JPH0837025A - Nonaqueous electrolyte - Google Patents

Nonaqueous electrolyte

Info

Publication number
JPH0837025A
JPH0837025A JP6304881A JP30488194A JPH0837025A JP H0837025 A JPH0837025 A JP H0837025A JP 6304881 A JP6304881 A JP 6304881A JP 30488194 A JP30488194 A JP 30488194A JP H0837025 A JPH0837025 A JP H0837025A
Authority
JP
Japan
Prior art keywords
tfpc
solvent
battery
trifluoropropylene
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6304881A
Other languages
Japanese (ja)
Inventor
Ryoichi Tajima
良一 田嶋
Yoshio Kajitani
芳男 梶谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP6304881A priority Critical patent/JPH0837025A/en
Publication of JPH0837025A publication Critical patent/JPH0837025A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide a non-aqueous electrolyte which is for a battery using alkali metal or carbonic material in its negative electrode and is unlikely to decompose on electrode at the time of charging and discharging by preparing the electrolyte using a solvent of trifluoropropylene carbonate as expressed by the formula given beside. CONSTITUTION:A non-aqueous electrolyte is prepared by using as a part or the whole a solvent of trifluoropropylene carbonate TFPC as expressed by Formula I given beside. The TFPC may be used either solely or as a mixture with any other solvent, and in thelatter case, it is preferable to contain 50% or more TFPC. The synthetization of TFPC is conducted by putting a dried lithium bromide in a flask, substituting with carbon dioxide gas, adding N- methyl pyrolidone, and dissolving. Trifluoropropylene oxido is added to the obtained solution, and the resultant is agitated in a carbon dioxide gas atmosphere. Ether is added to a liquid containing products, followed by rinsing with water, addition of sodium sulfate anhydride, and drying, and then the obtained residue is distilled decompressively, and TFRC is collected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルカリ金属又は炭素
材料を負極として用いる電池用の電解液に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic solution for a battery using an alkali metal or carbon material as a negative electrode.

【0002】[0002]

【従来の技術】アルカリ金属又は炭素材料を負極とする
電池は、従来のアルカリ電池やNiCd電池に比べ、単
電池電圧とエネルギー密度を増加することが可能なこと
から期待され研究が行われている。その代表的な例とし
て、負極にリチウムをインターカレート可能なカーボン
材料、正極にコバルト酸リチウムを含有する複合材料、
そして非水電解液からなるリチウム2次電池が知られて
いる。
2. Description of the Related Art Batteries using an alkali metal or carbon material as a negative electrode are expected to be researched because they can increase cell voltage and energy density as compared with conventional alkaline batteries and NiCd batteries. . As a typical example, a carbon material capable of intercalating lithium in the negative electrode, a composite material containing lithium cobalt oxide in the positive electrode,
A lithium secondary battery made of a non-aqueous electrolyte is known.

【0003】リチウム2次電池は、リチウムの強い還元
力のために、約4Vの起電力を有する電池の作製が可能
である。しかし、正極または負極での不可逆な反応の進
行、正極活物質の変質、寸法変化などの問題が解決され
ていないため、高起電力のリチウム2次電池は、理論電
圧が約4Vであるが電解液の分解等により実際には3.
6〜3.8V程度のものしか実用化されていないのが現
状である。
Due to the strong reducing power of lithium, a lithium secondary battery can be manufactured with an electromotive force of about 4V. However, since problems such as irreversible progress of reaction on the positive electrode or the negative electrode, alteration of the positive electrode active material, and dimensional change have not been solved, a high electromotive force lithium secondary battery has a theoretical voltage of about 4 V Actually due to decomposition of the liquid, etc. 3.
In the present situation, only a voltage of about 6 to 3.8 V has been put into practical use.

