JPH03291863A - Secondary cell - Google Patents

Secondary cell

Info

Publication number
JPH03291863A
JPH03291863A JP2094464A JP9446490A JPH03291863A JP H03291863 A JPH03291863 A JP H03291863A JP 2094464 A JP2094464 A JP 2094464A JP 9446490 A JP9446490 A JP 9446490A JP H03291863 A JPH03291863 A JP H03291863A
Authority
JP
Japan
Prior art keywords
sodium
positive electrode
weight
negative electrode
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2094464A
Other languages
Japanese (ja)
Inventor
Yoshihiko Murakoshi
村越 佳彦
Mutsumi Kameyama
亀山 むつみ
Riichi Shishikura
利一 獅々倉
Masataka Takeuchi
正隆 武内
Hiroshi Konuma
博 小沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2094464A priority Critical patent/JPH03291863A/en
Publication of JPH03291863A publication Critical patent/JPH03291863A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To enhance stability and reliability by making up a positive electrode of a specified composite oxide. CONSTITUTION:Sodium nickel composite oxide represented by formula I is used as positive electrode active material. Carbon black is desirable as conductive material, and material in a fiber shape such as fluorine resin powder, polyolefin and the like is suitable as bonding material. The content of active material in a positive electrode is equal to or more than 80% by weight, and is preferably 85 to 99% by weight in particular. And the content of conductive material is less than 15% by weight, and is preferably 1 to 10% by weight in particular. A negative electrode is made of an alloy of Na and Sn, or Na and Pb, in this case, the alloy of Na and Pb is desirable in particular, and it is preferably used as composite material of carbon material. By this constitution, excellent cyclic characteristics, stability and reliability can thereby be enhanced. In the formula I, (x) is within the range of formula II.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電池電圧が高く、サイクル寿命が長く、かつ
充放電の際の電流効率が良好な高エネルギー密度を有す
る高性能の二次電池に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a high-performance secondary battery that has high battery voltage, long cycle life, and high energy density with good current efficiency during charging and discharging. Regarding.

〔従来の技術〕[Conventional technology]

近年、軽量かつエネルギー密度が高いことから、アルカ
リ金属の一つであるリチウム金属を負極に用いた二次電
池が市販されているか、リチウム金属が、あまりにも活
性なため溶媒と反応し、絶縁被膜を形成し、さらにテン
ドライトの成長によって短絡し、電池内の内部/ヨード
による爆発などの危険性もあり、満足な性能のものは得
られていない。そのため、リチウムを合金化して活性を
抑制する試みもなされている。
In recent years, secondary batteries that use lithium metal, an alkali metal, as the negative electrode have become commercially available due to its light weight and high energy density, or because lithium metal is so active that it reacts with solvents and forms an insulating coating. In addition, there is a risk of short-circuiting due to the growth of tendrite, and explosion due to internal iodine in the battery, so that satisfactory performance has not been obtained. Therefore, attempts have been made to suppress the activity by alloying lithium.

またナトリウムは電位かリチウムに比して02〜0.7
V程度貴側に7フトするので、電解液との反応性か緩和
され、負極材料に適していることか知られている。ナト
リウムを用いた二次電池は、Allied社、 All
iAllled−3i社等かすてに出願している(US
]”4,668,596、USP4.753,858)
Also, the potential of sodium is 02 to 0.7 compared to lithium.
It is known that since the V is about 7 feet to the noble side, the reactivity with the electrolyte is moderated, making it suitable as a negative electrode material. Secondary batteries using sodium are manufactured by Allied, Inc.
iAlled-3i and other companies have already applied (US
]"4,668,596, USP4.753,858)
.

また、ナトリウム合金と炭素材料とを混合した負極を用
いた二次電池は、先に本出願人が提案している。(特願
昭63−169384)。
Furthermore, the applicant has previously proposed a secondary battery using a negative electrode made of a mixture of a sodium alloy and a carbon material. (Patent application No. 63-169384).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来のアルカリ金属、或いはアルカ
リ合金を用いた二次電池においても電解液との反応性を
完全に防止することは困難であった。
However, even in the conventional secondary batteries using alkali metals or alkaline alloys, it has been difficult to completely prevent reactivity with the electrolyte.

