used except the nonaqueous electrolytic solution. This lithium secondary battery was also tested under the same charge / discharge conditions as in Example 2. Table 1 below shows the relationship between charge / discharge capacity and cycle life. This lithium secondary battery was also repeatedly charged and discharged stably and had a cycle life of 800 times.

【0018】実施例5 実施例2のリチウム二次電池において、非水電解液3の
溶質、LiClO4 を六フッ化リン酸リチウム(LiP
6 )に替えた非水電解液を用いた。溶質の濃度は、1
モル/リットルである。非水電解液以外は、実施例2と
同じものを用いた。このリチウム二次電池も実施例2と
同様の充放電条件で試験した。後記表1に充放電容量と
サイクル寿命の関係を示す。このリチウム二次電池も安
定に充放電を繰返し、サイクル寿命は1000回であっ
た。
Example 5 In the lithium secondary battery of Example 2, the solute of the non-aqueous electrolyte solution 3, LiClO 4, was replaced with lithium hexafluorophosphate (LiP).
A non-aqueous electrolyte solution was used instead of F 6 ). Solute concentration is 1
Mol / liter. The same thing as Example 2 was used except the nonaqueous electrolytic solution. This lithium secondary battery was also tested under the same charge / discharge conditions as in Example 2. Table 1 below shows the relationship between charge / discharge capacity and cycle life. This lithium secondary battery was also repeatedly charged and discharged stably and had a cycle life of 1000 times.

【0019】実施例6 実施例2のリチウム二次電池において、正極電極12の
正極活物質をLiMn2 4 からリチウムニッケル複合
酸化物(LiNiO2 )に替えたものを用いた。正極電
極の作製方法は、実施例2と同じであり、正極電極以外
は、実施例2と同じものを用いた。このリチウム二次電
池も実施例2と同様の充放電条件で試験した。後記表1
に充放電容量とサイクル寿命の関係を示す。このリチウ
ム二次電池は、充放電容量が大きく、しかも安定に充放
電を繰返し、サイクル寿命は750回であった。
Example 6 In the lithium secondary battery of Example 2, the positive electrode active material of the positive electrode 12 was changed from LiMn 2 O 4 to lithium nickel composite oxide (LiNiO 2 ). The method for producing the positive electrode was the same as in Example 2, and the same method as in Example 2 was used except for the positive electrode. This lithium secondary battery was also tested under the same charge / discharge conditions as in Example 2. Table 1 below
Shows the relationship between charge and discharge capacity and cycle life. This lithium secondary battery had a large charge and discharge capacity, and was repeatedly charged and discharged stably, and had a cycle life of 750 times.

【0020】実施例7 実施例6のリチウム二次電池において、非水電解液3の
DMCをMECに替え、非水電解液としてECとMEC
の体積比1:1の混合溶媒に、LiClO4 を1モル/
リットル溶解したものを用いた。非水電解液以外は、実
施例6と同じものを用いた。このリチウム二次電池も実
施例2と同様の充放電条件で試験した。後記表1に充放
電容量とサイクル寿命の関係を示す。このリチウム二次
電池も安定に充放電を繰返し、サイクル寿命は880回
であった。
Example 7 In the lithium secondary battery of Example 6, DMC of the nonaqueous electrolytic solution 3 was replaced with MEC, and EC and MEC were used as the nonaqueous electrolytic solution.
LiClO 4 in a mixed solvent having a volume ratio of 1: 1 of 1 mol / mol
What was melt | dissolved in 1 liter was used. The same thing as Example 6 was used except the nonaqueous electrolytic solution. This lithium secondary battery was also tested under the same charge / discharge conditions as in Example 2. Table 1 below shows the relationship between charge / discharge capacity and cycle life. This lithium secondary battery was also repeatedly charged and discharged stably and had a cycle life of 880 times.