【0004】これらのリチウム2次電池の問題の1つ
は、電極上での溶媒の分解である。非水電解液はLiC
lO4、LiPF6、LiAsF6などの溶媒とエチレン
カーボネート(EC)、プロピレンカーボネート(P
C)、DEC(炭酸ジエチル)、2−メチル−テトラヒ
ドロフランなどを溶媒とする溶液が一般的である。しか
し、これらの溶媒は、約4Vの電圧では、充放電時に電
極上で分解し、電池反応を阻害する。その結果として、
充放電容量と効率が極めて悪かった。溶媒の分解を抑制
するために、2種以上の溶媒の混合や溶媒分子のハロゲ
ン化(特開昭62−290071、同62−21756
7)などの手段が講じられてきたが、必ずしも有効とは
言えなかった。
One of the problems with these lithium secondary batteries is the decomposition of the solvent on the electrodes. Non-aqueous electrolyte is LiC
lO 4, LiPF 6, solvent and ethylene carbonate, such as LiAsF 6 (EC), propylene carbonate (P
A solution using C), DEC (diethyl carbonate), 2-methyl-tetrahydrofuran or the like as a solvent is general. However, at a voltage of about 4 V, these solvents decompose on the electrodes during charging and discharging and hinder the battery reaction. As a result,
The charge / discharge capacity and efficiency were extremely poor. In order to suppress the decomposition of the solvent, a mixture of two or more kinds of solvents and halogenation of solvent molecules (Japanese Patent Laid-Open Nos. 62-290071 and 62-21756)
Although measures such as 7) have been taken, they have not always been effective.

【0005】[0005]

【発明が解決しようとする課題】本発明は、こうした実
情の下に、アルカリ金属又は炭素材料を負極とする電池
に使用するための電解液であって、充放電時に電極上で
分解しにくい非水電解液を提供することを目的とするも
のである。
Under these circumstances, the present invention provides an electrolytic solution for use in a battery having an alkali metal or carbon material as a negative electrode, which is not easily decomposed on the electrode during charging and discharging. The purpose is to provide a water electrolyte.

【0006】[0006]

【課題を解決するための手段】本発明者は、溶媒のハロ
ゲン化に着目し、とくにプロピレンカーボネートのハロ
ゲン化について鋭意検討した結果、電解液の溶媒として
少なくともその一部としてトリフルオロプロピレンカー
ボネートを使用することによりプロピレンカーボネート
を使用する場合に比べて溶媒の電位安定性が向上するこ
とを知見し、本発明に至った。
Means for Solving the Problems The present inventor has paid attention to halogenation of a solvent, and as a result of earnestly examining the halogenation of propylene carbonate, the present inventors have used trifluoropropylene carbonate as at least a part thereof as a solvent of an electrolytic solution. By doing so, it was found that the potential stability of the solvent was improved as compared with the case of using propylene carbonate, and the present invention was accomplished.

【0007】すなわち、本発明は、アルカリ金属又は炭
素材料を負極とする電池の非水電解液であって、下記式
のトリフルオロプロピレンカーボネートを溶媒の一分又
は全部として用いる非水電解液である。
That is, the present invention is a nonaqueous electrolytic solution for a battery having an alkali metal or carbon material as a negative electrode, in which trifluoropropylene carbonate represented by the following formula is used as a part or all of the solvent. .

【0008】[0008]

【化1】 Embedded image

【0009】本発明に使用する上記トリフルオロプロピ
レンカーボネートは、新規物質である(この物質につい
ては別途特願平5−310343号として出願)。これ
はたとえば次のようにして調製することができる。
The above-mentioned trifluoropropylene carbonate used in the present invention is a novel substance (this substance is separately applied as Japanese Patent Application No. 5-310343). This can be prepared, for example, as follows.

【0010】すなわち、下記式で表わされるトリフルオ
ロプロピレンオキシド
That is, trifluoropropylene oxide represented by the following formula

【0011】[0011]

【化2】 Embedded image

【0012】を二酸化炭素と反応させることにより調製
できる。
Can be prepared by reacting with carbon dioxide.