本発明者らは、上記の問題を解決すべく、鋭意検討を行
なった結果、ナトリウムが出入し易い正極活物質が得ら
れれば、上記問題の解決に寄与すると考え、種々探索を
行なった結果、ナトリウム・ニッケル・コバルト複合酸
化物が有効なことを発見した。
In order to solve the above problem, the present inventors conducted intensive studies and found that if a positive electrode active material into which sodium can easily enter and exit could be obtained, it would contribute to solving the above problem, and as a result of various searches, It was discovered that sodium-nickel-cobalt composite oxide is effective.

本発明は上記の発見に基づいてなされたもので、エネル
ギー密度が高く、サイクル特性に優れた二次電池を提供
することを目的とする。
The present invention was made based on the above discovery, and an object of the present invention is to provide a secondary battery with high energy density and excellent cycle characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するため、本発明の二次電池は、 正極と負極と非水電解液とからなる二次電池において、 正極に下式で示すナトリウム・ニッケル・コバルト複合
酸化物を正極活物質として用い、負極にナトリウムまた
はナトリウム合金を負極活物質として用いる。
In order to achieve the above object, the secondary battery of the present invention includes a positive electrode, a negative electrode, and a non-aqueous electrolyte, in which a sodium-nickel-cobalt composite oxide represented by the following formula is used as a positive electrode active material. It is used as a negative electrode, and sodium or a sodium alloy is used as the negative electrode active material.

本発明の正極に用いられるナトリウム・ニッケル酸化物
(正極活物質)は、下記の(1)式で示されるものであ
る。
The sodium nickel oxide (positive electrode active material) used in the positive electrode of the present invention is represented by the following formula (1).

N a 0.7N ! xC0,1−X1o z   
−−(1)(但し、XはO<x≦0.4) 二次電池の正極に用いる場合、理由は定かでないがXは
O<x≦0.4の範囲が最適であり、この範1[外れた
ナトリウム・ニッケル・コバルト複合酸化物を用いても
、効果が少ないことが判明した。
N a 0.7N! xC0,1-X1oz
--(1) (However, X is O<x≦0.4) When used in the positive electrode of a secondary battery, although the reason is unclear, 1 [It was found that even if a sodium-nickel-cobalt composite oxide was used, the effect was small.

上記ナトリウム・ニッケル・コバルト複合酸化物は、導
電剤や結着剤と混合して成形されるが、上記ナトリウム
・ニッケル・コバルト複合酸化物の形状は粉体、特に粒
径50μm以下として用いると、性能の良い正極が得ら
れる。
The above-mentioned sodium-nickel-cobalt composite oxide is molded by mixing with a conductive agent and a binder, but when the above-mentioned sodium-nickel-cobalt composite oxide is used as a powder, especially as a particle size of 50 μm or less, A positive electrode with good performance can be obtained.

導電剤としては、カーボンブラック、黒鉛、炭素繊維な
どが挙げられるが、特にカーボンブラックが好ましい。
Examples of the conductive agent include carbon black, graphite, and carbon fiber, with carbon black being particularly preferred.

カーボンブラックの種類は多く、ファーネスブラック 
サーマルブラック、チャンネルブラック等があるが、特
に限定されるものではない。
There are many types of carbon black, including furnace black.
Examples include thermal black, channel black, etc., but they are not particularly limited.

また、結着剤としては、ポリテトラフルオロエチレンに
代表されるフッ素柑脂粉、ポリオレフィン等があり、い
ずれを用いてもよいが、結着性が優れていることから、
特に繊維状のものか好適である。
In addition, as a binder, there are fluorinated citrus powder represented by polytetrafluoroethylene, polyolefin, etc., and any of them may be used, but since they have excellent binding properties,
Fibrous ones are particularly suitable.

