JP3021526B2 - Electrolyte for lithium secondary battery - Google Patents

Electrolyte for lithium secondary battery

Info

Publication number
JP3021526B2
JP3021526B2 JP2086530A JP8653090A JP3021526B2 JP 3021526 B2 JP3021526 B2 JP 3021526B2 JP 2086530 A JP2086530 A JP 2086530A JP 8653090 A JP8653090 A JP 8653090A JP 3021526 B2 JP3021526 B2 JP 3021526B2
Authority
JP
Japan
Prior art keywords
lithium
solvent
secondary battery
charge
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2086530A
Other languages
Japanese (ja)
Other versions
JPH03285272A (en
Inventor
秀 越名
博美 奥野
彰克 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2086530A priority Critical patent/JP3021526B2/en
Publication of JPH03285272A publication Critical patent/JPH03285272A/en
Application granted granted Critical
Publication of JP3021526B2 publication Critical patent/JP3021526B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、リチウム二次電池の電解液に関するもので
ある。
Description: TECHNICAL FIELD The present invention relates to an electrolyte for a lithium secondary battery.

従来の技術 従来よりリチウム二次電池は正極活物質に二硫化モリ
ブデン(MoS2),二硫化チタン(TiS2),二酸化マンガ
ン(MnO2),五酸化バナジウム(V2O5)などの遷移金属
硫化物もしくは酸化物を用い、負極に金属リチウムやリ
チウムイオンを吸蔵,放出する合金、例えばウッド合金
やリチウムアルミニウム合金などを用いた電池系が知ら
れている。
2. Description of the Related Art Conventionally, a lithium secondary battery uses a transition metal such as molybdenum disulfide (MoS 2 ), titanium disulfide (TiS 2 ), manganese dioxide (MnO 2 ), or vanadium pentoxide (V 2 O 5 ) as a positive electrode active material. A battery system using a sulfide or an oxide and using an alloy that absorbs and releases metallic lithium and lithium ions in the negative electrode, such as a wood alloy and a lithium aluminum alloy, is known.

正極の充放電特性に関しては、利用率が初期より低下
し、ある一定のサイクル数から安定し、充放電効率(放
電容量/充電容量x100)も非常に高く、ほぼ100%に近
い。ところが、負極に関しては、充放電効率が金属リチ
ウムで最高98%、リチウムイオンを吸蔵,放出する合金
で99%である。従って、正・負極容量比を1:1として電
池では負極容量が1サイクル毎に1〜2%低下するた
め、電池のサイクル寿命は初期容量の50%とすると25〜
50サイクルとなってしまう。これらから明らかなよう
に、リチウム二次電池のサイクル寿命を支配しているの
が負極であることがわかる。
With respect to the charge / discharge characteristics of the positive electrode, the utilization rate decreases from the initial stage, stabilizes from a certain number of cycles, and the charge / discharge efficiency (discharge capacity / charge capacity × 100) is very high, nearly 100%. However, with regard to the negative electrode, the charge and discharge efficiency is up to 98% for lithium metal and 99% for an alloy that absorbs and releases lithium ions. Therefore, when the positive / negative electrode capacity ratio is 1: 1 and the negative electrode capacity of the battery decreases by 1% to 2% for each cycle, the cycle life of the battery is 25% to 50% of the initial capacity.
50 cycles. As is clear from these, it is understood that the negative electrode controls the cycle life of the lithium secondary battery.

発明が解決しようとする課題 この正極と負極の充放電効率の差は、一般的に有機溶
媒が酸化、すなわち分子から電子を抜き取られる反応に
強く、逆に還元に弱いことから生じている。例えば酸化
分解電位がリチウムに対し5V以上と高く、フッ化黒鉛リ
チウム一次電池に用いられているガンマブチロラクトン
(GBL)などはリチウム二次電池の充電時には還元分解
が起こり、負極の充放電効率は低くなる。特に負極にリ
チウム金属を用いた場合はリチウムイオンを吸蔵,放出
する合金よりも充電電位が溶媒の還元電位よりも低いた
め充放電効率は低い。
Problems to be Solved by the Invention The difference between the charge and discharge efficiencies of the positive electrode and the negative electrode generally arises from the fact that the organic solvent is strong in oxidation, ie, a reaction in which electrons are extracted from molecules, and is weak in reduction. For example, the oxidative decomposition potential is as high as 5 V or more with respect to lithium. For example, gamma-butyrolactone (GBL) used for lithium fluoride graphite primary batteries undergoes reductive decomposition when charging lithium secondary batteries, and the charge / discharge efficiency of the negative electrode is low. Become. In particular, when lithium metal is used for the negative electrode, the charge potential is lower than the reduction potential of the solvent, and the charge / discharge efficiency is lower than that of an alloy that stores and releases lithium ions.