【0013】トリフルオロプロピレンカーボネート(以
下TFPCと略記する)は、単独で使用してもよく、ま
た他の溶媒と混合して使用することもできる。他の溶媒
と混合して使用する場合、TFPCは30%以上、好ま
しくは50%以上含有させる。このような本発明の電解
液に使用できる他の溶媒としては、例えばエチレンカー
ボネート、プロピレンカーボネート、炭酸ジエチル、炭
酸ジメチル、ジメトキシエタン、2−メチルテトラヒド
ロフラン、THF等が挙げられる。
Trifluoropropylene carbonate (hereinafter abbreviated as TFPC) may be used alone or in a mixture with other solvent. When used by mixing with another solvent, TFPC is contained in an amount of 30% or more, preferably 50% or more. Examples of the other solvent that can be used in the electrolytic solution of the present invention include ethylene carbonate, propylene carbonate, diethyl carbonate, dimethyl carbonate, dimethoxyethane, 2-methyltetrahydrofuran, and THF.

【0014】本発明の電解液に使用する溶質としては、
LiClO4、LiPF6、LiAsF6などのLi塩が
好ましい。溶質の濃度は、0.5〜1.5M/lが望ま
しい。0.5M/l未満では十分な導電率が得られず、
また1.5M/lを越えるとリチウム塩が析出する。
As the solute used in the electrolytic solution of the present invention,
Li salts such as LiClO 4 , LiPF 6 and LiAsF 6 are preferred. The solute concentration is preferably 0.5 to 1.5 M / l. If it is less than 0.5 M / l, sufficient conductivity cannot be obtained,
If it exceeds 1.5 M / l, lithium salt is precipitated.

【0015】本発明の非水電解液は、Li、Li合金な
どアルカリ金属又は各種の炭素材料を負極とする一次電
池又は二次電池に使用するが、電池の他の構成要素にと
くに制限はない。
The non-aqueous electrolyte of the present invention is used for a primary battery or a secondary battery having an anode of an alkali metal such as Li or a Li alloy or various carbon materials as a negative electrode, but other constituent elements of the battery are not particularly limited. .

【0016】[0016]

【実施例】以下に本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0017】実施例 TFPCの合成例 乾燥した臭化リチウム(無水物)0.65g(7.5m
mol)をナスフラスコに入れ、炭酸ガスで置換した
後、乾燥したN−メチルピロリドン12.5mlを加え
て溶解した。得られた溶液にトリフルオロプロピレンオ
キシド4.3ml(50mmol)を加えて、炭酸ガス
雰囲気下、室温(約25℃)で24時間撹拌した。その
後、反応物を含む液にエーテル80mlを加えて希釈
し、水20mlで8回洗浄した。無水硫酸ナトリウムを
加えて乾燥した後、当該溶液中のエーテルを留去し、得
られる残留物を減圧蒸溜し、100℃〜105℃/29
mmHgの留分を回収した。この留分はプロトンNMR
1H−NMR)、赤外吸収スペクトル(IR)、13
−NMR、19F−NMR及びガスクロマトグラフィー質
量分析により目的とするトリフルオロプロピレンカーボ
ネート(TFPC)であることが分かった。精製物とし
て回収された留分は3.85gであり、原料トリフルオ
ロプロピレンオキシドに対する収率は49%にあたる。
Example Synthesis of TFPC 0.65 g (7.5 m) of dried lithium bromide (anhydride)
(mol) was placed in a round-bottomed flask and replaced with carbon dioxide gas, and 12.5 ml of dried N-methylpyrrolidone was added and dissolved. 4.3 ml (50 mmol) of trifluoropropylene oxide was added to the obtained solution, and the mixture was stirred at room temperature (about 25 ° C) for 24 hours under a carbon dioxide gas atmosphere. Then, 80 ml of ether was added to dilute the liquid containing the reaction product, and the mixture was washed 8 times with 20 ml of water. After adding anhydrous sodium sulfate and drying, the ether in the solution was distilled off, and the resulting residue was distilled under reduced pressure to obtain 100 ° C to 105 ° C / 29 ° C.
A fraction of mmHg was collected. This fraction is proton NMR
( 1 H-NMR), infrared absorption spectrum (IR), 13 C
-NMR, 19 F-NMR and gas chromatography-mass spectrometry revealed that it was the target trifluoropropylene carbonate (TFPC). The fraction recovered as a purified product was 3.85 g, and the yield based on the starting material trifluoropropylene oxide was 49%.