正極は上記正極活物質、導電剤、結着剤を混合、成形し
てつくられるが、上記正極活物質の含有量は、80重量
%以上で、特に85〜99重量%の範囲が好ましい。正
極活物質の量が80重量%未満では、電気容量が低下し
、また99重量%を越えると電極嵩密度が増大し、反応
抵抗が大きくなり、同様に電気容量が低下する。炭素材
料(導電剤)は15重量%以下、特に1〜IO重量%の
範囲が好ましい。
The positive electrode is produced by mixing and molding the positive electrode active material, the conductive agent, and the binder, and the content of the positive electrode active material is preferably 80% by weight or more, particularly preferably in the range of 85 to 99% by weight. If the amount of the positive electrode active material is less than 80% by weight, the capacitance decreases, and if it exceeds 99% by weight, the electrode bulk density increases, the reaction resistance increases, and the capacitance decreases as well. The content of the carbon material (conductive agent) is preferably 15% by weight or less, particularly in the range of 1 to IO% by weight.

また、結着剤は10重量%以下、特に1〜5重量%の範
囲か好ましい。
Further, the amount of the binder is preferably 10% by weight or less, particularly in the range of 1 to 5% by weight.

上記炭素材料および結着剤の混合量は正極活物質の量を
上記範囲に保持し、かつ正極性能を考慮して上記範囲よ
り選択される。
The amount of the carbon material and binder to be mixed is selected from the above range while keeping the amount of the positive electrode active material within the above range and taking into account the performance of the positive electrode.

正極は、上記3つの成分を配合し、有機溶媒を添加混練
した後、プレス成形やロール成形によって所定の形状に
成形される。成形した正極の性能を充分に発揮させるに
は、乾燥して、溶媒などを充分に除去することが重要で
ある。乾燥条件は、150°C以上で、減圧乾燥を24
hr以上行なうのかよい。
The positive electrode is formed by blending the above three components, adding an organic solvent and kneading, and then molding into a predetermined shape by press molding or roll molding. In order to fully demonstrate the performance of the molded positive electrode, it is important to dry it and sufficiently remove the solvent and the like. Drying conditions are 150°C or higher and vacuum drying for 24 hours.
Should I do it for more than hr?

また、本発明に用いられる負極は、充放電によってナト
リウムを効率よく出入されることか必要で、ナトリウム
と錫、或いはナトリウムと鉛の合金が用いられるか、特
にナトリウムと鉛の合金か好ましい。これは、ナトリウ
ム・鉛合金は鉛が電気化学的にナトリウムと合金化し易
い金属で、さらにナトリウムを可逆的に出入できるから
である。
In addition, the negative electrode used in the present invention must be able to efficiently transfer sodium in and out during charging and discharging, and an alloy of sodium and tin or sodium and lead is preferably used, and particularly an alloy of sodium and lead is preferably used. This is because in a sodium-lead alloy, lead is a metal that easily alloys with sodium electrochemically, and furthermore, sodium can be reversibly taken in and taken out.

上記ナトリウム・鉛合金を負極に用いる場合、上記炭素
材料との複合体として用いるのが好ましい。
When the above sodium-lead alloy is used for the negative electrode, it is preferably used as a composite with the above carbon material.

上記複合体負極の構成要素のうち、主として電荷を出し
入れする活物質として働くのはナトリウムであり充電で
電解液側からアルカリ金属イオンが還元されナトリウム
合金中に移動し、また放電でナトリウム合金中の一部の
ナトリウムが酸化され電解液中に移動するものと考えら
れる。
Among the constituent elements of the composite negative electrode, sodium primarily acts as an active material that transfers charges.During charging, alkali metal ions are reduced from the electrolyte side and move into the sodium alloy, and during discharging, the alkali metal ions in the sodium alloy are reduced. It is thought that some sodium is oxidized and moves into the electrolyte.