負極がリチウムイオンを吸蔵,放出する合金である場
合は、リチウム金属の充電時と異なり、リチウムは合金
中に吸蔵され、針状結晶は発生しないので、充放電効率
はリチウム金属よりも高い。しかしながら容量密度がリ
チウム金属の2062mAh/ccに対し、合金では1700mAh/ccと
低く、かつリチウム金属より放電電位が0.2〜0.6V貴に
あるため、内体積が限られている電池ではエネルギー密
度が小さくなる。
When the negative electrode is an alloy that stores and releases lithium ions, unlike when charging lithium metal, lithium is stored in the alloy and needle-like crystals are not generated, so that the charge and discharge efficiency is higher than that of lithium metal. However, the capacity density is 2062mAh / cc for lithium metal, but 1700mAh / cc for alloys, and the discharge potential is 0.2-0.6V noble than lithium metal, so the energy density is low in batteries with limited internal volume. Become.

従って、高エネルギー密度のリチウム二次電池を実現
させるためには、リチウム金属を負極とする方が良いと
考えられる。しかし充放電効率が約98%と低く、例え
ば、鉛蓄電池なみの300サイクルという電池寿命を確保
するためには正極の充放電容量に対しリチウムはその約
6倍という構成になり、エネルギー密度の観点からすれ
ば低くならざるを得ない状況である。
Therefore, in order to realize a lithium secondary battery with a high energy density, it is considered better to use lithium metal as the negative electrode. However, the charge / discharge efficiency is as low as about 98%. For example, in order to secure a battery life of 300 cycles like a lead-acid battery, lithium is about 6 times the charge / discharge capacity of the positive electrode. It is a situation that has to be low from a viewpoint.

このように従来の電池では高エネルギー密度でかつ長
サイクル寿命を実現することは難しく、さらに耐還元性
の優れたリチウム二次電池用電解液が求められている。
As described above, it is difficult to achieve a high energy density and a long cycle life with a conventional battery, and an electrolyte for a lithium secondary battery having excellent reduction resistance is required.

本発明はこのような課題を解決することを目的とす
る。
An object of the present invention is to solve such a problem.

課題を解決するための手段 上記課題を解決するため、本発明はリチウム二次電池
用電解液に下記の構造式に示すガンマアルコキシブチロ
ラクトン (RO−炭素数1から4までのアルコキシ基)を単独もし
くは他の溶媒との混合溶媒として用いたものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a gamma alkoxybutyrolactone represented by the following structural formula in an electrolyte for a lithium secondary battery. (RO—alkoxy group having 1 to 4 carbon atoms) alone or as a mixed solvent with another solvent.

作用 上記電解液を用いることにより、充電時に溶媒が還元
され難く、そのため負極の充放電効率が向上し、サイク
ル寿命の長く、かつ高エネルギー密度のリチウム二次電
池が得られることとなる。
Effect By using the above-mentioned electrolytic solution, the solvent is hardly reduced at the time of charging, so that the charge and discharge efficiency of the negative electrode is improved, and a lithium secondary battery having a long cycle life and a high energy density can be obtained.

実施例 以下、本発明の一実施例を第1図〜第2図に基づき説
明する。
Embodiment An embodiment of the present invention will be described below with reference to FIGS.

第1図は本発明に係るリチウム二次電池の一部断面図
であり、例えば直径が20mm、高さが1.6mmの電池であ
る。
FIG. 1 is a partial sectional view of a lithium secondary battery according to the present invention, for example, a battery having a diameter of 20 mm and a height of 1.6 mm.