【0018】こうして得られたTFPCを用い、1M
LiClO4−TFPC溶液を調製しこの溶液の導電
率、放電容量と放電効率を測定した。導電率はリチウム
(円型、直径7.5mm、厚さ1.0mm)で、ガラス
フィルターに浸透させた1MLiClO4−TFPC
(円型、直径7.5mm、厚さ1.0mm、TFPC=
25mg)をはさんだ構造を有する半電池を作製し、A
Cインピーダンス測定(5〜105Hz)からCole
−Coleプロットにより求めた。放電容量はテフロン
(商標名)とカーボン粉(混合比率:カーボン97wt
%)を圧縮成型したペレット(円型、直径7.5mm、
厚さ0.3mm)を試験極、リチウム(円型、直径7.
5mm、厚さ1.0mm)を対極として、ガラスフィル
ターに浸透させた1M LiClO4−TFPCを試験
極と対極の間にはさんだ構造を有する電池を作製し、電
流0.5mA/cm2充放電電圧0〜1.5Vの条件で
充電と放電を行った際の充電時の容量とした。放電効率
は充電容量を放電量で除した値とした。なお、リチウム
を対極、テフロンとカーボン粉を圧縮成型したペレット
を試験極とする電池では、放電時がカーボンへのリチウ
ムイオンのインターカレーション、充電時がデインター
カレーションに相当する。
Using the TFPC thus obtained, 1M
A LiClO 4 -TFPC solution was prepared and the conductivity, discharge capacity and discharge efficiency of this solution were measured. The conductivity is lithium (circular shape, diameter 7.5 mm, thickness 1.0 mm), and 1 M LiClO 4 -TFPC impregnated in a glass filter.
(Circular type, diameter 7.5 mm, thickness 1.0 mm, TFPC =
25 mg) and a half battery having a structure sandwiched between
C impedance measurement (5 to 10 5 Hz) to Cole
-Cole plot was used. The discharge capacity is Teflon (trademark) and carbon powder (mixing ratio: carbon 97 wt
%) Compression molded pellets (circular shape, diameter 7.5 mm,
A thickness of 0.3 mm is used as a test electrode, lithium (circular shape, diameter 7.
5 mm, thickness 1.0 mm) as a counter electrode, and a battery having a structure in which 1 M LiClO 4 -TFPC impregnated in a glass filter was sandwiched between the test electrode and the counter electrode was prepared, and a current of 0.5 mA / cm 2 was charged / discharged. The capacity at the time of charging when charging and discharging were performed under the condition of voltage 0 to 1.5V. The discharge efficiency was a value obtained by dividing the charge capacity by the discharge amount. In a battery having lithium as a counter electrode and a pellet obtained by compression molding Teflon and carbon powder as a test electrode, lithium ion intercalation into carbon during discharge corresponds to deintercalation during charging.

【0019】比較例1 試験液を1M LiClO4−プロピレンカーボネート
とした以外は実施例と同様に測定した。
Comparative Example 1 Measurement was carried out in the same manner as in Example except that the test solution was 1M LiClO 4 -propylene carbonate.

【0020】比較例2 試験液を1M LiClO4−エチレンカーボネートと
した以外は実施例と同様に測定した。
Comparative Example 2 Measurement was carried out in the same manner as in Example except that the test solution was 1M LiClO 4 -ethylene carbonate.