上記合金の組成としては、電池の充電時の状態で、ナト
リウムと鉛のモル比は10:1乃至1:2の範囲内が好
ましい。これは、電池の充電状態から放電状態に至るま
で、ナトリウムと鉛が合金状態を維持できるかまたは電
位的に開回路電位がナトリウム単独電位より高い電位を
示し、ナトリウムのデンドライト発生を抑制できる範囲
内であると同時に、各サイクルの充放電状態前にナトリ
ウムが負極中で枯渇状態にならない範囲内であることに
よる。
As for the composition of the above-mentioned alloy, the molar ratio of sodium to lead is preferably within the range of 10:1 to 1:2 when the battery is being charged. This is within the range in which sodium and lead can maintain an alloy state from the charging state to the discharging state of the battery, or the open circuit potential can be higher than the potential of sodium alone, and the generation of sodium dendrites can be suppressed. At the same time, it is within the range that sodium does not become depleted in the negative electrode before the charge/discharge state of each cycle.

しかし、単独にナトリウム合金のみを電極として使用す
るだけでは、負極の利用率、可逆性を向上させるには至
らず、炭素材料との複合体電極にするのが良い。用いる
炭素材料としては、カーボンブラックまたは、黒鉛が適
する。上記カーボンブラ、りには、サーマルブラック、
ファーネスブランク、アセチレンブラック等があるがい
ずれでもよく特に制限はない。また黒鉛としては、天然
黒鉛でも人造黒鉛でもよく、また気相成長法により合成
した繊維状黒鉛でもよい。しかし、炭素材料の量があま
り多過ぎると電極容量、密度を下げる。また、その添加
量は負極重量当たり、1%ないし15%が好ましい。
However, using only a sodium alloy as an electrode does not improve the utilization rate and reversibility of the negative electrode, and it is better to use a composite electrode with a carbon material. Carbon black or graphite is suitable as the carbon material to be used. The above carbon bra, thermal black,
There are furnace blanks, acetylene black, etc., but any of them may be used without any particular limitation. Further, the graphite may be natural graphite or artificial graphite, or may be fibrous graphite synthesized by a vapor phase growth method. However, if the amount of carbon material is too large, the electrode capacity and density will be reduced. The amount added is preferably 1% to 15% based on the weight of the negative electrode.

さらに複合電極が使用中に崩壊しないようにするため、
結着剤を添加する必要があるが、電極や電解液との反応
性がないことが必要で、通常ポリエチレン、ポリプロピ
レンの繊維または粉体を電極中によく分散させて加熱溶
着させて用いる。また、より効果的な負極材の結着剤と
しては、例えばオレフィン系共重合体ゴム、例えばエチ
レンプロピレンゴム(EPR)、 エチレン−ブテンコ
ム(EBR)、エチレン−プロピレン−ジエンコム(E
PDM)等が挙げられるが、特にEPDMが好ましい。
Furthermore, to prevent the composite electrode from collapsing during use,
Although it is necessary to add a binder, it is necessary that it has no reactivity with the electrode or electrolyte, and is usually used by thoroughly dispersing polyethylene or polypropylene fibers or powder in the electrode and welding it by heating. Further, as a more effective binder for the negative electrode material, for example, olefin copolymer rubber such as ethylene propylene rubber (EPR), ethylene-butene rubber (EBR), ethylene-propylene-diene rubber (EBR), etc.
EPDM is particularly preferred.

この結着剤も多く使用すると、かえって電極性能を損な
う。適した量としては負極重量当り、1%ないし8%で
ある。
If too much of this binder is used, the electrode performance will be impaired. A suitable amount is 1% to 8% based on the weight of the negative electrode.

このような、負極を用いた場合、好適な電解液としては
、ナトリウム塩を1.2−ジメトキ/エタンとエーテル
系化合物との混合溶媒に溶解したものかよい。
When such a negative electrode is used, a suitable electrolytic solution may be one in which a sodium salt is dissolved in a mixed solvent of 1,2-dimethoxy/ethane and an ether compound.