第1図中、1は有機溶媒(以下溶媒という)に電解質
として六フッ化リン酸リチウム(LiPF6)を1mol/溶解
した電解液をしみこませたポリプロピレン製セパレータ
である。この溶媒の主溶媒として下記の構造式に示すガ
ンマアルコキシブチロラクトン (RO−は炭素数1から4までのアルコキシ基)が使用さ
れる。
In FIG. 1, reference numeral 1 denotes a polypropylene separator impregnated with an electrolytic solution obtained by dissolving 1 mol / mol of lithium hexafluorophosphate (LiPF 6 ) as an electrolyte in an organic solvent (hereinafter referred to as a solvent). Gamma alkoxybutyrolactone represented by the following structural formula as a main solvent of this solvent (RO- is an alkoxy group having 1 to 4 carbon atoms).

2は負極活物質としてのリチウム金属であり、ステン
レス製封口板3の内面に形成したステンレス製負極集電
体4に圧着固定されている。5は二酸化マンガンを正極
活物質とした正極合剤であり、ステンレス製ケース6の
内面に固定したチタン製正極集電体7に圧着固定されて
いる。8はポリプロピレン製ガスケットである。正極合
剤5は例えば組成が重量部で二酸化マンガン100に対
し、カーボンブラック20,フッ素樹脂系結着剤20とし、
容量が10mAhとなるようにされている。リチウム金属2
は容量が25mAhとなるようにされている。
Reference numeral 2 denotes lithium metal as a negative electrode active material, which is fixed by pressure to a stainless steel negative electrode current collector 4 formed on the inner surface of a stainless steel sealing plate 3. Reference numeral 5 denotes a positive electrode mixture using manganese dioxide as a positive electrode active material, which is fixed by pressure to a positive electrode collector 7 made of titanium and fixed to the inner surface of a case 6 made of stainless steel. 8 is a polypropylene gasket. For example, the positive electrode mixture 5 has a composition of 100 parts by weight of manganese dioxide, carbon black 20, and a fluororesin binder 20,
The capacity is set to be 10 mAh. Lithium metal 2
Has a capacity of 25 mAh.

ここで上記構成の電池において、溶媒を各種異ならせ
た場合のサイクル特性を調べた結果を第2図に示す。な
お、充電は0.5mAの電流で3.8Vまで行い、放電は1.5mAの
電流で2.0Vまで行った。また第2図中(A)から(G)
までの溶媒の成分を第1表に示す。電解質のLIPF6の濃
度は1mol/である。
Here, FIG. 2 shows the results of examining the cycle characteristics of the battery having the above-described structure when the solvent was varied. Note that charging was performed up to 3.8 V with a current of 0.5 mA, and discharging was performed up to 2.0 V with a current of 1.5 mA. (A) to (G) in FIG.
Table 1 shows the components of the solvent up to. The concentration of LIPF 6 in the electrolyte is 1 mol /.

なお比較のために、ガンマブチロラクトン(GBL),
ガンマバレロラクトン(GVL)、およびプロピレンカー
ボネート(PC)についても示した。
For comparison, gamma-butyrolactone (GBL),
Gamma valerolactone (GVL) and propylene carbonate (PC) are also shown.

第2図より本発明の溶媒を使用した電池(図中
(B),(C))が他の溶媒を用いた電池よりサイクル
寿命が長いことがわかる。
FIG. 2 shows that the batteries using the solvent of the present invention ((B) and (C) in the figure) have a longer cycle life than the batteries using other solvents.

GVLはGBLのγ位にメチル基が側鎖としてついており耐
酸化性に強い。しかし耐還元性には寄与していない。
GVL has a methyl group attached to the γ-position of GBL as a side chain, and has strong oxidation resistance. However, it does not contribute to reduction resistance.

これらの溶媒に対し、本発明の溶媒は耐還元性に寄与
するアルコキシ基をもち、十分に耐還元性があり、かつ
高い耐酸化性をも保持しているため、リチウム二次電池
用溶媒としては非常に有用である。
In contrast to these solvents, the solvent of the present invention has an alkoxy group that contributes to reduction resistance, has sufficient reduction resistance, and also retains high oxidation resistance. Is very useful.

しかし、アルコキシ基の炭素数が4より大のときは、
構造的に分子自体がかさばり、粘性の増大を引き起こし
リチウム二次電池の溶媒としては使い難くなる。
However, when the alkoxy group has more than 4 carbon atoms,
Molecules themselves are bulky structurally, causing an increase in viscosity and making it difficult to use as a solvent for a lithium secondary battery.