【0021】[0021]

【表1】 [Table 1]

【0022】実施例2 コバルト酸リチウム91重量%、カーボン粉6重量%、
及びテフロン(商標名)3重量%を混練し、厚さ100
μmのシートに成形後、直径7.5mmの円形に打ち抜
きこれを正極とした。また、直径7.5mm、厚さ0.
3mmのガラスフィルターに1MLiClO4TFPC
溶液を含浸させ、これを電解質とした。そして、負極と
して直径7.5mm、厚さ1mmの金属リチウムを使用
して電池を作成した。この電池を以下の条件で充放電試
験を実施した。その結果を図1に示す。
Example 2 91% by weight of lithium cobalt oxide, 6% by weight of carbon powder,
And 3% by weight of Teflon (trade name) were kneaded to give a thickness of 100
After being formed into a sheet of μm, it was punched out into a circle having a diameter of 7.5 mm, which was used as a positive electrode. Further, the diameter is 7.5 mm and the thickness is 0.
3M glass filter with 1M LiClO 4 TFPC
The solution was impregnated and used as the electrolyte. Then, a battery was prepared by using metallic lithium having a diameter of 7.5 mm and a thickness of 1 mm as the negative electrode. The battery was subjected to a charge / discharge test under the following conditions. The result is shown in FIG.

【0023】充放電条件 充電側:電流密度 1mA/cm2 カットオフ電圧 4.2V 放電側:電流密度 1mA/cm2 カットオフ電圧 3.0V 比較例3 電解質として1MLiClO4PC溶液を用い、他は実
施例2と同様にして電池を作成し、充放電試験を行っ
た。その結果を図1に示す。
Charge / Discharge Conditions Charge side: Current density 1 mA / cm 2 cut-off voltage 4.2 V Discharge side: Current density 1 mA / cm 2 cut-off voltage 3.0 V Comparative Example 3 1 M LiClO 4 PC solution was used as the electrolyte, and the others were used. A battery was prepared and a charge / discharge test was conducted in the same manner as in Example 2. The result is shown in FIG.

【0024】図1から明らかなように、本発明の非水電
解液を用いた場合は、長期にわたって安定して使用でき
る。
As is apparent from FIG. 1, when the nonaqueous electrolytic solution of the present invention is used, it can be used stably for a long period of time.

【0025】実施例3 電解液として、1MLiClO4 TFPC:EC(体
積比1:1)、1MLiClO4 TFPC:PC(体
積比1:1)及び1MLiClO4 TFPC:DEC
(体積比1:1)を用い、他は実施例2と同様に電池を
作成し、充放電試験を行った。
Example 3 As electrolytes, 1M LiClO 4 TFPC: EC (volume ratio 1: 1), 1M LiClO 4 TFPC: PC (volume ratio 1: 1) and 1M LiClO 4 TFPC: DEC.
Using (Volume ratio 1: 1), a battery was prepared in the same manner as in Example 2 except for the above, and a charge / discharge test was conducted.

【0026】その結果を表2に示す。The results are shown in Table 2.

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【発明の効果】以上説明したように、本発明のトリフル
オロプロピレンカーボネートを非水電解液とした電池
は、エチレンカーボネートやプロピレンカーボネートを
用いた場合等と比べて電池性能を向上させることができ
る。
As described above, the battery using the trifluoropropylene carbonate of the present invention as the non-aqueous electrolyte can improve the battery performance as compared with the case of using ethylene carbonate or propylene carbonate.

【図面の簡単な説明】[Brief description of drawings]

【図1】充放電試験結果を示すグラフ。FIG. 1 is a graph showing charge / discharge test results.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 アルカリ金属又は炭素材料を負極とする
電池の非水電解液であって、下記式のトリフルオロプロ
ピレンカーボネートを溶媒の一部又は全部として用いる
ことを特徴とする非水電解液。 【化1】
1. A non-aqueous electrolytic solution for a battery using an alkali metal or carbon material as a negative electrode, wherein trifluoropropylene carbonate represented by the following formula is used as a part or all of a solvent. Embedded image
JP6304881A 1993-12-10 1994-12-08 Nonaqueous electrolyte Pending JPH0837025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6304881A JPH0837025A (en) 1993-12-10 1994-12-08 Nonaqueous electrolyte