エーテル系化合物との混合系で用いる場合その種類に特
に制限はないか、当然のことながら電極活物質と強く反
応するものは使用することはできない。
When used in a mixed system with an ether compound, there are no particular restrictions on the type, and as a matter of course, those that strongly react with the electrode active material cannot be used.

混合される非水溶媒としては、例えば、エトキン−メト
キシエタン、タイグライム、トリグライム テトラグラ
イム、ペンタグライム テトラヒドロフラン、2−メチ
ルテトラヒドロフラン1114−3メチルジオキソラン
、ジオキサン等のエーテル化合物て、特にダイグライム
、トリグライムテトラグライムか好ましい。
Examples of the non-aqueous solvent to be mixed include ether compounds such as ethquin-methoxyethane, tiglyme, triglyme, tetraglyme, pentaglyme, tetrahydrofuran, 2-methyltetrahydrofuran 1114-3 methyldioxolane, and dioxane, particularly diglyme, triglyme, and tetraglyme. Or preferable.

ナトリウム塩の具体例としては、NaPF、やNaBF
4.NaCF35○B+ N a A s F @+ 
 N aS IF s等を挙げることができるが、有機
溶媒への溶解度が比較的高く、電気化学的に安定な電解
質としてN a P F eが好適である。
Specific examples of sodium salts include NaPF and NaBF.
4. NaCF35○B+ N a A s F @+
Examples include NaSIFs, but NaPFe is preferable as an electrolyte that has relatively high solubility in organic solvents and is electrochemically stable.

〔実施例〕〔Example〕

次に実施例、比較例を示して本発明を具体的に説明する
Next, the present invention will be specifically explained by showing Examples and Comparative Examples.

・実施例1 正極はN a 202 、C0304およびN10を酸
素雰囲気下で加熱反応させN a 07N +。3CO
0,70、を合成し、それを粉砕した後、篩分けして粒
径50μm以下の粒子を得、これを正極活物質とした。
- Example 1 The positive electrode was made by heating and reacting Na 202 , C0304 and N10 in an oxygen atmosphere to form Na 07N + . 3CO
0.70 was synthesized, pulverized, and then sieved to obtain particles with a particle size of 50 μm or less, which were used as a positive electrode active material.

この正極活物質か95重量%、アセチレンブラックが2
5重量%、テトラフルオロエチレンか25重量%となる
ように配合し、これに有機溶剤を添加して混練した。こ
の混練したものをロールで400μmの厚さに圧延し、
幅4cm、長さ13cmの大きさに切り取り200°C
て真空乾燥し正極とした。
This positive electrode active material is 95% by weight, and acetylene black is 2% by weight.
5% by weight and 25% by weight of tetrafluoroethylene, an organic solvent was added thereto, and the mixture was kneaded. This kneaded material was rolled with a roll to a thickness of 400 μm,
Cut into pieces 4cm wide and 13cm long at 200°C.
It was dried in vacuum and used as a positive electrode.

また、ナトリウムと鉛とを原子比か3:1となるように
配合し、不活性ガス雰囲気下で加熱反応させ、ナトリウ
ム・鉛合金を得た。これを微細に粉砕した後、あらかじ
め用意したアセチレンブラックとEPDMの重量比が3
・1の混合物を加え、ナトリウム・鉛合金が90%、上
記混合物が10%になるように混ぜてプレス成形により
幅4cm長さ15cmの負極を成形した。
Further, sodium and lead were mixed at an atomic ratio of 3:1 and reacted by heating under an inert gas atmosphere to obtain a sodium-lead alloy. After finely pulverizing this, the weight ratio of the acetylene black and EPDM prepared in advance was 3.
- The mixture of 1 was added and mixed so that the sodium-lead alloy was 90% and the above mixture was 10%, and a negative electrode with a width of 4 cm and a length of 15 cm was formed by press molding.

さらに1.2−ジメトキシエタンにN a P F a
を1.0モル/gの濃度に溶かしたものを電解液とした
Furthermore, N a P F a to 1,2-dimethoxyethane
An electrolytic solution was prepared by dissolving the following to a concentration of 1.0 mol/g.