【0021】実施例8 実施例2のリチウム二次電池において、正極電極12の
正極活物質をLiMn2 4 からリチウムコバルト複合
酸化物(LiCoO2 )に替えたものを用いた。正極電
極の作製方法は、実施例2と同じであり、正極電極以外
は、実施例2と同じものを用いた。このリチウム二次電
池も実施例2と同様の充放電条件で試験した。後記表1
に充放電容量とサイクル寿命の関係を示す。このリチウ
ム二次電池は、充放電容量が大きく、しかも安定に充放
電を繰返し、サイクル寿命は1050回であった。
Example 8 In the lithium secondary battery of Example 2, the positive electrode active material of the positive electrode 12 was changed from LiMn 2 O 4 to lithium cobalt composite oxide (LiCoO 2 ). The method for producing the positive electrode was the same as in Example 2, and the same method as in Example 2 was used except for the positive electrode. This lithium secondary battery was also tested under the same charge / discharge conditions as in Example 2. Table 1 below
Shows the relationship between charge and discharge capacity and cycle life. This lithium secondary battery had a large charge / discharge capacity, was repeatedly charged and discharged stably, and had a cycle life of 1050 times.

【0022】実施例9 実施例8のリチウム二次電池において、非水電解液3の
DMCをDMEに替え、非水電解液としてECとDME
の体積比1:1の混合溶媒に、LiClO4 を1モル/
リットル溶解したものを用いた。非水電解液以外は、実
施例8と同じものを用いた。このリチウム二次電池も実
施例2と同様の充放電条件で試験した。後記表1に充放
電容量とサイクル寿命の関係を示す。このリチウム二次
電池も安定に充放電を繰返し、サイクル寿命は930回
であった。
Example 9 In the lithium secondary battery of Example 8, the DMC of the non-aqueous electrolyte 3 was changed to DME, and EC and DME were used as the non-aqueous electrolyte.
LiClO 4 in a mixed solvent having a volume ratio of 1: 1 of 1 mol / mol
What was melt | dissolved in 1 liter was used. The same thing as Example 8 was used except the nonaqueous electrolytic solution. This lithium secondary battery was also tested under the same charge / discharge conditions as in Example 2. Table 1 below shows the relationship between charge / discharge capacity and cycle life. This lithium secondary battery was also repeatedly charged and discharged stably and had a cycle life of 930 times.

【0023】比較例2 比較のため、実施例2のリチウム二次電池において、負
極電極10を金属リチウムに替えた電池を作製した。金
属リチウムの量は、電池容量の3〜4倍当量仕込んだ。
負極電極以外は実施例2と同じである。このリチウム二
次電池も実施例2と同様の充放電条件で試験した。後記
表1に充放電容量とサイクル寿命の関係を示す。この非
水電解液は、安定に充放電を繰返したが、サイクル寿命
は120回であった。
Comparative Example 2 For comparison, a battery was prepared in which the negative electrode 10 of the lithium secondary battery of Example 2 was replaced with metallic lithium. The amount of metallic lithium was 3 to 4 times equivalent to the battery capacity.
The same as Example 2 except for the negative electrode. This lithium secondary battery was also tested under the same charge / discharge conditions as in Example 2. Table 1 below shows the relationship between charge / discharge capacity and cycle life. This non-aqueous electrolyte was stably charged and discharged repeatedly, but its cycle life was 120 times.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【発明の効果】以上説明したように、本発明によるリチ
ウム二次電池を用いれば、これまでWO2 において不可
逆であると言われていたリチウム基準極に対する電極電
位0.0〜1.0Vにおいて、大きな充放電容量並びに
安定で長いサイクル寿命が得られる。このため、WO2
を負極活物質保持体として用いても、電池の動作電圧を
著しく低下することがなく、高電圧、高エネルギー密度
を達成することができる。しかも、比重が大きいため、
負極電極容積当りの充放電容量もグラファイト系負極電
極に比べて非常に大きな容量を得ることができる。更
に、充放電の繰返しによる容量の急激な低下は認められ
ず、非常に長いサイクル寿命を得ることができる。ま
た、充放電を繰返した負極電極表面にリチウム金属の析
出やデンドライトの発生が認められないことから、安全
上も問題がない。したがって、本発明は、高電圧、高エ
ネルギー密度で、かつ充放電容量が大きく、しかも安全
性が確保され、サイクル寿命が長いリチウム二次電池を
得ることができるという優れた効果を有する。
As described above, when the lithium secondary battery according to the present invention is used, at an electrode potential of 0.0 to 1.0 V with respect to a lithium reference electrode which has been said to be irreversible in WO 2 until now, Large charge / discharge capacity and stable and long cycle life can be obtained. Therefore, WO 2
Even when is used as the negative electrode active material holder, a high voltage and a high energy density can be achieved without significantly lowering the operating voltage of the battery. Moreover, because of its large specific gravity,
The charge / discharge capacity per volume of the negative electrode can be much larger than that of the graphite-based negative electrode. Furthermore, no rapid decrease in capacity due to repeated charging / discharging is recognized, and a very long cycle life can be obtained. Moreover, since no deposition of lithium metal or generation of dendrites is observed on the surface of the negative electrode that has been repeatedly charged and discharged, there is no safety problem. Therefore, the present invention has an excellent effect that a lithium secondary battery having a high voltage, a high energy density, a large charge / discharge capacity, secured safety, and a long cycle life can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のテストセルの断面図である。FIG. 1 is a cross-sectional view of a test cell of the present invention.