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP31034193 1993-12-10
JP5-310341 1994-05-18
JP6-103765 1994-05-18
JP10376594 1994-05-18
JP6304881A JPH0837025A (en) 1993-12-10 1994-12-08 Nonaqueous electrolyte

Publications (1)

Publication Number Publication Date
JPH0837025A true JPH0837025A (en) 1996-02-06

Family

ID=27310068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6304881A Pending JPH0837025A (en) 1993-12-10 1994-12-08 Nonaqueous electrolyte

Country Status (1)

Country Link
JP (1) JPH0837025A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996041801A1 (en) * 1995-06-09 1996-12-27 Mitsui Petrochemical Industries, Ltd. Cyclic fluorinated carbonates and electrolyte solution and battery containing the carbonate
EP0806804A1 (en) * 1996-05-11 1997-11-12 Furukawa Denchi Kabushiki Kaisha Fluorinated carbonate electrolytes for use in a lithium secondary battery
JPH10116629A (en) * 1996-10-15 1998-05-06 Mitsui Chem Inc Non-aqueous electrolyte
JPH10177814A (en) * 1996-08-07 1998-06-30 Mitsui Chem Inc Ion conductive high molecular gel electrolyte and solid battery including high molecular gel electrolyte
EP1113515A1 (en) 1999-12-27 2001-07-04 Sony Corporation Non-aqueous electrolytic secondary cell
JP2006286926A (en) * 2005-03-31 2006-10-19 Fuji Heavy Ind Ltd Lithium ion capacitor
WO2008084846A1 (en) * 2007-01-12 2008-07-17 Daikin Industries, Ltd. Electric double layer capacitor
JP2012216391A (en) * 2011-03-31 2012-11-08 Daikin Ind Ltd Electrochemical device and nonaqueous electrolyte for electrochemical device
WO2014050873A1 (en) 2012-09-28 2014-04-03 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium battery, and module
WO2014050872A1 (en) 2012-09-28 2014-04-03 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium battery, and module
WO2016029379A1 (en) * 2014-08-27 2016-03-03 江苏华盛精化工股份有限公司 Fluorine-substituted propylene carbonate-based electrolyte and lithium-ion battery
US9455474B2 (en) 2011-03-31 2016-09-27 Daikin Industries, Ltd. Electrolytic solution
CN107181004A (en) * 2017-07-05 2017-09-19 山东大学 A kind of lithium-sulfur cell electrolyte and the lithium-sulfur cell using the electrolyte