上記正極、負極、電解液、およびセパレータとしてポリ
プロピレン製マイクロポーラスフィルムを用いてAA型
のシリンダー電池を組立てた。
An AA type cylinder battery was assembled using the positive electrode, negative electrode, electrolytic solution, and a polypropylene microporous film as a separator.

この電池の組立直後の電圧は2.48Vであった。この
電池を放電方向に電流200mAで電池電圧が1.5v
になるまで放電し、次いで同じ電流値で電池電圧が3.
Ovになるまで充電し、さらに同じ電流値で放電を行い
これを数回繰り返し、このときの放電容量を調べた。
The voltage of this battery immediately after assembly was 2.48V. This battery is discharged with a current of 200mA and a battery voltage of 1.5V.
Discharge until the battery voltage reaches 3.5mm at the same current value.
The battery was charged until it reached Ov, and then discharged at the same current value. This was repeated several times, and the discharge capacity at this time was examined.

最大放電容量は628mAhであり、充電放電における
電流効率は100%であった。
The maximum discharge capacity was 628 mAh, and the current efficiency during charging and discharging was 100%.

また、この電池の放電容量が最大値の90%に低下する
までのサイクル数は、125回であった。
Further, the number of cycles until the discharge capacity of this battery decreased to 90% of the maximum value was 125 times.

実施例2 正極にN a O,?N + 0.4COo、 so 
!を用いた以外は、実施例1と同しにしてAA型電池を
組み立てた。
Example 2 N a O, ? at the positive electrode? N + 0.4COo, so
! An AA type battery was assembled in the same manner as in Example 1, except that AA type battery was used.

この電池5個(No2−1〜No2−5)を組み立てて
実施例1と同様の実験を行った。結果を第1表に示す。
Five of these batteries (No. 2-1 to No. 2-5) were assembled and the same experiment as in Example 1 was conducted. The results are shown in Table 1.

第1表 実施例3 正極にN ao、7N I 。、 +COo、 60 
*を用いた以外は実施例1と同様のものを用いてAA型
電池を組立てた。この電池5個(No3−1〜No3−
5)を組み立てて実施例1と同様の実験を行った。結果
を第2表に示す。
Table 1 Example 3 N ao and 7N I for the positive electrode. , +COo, 60
An AA type battery was assembled using the same battery as in Example 1 except that * was used. These 5 batteries (No. 3-1 to No. 3-
5) was assembled and the same experiment as in Example 1 was conducted. The results are shown in Table 2.

第2表 比較例1 正極にN a 0.7N i 0.、Co o、50 
、を用いた以外は実施例1と同様にしてAA型電池を組
み立てた。
Table 2 Comparative Example 1 Positive electrode has N a 0.7 N i 0. , Co o, 50
An AA type battery was assembled in the same manner as in Example 1 except that , was used.

この電池5個(No4−1〜No4−5)を組み立てて
実施例1と同様の実験を行った。結果を第3表に示す。
Five of these batteries (No. 4-1 to No. 4-5) were assembled and the same experiment as in Example 1 was conducted. The results are shown in Table 3.

第3表 第3表よりNiを05に増すと、放電容量及び電池電圧
か低下することかわかった。
From Table 3, it was found that when Ni was increased to 05, the discharge capacity and battery voltage decreased.

比較例2 正極にNa、○、とCO2O3を酸素雰囲気下で加熱反
応させNao7Co○、を合成したものを用いた以外は
、実施例1と同様にしてAA型電池を組み立てた。
Comparative Example 2 An AA type battery was assembled in the same manner as in Example 1, except that the cathode was made by synthesizing Nao7Co◯ by heating reaction of Na,◯, and CO2O3 in an oxygen atmosphere.

この電池5個(No5−1〜No5−5)を組み立てて
実施例1と同様の実験を行った。結果を第4表に示す。
Five of these batteries (No. 5-1 to No. 5-5) were assembled and the same experiment as in Example 1 was conducted. The results are shown in Table 4.