【図2】本発明によるテストセルの10サイクル目の充
放電曲線を示す図である。
FIG. 2 is a diagram showing a charge / discharge curve at the 10th cycle of the test cell according to the present invention.

【図3】本発明と比較のテストセルの充放電容量とサイ
クル数の関係を示す図である。
FIG. 3 is a diagram showing the relationship between the charge / discharge capacity and the number of cycles of a test cell of the present invention and a comparison.

【図4】本発明の電池の断面図である。FIG. 4 is a cross-sectional view of the battery of the present invention.

【図5】本発明による電池の充放電容量とサイクル数の
関係を示す図である。
FIG. 5 is a diagram showing a relationship between charge / discharge capacity and cycle number of a battery according to the present invention.

【符号の説明】[Explanation of symbols]

1:対極ケース、2:対極、3:非水電解液、4:セパ
レータ、5:作用極ケース、6:作用極、7:集電体、
8:ガスケット、9:負極ケース、10:負極電極、1
1:正極ケース、12:正極電極
1: counter electrode case, 2: counter electrode, 3: non-aqueous electrolyte solution, 4: separator, 5: working electrode case, 6: working electrode, 7: current collector,
8: gasket, 9: negative electrode case, 10: negative electrode, 1
1: Positive case, 12: Positive electrode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 充電によりリチウムイオンを吸蔵し、放
電によりリチウムイオンを放出する負極活物質保持体を
主体とする負極と、リチウムイオンと可逆的な電気化学
反応が可能な正極と、リチウムイオン導電性の非水電解
液あるいは電解液含浸型ポリマー電解質とからなるリチ
ウム二次電池において、前記負極活物質保持体として、
二酸化タングステンを用い、かつ前記非水電解液あるい
は含浸用電解液の溶媒として、エチレンカーボネートを
必須成分として含む混合溶媒を用いたことを特徴とする
リチウム二次電池。
1. A negative electrode mainly composed of a negative electrode active material holder that occludes lithium ions by charging and releases lithium ions by discharging, a positive electrode capable of reversible electrochemical reaction with lithium ions, and lithium ion conductivity. In a lithium secondary battery comprising a water-soluble nonaqueous electrolytic solution or an electrolytic solution-impregnated polymer electrolyte, as the negative electrode active material holder,
A lithium secondary battery, wherein tungsten dioxide is used and a mixed solvent containing ethylene carbonate as an essential component is used as a solvent for the nonaqueous electrolytic solution or the impregnating electrolytic solution.
【請求項2】 該非水電解液の溶媒として、エチレンカ
ーボネートと、鎖状エステル類又は鎖状エーテル類との
混合溶媒を用いたことを特徴とする請求項1記載のリチ
ウム二次電池。
2. The lithium secondary battery according to claim 1, wherein a mixed solvent of ethylene carbonate and chain ester or chain ether is used as a solvent of the non-aqueous electrolyte.
【請求項3】 該鎖状エステル類の溶媒として、ジメチ
ルカーボネート、ジエチルカーボネート、又はメチルエ
チルカーボネートを用いたことを特徴とする請求項2記
載のリチウム二次電池。
3. The lithium secondary battery according to claim 2, wherein dimethyl carbonate, diethyl carbonate, or methyl ethyl carbonate is used as a solvent for the chain ester.
【請求項4】 該鎖状エーテル類の溶媒として、1,2
−ジメトキシエタン、又は1,2−ジエトキシエタンを
用いたことを特徴とする請求項2記載のリチウム二次電
池。
4. A solvent for the chain ethers is 1, 2
The lithium secondary battery according to claim 2, wherein -dimethoxyethane or 1,2-diethoxyethane is used.
JP6081092A 1994-03-29 1994-03-29 Lithium secondary battery Pending JPH07272758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6081092A JPH07272758A (en) 1994-03-29 1994-03-29 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6081092A JPH07272758A (en) 1994-03-29 1994-03-29 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH07272758A true JPH07272758A (en) 1995-10-20