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996041801A1 (en) * 1995-06-09 1996-12-27 Mitsui Petrochemical Industries, Ltd. Cyclic fluorinated carbonates and electrolyte solution and battery containing the carbonate
US6010806A (en) * 1995-06-09 2000-01-04 Mitsui Chemicals, Inc. Fluorine-substituted cyclic carbonate electrolytic solution and battery containing the same
US6180800B1 (en) 1995-06-09 2001-01-30 Mitsui Chemicals, Inc. Fluorine-substituted cyclic carbonate and electrolytic solution and battery containing the same
EP0806804A1 (en) * 1996-05-11 1997-11-12 Furukawa Denchi Kabushiki Kaisha Fluorinated carbonate electrolytes for use in a lithium secondary battery
JPH10177814A (en) * 1996-08-07 1998-06-30 Mitsui Chem Inc Ion conductive high molecular gel electrolyte and solid battery including high molecular gel electrolyte
JPH10116629A (en) * 1996-10-15 1998-05-06 Mitsui Chem Inc Non-aqueous electrolyte
EP1113515A1 (en) 1999-12-27 2001-07-04 Sony Corporation Non-aqueous electrolytic secondary cell
JP2006286926A (en) * 2005-03-31 2006-10-19 Fuji Heavy Ind Ltd Lithium ion capacitor
US8236191B2 (en) 2007-01-12 2012-08-07 Daikin Industries, Ltd. Electrical double layer capacitor
WO2008084846A1 (en) * 2007-01-12 2008-07-17 Daikin Industries, Ltd. Electric double layer capacitor
JPWO2008084846A1 (en) * 2007-01-12 2010-05-06 ダイキン工業株式会社 Electric double layer capacitor
JP2012216391A (en) * 2011-03-31 2012-11-08 Daikin Ind Ltd Electrochemical device and nonaqueous electrolyte for electrochemical device
US9455474B2 (en) 2011-03-31 2016-09-27 Daikin Industries, Ltd. Electrolytic solution
US9923240B2 (en) 2012-09-28 2018-03-20 Daikin Industries, Ltd. Electrolyte solution, electrochemical device, lithium battery, and module
WO2014050873A1 (en) 2012-09-28 2014-04-03 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium battery, and module
WO2014050872A1 (en) 2012-09-28 2014-04-03 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium battery, and module
EP2887440A4 (en) * 2012-09-28 2016-02-10 Daikin Ind Ltd Electrolyte solution, electrochemical device, lithium battery, and module
WO2016029379A1 (en) * 2014-08-27 2016-03-03 江苏华盛精化工股份有限公司 Fluorine-substituted propylene carbonate-based electrolyte and lithium-ion battery
JP2017529664A (en) * 2014-08-27 2017-10-05 エイチエスシー コーポレーション Fluoropropylene carbonate-based electrolyte and lithium ion battery
EP3188302A4 (en) * 2014-08-27 2018-01-10 HSC Corporation Fluorine-substituted propylene carbonate-based electrolyte and lithium-ion battery
CN107181004A (en) * 2017-07-05 2017-09-19 山东大学 A kind of lithium-sulfur cell electrolyte and the lithium-sulfur cell using the electrolyte
CN107181004B (en) * 2017-07-05 2019-12-06 山东大学 Lithium-sulfur battery electrolyte and lithium-sulfur battery using same

Similar Documents

Publication Publication Date Title
US8101302B2 (en) Redox shuttles for high voltage cathodes
US8795893B2 (en) Nonaqueous secondary battery electrode, nonaqueous secondary battery including the same, and assembled battery
JP3439082B2 (en) Non-aqueous electrolyte secondary battery
JP5212241B2 (en) Non-aqueous electrolyte and lithium secondary battery
JP2001043895A (en) Nonaqueous electrolytic solution and lithium secondary battery using same
JPH06333594A (en) Nonaqueous electrolyte secondary battery
JP2000138071A (en) Nonaqueous electrolyte, and lithium secondary battery using the same
JP2000223152A (en) Lithium ion secondary battery having extended cycle life in charge/discharge
JPH0837025A (en) Nonaqueous electrolyte
JP3649996B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JPH10188977A (en) Lithium secondary battery
JP2002008721A (en) Nonaqueous electrolyte and lithium secondary battery
JP6270634B2 (en) Active material, sodium ion battery and lithium ion battery using the same
JP3650548B2 (en) Electrode active material and non-aqueous electrolyte secondary battery using the electrode active material
JP2940015B2 (en) Organic electrolyte secondary battery
JP2001148258A (en) Non-aqueous electrolytic solution and lithium secondary battery
JP2010238385A (en) Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery
JPH07220756A (en) Nonaqueous electrolyte lithium secondary battery
KR20040086813A (en) Cathode Material, Method of Manufacturing the Same, and Battery Using the Same
JP2004006293A (en) Positive electrode material, its manufacturing method, and battery using it
JP3301026B2 (en) Lithium battery
JPH0821431B2 (en) Organic electrolyte secondary battery
JPH1125973A (en) Negative electrode mateal for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery having negative electrode using the same
JP3663694B2 (en) Non-aqueous electrolyte secondary battery
JP3695365B2 (en) Cathode active material for lithium ion secondary battery