第4表 充電終止電圧が3.OVでは放電容量が低くなってしま
った。
Table 4 Charging end voltage is 3. With OV, the discharge capacity became low.

上記第1表〜第4表の結果よりN a 、、7N i 
xCOfl−11102(但し、O<x≦0.4)を正
極に用いることで高容量で高エネルギー密度の二次電池
を開発することができた。
From the results in Tables 1 to 4 above, N a , 7N i
By using xCOfl-11102 (O<x≦0.4) as a positive electrode, we were able to develop a secondary battery with high capacity and high energy density.

高容量充放電が可能な理由は、詳しくはわからないが酸
化ニッケルが酸化コバルトのナトリウムに対する電位を
下げる効果があり充放電電圧中(15〜3.OV)での
容量が高くなったものと思われる。
The reason why high capacity charging and discharging is possible is not known in detail, but it is thought that nickel oxide has the effect of lowering the potential of cobalt oxide relative to sodium, increasing the capacity at medium charging and discharging voltages (15 to 3.OV). .

また、Niが原子比で0.4以上になると正極電位が下
がると共に、3価のニッケルイオンが過剰に存在するた
め、コバルトサイトへ入す込ミ4価のコバルイオンによ
ってできた正孔をつぶしてしまいナトリウムイオンの吸
収ができなくなってしまうため、正極の容量低下をきた
すものと思われる。
In addition, when the atomic ratio of Ni is 0.4 or more, the positive electrode potential decreases, and since trivalent nickel ions are present in excess, they enter the cobalt site and crush the holes created by tetravalent cobalt ions. This is thought to result in a decrease in the capacity of the positive electrode because sodium ions cannot be absorbed.

〔発明の効果〕〔Effect of the invention〕

本発明において、酸化コバルトニッケルナトリウムを正
極に用いることにより高エネルギー密度でありさらにサ
イクル特性に優れた安定で信頼性の高い二次電池が得ら
れる。
In the present invention, by using sodium cobalt nickel oxide for the positive electrode, a stable and highly reliable secondary battery with high energy density and excellent cycle characteristics can be obtained.

Claims (1)

【特許請求の範囲】 正極と負極と非水電解液とからなる二次電池において、 正極に下式に示すナトリウム・ニッケル・コバルト複合
酸化物を正極活物質として用い、負極にナトリウムまた
はナトリウム合金を負極活物質として用いることを特徴
とする二次電池。 Na_0_._7Ni_xCo_(_1_−_x_)O
_2(但し、xは0<x≦0.4)
[Scope of Claims] In a secondary battery consisting of a positive electrode, a negative electrode, and a non-aqueous electrolyte, a sodium-nickel-cobalt composite oxide shown in the formula below is used as a positive electrode active material in the positive electrode, and sodium or a sodium alloy is used in the negative electrode. A secondary battery characterized by being used as a negative electrode active material. Na_0_. _7Ni_xCo_(_1_-_x_)O
_2 (However, x is 0<x≦0.4)
JP2094464A 1990-04-10 1990-04-10 Secondary cell Pending JPH03291863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2094464A JPH03291863A (en) 1990-04-10 1990-04-10 Secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2094464A JPH03291863A (en) 1990-04-10 1990-04-10 Secondary cell

Publications (1)

Publication Number Publication Date
JPH03291863A true JPH03291863A (en) 1991-12-24

Family

ID=14111002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2094464A Pending JPH03291863A (en) 1990-04-10 1990-04-10 Secondary cell

Country Status (1)