Family

ID=13736753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6081092A Pending JPH07272758A (en) 1994-03-29 1994-03-29 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH07272758A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6383685B1 (en) 1999-03-25 2002-05-07 Sanyo Electric Co., Ltd. Lithium secondary battery
JP2010218760A (en) * 2009-03-13 2010-09-30 Toyota Central R&D Labs Inc Lithium ion secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6383685B1 (en) 1999-03-25 2002-05-07 Sanyo Electric Co., Ltd. Lithium secondary battery
JP2010218760A (en) * 2009-03-13 2010-09-30 Toyota Central R&D Labs Inc Lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP4680637B2 (en) Lithium secondary battery
JP5232631B2 (en) Non-aqueous electrolyte battery
JP5731276B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
EP0752728B1 (en) Negative electrode material for use in lithium secondary batteries, its manufacture, and lithium secondary batteries incorporating this material
JP2008091236A (en) Nonaqueous electrolyte secondary battery
JPH1027626A (en) Lithium secondary battery
JP2002083597A (en) Lithium secondary battery
EP3410517B1 (en) Negative-electrode material for li-ion secondary cell, method for manufacturing the same, li-ion-secondary-cell negative electrode, and li-ion secondary cell
JP3289260B2 (en) Lithium secondary battery
JP3309719B2 (en) Non-aqueous electrolyte secondary battery
JP3358777B2 (en) Negative electrode for secondary battery
JP2000164207A (en) Nonaqueous electrolyte secondary battery
JP3055892B2 (en) Lithium secondary battery
JP2002042890A (en) Nonaqueous electrolyte battery
JP3461698B2 (en) Manufacturing method of negative electrode
JP2792373B2 (en) Non-aqueous electrolyte secondary battery
JP3324365B2 (en) Negative electrode for lithium secondary battery
JP2002110152A (en) Nonaqueous electrolyte secondary battery
JPH07272758A (en) Lithium secondary battery
JP3289261B2 (en) Negative electrode for secondary battery
JP3289259B2 (en) Negative electrode for lithium secondary battery
JPH07288140A (en) Lithium secondary battery
JP3358771B2 (en) Negative electrode for lithium secondary battery
JP4055268B2 (en) Nonaqueous electrolyte secondary battery
JP4562824B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090802

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100802

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110802

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120802

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20120802