第2図から得られたサイクル寿命から負極の充放電効
率を以下の式によって算出した結果、 平均充放電効率; Eff.(%)=(Q−Qex/n)Qx100 但し、Qは電池の平均充放電容量(mAh)、Qexはリチウ
ムの容量から充放電中に正極に残存したリチウム容量を
除いた容量(mAh)、nはサイクル寿命で、ここでは容
量で初期容量の50%劣化した時のサイクル数をサイクル
寿命とした。
Result calculated by the following equation charging and discharging efficiency of the negative electrode from cycle life obtained from Figure 2, the average charge-discharge efficiency;. Eff (%) = ( Q-Q ex / n) Qx100 where, Q is the cell Average charge / discharge capacity (mAh), Q ex is capacity (mAh) excluding lithium capacity remaining in the positive electrode during charge / discharge from lithium capacity, and n is cycle life, where capacity degraded by 50% of initial capacity The number of cycles at the time was defined as the cycle life.

本発明の範囲にある電解液の平均充放電効率は全て9
8.5から99.0%を示し、従来の電解液を用いた電池より
も高い値を示していることがわかる。従って、本発明に
係る電解液の平均充放電効率から300サイクルのサイク
ル寿命を得るための正・負極の容量比は正極の充放電容
量に対し、負極容量が3から4.5倍になり従来の6倍に
比べ、電池の体積効率は向上し、さらに負極容量を減ら
せば、その減少した体積だけ正極容量を増加させること
ができるため、従来よりも高エネルギー密度のリチウム
二次電池ができる。また、負極の充放電効率と溶媒の耐
還元性とは密接な関係にあり、耐還元性の高い溶媒を用
いたほど充電の際、電解液とリチウムとの反応により消
費されるリチウム量が少なく抑えられ、負極の充放電効
率が高くなる。そして、耐還元性の高い溶媒は、従来か
ら知られているようなエチレンカーボネート、プロピレ
ンカーボネート、テトラヒドロフラン、1,2−ジメトキ
シエタン、アセトニトリル、ジメチルホルムアミドなど
を他の溶媒とし、これらと適宜組み合わせて混合した状
態であっても、負極の充放電効率を高めて電池の充放電
サイクル寿命特性を向上させることができる。このた
め、同一リチウム量であると耐還元性が高い溶媒を用い
たほど負極の充放電効率が高くなり、サイクル寿命が長
くなる。従って、本発明の溶媒は耐還元性が高く、リチ
ウム二次電池用電解液に用いる溶媒として優れたもので
あるといえる。
The average charge and discharge efficiency of the electrolytic solution within the scope of the present invention is all 9
From 8.5 to 99.0%, it can be seen that the value is higher than that of the battery using the conventional electrolytic solution. Accordingly, the capacity ratio of the positive electrode to the negative electrode for obtaining a cycle life of 300 cycles from the average charge and discharge efficiency of the electrolyte according to the present invention is 3 to 4.5 times the charge and discharge capacity of the positive electrode. Compared with the conventional method, the volumetric efficiency of the battery is improved, and if the capacity of the negative electrode is further reduced, the capacity of the positive electrode can be increased by the reduced volume, so that a lithium secondary battery having a higher energy density than before can be obtained. In addition, the charge-discharge efficiency of the negative electrode and the reduction resistance of the solvent are closely related, and the amount of lithium consumed by the reaction between the electrolytic solution and lithium during charging decreases as the solvent having higher resistance to reduction is used. The charge and discharge efficiency of the negative electrode is increased. Solvents having high resistance to reduction include ethylene carbonate, propylene carbonate, tetrahydrofuran, 1,2-dimethoxyethane, acetonitrile, dimethylformamide, and the like, which are conventionally known, and are appropriately combined with these and mixed. Even in this state, the charge / discharge efficiency of the negative electrode can be increased and the charge / discharge cycle life characteristics of the battery can be improved. For this reason, when the amount of lithium is the same, the charge and discharge efficiency of the negative electrode becomes higher and the cycle life becomes longer as the solvent having higher reduction resistance is used. Therefore, it can be said that the solvent of the present invention has high reduction resistance and is excellent as a solvent used for an electrolyte for a lithium secondary battery.