Country Link
JP (1) JPH03291863A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179473A (en) * 2004-11-26 2006-07-06 Kyushu Univ Positive electrode active material for nonaqueous electrolyte secondary battery
WO2010024304A1 (en) * 2008-08-27 2010-03-04 住友化学株式会社 Electrode active material and method for producing same
US7695868B2 (en) * 2006-03-20 2010-04-13 Sanyo Electric Co., Ltd. Sodium ion secondary battery
US8709655B2 (en) 2004-11-26 2014-04-29 Sumitomo Chemical Company, Limited Positive electrode active material for nonaqueous electrolyte secondary battery
US8790831B2 (en) 2008-02-04 2014-07-29 Sumitomo Chemical Company, Limited Powder for positive electrode active material, positive active electrode active material, and sodium secondary battery
JP2014175243A (en) * 2013-03-12 2014-09-22 Nippon Telegr & Teleph Corp <Ntt> Sodium secondary battery
US9142860B2 (en) 2008-02-04 2015-09-22 Sumitomo Chemical Company, Limited Mixed metal oxide and sodium secondary battery
US10122014B2 (en) 2008-02-04 2018-11-06 Sumitomo Chemical Company, Limited Mixed metal oxide and sodium secondary battery
CN108987738A (en) * 2018-07-23 2018-12-11 合肥科晶材料技术有限公司 A kind of technique preparing sodium stannum alloy cathode material and battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179473A (en) * 2004-11-26 2006-07-06 Kyushu Univ Positive electrode active material for nonaqueous electrolyte secondary battery
US8709655B2 (en) 2004-11-26 2014-04-29 Sumitomo Chemical Company, Limited Positive electrode active material for nonaqueous electrolyte secondary battery
US7695868B2 (en) * 2006-03-20 2010-04-13 Sanyo Electric Co., Ltd. Sodium ion secondary battery
US8790831B2 (en) 2008-02-04 2014-07-29 Sumitomo Chemical Company, Limited Powder for positive electrode active material, positive active electrode active material, and sodium secondary battery
US9142860B2 (en) 2008-02-04 2015-09-22 Sumitomo Chemical Company, Limited Mixed metal oxide and sodium secondary battery
US10122014B2 (en) 2008-02-04 2018-11-06 Sumitomo Chemical Company, Limited Mixed metal oxide and sodium secondary battery
WO2010024304A1 (en) * 2008-08-27 2010-03-04 住友化学株式会社 Electrode active material and method for producing same
JP2010080424A (en) * 2008-08-27 2010-04-08 Sumitomo Chemical Co Ltd Electrode active material and method for manufacturing the same
JP2014175243A (en) * 2013-03-12 2014-09-22 Nippon Telegr & Teleph Corp <Ntt> Sodium secondary battery
CN108987738A (en) * 2018-07-23 2018-12-11 合肥科晶材料技术有限公司 A kind of technique preparing sodium stannum alloy cathode material and battery

Similar Documents

Publication Publication Date Title
US5051325A (en) Secondary battery
JP4868703B2 (en) Additive of positive electrode material for lithium secondary battery, positive electrode material for lithium secondary battery, and positive electrode and lithium secondary battery using this positive electrode material for lithium secondary battery
JPH03291863A (en) Secondary cell
JPH09147910A (en) Lithium secondary battery
JPH0837025A (en) Nonaqueous electrolyte
JPH1092467A (en) Nonaqueous electrolyte secondary battery
JPH0744042B2 (en) Electrolyte for lithium secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP3132671B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2975627B2 (en) Battery
JPH08293324A (en) Nonaqueous electrolyte and lithium secondary battery using it
JPH03291864A (en) Secondary cell
JP3301026B2 (en) Lithium battery
JPH0515034B2 (en)
JPH02207464A (en) Secondary battery
JP3014714B2 (en) Non-aqueous electrolyte for lithium secondary batteries and lithium secondary batteries
JP3007114B2 (en) Non-aqueous electrolyte for lithium secondary batteries and lithium secondary batteries
JP3086878B1 (en) Lithium metal secondary battery
JPH0711967B2 (en) Non-aqueous electrolyte battery
JPH05198316A (en) Nonaqueous electrolyte battery
JP2898056B2 (en) Rechargeable battery
JP3322490B2 (en) Lithium primary battery
JP2991758B2 (en) Non-aqueous electrolyte for lithium secondary batteries
JP2023177123A (en) Positive electrode active material for fluoride ion battery and fluoride ion battery
JPH053114B2 (en)