発明の効果 以上の説明から明らかなように本発明によれば、従来
のものと比較し、高エネルギー密度でかつ長いサイクル
寿命という特徴を有するリチウム二次電池が得られる。
Effects of the Invention As is apparent from the above description, according to the present invention, a lithium secondary battery having characteristics of a higher energy density and a longer cycle life than conventional ones can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例におけるリチウム二次電池の
一部断面図、第2図は同リチウム二次電池のサイクル特
性を示した図である。 1……セパレータ、2……リチウム金属、4……正極合
剤。
FIG. 1 is a partial cross-sectional view of a lithium secondary battery according to one embodiment of the present invention, and FIG. 2 is a diagram showing cycle characteristics of the lithium secondary battery. 1 ... separator, 2 ... lithium metal, 4 ... positive electrode mixture.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−152683(JP,A) 特開 昭61−32961(JP,A) 特開 昭62−290073(JP,A) 特開 昭63−32871(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 H01M 6/16 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-57-152683 (JP, A) JP-A-61-32961 (JP, A) JP-A-62-290073 (JP, A) JP-A-63-62973 32871 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 10/40 H01M 6/16

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リチウム塩を溶解させた溶媒を電解液とし
て用いるリチウム二次電池の電解液であって、前記溶媒
が下記の構造式に示すガンマアルコキシブチロラクトン (RO−は炭素数1から4までのアルコキシ基)の単独も
しくは他の溶媒との混合溶媒であることを特徴とするリ
チウム二次電池用電解液。
An electrolyte for a lithium secondary battery using a solvent in which a lithium salt is dissolved as an electrolyte, wherein the solvent is a gamma-alkoxybutyrolactone represented by the following structural formula: (RO- is an alkoxy group having 1 to 4 carbon atoms) alone or in a mixed solvent with another solvent.
JP2086530A 1990-03-30 1990-03-30 Electrolyte for lithium secondary battery Expired - Fee Related JP3021526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2086530A JP3021526B2 (en) 1990-03-30 1990-03-30 Electrolyte for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2086530A JP3021526B2 (en) 1990-03-30 1990-03-30 Electrolyte for lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH03285272A JPH03285272A (en) 1991-12-16
JP3021526B2 true JP3021526B2 (en) 2000-03-15

Family

ID=13889547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2086530A Expired - Fee Related JP3021526B2 (en) 1990-03-30 1990-03-30 Electrolyte for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3021526B2 (en)

Also Published As

Publication number Publication date
JPH03285272A (en) 1991-12-16

Similar Documents

Publication Publication Date Title
JP3281819B2 (en) Non-aqueous electrolyte secondary battery
JPH06342673A (en) Lithium secondary battery
JP3287376B2 (en) Lithium secondary battery and method of manufacturing the same
JPH09161845A (en) Nonaqueous electrolyte secondary battery
JPH0744042B2 (en) Electrolyte for lithium secondary battery
JP2008288049A (en) Lithium ion secondary battery
JPH01124969A (en) Lithium secondary battery
JP2701327B2 (en) Non-aqueous electrolyte secondary battery
JP3021526B2 (en) Electrolyte for lithium secondary battery
JP2003229112A (en) Non-aqueous electrolyte secondary battery and manufacturing method of non-aqueous electrolyte secondary battery
JPH10112316A (en) Nonaqueous electrolyte secondary battery
JP3229531B2 (en) Non-aqueous electrolyte secondary battery
JP3177257B2 (en) Non-aqueous electrolyte secondary battery
JPH08180875A (en) Lithium secondary battery
JP2656305B2 (en) Organic electrolyte secondary battery
JP2707657B2 (en) Electrolyte for lithium secondary battery
JP3831547B2 (en) Non-aqueous electrolyte secondary battery
JPH08162154A (en) Secondary battery having nonaqueous solvent electrolyt
JP2975627B2 (en) Battery
JPH08190932A (en) Secondary battery having nonaqueous solvent electrolyte
JP2953024B2 (en) Non-aqueous electrolyte secondary battery
JP3036018B2 (en) Organic electrolyte battery
JPH01109662A (en) Nonaqueous electrolytic secondary cell
JP3119928B2 (en) Non-aqueous solvent for battery electrolyte
JP2819201B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees